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Abstract. Because intelligent agents employ physically embodied cognitive systems to reason about
the world, their cognitive abilities are constrained by the laws of physics. Scientists have used digital
computers to develop and validate theories of physically embodied cognition. Computational theo-
ries of intelligence have advanced our understanding of the nature of intelligence and have yielded
practically useful systems exhibiting some degree of intelligence. However, the view of cognition as
algorithms running on digital computers rests on implicit assumptions about the physical world that
are incorrect. Recently, the view is emerging of computing systems as goal-directed agents, evolving
during problem solving toward improved world models and better task performance. A full realization
of this vision requires a new logic for computing that incorporates learning from experience as an
intrinsic part of the logic, and that permits full exploitation of the quantum nature of the physical
world. This paper proposes a theory of physically embodied cognitive agents founded upon first-
order logic, Bayesian decision theory, and quantum physics. An abstract architecture for a physically
embodied cognitive agent is presented. The cognitive aspect is represented as a Bayesian decision
theoretic agent; the physical aspect is represented as a quantum process; and these aspects are related
through von Neumann’s principle of psycho-physical parallelism. Alternative metaphysical positions
regarding the meaning of quantum probabilities and the role of efficacious choices by agents are
discussed in relation to the abstract agent architecture. The concepts are illustrated with an extended
example from the domain of science fiction.
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1. Introduction

The Information Age has brought about fundamental changes in the way human-
ity approaches the study of mental and cognitive phenomena. There has been a
move toward the development of theories of mind that can be implemented as
computer programs, and yield predictions that can be compared with empirical
data (cf., Newell and Simon, 1976; Anderson, 1999; Thagard, 1988). Newell and
Simon (1976) argued that intelligence is a property possessed by physical agents
operating in a physical environment, whose cognition is performed by a phys-
ical brain and nervous system. Therefore, the means by which an agent identi-
fies, evaluates, selects among, and implements plans is constrained by the laws of
physics. They pioneered the methodological approach of implementing theories of
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intelligence in physical computing devices that can carry out the required com-
putations and actions rapidly and accurately enough to allow the agent to operate
successfully in its environment. Newell and Simon viewed intelligence as a prop-
erty possessed to greater or lesser degree by a physical symbol system, which they
defined as:

...a set of entities, called symbols, which are physical patterns that can occur
as components of another type of entity called an expression (or symbol struc-
ture). [Symbols in a structure] are related in some physical way... A physical
symbol system . . . produces through time an evolving collection of symbol struc-
tures. Such a system exists in a world of objects wider than just these symbolic
expressions themselves.

Two essential capabilities a physical symbol system must possess are designation
and interpretation. Symbol structures can designate objects in the world external to
the system, thus allowing the system to affect and/or be affected by the designated
object. Symbol structures designating a sequence of actions can be interpreted, thus
allowing the system either to act in the world or to issue instructions to control the
actions of an external system. Given this definition, Newell and Simon articulated
the physical symbol system hypothesis:

A physical symbol system has the necessary and sufficient means for intelligent
action.

They offered the physical symbol system hypothesis as a scientific hypothesis about
the nature of intelligence. They challenged the community to develop the hypothesis
further and subject it to empirical test. The intervening years have seen a vigorous
debate on the physical symbol system hypothesis. Attempts to construct physical
devices that behave intelligently have resulted in partial success, in vastly improved
understanding of the nature of the challenge, and in a better appreciation of what
we do and do not understand about intelligence and its role in Nature. The resulting
cross-fertilization between artificial intelligence, biology and cognitive psychology
has led to advances in all these disciplines.

As cognitive scientists have worked to develop physically grounded theories
of cognition, physicists have discovered the necessity of bringing cognitive agents
into physical theory. Prior to the twentieth century, science focused on constructing
and evaluating theories of a physical world evolving independently of the theo-
rizing agent. The relationship of the domain under investigation to the mind that
formulates and tests scientific theories was regarded as outside the province of
science. This separation has been rendered untenable by the advent of quantum
theory, the most stunningly successful scientific theory humanity has yet achieved.
In a radical departure from classical physics, an observer in quantum theory enters
into the dynamics of a physical system in a fundamental way. According to the
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orthodox interpretation of the theory, known as the Copenhagen interpretation, the
observable behavior of a quantum system depends on whether an agent decides to
observe it, and if so, on when it is observed and what features the agent chooses
to observe. Quantum theory also departs from the strict determinism of classical
physics. Although statistics is important in classical statistical mechanics, it is re-
garded as an approximation due to imperfect knowledge of the details of systems
whose underlying dynamics are deterministic. Uncertainty is a fundamental aspect
of quantum theory: the observable behavior of physical systems follows intrinsi-
cally probabilistic laws. In addition, the act of acquiring knowledge about a system
affects the system under observation in ways that can be predicted only imperfectly.

The developers of the orthodox Copenhagen interpretation viewed quantum
theory as a theory of the knowledge of observers. They explicitly eschewed an
ontology referring to a physical reality external to the mind of the observer. Ac-
cording to Heisenberg (Heisenberg, 1958), “The conception of objective reality
of the elementary particles has thus evaporated. . . into the transparent clarity of
a mathematics that represents no longer the behavior of particles but rather our
knowledge of this behavior.” The view that quantum theory is about the knowledge
of observers and not about an external physical reality has been controversial since
its inception. There have been numerous attempts to reformulate the theory to re-
move observer dependence. While some of these attempts have gained a substantial
following, and passionate debate over the foundations of quantum theory continues,
the Copenhagen interpretation remains standard.

To summarize, an influential school of thought within the computer and cognitive
sciences views physical embodiment as a fundamental property of intelligence. At
the same time, the orthodox interpretation of quantum physics gives the observer an
essential role in physical theory. This state of affairs suggests that a unified science of
cognition and information processing must encompass not only the means by which
agents represent and reason about the world, but also the physical processes by
which agents create and revise their representations, as well as the manner in which
the physical and cognitive aspects of intelligence relate to each other. Intelligent
agents form, manipulate and evolve representations of the world they live in. If they
are to survive and flourish, their representations must yield sufficiently accurate
predictions to enable them to identify and pursue life-enhancing courses of action.
For this to be possible, the physical world must be reasonably predictable, and must
also permit the evolution of physical systems capable of forming representations.
Thus, theories of knowledge representation, learning and action selection must
respect the constraints physics imposes on the interface between the physical world
and the agents who acquire information about and act upon the world.

This paper argues that a marriage of quantum theory with Bayesian decision
theory provides a unifying account of the physical and informational aspects of
physical symbol systems. Section 2 provides an introduction to graphical proba-
bility and decision models. Graphical models have become increasingly popular
as a language for expressing logically sound and tractable computational domain
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theories, for representing cause and effect relationships, and for specifying infer-
ence and optimization algorithms. Section 3 describes an interpretation for quantum
theory that maps directly to Bayesian decision theory. A representation of quantum
evolution and quantum measurement is provided in the language of graphical mod-
els. With no changes to the mathematical structure of existing physics, the ontology
proposed here connects physical reality in a plausible way to efficacious choices
by agents. Section 4 brings these threads together in a theory of quantum cognitive
agents — that is, physically embodied agents in which cognition is modeled as a
physical quantum process related to a sequential Bayesian decision process via the
principle of psycho-physical parallelism.

2. Graphical Probability and Decision Models

Intelligence requires the ability to reason and act in the presence of uncertainty. One
of the most difficult challenges in artificial intelligence has been the development of
principled yet tractable methods for plausible reasoning and decision making in the
presence of uncertainty and incomplete information. Although once controversial,
Bayesian decision theory is now regarded as a foundational theory for computational
inference and decision under uncertainty, and has become a standard of comparision
for proposed alternative approaches (c.f., Russell and Norvig, 2002). Game theory,
or multi-agent decision theory, is becoming standard as a foundation for systems
of multiple interacting agents (e.g., Kearns and Mansour, 2002).

2.1. BAYESIAN DECISION THEORY

Bayesian decision theory is a mathematical theory of rational decision making un-
der uncertainty. The theory provides a sound way to combine beliefs with values
to arrive at logically consistent, value-driven decisions. It applies to situations in
which an agent must choose an action or series of actions from among a set of
alternatives. The consequence of the choice depends on both the selected action(s)
and the state of the world. The state of the world, which may be unknown to the
agent at the time the choice is made, belongs to a set of mutually exclusive and
collectively exhaustive possible states. A decision theoretic agent expresses un-
certainty about the state of the world as a probability distribution, and expresses
preferences among consequences as a utility function. Taken together, the possi-
ble actions, possible states, possible consequences, and the probability and utility
functions comprise the agent’s decision theoretic model. According to the model,
the agent’s optimal choice is to select the action for which the mathematical expec-
tation of the utility is maximized. When the agent acquires information about the
world, probability assignments are updated according to a mathematical formula
called Bayes rule. The revised probabilities are used for subsequent predictions and
decisions.
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Although many textbooks take states, consequences, acts, probabilities and util-
ities as givens, it is possible to construct a decision theoretic model from more
cognitively natural primitives. A number of authors (e.g., Savage, 1954; Pratt et al.,
1965) have developed axiom systems that capture intuitive notions of rational be-
havior, and demonstrated that the axioms imply the optimality of subjective utility
maximization. For example, in Savage’s (1954) system, the primitives are states,
consequences, acts (represented as functions from states to consequences), and
preferences among acts. Agents whose preferences satisfy a set of rationality ax-
ioms make choices “as if”” they are maximizing the expected value of a subjective
utility function over preferences, where the expectation is taken with respect to a
subjective probability distribution over choices. Thus, probabilities and utilities are
derived from preferences over acts. A common criticism of Savage’s system is the
requirement of a global preference ordering over acts. Savage himself expressed
concern that although his theory postulates a global preference ordering, agents typ-
ically restrict consideration to isolated, simplified microcosms, neglecting features
of the world not related to the problem at hand. He called this the problem of “small
worlds.” Recent work on computational decision theory attempts to build formal
decision models in which microcosm preferences are taken as primitive and the
“erand world” decision model is constructed by composing “small world” models
(c.f., Shafer, 1981; Blume et al., 2005).

Many arguments have been put forward both for and against the principle of
maximum expected utility as a model of rational decision making under uncertainty
(e.g., Howson and Urbach, 1993). A common objection to axiomatic arguments is
that computing optimal policies for realistically complex decision problems is in-
tractable.! Great strides have been made in recent years (e.g., Pearl, 1988; Jensen,
2001; Neapolitan, 2003; Korb and Nicholson, 2003) in tractable exact or approx-
imate algorithms for computational probabilistic inference and decision making.
Decision theoretic methods have found their way into numerous successful appli-
cations (e.g., Heckerman et al., 1995; Levitt et al., 1995; Parker and Miller, 1987).
Among pragmatists, successful applications provide a stronger argument in favor
of Bayesian decision theory than axiomatic arguments. It has been argued that intel-
ligence requires the functional equivalent of approximate Bayesian inference and
decision theory (e.g., Lee and Mumford, 2003). Many heuristic methods proposed
as alternatives to decision theory can be shown to result in approximate decision
theoretically optimal behavior within their domain of applicability (e.g., Martignon
and Laskey, 1999). When computational limits are taken into account, decision the-
ory itself would recommend an approximately optimal heuristic strategy over an

! Other counter-arguments question some of the standard axioms, such as those implying a simple
ordering of all options. Relaxing the objectionable axioms has led to alternative decision theories,
such as theories of interval probabilities and utilities. These theories are not discussed here, except
to note that they typically pose even more challenging computational issues than standard Bayesian
decision theory.
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optimal solution that cannot be computed rapidly enough to apply to a real situation
(c.f., Gigerenzer et al., 1999).

