
Journal of Logic, Language and Information (2005) 14: 289–329 C© Springer 2005

Deciding Regular Grammar Logics with Converse
Through First-Order Logic

STÉPHANE DEMRI and HANS DE NIVELLE1

LSV/CNRS UMR 8643 & INRIA Futurs projet SECSI & ENS Cachan 61, av. Pdt. Wilson, 94235
Cachan Cedex, France
E-mail: demri@lsv.ens-cachan.fr
1Max Planck Institut für Informatik, Stuhlsatzenhausweg 85, 66123 Saarbrücken, Germany
E-mail: nivelle@mpi-sb.mpg.de

Abstract. We provide a simple translation of the satisfiability problem for regular grammar logics
with converse into GF2, which is the intersection of the guarded fragment and the 2-variable fragment
of first-order logic. The translation is theoretically interesting because it translates modal logics with
certain frame conditions into first-order logic, without explicitly expressing the frame conditions. It is
practically relevant because it makes it possible to use a decision procedure for the guarded fragment
in order to decide regular grammar logics with converse. The class of regular grammar logics includes
numerous logics from various application domains. A consequence of the translation is that the general
satisfiability problem for every regular grammar logics with converse is in EXPTIME. This extends
a previous result of the first author for grammar logics without converse. Other logics that can be
translated into GF2 include nominal tense logics and intuitionistic logic. In our view, the results in this
paper show that the natural first-order fragment corresponding to regular grammar logics is simply
GF2 without extra machinery such as fixed-point operators.

Key words: modal and temporal logics, relational translation, guarded fragment, 2-variable fragment

1. Introduction

Translating modal logics. Modal logics are used in many areas of computer science,
as for example knowledge representation, model-checking, and temporal reasoning.
For theorem proving in modal logics, two main approaches can be distinguished.
The first approach is to develop a theorem prover directly for the logic under
consideration. The second approach is to translate the logic into some general logic,
usually first-order logic. The first approach has the advantage that a specialized
algorithm can make use of specific properties of the logic under consideration,
enabling optimizations that would not work in general. Such optimizations often
lead to terminating algorithms. In addition, implementation of a single modal logic
is usually easier than implementing full first-order logic. But on the other hand,
there are many modal logics, and it is simply not feasible to construct optimized
theorem provers for all of them. The advantage of the second approach is that only



290 S. DEMRI AND H. DE NIVELLE

one theorem prover needs to be written which can be reused for all translatable
modal logics. In addition, a translation method can be expected to be more robust
against small changes in the logic. Therefore translating seems to be the more
sensible approach for most modal logics, with the exception of only a few main
ones.

Translation of modal logics into first-order logic, with the explicit goal to mecha-
nize such logics is an approach that has been introduced in (Morgan, 1976). Morgan
distinguishes two types of translations: the semantical translation, which is nowa-
days known as the relational translation (see e.g., Fine, 1975; van Benthem, 1976;
Moore, 1977) and the syntactic translation, which consists in reifing modal formu-
lae (i.e., transforming them into first-order terms) and in translating the axioms and
inference rules from a Hilbert-style system into classical logic using an additional
provability predicate symbol. This is also sometimes called reflection. With such a
syntactic translation, every propositional normal modal logic with a finite axioma-
tization can be translated into classical predicate logic. However, using this general
translation, decidability of modal logics is lost in general, although the work in
Hustadt and Schmidt (2003) has found a way to avoid this problem for many stan-
dard modal logics. We will study relational translations in this paper, which instead
of simply translating a modal formula into full first-order logic, can translate modal
formulas into a decidable subset of first-order logic. The fragment that we will be
using is GF2, the intersection of the 2-variable fragment (Grädel et al., 1997) and
the guarded fragment (Andreka et al., 1998). We modify the relational translation
in such a way that explicit translation of frame properties can be avoided. In this
way, many modal logics with frame properties outside GF2 can be translated into
GF2.

A survey on translation methods for modal logics can be found in Ohlbach
et al. (2001), where more references are provided, for instance about the functional
translation (see e.g., Herzig, 1989; Ohlbach, 1993; Nonnengart, 1996), see also in
Or�lowska (1988) and D’Agostino et al. (1995) for other types of translations.

Guarded fragments. Both the guarded fragment, introduced in Andreka et al. (1998)
(see also de Nivelle, 1998; Grädel, 1999b; Ganzinger and de Nivelle, 1999; Nivelle
et al., 2000; de Nivelle and de Rijke, 2003) and FO2, the fragment of classical
logic with two variables (Gabbay, 1981; Grädel et al., 1997; de Nivelle and Pratt-
Hartmann, 2001), have been used for the purpose of ‘hosting’ translations of modal
formulas. The authors of Andreka et al. (1998) explicitly mention the goal of iden-
tifying ‘the modal fragment of first-order logic’ as a motivation for introducing
the guarded fragment. Apart from having nice logical properties (Andreka et al.,
1998), the guarded fragment GF has an EXPTIME-complete satisfiability prob-
lem when the maximal arity of the predicate symbols is fixed in advance (Grädel,
1999b). Hence its worst-case complexity is identical to some simple extensions
of modal logic K, as for example the modal logic K augmented with the univer-
sal modality (