There has been a vigorous debate over how to interpret the probabilities that
appear in a decision model (e.g., Howson and Urbach, 1993; Fine, 1973). The dom-
inant view in artificial intelligence is subjectivism, in which probability is viewed
as a measure of the degree of belief of a rational agent about uncertain hypotheses.
Subjectivists assign probabilities to any hypotheses about which they are uncertain.
To a subjectivist, reasonable individuals may assign different probabilities to the
same outcome. The only requirements are that beliefs must conform to the math-
ematical constraints of the probability calculus and may not contradict evidence
known to the agent. Although the subjectivist view is gaining favor in statistics,
until recently the frequentist view has dominated. To a frequentist, probabilities
are limiting frequencies for long sequences of outcomes generated by intrinsi-
cally stochastic systems. Unlike subjectivists, frequentists regard it as illegitimate
to assign probabilities to individual events or to assign non-trivial probabilities
to hypotheses with definite but unknown truth-values. Probabilities apply only to
chance set-ups that produce repeatable sequences of random events. Frequentists
view probability as an objective property of a chance set-up. If two individuals as-
sign different probability distributions to a chance set-up, at least one of them must
be wrong. Another interpretation of probability is the propensity view, in which
probabilities refer to tendencies for events to occur under specified conditions. Un-
like subjectivist probabilities, propensities are considered to be objective properties
of the process that generates the outcome. Unlike freqentist probability, propensities
can apply to individual events. David Lewis (1980) argued that the propensity and
subjectivist views of probability can be reconciled, and that subjective probabilities
should agree with objective propensities when the propensities are known.

Although subjectivists are sometimes criticized for lack of objectivity, the ability
to represent and reason with subjective information is a necessary aspect of intelli-
gent behavior. Furthermore, some of the most successful applications of probability
theory (including classical statistical mechanics) are to problems involving incom-
plete knowledge about a system whose underlying dynamic is assumed to be deter-
ministic. Many varieties of objectivist philosophy regard zero and one as the only
allowable assignments to statements of determinate but unknown truth-value (such
as the current state of a system evolving deterministically from a definite initial
state). Subjectivists can perform plausible reasoning about such systems, a capabil-
ity that is often needed in practical applications. Another strength of the subjectivist
approach is its ability to handle small data sets and large numbers of parameters,
a situation that occurs frequently in the types of problems encountered in artificial
intelligence and machine learning. The theory of precise measurement (DeGroot,
1970; von Winterfeldt and Edwards, 1986) identifies conditions under which sub-
jectivist agents beginning with different prior probabilities will converge to nearly
identical posterior probabilities. The conditions under which these results hold are
also characteristic of situations that might be governed by propensity and for which
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limiting frequencies might exist. Thus, the frequentist, propensity and subjectivist
views can be reconciled on many kinds of problems, but subjectivists extend the
domain of applicability of probability beyond what frequentists or propensity ad-
vocates consider legitimate. Many applications of probability in machine learning,
data mining and artificial intelligence fall outside the zone of applicability of fre-
quency or propensity theory, and a subjectivist interpretation is required.

Subjectivist Bayesian decision theory demands conformance to rationality prin-
ciples that are empirically questionable and may be computationally unachievable.
Recently developed game-theoretic interpretations (Dawid and Vovk, 1999; Nau
and McCardle, 1991; Shafer and Vovk, 2001) regard probability as arising out of
the behavior of interacting agents, not necessarily Bayesian, who receive rewards
for correctly forecasting events. In a game-theoretic setup, agents participate in
an economic system in which they can announce forecasts, make bets, and/or buy
and sell contingent options whose values depend on the outcomes of uncertain
events. If the market is sufficiently liquid and the rules of interaction permit op-
portunities for arbitrage” to be exploited, then consistent probability forecasts can
be expected to emerge from the prices at which contingent options are traded. De
Finetti (1974-75) showed that any agent who violates the axioms of decision theory
would agree to a sequence of transactions resulting in a sure loss. Agents violating
the rationality axioms thus present arbitrage opportunities that can be exploited by
other agents, and if not corrected, will lead to bankruptcy. Agents remaining in
the market are driven by market pressure to behave as approximate utility max-
imizers. Prices for contingent options in such a market can be viewed as market
consensus probabilities for the contingencies on which the options depend. There is
evidence that markets for contingent options can provide more accurate probability
estimates than standard methods of eliciting probabilities from experts (Berg et
al., 2001). Unlike standard axiomatic decision theory, market-based evolutionary
theories do not impose rationality axioms as constraints. Rather, selective pressure
for rationality is only one of the “forces” operating on agents.? For this reason, its
advocates argue that game-theoretic probability is a more satisfying foundation for
probabilistic knowledge representation than its competitors.

There are numerous other philosophical positions on the types of problem to
which probability may legitimately be applied, and on the meaning of the numerical

2 Arbitrage means executing a sequence of trades leading to a riskless profit. Efficient markets
evolve prices that eliminate opportunities for arbitrage.

3 Fienberg and deGroot (1982) showed that proper scoring rules (rules that reward correct proba-
bility assessments) can be decomposed into components measuring coherence (conformance to the
laws of probability), calibration (fit to empirical frequencies), and refinement (the ability to make
fine distinctions). While it is true that an incoherent agent can always improve its score by finding
and eliminating inconsistencies, it may be the case that the potential for improvement by improving
calibration or refinement is far greater. When resource costs are taken into account and the goal is
global task performance rather than accurate probability forecasts, it may be optimal to sacrifice strict
coherence for better performance. See also the discussions of rationality in Russell and Norvig (2002).
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probabilities thus employed (e.g., Williamson (2004) gives a list of interpretations
that partially overlaps the interpretations discussed here). In particular, there is
considerable debate over whether objective probabilities exist as an aspect of the
physical world, and if so, to what kinds of phenomena they can be assigned. Many
subjectivists insist that there is no such thing as an objective probability. Never-
theless, a theorem due to de Finetti provides a bridge for communication across
the subjectivist/objectivist divide. De Finetti showed that if a subjectivist believes
a series of events is exchangeable, then her belief assignments will be identical
to those of an objectivist Bayesian who believes the events are independent and
identically distributed trials of an objectively stochastic system, and who assigns
a given prior distribution to the unknown probability. That is, the subjectivist and
objectivist agree on a mathematical model for the empirical phenomenon, but differ
in the meaning they attach to the mathematical constructs. Furthermore, there is no
conceivable empirical evidence that would discriminate between the subjectivist
and objectivist metaphysical viewpoints. Inaccessibility to empirical test does not,
of course, imply that there is no truth of the matter, but it does mean that there is
no scientific basis for ascertaining the truth of the matter if it exists.

2.2. GRAPHICAL PROBABILITY AND DECISION MODELS

Explicitly representing and reasoning with all possible exceptions and contingen-
cies results in a combinatorial explosion of possibilities. Graphical probability
models have become popular because they can tractably represent and perform in-
ference on reasonably faithful models of the uncertainties involved in realistically
complex tasks. In a graphical probability model, a directed or undirected graph is
used to represent qualitative information about probabilistic dependencies. Nodes
in the graph represent random variables, or sets of mutually exclusive and collec-
tively exhaustive hypotheses. Edges in the graph represent direct dependencies of
a random variable on the value of its neighboring random variables. Quantitative
information about the strength of dependency is represented by local probability
distributions associated with the nodes in the graph. Whereas the resources required
to store and/or compute with a general probability distribution are exponential in
the number of random variables, knowledge representation in a graphical proba-
bility model with a bounded number of neighbors per node scales linearly in the
number of random variables. When the graph is singly connected (i.e., there is only
one path between any two random variables), inference also scales linearly with
the number of random variables. Although there are special cases in which a singly
connected graph is adequate, realistic tasks often require more complex connectiv-
ity. Exact inference algorithms have been developed for multiply connected graphs.
Although their worst-case complexity is exponential, there are interesting classes
of problems for which exact methods are tractable. In the general case, approximate
inference is required. A number of general-purpose methods have been developed
for approximating Bayesian inference in multiply connected dependency graphs.
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We illustrate graphical models using a case study based on the popular
Paramount series Star Trek. The setting for our case study is the Starship Enterprise
in the 24th Century (see Figure 1). Our task is to detect Romulan starships (con-
sidered hostile by the United Federation of planets) and assess the level of danger
they pose to our own starship, the Enterprise. Figure 2 shows a directed graphical
model, or Bayesian network, for a simplified version of this task. Starship detection
is performed by the Enterprise’s suite of sensors, which can correctly detect and
discriminate starships with an accuracy of 95%. However, Romulan starships may
be in “cloak mode,” which would make them invisible to the Enterprise’s sensors.

Figure 1. A 24th century decision support system.
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Figure 2. Bayesian network.

Even for the most advanced sensor technology, the only hint of a nearby starship
in cloak mode is a slight magnetic disturbance caused by the enormous amount of
energy required for cloaking. The Enterprise has a magnetic disturbance sensor,
but it is difficult to distinguish background magnetic disturbance from that gen-
erated by a nearby starship in cloak mode. This Bayesian network can be used
to compute updated probabilities for some random variables given information on
other random variables. For example, if starship class and magnetic disturbance
reports were received, Bayes rule could be used to revise the probabilities for the
unobserved nodes to reflect the information contained in the reports.

The reports from the friend/foe and magnetic disturbance sensors are obtained by
processing the raw sensor data. Although not pictured in the figure, the relationship
between the evidence random variables and the raw sensor data is also probabilistic,
and can itself be represented in the language of graphical models (e.g., Binford
and Levitt, 2003; Grenander, 1996). Thus, graphical models provide a consistent,
theoretically justified theory of knowledge representation and evidential reasoning
that spans the subsymbolic through the cognitive levels.

The example of Figure 2 can be extended to a decision graph, or influence dia-
gram, as shown in Figure 3. Two new types of node have been introduced: decision
nodes, represented as rectangles, and utility nodes, represented as hexagons. Deci-
sion nodes represent choices available to the reasoning agent. Utility nodes measure
how well the agent’s objectives are satisfied. The model of Figure 3 represents a
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Figure 3. Decision graph.
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decision of which defensive action to take (none; fire weapon; retreat). The compo-
nents of utility are the danger to one’s own ship and the danger to nearby friendly
ships. The arcs entering a decision node represent information available to the rea-
soning agent at the time the decision is made. In this example, the reasoning agent
knows the results of the sensor reports. The reasoning agent can choose as its pol-
icy any function of the information available at decision time. The optimal policy
maximizes the sum of the mathematical expectations of the utility nodes given the
available information. In this example, harm to own or friendly ships is modeled by
negative utility, or loss. Thus, the model of Figure 3 would recommend a function
of the sensor reports that minimizes the total expected loss to own and friendly
ships due to enemy fire plus the cost of any harm caused by mistakenly firing on
friendly ships.

A natural question to ask about Figure 3 is why, if a decision graph represents
a mathematical model for value-driven decision making, there is no arc from the
utility nodes into the decision node. A naive reading of the graph might give the
impression that the agent’s choice is not affected by the potential loss from enemy
fire and fratricide. To understand why this is not the case, it is necessary to examine
the semantics of the diagram more closely. The diagram and corresponding numer-
ical information specify a mathematical model of task-relevant aspects of the world
viewed from the reasoning agent’s perspective. The arcs represent three kinds of
influences. Arcs into world state nodes represent deterministic or stochastic rela-
tionships. For cause and effect relationships, the convention is to draw the arc from
cause to effect; for correlations, the arc can go in either direction. Arcs from world
state nodes into decision nodes reflect information available to the agent at the time
of choice. Arcs into utility nodes represent mappings from situations in the world
to degrees of satisfaction the agent experiences on the corresponding dimensions of
value. Arcs may not exit utility nodes. The agent’s experience of satisfaction occurs
as a result of the choice, and at a later time than the agent’s action. Thus, the actual
experienced satisfaction can neither cause the agent’s action, nor be available as
information on which the agent can base the decision.

The effect of values on decisions is brought about when the agent solves the
decision graph for the optimal policy, and then uses the solution to decide which
action to take. Conceptually, solving the graph proceeds in two steps. The first
step is to compute the mathematical expectation of the total utility for each of the
choices given each of the possible information states of the reasoning agent at the
moment of choice. This expectation is a function mapping values of TypeReport,
MDReport, and DefenseAction to real numbers representing the total expected loss
if the reasoning agent observes the given location and configuration and takes
the indicated action. The second step in solving the graph is to select an optimal
decision policy that maps information states to actions. The optimal policy maps
an information state (value of TypeReport and MDReport) to the action for which
the expected loss is lowest. After the diagram has been solved, the optimal policy
is stored with the DefenseAction node. The agent then receives observations on
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location and configuration, looks up the optimal action corresponding to these
observations, and executes that action.

The graph of Figure 3 is simple and easily solved. Decision graphs for real-
istically complex problems can easily become intractable. There is an extensive
and rapidly growing literature on exploiting independence relationships among
random variables and decomposability of value functions to perform efficient com-
putation of optimal or approximately optimal decision policies (e.g, Jensen, 2001;
Neapolitan, 2003; Boutilier et al., 1999).

The model of Figure 3 was constructed from the point of view of the reasoning
agent. Although this model does not explicitly represent the decision problem
of other agents, it is clear that the commanders of other starships face similar
decision problems. To the reasoning agent, the utility and decision nodes of the
other starships would be represented as world state nodes. From the point of view
of one of the other starships, the utility and decision nodes of the Enterprise would
be represented as world state nodes. From the point of view of an external observer,
all nodes would be uncertain world state nodes. Formulating and solving a model
of another agent’s decision problem can be a useful aid to predicting the other
agent’s behavior, because the agent can be expected to select actions that serve his
or her objectives given the information he or she has available, taking cognitive
limitations into account.

2.3. MULTI-ENTITY BAYESIAN NETWORKS AND DECISION GRAPHS

Standard Bayesian networks and decision graphs are limited to problems with
a fixed number of uncertain hypotheses in which all the relevant variables and
relationships can be specified in advance of problem solving. This restriction is
inadequate for complex real-world problems involving an unspecified number of
objects of different types interacting in varied ways. There are many questions of
interest to the Enterprise and its crew that demand greater expressive power than
standard Bayesian networks can offer. As an example, we cannot know in advance
how many starships the Enterprise is going to encounter. Even if we were to build
a Bayesian network for each possible number of nearby starships, if the number of
nearby starships is uncertain, we would not know which one to use. We also cannot
specify in advance the relationships among nearby ships, e.g., whether they are
isolated ships operating independently or are acting as a group. In short, Bayesian
networks lack the expressive power to represent entity types (e.g., starships) that
can be instantiated as many times as required for the situation at hand, and can be
related to each other in varied ways (e.g., operate in groups).

Another well-known limitation of standard Bayesian networks is their lack of
support for recursion. For example, the magnetic disturbance caused by a starship in
cloak mode would show a characteristic temporal pattern. Standard Bayesian net-
works do not provide a natural way to represent such repeated patterns. Dynamic
Bayesian networks (Murphy and Russell, 2000) and partially dynamic Bayesian
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networks (e.g. Takikawa et al., 2001) extend Bayesian networks to model tempo-
ral patterns. However, there is no standard means to represent general recursive
probabilistic relationships.

A rapidly growing research area is the development of extensions to the lan-
guage of graphical models to enable representation of various kinds of repeated sub-
structures. For example, if there were many starships nearby, an OperatorSpecies
node would be needed for each of them. If they were operating independently,
these nodes would be independent copies of the node appearing in Figure 2; if they
were operating as a group, they would be correlated because one would expect the
starships in a coordinated group to be operated by allied species. For the Starship-
ClassReport node, many instances would be needed per starship, each representing
a report received at a different time.

A number of recently developed languages extend graphical models to represent
repeated sub-structures and recursive relationships. Examples include pattern the-
ory (Grenander, 1996), hidden Markov models (Elliott et al., 1995), the plates lan-
guage implemented in BUGS (Gilks et al., 1994; Buntine, 1994; Spiegelhalter et al.,
1996), object-oriented Bayesian networks (Koller and Pfeffer, 1997; Bangsgand
Wauillemin, 2000; Langseth and Nielsen, 2003), probabilistic relational models
(Getoor et al., 2001; Pfeffer, 2000), and multi-entity Bayesian networks and de-
cision graphs (Laskey, 2005; Laskey and Costa, 2005). Decision graphs can also
be extended to multi-agent problems, in which each agent has its own utility and
decision nodes, and each agent’s optimal policy is to maximize the expectation of
its utility nodes conditional on its available information (e.g., Kearns and Mansour,
2002). Attractive features of graphical models as a language for representing knowl-
edge are their principled treatment of uncertainty, their provision for specifying
knowledge as modular components with well-defined interfaces, and the existence
of general-purpose exact and approximate inference and learning algorithms.

Figure 4 shows a more complex version the Star Trek model expressed in the
language of multi-entity decision graphs. Multi-entity Bayesian network (MEBN,
pronounced “mee-ben”) logic is a formal system that combines the expressive power
of first-order logic with a sound and logically consistent treatment of uncertainty
(Laskey, 2005; Laskey and Costa, 2005). MEBN provides syntax, a set of model
construction and inference processes, and semantics that together provide a means
of defining and reasoning with probability distributions over unbounded and pos-
sibly infinite numbers of interrelated hypotheses. MEBN can express a probability
distribution over models of any consistent, finitely axiomatizable first-order the-
ory. Multi-entity decision graphs (MEDG, pronounced “medge”) extend MEBN to
include decision and utility nodes.

Knowledge about attributes of entities and relationships among entities is ex-
pressed as a collection of MEBN fragments (MFrags) organized into MEBN
Theories. An MFrag contains a set of nodes connected by directed arcs. The nodes
represent random variables related to each other by conditional dependence rela-
tionships. Each node is labeled with an expression consisting of a random variable
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name and a list of zero or more arguments. This expression is a template for con-
structing instances of the associated random variable. Arguments beginning with
lowercase letters are called ordinary variables, and serve as placeholders for actual
entities. Instances of the random variable templates are constructed by replacing
the ordinary variables with entity identifiers. Nodes are divided into resident nodes,
which represent random variables whose distribution is defined in the MFrag, input
nodes, which condition the distribution of the resident nodes, and context nodes,
which represent Boolean conditions that must be satisfied for the dependency rela-
tions and local distributions to apply. An MFrag specifies a conditional probability
distribution for instances of its resident random variables given their parents in the
fragment graph and the context nodes. A MEBN Theory is a set of MFrags that
collectively satisfies consistency constraints ensuring the existence of a unique joint
probability distribution over instances of the random variables represented in its
MFrags. A MEDG theory consists of a collection of partially specified graphical
models, called MEDG fragments, that collectively specify a decision model involv-
ing a possibly uncertain and possibly unbounded number of interacting entities.

Each MFrag represents a small, separable component of knowledge that can be
instantiated as many times as required in a given situation. For example, the random
variable HarmPotential(st, t) is resident in the Starship MFrag, and represents the
potential for harm to own starship from a starship st at time step ¢. To refer to the
harm potential from an actual starship at an actual point in time, unique identifiers
are substituted for the arguments st and ¢, respectively. MEBN logic contains built-
in MFrags for function composition, logical connectives, and quantifiers. There is
also a special identity random variable ¢(e), which maps its argument to the unique
identifier for the entity it represents, if it represents an actual entity, or to the special
value | (meaning absurd) if there is no entity it represents. The special value L
allows MEBN logic to represent both finite and infinite domains (there are infinitely
many unique identifiers, but in a finite domain, all but finitely many have value L ).
Indeed, MEBN theories can represent uncertainty over whether the domain is finite
or infinite.

A domain model is constructed by augmenting the built-in logical MFrags with a
set of modeler-defined domain-specific MFrags. Figure 4 contains twelve domain-
specific MFrags for the Starship MEBN theory.* A domain-specific MFrag specifies
modeler-defined structure and local distributions for a set of random variables
used to model a domain. Local distributions are defined using a local expression
language with first-order expressive power, and map configurations of the parents of
arandom variable to probability distributions for the possible values of the random
variable.

4 A full specification of the Starship MEBN theory can be downloaded from http://www.pr-owl.org.
The files include executable code for performing inference using the Quiddity*Suite relational proba-
bilistic modeling toolkit. The site also contains a version written in PR-OWL, a probabilistic extension
to the OWL ontology language (Costa, 2005).
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The Entity Type and IsA MFrags provide the logical machinery necessary for
reasoning about different types of entities. The Entity Type MFrag defines the
types of entity that exist in the Starship domain. In a typed MEBN theory, unique
identifiers are partitioned into type-specific subsets. Type(e) maps its argument to
a type label for the type of entity it represents. The IsA MFrag defines the Boolean
random variable IsA(tl, ), which has value T (true) when its second argument
is an instance of the type represented by its first argument. In Section 4 below,
we will consider a more complex type system with subtyping, inheritance, and
polymorphism.

The TimeStep MFrag represents temporal recursion. Recursive relationships can
be represented in MEBN logic, provided that the context constraints on the MFrags
do not allow a random variable instance to be an ancestor of itself. Given a total
ordering of the time step unique identifiers with unique fixed point !70, the local
distribution for Prev(¢) maps !70 to itself, and each time step other than !70 to its
predecessor in the total ordering.

The Starship, Starship Existence and Starship Data MFrags represent knowledge
about the properties of starships and their interactions with other entities. The
Starship Data MFrag defines the unique identifier used to refer to our own starship
and defines a prior distribution for the zone where the action takes place. The
Starship MFrag defines distributions for the species operating a starship, its likely
distance from our own starship, its starship class, whether it is in cloak mode, and
its potential to harm our own starship. The Starship Existence MFrag defines a
distribution for the random variable Exists(st). This Boolean random variable is
used to reason about whether or not its argument refers to an actual starship. This
random variable allows us to hypothesize starships to explain possibly spurious
Sensor reports, or to express uncertainty about the number of starships in the zone.

The Zone MFrag represents knowledge about the zone in space. ZoneNature
represents whether the action takes place in deep space, near a planetary system,
or near the boundary of a black hole. ZoneEShips and ZoneFShips represent the
number of friendly and enemy ships in the zone. ZoneMD represents the magnetic
disturbance in the zone at a given time. Instances will be independent random
variables if no active cloaking is activated and will exhibit a characteristic temporal
fluctuation in the presence of one or more cloaked starships.

The Sensor Report and SR Data MFrags represent the connection between re-
ports and the starships that generated them. Subject(sr) represents the subject of a
report; SRClass(sr, t) and SRDistance(sr, t) represent the reported class of the sub-
jectand its reported distance from own starship, respectively. Note that in this simple
model, we are assuming that each report represents a time series of observations on
a given starship. In a more complex model with uncertainty about the association
of reports to objects, the subject of a report would also have to be indexed by time.

The DangerToSelfand DangerToOthers MFrags define probability distributions
for the level of danger to our own and friendly starships. The Decision MFrag defines
the utility nodes and the options for defensive action.
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The MFrags of Figure 4 represent a generative theory of the Starship domain.
That is, they define a joint probability distribution over situations involving different
numbers of actual starships, zones, time steps and reports. To reason about actual
situations, the generative theory is augmented with findings that specify the values
of particular random variable instances. Next, a set of target random variables is
specified for a query. Finally, a situation-specific Bayesian network (SSBN) is con-
structed to calculate the posterior distribution of the target random variables given
the findings (Figure 5). In some cases, the response to the query can be computed
using a finite Bayesian network. In other cases, the answer can be obtained as the
limit of a sequence of situation-specific Bayesian networks of increasing size. It
may be possible to calculate results for some parts of some queries without explic-
itly constructing all computationally relevant nodes (c.f. Poole, 2003; Mahoney and
Laskey, 1998).

2.4. MEBN SEMANTICS

In the standard semantics for first-order logic developed by Tarski (1944), a first-
order theory is interpreted in a domain by assigning each constant symbol to an
element of the domain, each function symbol on k arguments to a function mapping
k-tuples of domain elements to domain elements, and each predicate symbol on k
arguments to a subset of k-tuples of domain elements corresponding to the entities
for which the predicate is true (or, equivalently, to a function mapping k-tuples of
domain elements to truth-values). If the axioms are consistent, this can be done in
such a way that all the axioms of the theory are true assertions about the domain,
given the correspondences defined by the interpretation. Such an interpretation is
called a model for the axioms.

MEBN theories define probability distributions over models of an associated
first-order theory (Laskey, 2005). Entities are referred to by a countable set of unigue
identifiers. Instances of non-Boolean random variables specify random functions
from the entity identifiers into the entity identifiers. Instances of Boolean random
variables specify random functions from entity identifiers to truth-values. Non-
Boolean and Boolean random variables correspond to functions and predicates
in classical first-order logic. The MFrags specify probability distributions for the
values of functions and predicates.

A MEBN theory is interpreted in a domain of application by associating each
entity identifier symbol with an entity in the domain. Through this correspondence
between identifiers and the entities they represent, the probability distribution on
entity identifiers induces a probability distribution on attributes of and relationships
among entities in the domain of application. In particular, although the generative
distribution for a MEBN theory constructs interpretations in the countable domain
of entity identifiers, a MEBN theory can be applied to reason about domains of any
cardinality. Although at most a countable infinity of actual entities can be labeled
by unique identifier symbols, the domain itself can be of any cardinality.
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Advantages of the MEBN random variable semantics are clarity and modularity.
The mathematical function represented by a given random variable does not change
when changes are made to unrelated parts of the representation. For example, we
could add a new collection of MFrags to our theory, say for reasoning about the
dietary habits of crew members, without affecting the probabilities of any asser-
tions unrelated to the change. Furthermore, the probability distribution represented
by a MEBN theory is a well-defined mathematical object independent of its cor-
respondence with actual objects in the world, having a clearly specified semantics
as a probability distribution on entity identifiers and truth-values, regardless of the
meaning assigned to the entity identifiers. The adequacy of a MEBN theory for
reasoning about the actual world rests in how well the relationships in the model
reflect the empirical relationships among the entities to which the symbols refer in
a given domain of application. Our approach thus enforces a distinction between
logical and empirical aspects of a representation and provides a clearly defined
interface between the two.

2.5. REASONING ABOUT CAUSE AND EFFECT

Reasoning about causality is fundamental to intelligence. In our example, the En-
terprise risks destruction if it takes no defensive action against a hostile starship,
and might cause great harm if it fires upon a friendly starship. Captain Picard
must predict the likely effects of each option, and balance these risks when de-
ciding which course of action to take. His life and the lives of his crew depend
on his ability to evaluate empirical evidence to draw inferences about cause and
effect.

Causal claims are stronger than claims about correlation (Pearl, 2000). A causal
claim asserts not only that the values of two random variables are correlated, but
also that the association is stable under interventions that do not disturb the causal
connection. For example, the statement that cloaking devices cause a magnetic
disturbance implies not just that we expect greater magnetic disturbance when there
are cloaked starships nearby, but also that activating (or deactivating) a starship’s
cloaking device is likely to increase (or decrease) the magnetic disturbance in the
surrounding region of space.

Although Bayesian networks with different graphical structures can represent the
same joint probability distribution, when relationships are causal, it is conventional
to orient the arcs in the direction of causation (cf., Druzdzel and Simon, 1993;
Pearl, 2000). This convention tends to result in more parsimonious and intuitively
natural models, which simplifies knowledge engineering and learning. Directed
graphs are a natural way to represent intercausal dependence, whereby two a priori
independent events become correlated when a common effect is observed. For
example, suppose a team that was beamed down to a planet’s surface is several
hours late in reporting back to the Enterprise. Captain Picard’s concern about
their safety will be greatly alleviated if he learns that today is the most solemn
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holiday of the planetary religion, and therefore, no off-planet communications are
permitted. Evidence of the communication blackout explains away the missing
status report. Although harm to the crew would be a probable explanation if today
were not a religious holiday, after learning about the holiday, the harm hypothesis
has become improbable because it is no longer needed to explain the evidence.
The two hypotheses, harm to the crew and a religiously motivated communications
blackout, were a priori independent but have become dependent due to the missing
status report.

Another important advantage of using Bayesian networks to model causality
is their use in predicting the effect of natural or deliberate changes in the value
of a random variable. We can predict, for example, that turning on a cloaking
device will prevent sensors from detecting the cloaked ship, and is likely to give
rise to an increase in the magnetic disturbance. On the other hand, correlations
due to intercausal dependence are evidential, a property of an agent’s incomplete
knowledge of a pre-existing situation. Thus, it would do no good to a landing party
being held hostage to declare a religious holiday and impose a moratorium on
communications. In other words, evidence of the religious holiday affects Captain
Picard’s belief that his landing party is safe, but intervening to cause a religious
holiday has no effect on the landing party’s actual safety. Causal links in a Bayesian
network can be used to predict which interventions might change a given random
variable and which cannot (Pearl, 2000).

Formal logical and mathematical tools for analyzing statistical associations have
attained a high degree of sophistication. Until recently, however, formal tools for
reasoning about causal relationships have received much less attention. By pro-
viding a formal mathematics for expressing and reasoning about cause and effect
relationships, directed graphical models provide a formal basis for a science of
cause and effect relationships. Pearl says:

This mathematical language is not simply a heuristic mnemonic for display-
ing algebraic relationships. . . Rather, graphs provide a fundamental notational
system for concepts and relationships that are not easily expressed in the stan-
dard mathematical languages of algebraic relationships and probability calculus.
Moreover, graphical methods now provide a powerful symbolic machinery for
deriving the consequences of causal assumptions when such assumptions are
combined with statistical data.

In summary, directed graphical models provide a formal system for expressing
theories of cause and effect relationships, deriving the consequences of causal
theories, evaluating alternative causal theories in the light of evidence, and assessing
the degree to which competing causal claims are empirically distinguishable. All
branches of science can benefit from a scientifically principled methodology for
evaluating causal claims and assessing their degree of empirical confirmation. Better
formal tools for analyzing causality are especially relevant to quantum theory, a
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fundamental scientific theory thought to encompass all natural phenomena, that has
been plagued since its inception with bitter disputes over interpretation.

3. Quantum Theory and Bayesian Decision Theory

Classical mechanics is a dynamically complete theory with no role for agency,
knowledge or efficacious deliberate choice. Once initial conditions are specified,
a classical physical system follows a definite trajectory that, at least in principle,
can be predicted with absolute precision indefinitely into the future. Of course,
in practice this predictability is limited by approximation and measurement error
in the specification of both the initial conditions and the parameters of the dy-
namical equations. Nevertheless, in principle, the evolution of a classical physical
system is perfectly determined by initial conditions. Furthermore, classical me-
chanics has nothing at all to say about the processes by which intelligent agents
make predictions about the behavior of physical systems or make and implement
decisions.

Early in the 20th century it was discovered that the classical picture of a world
of perfectly deterministic physical systems was incorrect. The classical picture was
replaced by the explicitly probabilistic quantum theory. The degree of accord be-
tween the theoretical predictions of quantum theory and empirical measurements
performed on quantum systems is striking. Nevertheless, many physicists remain
uncomfortable with quantum theory. There are three major reasons for this discom-
fort. First, quantum theory makes only probabilistic predictions about the trajectory
of a system. Many scientists are uncomfortable with a picture of Nature that has an
intrinsically stochastic component. Second, the theory is non-local. That is, there
are correlations between spacelike separated events that cannot be explained by a
hidden variable theory with strictly local influences. Third, the theory contains a
major explanatory gap known as the “measurement problem,” in which determin-
istic evolution of the wave function is interrupted by “reduction events” for which
current physics has no theory.

3.1. QUANTUM DYNAMICS AND MEASUREMENT

The state of a quantum system at any time is described by a mathematical structure
called the guantum state. In the usual formulation, states are represented as density
operators on a Hilbert space associated with the system.> A Hilbert space is a
complex vector space equipped with an inner product. A density operator is a
positive operator with trace equal to one that acts on the state space of the system.
The state is pure if its density matrix has rank equal to one. Pure states represent

5> Most introductory textbooks represent pure states as vectors in a Hilbert space and mixed states
as probability weighted averages of pure states. The density matrix formulation is preferred by most
working physicists because it is mathematically equivalent and provides a unified treatment of pure
and mixed states.
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maximal knowledge about a quantum system. If the state is not pure, it is called a
mixed state. A mixed state can be represented as a weighted sum of pure states, where
the weights are non-negative and sum to one. Mixed states represent uncertainty
about the state of a system. Mixed states can also represent situations in which
the state of a non-isolated system is entangled with the state of its environment.
Entanglement is a quantum phenomenon in which the state of a system cannot be
fully described except in relation to its environment. When a system is entangled
with its environment, the subsystem alone is in a mixed state even if the system and
environment combination is in a pure state.

The time evolution of an isolated quantum system is described by a unitary
transformation. With each isolated quantum system is associated a characteristic
one-parameter continuous group of unitary operators U(t). If pg is the initial density
matrix, then the density matrix after the system evolves for ¢ units of time is given
by p; = U(®)poU(1)*, where U(?)* is the adjoint of U(7).

The postulate of unitary evolution breaks down when a quantum system interacts
with its environment. Open quantum systems can undergo a discontinuous change
called state reduction, or more picturesquely, collapse of the wave function. The
orthodox interpretation of quantum theory associates reductions with measurements
performed on a system by scientists. Measurement involves an interaction of a
measuring apparatus with the system, in which some feature of the microscopic
quantum system is “amplified” to produce a macroscopically detectable change in
the measurement device.

The state of a system after measurement depends on the measurement outcome,
and is different from what it would have been if no measurement had occurred.
After reduction, the pre-reduction state is projected onto one of a set of orthogonal
subspaces of the system’s Hilbert space. Specifically, each measurement has an
associated a set of projection operators {P;} satisfying P? = P;, P;P; = 0, and
3", P, = I, where I is the identity operator® If the state prior to reduction is p, then
the state after reduction is P;p P;/tr(P;p P;) with probability tr(P;p P;), where
tr(-) is the trace operator. To gain some intuition for how reduction works, we
can represent the density operator p and the projection operators {P; } as matrices
(possibly of infinite dimension), where the entries of the projection matrices are
all zeros except for the diagonals, which contain some 1’s and some zeros. The
projection operator P; maps all entries of p to zero unless they are in a row and
a column for which the diagonal element of P; is 1, in which case, P; leaves
the entry unchanged. That is, P; acts as the identity on a square sub-matrix of
o and transforms the remaining entries to zero. The probability ¢tr(P;p P;) is the
sum of the diagonal elements of p corresponding to entries of 1 in P;. Dividing
by tr(P;p P;) normalizes the state so the sum of the probabilities for subsequent

6 We consider only projective measurements, because more general measurements can be obtained
by composing unitary transformations with projective measurements. We also limit consideration to
measurement operators with a discrete spectrum.
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measurements is unity. If p is in the subspace onto which P; projects, then P; acts
as the identity, and the state after reduction is p with probability 1. We say the sets
{P;} and {Q,} are simultaneously measurable if P;Q; = Q;P; for all i, j. Applying
simultaneously measurable projection sets in sequence projects the state onto the
intersection of the subspaces corresponding to the two measurement results. If
projection sets are not simultaneously measurable, then applying the first followed
by the second need not leave the system in the subspace corresponding to the
outcome of the first measurement. That is, the second measurement may change
the system to a state other than the state corresponding to the result of the first
measurement.

Bohm (1951) states that although the quantum state has been called a “wave of
probability,” it is more accurately described as a “wave from which many related
probabilities can be calculated.” That is, quantum theory does not specify “the”
probability of an event. It specifies a conditional probability for the outcome given
that a specific reduction operator is applied at a specific time. Different reduction
operators applied at different times give rise to different probability distributions
for outcomes, but they all can be calculated from the evolving quantum state. Nor-
malizing the state after reduction is mathematically equivalent to applying Bayes
rule to Bohm’s “wave from which many related probabilities can be calculated.”
That is, after a measurement has occurred, the “wave of related probabilities” is
conditioned on the measurement operator that was applied, the time of applica-
tion, and the actual outcome that occurred. Predictions about the future behavior
of the state are revised accordingly. In experimental tests, the probability forecasts
produced by this recipe have proven to be stunningly accurate.

Although there exist experimental procedures, described in classical language,
for effecting measurements on various types of physical systems, there are no
fundamental physical laws governing how the scientist, considered as a physical
system, makes the choice of which measurement, if any, to perform, and the time
at which the measurement occurs. There have been many attempts to formulate
quantum theory as unitary evolution without reduction. The basic approach is to
embed the observed system in a larger system that contains both the observing
agent and the observed system. None of these attempts has been fully successful,
and physicists disagree about whether such a reformulation is possible.

Albert (1992; p. 79) states the measurement problem as follows:

The dynamics and the postulate of collapse are flatly in contradiction with one
another. . . the postulate of collapse seems to be right about what happens when
we make measurements, and the dynamics seems to be bizarrely wrong about
what happens when we make measurements, and yet the dynamics seems to be
right about what happens whenever we aren’t making measurements.

In other words, to reproduce the quantitative predictions of quantum theory, it
is necessary to augment unitary equation with additional rules. In the standard
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interpretation, these rules correspond to initiation of reduction events by agents and
selection of outcomes by Nature. Our capacity to perform measurements is taken
as a given empirical and phenomenological fact. However, there is no fundamental
physical theory governing the timing and possible outcomes of state reduction.
Statements about which measurement is applied at what time are formulated in the
everyday language of classical physics, not in the language of quantum theory used
to describe the system being observed. Thus, the very means by which we are able
to learn about the behavior of quantum systems, and to construct theories to predict
the observable consequences of their behavior, is itself unexplained by quantum
theory.

To summarize, the dynamic behavior of a quantum system depends in macro-
scopically observable ways on a process for which physics has no theory. Although
quantum theory includes statistical laws governing Nature’s choice of outcome
when a measurement operator is applied, the known physical laws do not fix,
even statistically, which measurement operators are applied under what condi-
tions. Thus, the theory contains a contingent element. It specifies behavior of the
system given the actions an agent external to the theory takes to observe the sys-
tem. But according to the orthodox interpretation, this external agent can choose
which of several distinct macroscopic effects to actualize by choosing which as-
pects of the system to observe. This dependence of the predictions of the theory
on an aspect of reality for which there is no theory worries many physicists. How-
ever, agents with brains and bodies built out of the elements studied by atomic
physics have the demonstrated capacity to perform plausible reasoning and make
efficacious choices. Moreover, there are aspects of the physical architecture of
the brain that make it likely that quantum mechanical effects are important in
its dynamical behavior (Schwartz et al., 2005). Some scientists have hypothe-
sized that cognitive agents act on the world by controlling the timing and se-
lection of reduction operators in order to bring about survival and life enhancing
outcomes.

3.2. A MEBN REPRESENTATION OF QUANTUM EVOLUTION

In this section, we present a set of MFrags to represent the evolution of quan-
tum systems. The MFrags for our MTheory naturally fall into four different cat-
egories. First, there is a set of logical MFrags that represent the logical and
mathematical machinery needed to express the domain-specific MFrags. The
second group of MFrags represents the state of a quantum system. The third
set of MFrags represents the action of unitary transformations. The final set
of MFrags represents the action of reduction operators and the observable out-
comes of measurements. Together, these MFrags represent a complete MEBN
theory for reasoning about the evolution of quantum systems. Thus, computa-
tional Bayesian logic can represent and reason about the behavior of quantum
systems.
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3.2.1. The Logical MFrags

Before moving into our representation of the physical and empirical aspects of quan-
tum theory, we begin by explicitly and formally representing the logical machinery
needed to express the structure of our quantum theory MFrags. The necessary log-
ical machinery can be defined using eight MFrags (see Figure 6). We have already
encountered Type and IsA MFrags in the Starship model. For our representation of
quantum theory, it is useful to define a more powerful type system with subtypes
and polymorphism. This requires relaxing the requirement that each random vari-
able have a unique home MFrag, to allow different distributions to be defined in
multiple home MFrags (Costa, 2005). The SubType MFrag and the ParentType ran-
dom variable in the Type MFrag define a type hierarchy. For the present purpose a
tree-structured hierarchy is sufficient. In typed MEBN, a distribution can be defined
for a type and inherited by subtypes unless overridden by a new definition for a sub-
type. The VCount Initialization MFrag specifies a random variable VCount(tl) for
each entity # of type TypeLabel. These “virtual counts” are used to define relative
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b4 (IsAll. i) * (pti=ParentType(tD) ) Type()=TypeLabel
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Figure 6. Logical MFrags for quantum MEBN theory.
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frequencies of types. Virtual counts are needed when there is uncertainty about
the types of entities. The Ordered List and Predecessor MFrags are used to reason
about types that will be used as recursion indices. These include the TimeStep type
(time steps also appear in our Starship theory), the Integer type, and the Fiducial-
BasisState type, to be discussed in more depth later. To define an ordered list type,
we assign value T (meaning True) to the IsOrderedType random variable, assign
a unique identifier as the value of the [nitialValue random variable, and define a
function Prev that maps the initial value to itself and the other type-specific unique
identifiers to their predecessors in the ordering. Finally, the Addition MFrag defines
the random variable Plus to operate in the usual way on integers, and the Lexico-
graphic Order MFrag defines the predicate LexBefore(x1, y1, x2, y2) to have value
T when its arguments are instances of ordered list types, and the ordered pair (x1,
y1) lexicographically precedes the ordered pair (x2, y2). Obviously, other logical
and mathematical functions could be defined as needed, but the ones given here
are sufficient to define the remaining MFrags of our representation for quantum
systems.

3.2.2. Representing Different Types of Quantum System

The MFrags of Figure 7 specify the types of quantum systems represented by the
MEBN theory. In the Entity Type MFrag, each type of quantum system was as-
signed a unique type label, e.g., SystemOfQubits for a quantum computing system.
The random variable IsA(QuantumSystem, tl) was set to have value T when the
ordinary variable ¢/ is replaced by the type label for a quantum system. The IsA
MFrag also defines type labels for quantum states and quantum transformations.
The three QuantumSystemType MFrags relate states and transformations to their
respective quantum system types. The first assigns to each type of system its charac-
teristic state and transformation types. For computational quantum systems, these

( IsA{QuantumSystem,gsys) ) (IsA{QuantumState gst) )
<« (T¥pe(asys) )
MeasOpType(gsys) QuantumSysT: t
T T ( QuantumSysType(gst) )
Quantum System Type MFrag #1 Quantuiy oysten
Type MFrag #3
(lsA{QuantumTransfitm) )
s (IsA{QuantumSystem,sys) )
( State(sys InitialValue(TimeStep)) )
(QuantumSysType(tm) ) Initial State MFrag
Quantum System
Type MFrag #2

Figure 7. Quantum system type MFrags.
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are StateType(SystemOfQubits) = QubitVector; UTrnsfType(SystemOfQubits) =
QuantumGate; MeasOpType(SystemOfQubits) = QubitVectorReduction; and Fd-
BasisType(SystemOfQubits) = QubitConfig. The second and third QuantumSys-
temType MFrags define the random variable QuantumSysType, which is a recip-
rocal function that maps an instance of a quantum state or quantum transforma-
tion to its type of quantum system. The fourth MFrag in this cluster specifies an
initial probability distribution for a quantum system of a given type. This distri-
bution can, of course, be modified using findings when there is situation-specific
knowledge about the initial state of a system, but this MFrag provides a well-
defined initial distribution when nothing is known about the system except its

type.

3.2.3. Representing the State of a Quantum System

Our representation for states makes use of Hardy’s (2001) proof that to obtain the
predictions of quantum theory, it suffices to specify the action of unitary trans-
formation and reduction operators on a discrete set of fiducial states. For finite
dimensional systems, the required number of fiducial states is equal to the square
of the dimension of the system. For systems of countably infinite dimension, a
countably infinite set of fiducial states is needed. This is a useful result, because
it allows us to characterize completely the behavior of a quantum system using a
finite or countably infinite set of random variables.

There is more than one way to specify a set of fiducial states for a given quantum
system. A natural way to choose the fiducial states is first to choose a set of mutu-
ally orthogonal projection operators that spans the state space. The elements of this
set are called fiducial basis states. Next, for each pair of fiducial basis states, we
choose two linearly independent fiducial non-basis states lying within the subspace
spanned by the pair of fiducial basis states. For the reader familiar with Dirac bra-
ket notation, the fiducial basis states can be written as |n><n|, where the |n> are
mutually orthogonal unit vectors in the system’s Hilbert space and <n| is the adjoint
of <n|. For the fiduical non-basis states corresponding to |[n><n| and |m><m|,
we choose the linearly independent pair of states %(|m> + |n>)(<m|+ <n]|) and
%(|m> + i|n>)(<m| — i <n|). With each fiducial state ¢ we associate a fiducial mea-
surement consisting of the projection operator set My = {P,, I—Py }. If the fiducial
measurement My, is applied when the system is in state ¢, the outcome is ¢ with
probability 1. That s, fiducial measurements leave their corresponding fiducial state
unchanged. The fiducial basis measurements M)~ | are simultaneously measur-
able. If we apply the M|, -, in any order to the state p, the state after measurement
will be one of the fiducial basis states, with probability tr(|n> <n|p|n> <n|) for state
|n><n).

To gain some intuition for the meaning of the fiducial states, consider the
quantum mechanical generalization of the bit, a two-dimensional quantum sys-
tem called a qubit. In a classical computer, a bit can be in one of two states,
usually denoted 0 and 1. The corresponding qubit states are the fiducial basis states



136 K.B. LASKEY

|0><0] and |1><1|. But unlike a classical bit, a qubit is not limited to two dis-
crete states. A qubit can also be in a superposition, which can be thought of as
a kind of suspension between states. A single-qubit superposition is written as
(x| 0>+ B|1>)(a*<0]|+ B*<l1]|), where o and 8 are complex numbers such that
aa® + Bp* =1,and o™ and B* represent the complex conjugates of « and 5, respec-
tively. If we apply the two fiducial measurements P~ -o and Pj;~ .| in sequence,
the state after measurement will be |0> <0| with probability ca™ and |1><1]| with
probability 88*. Although we might be tempted to think of a qubit in superposition
as being in state |0><0>| with probability «a™ and |1> < 1| with probability 8%,
this is not correct. Although the superposition (@ | 0> + 8| 1>)(a*<0] + B8*<1|)
and the mixed state (¢a*|0><0| 4+ BB*|1><1]) both yield |0><0| with proba-
bility aa* and |1> <1| with probability 88* when a fiducial basis measurement is
applied, the outcome probabilities differ for the fiducial non-basis measurements.
For example, if we apply the fiducial non-basis measurement M1 o 1 1) <o/+<1)
to a system in the superposition (o |0> + g|1>)(a¢*<0| 4+ B*<1]|), the out-
come will be %(|0>+ [1>)(<0] + <1]) with probability %(a + B)(a* + B*) and
%(|O> — |1>)(<0] — <1|) with probability %(oz — B)(@* — B*). On the other hand,
if we apply the same measurement to the mixed state (e *|0><0| + BB*|1><1]),
the two outcomes will have equal probabilities.

Hardy proved that to characterize a quantum state, it is sufficient to specify
the outcome probabilities given each of the fiducial measurements. This char-
acterization is achieved by the MFrags of Figure 8. The fiducial basis states
are specified in the logical MFrags shown in Figure 6, via the definition of
InitialValue(FiducialBasisState) and the Prev(-) function acting on entities of type
FiducialBasisState. The Fiducial Non-Basis State MFrag defines the fiducial non-
basis states in terms of the fiducial basis states. For each pair ( fbl, fb2) of
distinct fiducial basis states, the MFrag defines a unique fiducial non-basis state
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IsA(FiducialNonBasisState fb)

(T = S
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(QuaniumSysType(fb1)=QuanlumsysType(b2) ) L “‘“;;,__,::--’ &

e ——
(=im1=m2) ) (LexBefore(lbp1Mmp2m1.m2) ) ( FIducIalF'mb[ras.q;; —w( Flduci:feaslsCuumb[rbs,qsn )
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B " »
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Figure 8. Fiducial state MFrags.
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FiducialNonBasisState( fbl, fb2), and sets the values of FirstFBState( fnb) and
SecondFBState( fnb)to fbl and fb2, respectively. The other two MFrags of Fig-
ure 8 specify the probability distributions for outcomes when fiducial states are
measured. The context constraints, parents, and local distributions ensure that the
probability distributions are valid, i.e., that they respect the constraints required by
the Hilbert space structure of the quantum system. Specifically, the value of Fidu-
cialProb(fbs,qst), the probability that the measurement result is fbs when fiducial
basis state fbs is measured on a system in state gst, must be between zero and
the sum of the fiducial measurement probabilities for fiducial basis states preced-
ing gst in the fiducial basis state ordering. This constraint is achieved by making
FiducialBasisCumProb(Prev( fbs), gst) a parent of FiducialProb( fbs,qst). Fur-
thermore, the range of allowable probabilities for a fiducial non-basis measurement
depends only on the fiducial basis measurements for the fiducial basis states of
which it is a superposition. These values are therefore parents of FiducialNonBa-
sisProb(fnb, gst).

The MFrags of Figure 8 define a generative distribution for states of each type of
quantum system represented by the MEBN theory. That is, they define a joint prob-
ability distribution for situations involving different number of quantum systems of
different types. The probability distributions associated with these MFrags are sub-
jective — they represent a Bayesian agent’s uncertainty about they type of system,
the parameters characterizing a quantum state, etc. When there is more informa-
tion about the state of an instance of a quantum system (e.g., results of measure-
ments), that information can be applied as findings to refine the distribution for its
state.

3.2.4. Representing Unitary Transformations

The next set of MFrags, shown in Figure 9, define unitary transformations for
quantum systems. A unitary transformation transforms a system that is in state
State(sys, Prev(t)) at the end of the previous time step to PreState(sys, t), its new
state prior to any reduction operator(s) that may occur at the current time step.
The Product Factors and Product Transformation MFrags are generic MFrags that
define product transformations for any type of quantum system. The other two
MFrags in this set define two generators for the unitary group of SystemOfQubit
quantum systems. It is well known (c.f., Nielsen and Chuang, 2000) that any unitary
transformation on a system of qubits can be obtained as the product of single-
qubit transformations and CNOT gates. The MFrag for single-qubit transformations
makes use of the fact that any single-qubit transformation can be expressed as global
phase shift combined with a rotation (see Exercise 4.8, page 175 in Nielsen and
Chuang, 2000). The parameters of this representation are represented as parents
of PreState(sys, t) in the Single-Qubit Gate MFrag. Although we have explicitly
shown only the unitary group generators for qubit systems, it is straightforward
to extend this set of MFrags to cover any type of quantum system for which a
generative distribution for the unitary group can be defined.
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Figure 9. Unitary transformation MFrags (for Qubit Systems).

As for the preceding sets of MFrags, the probability distribution over unitary
transformations defined in these MFrags represents subjective probabilities of a
Bayesian agent over the unitary transformation governing the evolution of a quan-
tum system. The distribution in these MFrags could be overridden by distributions
defined for subtypes of the given type of system.

3.2.5. Representing Reductions
The MFrags of Figure 10 define distributions for the state after reduction events and
the outcomes of measurements. Outcomes of measurements are modeled separately
from post-reduction states, but are related by the restriction that the state after
reduction must be in the subspace corresponding to the outcome. The No Reduction
MFrag states simply that if no reduction occurs, then the state at the end of time
step t is PreState(sys, t), the state after applying the unitary transformation to
State(sys, Prev(t)), and the measurement outcome is a null value indicating that no
measurement was taken. The Reduction Result MFrag defines the distribution for
the reduction result as a function of reduction operator and the fiducial probabilities.
This MFrag represents only projective measurements with two possible outcomes.
Because any other measurement can be constructed from two-valued projective
measurements, it would be straightforward to add additional MFrags to represent
other kinds of measured quantities.

These MFrags define only unitary transformations and two-valued projective
measurements. The most general form of transformation for a quantum system is
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Figure 10. State reduction MFrags.

called a quantum operation. General quantum operations can be represented as
completely positive operators on the system’s Hilbert space. It can be shown that
any quantum operation can be obtained as a combination of unitary transformations
and reductions. Therefore, the MFrags given here are sufficient to represent the
behavior of systems of qubits. Furthermore, the MEBN theory presented here can
be extended to represent any quantum system for which a generative probability
distribution can be defined for its unitary group.

3.2.6. Representing the Choice of Operator
The MFrags of Figure 6 through Figure 10 specify a MEBN theory that is
complete except for the definition of two context nodes. The first of these
is EvolutionOp(sys, t) (see Figure 9), which represents the unitary transforma-
tion that transforms the system to its next pre-reduction state. The second is
ReductionOp(sys, t) (Figure 10), which represents the reduction operator applied
at time ¢. According to standard quantum theory, a closed quantum system trans-
forms according to a fixed, time-independent unitary transformation. Thus, for a
closed quantum system there are no reductions and EvolutionOp(sys, t) does not
depend on time. This model is depicted in Figure 11a. Open systems are subject to
environmental noise. This can be represented by treating the evolution operator and
reduction operators as independent realizations from the distributions represented
in Figures 9 and 10, respectively, as shown in Figure 11b.

In quantum computing, the algorithm designer specifies the unitary evolution
and reduction operators, and the input state is selected at run time by the user.
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Figure 11. Operator generative MFrags.

The process by which these choices are made lies outside of quantum theory.
These choices are treated phenomenologically by texts in quantum computing. For
example:

. we often speak of applying a unitary operator to a particular quantum
system. .. Doesn’t this contradict what we said earlier, about unitary operators
describing the evolution of closed quantum systems? After all, if we are
‘applying’ a unitary operator, then that implies there is an external ‘we’ who is
interaction with the quantum system, and the system is not closed. . . .for many
systems like this it turns out to be possible to write down a time-varying [unitary
evolution operator that] varies according to some parameters which are under
an experimentalist’s control, and which may be changed during the experiment.
(Nielsen and Chuang, 2000; p. 84)

... The status of [the measurement postulate] as a fundamental postulate in-
trigues many people. Measuring devices are quantum mechanical systems, so
the quantum system being measured and the measuring device together are part
of a larger, isolated, quantum mechanical system. According to [the unitary evo-
lution postulate], the evolution of this larger isolated system can be described by
a unitary evolution. Might it be possible to derive [the measurement postulate]
as a consequence of this picture? Despite considerable investigation along these
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lines, there is still disagreement between physicists about whether this is possi-
ble. We, however, are going to take the very pragmatic approach that in practice
it is clear when to apply [unitary evolution] and when to apply [measurement],
and not worry about deriving one postulate from the other. (Nielsen and Chuang,
2000; p. 85)

It is assumed [as one of the key elements of the quantum circuit model of
computation] that any computational basis state [for an n-dimensional system of
qubits] can be prepared in at most n steps. (Nielsen and Chuang, 2000; p. 202)

We argue that expressing a theory of quantum evolution in the language of Bayesian
networks can help to elucidate the content of different ontological stances regard-
ing the phenomenology, as well as to evaluate whether and to what degree they
differ in empirical content. The next section presents several prominent ontologies
for quantum theory and discusses them in relation to the MEBN representation of
quantum evolution. With respect to our MEBN theory of quantum evolution, differ-
ent ontological stances can be distinguished by differences in how the distributions
for EvolutionOp(sys, t) and ReductionOp(sys, t) are defined and interpreted.

3.3. ONTOLOGIES FOR QUANTUM THEORY

The orthodox interpretation for quantum theory is associated with Bohr (1934) and
is called the Copenhagen interpretation. According to the Copenhagen interpreta-
tion, quantum theory replaces a classical theory that refers to an external material
universe with a new theory that refers only to the experience of observers and
not to the external universe itself. Conditional on a choice of experimental set-up
that defines the macroscopically detectable possibilities available to the system,
quantum theory predicts the probability that each of these classically describable
possibilities will occur. Proponents of the Copenhagen interpretation make no onto-
logical commitments regarding the entities that give rise to the experienced sequence
of observations. It is sometimes asserted that it is meaningless to speak of the “ac-
tual state” of a quantum system. The quantum state is asserted to be nothing but a
mathematical construct for organizing the experiences of observers and enabling
the computation of accurate predictions of the outcomes of experiments. According
to the orthodox interpretation, quantum theory represents a set of computational
rules by which scientists can make predictions about which classically describable
outcomes will occur as a result of the classically describable experiments they con-
duct. The quantum state is a mathematical construct used to make predictions about
observables, but being inaccessible to direct observation, is not to be regarded as
corresponding to any definite phenomenon in Nature. The Copenhagen position is
reminiscent of the strict subjectivist view that probabilities refer only to the beliefs
of rational agents, and it is meaningless to speak of objective propensities. In this
view, instances of the random variable template Measurement(sys, t) correspond to
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actual experiences of an observer when a measurement is taken on a given quan-
tum system at a given time. On the other hand, instances of State(sys, t) represent
nothing but mathematical constructs used to compute probabilities for the different
outcomes of Measurement(sys, t).

Although the Copenhagen interpretation is the standard view, most physicists
prefer, at least informally, to operate with an ontology that connects the terms in
the theory to an underlying physical reality that gives rise to the experience of
observers. One important characteristic that distinguishes ontologies is whether
reductions are treated as real phenomena in Nature or as artifacts of incomplete
knowledge about open quantum systems. As noted above, if a system is entangled
with its environment, the system considered alone will in general be in a mixed state
even if the combination of system plus environment is in a pure state. Furthermore,
the process of decoherence, in which an open system loses its quantum properties
due to environmental influences, operates extremely rapidly. Some physicists take
the position that quantum states are real, but reductions are artifacts that arise from
treating open quantum systems in isolation without explicitly modeling effects due
to interactions with the environment. Just as a strict subjectivist would view the
mixing parameter that appears in de Finetti’s theorem as a convenient modeling
fiction, some scientists prefer to treat reductions as modeling fictions. There have
been many attempts at formulating quantum theory in a manner that does away
with reductions, but no such attempt has gained universal acceptance, and there is
strong disagreement over whether the objective is achievable.

One such ontology, known as many worlds, asserts that a quantum system ac-
tually realizes all possibilities open to it, but each occurs in a separate reality
inaccessible to the other realities. There is a copy of each of us in all the different
realities, but only the copy in this particular reality has the experiences associated
with this reality. The many worlds interpretation is common in the field of quantum
computing. According to another ontology known as consistent histories (Omnes,
1999), quantum theory defines a probability distribution on histories of a quantum
system. A history consists of a product of time-ordered projection operators. A set
of histories is consistent if the elements of the set are mutually orthogonal, i.e.,
distinguishable from one another. A family of consistent histories represents a set
of alternative possibilities for the trajectory of the system. Given any family of
consistent histories, quantum theory defines a unique probability distribution on
histories in the family. The consistent histories interpretation is said to do away
with the postulate of state reduction. However, it is necessary to augment the usual
rules of quantum theory with some means of specifying the family of consistent his-
tories on which probabilities are to be defined. The consistent histories ontology is
silent about how this should be done. The selection rule for histories plays the same
role in the consistent histories interpretation as the rule for selecting a sequence
of reduction operators does in the standard interpretation. Yet another interpreta-
tion is the pilot wave ontology (Bohm and Hiley, 1993), a nonlocal deterministic
theory that includes both classical-like particles and a wave function that guides
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their evolution. Like many worlds and consistent histories, the pilot wave ontology
regards reduction events as artifacts of incomplete knowledge of observers. Unlike
many-worlds and consistent histories, in which the state evolves by unitary evolu-
tion alone, the pilot wave interpretation adds to the standard account a description
of how the particle’s evolution is guided by the pilot wave.

Taking a literal interpretation, the random variable template ReductionOp(sys,
t) of Figure 10 represents the reduction operator applied to a given quantum system
at a given time. A scientist who views reductions as modeling fictions would agree
that the statistical assertions encoded in the MFrags of Figure 10 faithfully reflect
the experience of observers. Such a scientist would argue, however, that the random
variable template ReductionOp(sys, t) is a modeling fiction that generates accurate
phenomenological predictions, but does not correspond to any fundamental physical
process.

Other scientists take a realist view of reductions. According to the realist view,
the influence of ReductionOp(sys, t) on State(sys, t) and Measurement(sys, t) in
Figure 10 is causal. That is, intervening to set the value of ReductionOp(sys, t)
to None causes State(sys, t) to remain unchanged at the value PreState(sys, t)
and Measurement(sys, t) to have a null value indicating a nonexistent measure-
ment. Intervening to set the value of ReductionOp(sys, t) to a particular reduction
operator (denoted in Figure 10 by the variable rdc) causes one of the possible
outcomes of Measurement(sys, t) to occur and State(sys, t) to become the projec-
tion of PreState(sys, t) onto the subspace associated with the observed value of
Measurement(sys, t). The probabilities associated with a given outcome and post-
reduction state are determined by the fiducial probabilities for PreState(sys, t) and
the subspace corresponding to the outcome. That is, intervening to apply a partic-
ular reduction operator causes different propensities for values of State(sys, f) than
if a different reduction operator were applied, or if there were no reduction.

Some scientists theorize that at least some reduction operators occur because of
deliberate actions taken by agents. Penrose (e.g., 1994) hypothesizes that reduction
represents the singling out of an actual event to occur by a mechanism related
both to consciousness and gravitation. Stapp (1999 and Schwartz et al., 2005)
also takes a realist view of reduction, but does not implicate gravity as a causal
factor. Stapp’s ontology is closely related to the measurement theory first proposed
by von Neumann (1932) and further developed by Wigner (1967). This ontology
hypothesizes that the universe contains systems that can cause state reductions.
These reducing agents can choose, within as yet to be determined physical limits,
when to initiate reductions and which kinds of reductions to initiate. One reasonable
hypothesis is that a reducing agent can apply reductions that operate on a subset of
the degrees of freedom of its own state (e.g., the degrees of freedom corresponding
to the controller for its motor subsystem). The manner in which a reducing agent
selects a reduction operator might depend on the state of the reducing agent, which
might in turn depend on the outcomes of previous reductions. This provides a
means, consistent with the laws of physics, for reducing agents to make efficacious
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Figure 12. MFrags for operator application by reducing agents.

choices that depend on memories encoded in their quantum states. Because this
choice process conforms to the precepts of quantum theory, the choices of reducing
agents are consistent both with the constraints imposed by relativity theory that
preclude faster than light influences in unitary evolution, and with the nonlocal
effects quantum theory predicts for outcomes of reductions. Figure 12 shows an
alternate version of the operator generation MFrags of Figure 11, in which reduction
operators are modeled as decision nodes.

Like the consistent histories ontology, the reducing agent ontology specifies
a probability distribution for a family of consistent histories. The actual history is
chosen from this family according to the usual rule (described in Section 3.1 above)
for assigning probabilities to outcomes of reductions. It is important to note that in
the reducing agent ontology, the choice and timing of reductions may depend on
the outcome of previous reductions, if these outcomes are recorded in the memory
of the reducing agent.

Stapp (1999) Schwartz et al. (2005) hypothesizes that human agents are one
kind of reducing agent. Under this hypothesis, choices by human agents give rise
to interventions that cause a quantum system to behave differently from how it
would have behaved without the interventions. The hypothesis that humans are
reducing agents fills complementary explanatory gaps in physics and psychology
by postulating an interaction between the informational structure represented by
the quantum state and the informational structure of conscious experience (Stapp,
personal communication). Thus, with no change to the mathematical machinery of
quantum theory, the reducing agent ontology connects physical reality in a plausible
way to conscious experience and goal-directed, deliberate choice.

The reducing agent ontology has empirical consequences regarding the manner
in which volition operates in a quantum world. In particular, it is postulated that
agents act on the world by initiating reductions applied to their own states, and
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affect other systems only indirectly through the effects of these interventions. Ac-
cording to the reducing agent ontology, volition operates on the material world via
the application of reduction operators. In particular, the reducing agent ontology
postulates that the volitional aspects of quantum computing (i.e., temporal evolu-
tion of unitary operators programmed as steps in a quantum algorithm; preparation
of initial states in a given configuration) must be brought about through the effects
of applying reduction operators.

Stapp (1999) and McFadden (2000) describe empirically verified examples of
macroscopically detectable differences in behavior resulting from different policies
for effecting state reductions in quantum systems. The quantum Zeno effect (Itano
et al., 1990; Gribbin, 1996) predicts that observations taken sufficiently rapidly
can keep a quantum system within a constrained region of state space. The inverse
quantum Zeno effect (McFadden, 2000) induces a quantum system, via a sequence
of rapidly repeated measurements, to follow a particular path in its state space. Stapp
argues that an organism might use the quantum Zeno effect to keep its brain state
within a given basin of attraction sufficiently long to trigger behaviors the organism
desires to bring about. The quantum Zeno effect has been confirmed experimentally
(Itano et al., 1990) and is thought to occur at time and frequency scales consistent
with patterns of electrochemical activity occurring in brains.

These results demonstrate that applying different reduction policies can result
in macroscopically distinguishable differences in behavior. This suggests the pos-
sibility of empirical tests that could distinguish the reducing agent ontology from
ontologies that treat reductions as artifacts or from a realist ontology in which the
timing and choice of reductions do not depend on the state of the system prior to
reduction.

Although both Stapp and McFadden hypothesize that humans are reducing
agents, there is no implication that humans are the only reducing agents or that
reducing agents must be conscious. Reductions that occurred prior to the evolution
of conscious organisms would have been caused by unconscious or proto-conscious
reducing agents. Although it is conceivable that some form of the property we call
consciousness at the human level exists throughout the natural world, the reducing
agent ontology does not require it.

Treating reductions as real processes that can be initiated by conscious agents
provides a theory for aspects of quantum computing that are now treated purely
phenomenologically. For example, consider the problem of setting the input state
to a quantum algorithm to a given value. As noted above, the ability to specify
initial states is taken as a given in the theory of quantum computing. Nevertheless,
preparation of initial states is considered to be a difficult issue in the design of
practical quantum computing devices (Nielsen and Chuang, 2000). The quantum
Zeno effect provides a mechanism, consistent with the reducing agent ontology, for
preparing a desired quantum state. Suppose, for example, that we wish to prepare
the system in a state in which all qubits have value |0>. A procedure to prepare
this state can be defined as follows:
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Procedure Z (Qubit Zero State Preparation):

1. Measure all qubits in their single-qubit fiducial basis (i.e., measure whether each
qubit is in the state |0> or |1>).
2. For each qubit:

a. If the result of the previous measurement was |0>, measure the single-qubit
fiducial basis again.

b. If the result was |1>, measure one of the fiducial non-basis states (this will
yield |0> or |1> with equal probabilities).

3. If all qubits have value |0>, output the result. Else, go to Step 2.

Applying this algorithm will eventually produce the desired state with proba-
bility 1, provided that reductions are applied sufficiently rapidly with respect to the
rate of change of the state under unitary evolution. A similar kind of algorithm can
be applied, given the kind of conditions described in Section 3.2.6 above, to design
systems that behave as if a given unitary operator has been ‘applied’ to the system.

Although Procedure Z works in theory, it remains to be determined whether it
could be turned into a practical method for preparing initial states. An important
engineering issue is controlling the effects of environmental decoherence.

4. Quantum Agents

It has been argued (e.g., Pearl, 1988; Russell and Norvig, 2002; Lee and Mumford,
2003; Binford and Levitt, 2003) that intelligence requires the ability to perform the
functional equivalent of approximate Bayesian reasoning. Graphical probability and
decision models are attractive as a logically consistent language for formulating
theories of computational intelligence and developing computer implementations
capable of approximately optimal inference and decision-making. The Bayesian
logic presented in Section 2 is capable of representing a joint probability distribu-
tion over truth-values of virtually any set of scientific hypotheses. Given a MEBN
theory, Bayesian inference can be applied to compute responses to probabilistic
queries, to incorporate empirical evidence and revise beliefs, and to learn improved
representations from observations. MEBN logic is capable of representing a prob-
ability distribution over models of any first-order theory, and as shown in Section
3, can represent theories of quantum systems and their interaction with systems
described classically.

While current implementations of decision theoretic agents run on digital com-
puters, future implementations of decision theoretic agents might employ quantum
hardware. One might ask why quantum theory should be important to a theory of
physical symbol systems. Present theories of computational intelligence, with their
basis in digital computers, have taken us a long way in our twin quests to understand
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intelligence and to develop intelligent systems. Additional advances are occurring
at arapid rate. Many prominent neuroscientists are skeptical of claims regarding the
relevance of quantum theoretic effects to the study of human and animal cognition.
So why, one might ask, should the field of computational intelligence pay attention
to quantum theory?

One response to this question is to note that while graphical models have brought
computational probabilistic reasoning within the range of feasibility, many prob-
lems of interest are beyond the capability of the most efficient known algorithms.
The most effective algorithms for highly complex problems are stochastic (e.g.,
Cheng and Druzdzel, 2000; Doucet et al., 2001). Most current implementations
of stochastic algorithms employ pseudo-random numbers. It is well known (e.g.,
Marsaglia, 1968) that pseudo-random numbers can fail to be random, causing se-
rious but difficult to detect inaccuracies in the results of computations that de-
pend on randomization. Physical randomness has been employed to counteract this
problem. Quantum devices enable realizations of randomized algorithms that are
physically accurate to the limits of current physical knowledge. Of course, random-
ized algorithms, even those employing quantum randomization devices, are not the
same as true quantum computing. It has been shown that quantum computers can
solve important classes of problems with far less computational resources than the
best-known classical algorithms (e.g., Aharanov, 1999; Grover, 1996; Shor, 1994),
and can perfectly simulate arbitrary finite-dimensional physical systems (Deutsch,
1985). Quantum computers are believed to be intrinsically more powerful than
classical algorithms with randomization. Spector suggests that efficient inference
in Bayesian networks is a promising application area for quantum computing re-
search (Spector et al., 1999). It is conceivable that quantum algorithms for inference
and optimization in graphical probability and decision models might improve on
the performance of the best current methods.

More fundamentally, the view of intelligence as algorithms running on digital
computers, while it has achieved pragmatic success as a working approximation, is
fundamentally inadequate as a foundational theory of computational intelligence.
Boolean logic has proven unsatisfactory as a foundational logic for intelligent sys-
tems, and is being superceded by Bayesian logic. First-order Bayesian logic is
sufficiently powerful to represent virtually any scientific hypothesis, has a theo-
retically principled means of refining theories based on observation, and provides
a principled basis for decision making under uncertainty. Furthermore, we saw in
Section 3 above that first-order Bayesian logic can represent the evolution of quan-
tum systems, whereas the family of computable functions is insufficiently rich to
represent many important types of physical system. In other words, a Bayesian
logic implemented in a quantum device is in principle capable of learning a faithful
representation of itself and the quantum world it inhabits. This cannot be said of
classical logic implemented on a digital computer.

The reducing agent ontology, coupled with recent innovations in probabilistic
knowledge representation, suggests an intriguing perspective on von Neuman’s
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(1932) seminal formulation of quantum measurement. Von Neumann’s formal the-
ory of measurement embeds observer and observed system in a larger system whose
evolution is governed by unitary transformations punctuated by reduction events.
Von Neumann believed that reduction could not be eliminated by treating it as an
artifact of incomplete knowledge:

... the measurement or the related process of the subjective perception is a new
entity relative to the physical environment and is not reducible to the latter. (1932,
p. 418)

The passage continues with a definition of the principle of psycho-physical par-
allelism, which von Neumann saw as fundamental to a scientific treatment of the
process by which scientists gain knowledge about the world:

Indeed, subjective perception leads us into the intellectual inner life of the in-
dividual, which is extra-observational by its very nature (since it must be taken
for granted by any conceivable observation or experiment). Nevertheless, it is
a fundamental requirement of the scientific viewpoint — the so-called principle
of the psycho-physical parallelism — that it must be possible so to describe the
extra-physical process of the subjective perception as if it were in reality in the
physical world — i.e., to assign to its parts equivalent physical processes in the
objective environment, in ordinary space. (1932, p. 418-9)

To assign physical referents to the subjective components of inner experience,
it is necessary to clearly delineate the correspondence between the measured phe-
nomenon and the experience of the observer. Von Neumann noted that the boundary
between observer and observed is to a large extent arbitrary, but different ways of
delineating the boundary must be mutually consistent. One of von Neumann’s most
important contributions was his proof that observable outcomes do not depend on
the manner by which a composite quantum system is divided into “observed” and
“observer” subsystems. That is, predictions are identical whether we localize the
reduction event in the brain of the observer, in the sensory organs of the observer, or
at the measuring instrument itself. Thus, debates over whether the reduction event
“really” occurs in the observer’s brain or at the measuring instrument cannot be
settled by empirical data.

Nevertheless, von Neumann was firm in his conviction that we must put the
boundary somewhere. That is, we cannot do without reductions altogether, if the
physical referents of the theory are to have any connection with the experience of
observers.

... no matter how far we calculate — to the mercury vessel, to the scale of the
thermometer, to the retina, or into the brain . .. at some point, we must say: and
this is perceived by the observer. . . . in each method of description, the boundary
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must be put somewhere, if the method is not to proceed vacuously, i.e., if a
comparison with experiment is to be possible. Indeed experience only makes
statements of this type: an observer has made a certain (subjective) observation;
and never any like this: a physical quantity has a certain value. (1932, p. 420)

To make statements about the physical world, von Neumann argued, we must
correlate the inner subjective experiences of observers with elements of the theory
that correspond to the referents of our statements. To connect the experience: “I
saw the dial pointing at the number seven,” with the physical hypothesis that an
object has a certain velocity, requires a mathematical model of the connection
between the observer’s subjective experience of “seeing seven,” the physical state
of the observer’s cognitive system when the observer “sees seven,” the events in
the observer’s sensory apparatus that occur when the dial is pointing at seven, the
position of the pointer on the measuring device, and the physical state of the system
whose velocity is being measured.

The science of von Neumann’s time had no formal mathematical theories gov-
erning “the inner intellectual life of the individual.” The intervening years have seen
great strides in cognitive psychology, neuroscience, and artificial intelligence. We
are still very far from any direct understanding of the relationship between brain
states and the contents of consciousness. On the other hand, current technology
has produced robots that, at least in restricted domains, can operate successfully in
reasonably complex environments. They can process sensory inputs, reason at the
cognitive level about goals and plans, combine cognitive-level and sensory-level
reasoning to predict the effects of actions, navigate in their environment to carry
out their plans, and learn from experience. We have achieved a good understanding
of the relationship a robot’s internal state bears to the cognitive-level description
employed by the software engineers who design its algorithms. Thus, in robotics
at least, we can carry through the connection from the state of the robot’s cognitive
system when “seeing seven” to sensory inputs when “seeing seven” to the pointer
on the dial. Obviously, we have no way to know whether it is meaningful to speak
of the robot’s inner subjective experience when its cognitive system is in a state
of “seeing seven.” Nevertheless, we can program a robot to behave as if it had a
certain set of goals, and to act in an appropriate goal-directed way when it is in a
state of “seeing seven.”

All this is well and good, but today’s robots employ digital computers. So why
are we placing so much emphasis on quantum computers?

First, if quantum theory is correct, today’s robots do employ quantum comput-
ers, because all physical devices are quantum devices. Second, while today’s robots
are far more primitive than Lt. Cmdr. Data, the fictional robot pictured in Figure 1,
many scientists subscribe to the view that quantum computing will be an essential
technology for intelligent systems of the future. If systems of this level of sophisti-
cation can be achieved at all, many scientists believe intrinsically quantum sensory
and computing systems will be a necessary ingredient in their design. Although this
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viewpoint is by no means universal, neither can it be dismissed out of hand. It is
reasonable to hypothesize that the internal cognitive architecture of a robot of the
future might consist of a quantum hardware instantiation of a first-order Bayesian
logic. A decision support robot of the future might employ an extended and more
fully-developed version of a MEBN theory such as Figure 4. This robot might apply
a more complex version of the situation-specific model of Figure 5 to reason about
individual situations in its domain of responsibility.

Such a robot might even reason about intrinsically quantum phenomena. As
a concrete example relevant to our case study, Suliban cloaking devices are said
to employ particle radiation to alter the molecular structure of matter, and can be
detected by a device called a quantum beacon.” We might add a set of MFrags to
our Starship theory to model the use of quantum beacon sensors to detect cloaked
Suliban starships. These MFrags would explicitly represent quantum effects of the
interaction between Suliban cloaking devices and quantum beacon detectors. The
MFrags of Section 3 above might be employed in the robot’s internal representation
of quantum beacon detectors.

Suppose Lt. Cmdr Data were to prepare a quantum beacon detector, take an
observation, and report to Captain Picard that he had observed a sensor reading
indicating the presence of cloaked starships in the vicinity. Captain Picard would
have the subjective experience of hearing Data give his report. Tracing along von
Neumann’s moveable cut, we could connect this experience of a verbal report to the
sound waves that emanated from Data’s vocal system. From there, we could follow
the chain to the internal state of Data’s cognitive system as he made the decision to
vocalize his report. From there we could follow the chain to the state of his sensing
apparatus, and finally to the state of the quantum beacon readout. Individuals might
differ about whether, in such a scenario, it would be reasonable to ascribe to Data
the subjective experience of seeing the sensor reading. Whatever one’s view on the
truth of the matter, the crew’s survival depends on the degree to which Data behaves
“as if” he is having the experience in question. Data’s designers will build him to
act as if he has the goal of providing the Captain with the information he needs to
respond appropriately when the ship is in danger.

Regardless of one’s metaphysical stance on the objective reality of reductions,
the MEBN theory presented here can be used to define a fully Bayesian model
for reasoning about quantum systems, and for revising a model of a given quan-
tum system in the light of observations generated by the system. The quantum
theory MFrags can also be combined with MFrags that do not explicitly incorpo-
rate quantum-level effects. Such a combined model can be used to reason about
systems for which some aspects can be treated classically, while others require
explicit quantum-level modeling. In principle, we could explicitly model the quan-
tum aspects of other systems represented by our theory (e.g., we could represent

7 See http://www.memory-alpha.org/en/wiki/Cloaking_device for more information on cloaking
technology and devices for detecting cloaked starships.
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distance sensors quantum-mechanically). However, this would involve prohibitive
computational overhead, for no discernable gain in accuracy.

In summary, a formal theory of Bayesian logic running on quantum hardware
provides a sound basis for a science of physically embodied cognitive agents.
The correspondence between the quantum level description of the physical state
of the agent’s cognitive system and the cognitive level description of the agent’s
knowledge provides a formal mathematical model of von Neumann’s principle of
psycho-physical parallelism. Of course, no mathematical model can actually be an
experience. Nevertheless, the correspondence between the cognitive and quantum
level descriptions is a formal mathematical model of the correspondence between
the inner subjective experience of an ideal observer and the physical state of its
cognitive apparatus. The theory described here thus extends von Neumann’s “mov-
able cut” further toward the cognitive realm than has heretofore been possible. The
foregoing arguments are not intended to imply a literal interpretation of human
brains as quantum Bayesian computers, any more than the now-standard approach
of implementing cognitive theories on digital computers implies a literal belief
that human brains are digital computers. Nevertheless, the cognitive architecture
described here has the potential to provide new insights into human cognition, arti-
ficial intelligence, quantum computing and the relationship between the symbolic
and sub-symbolic levels of description.
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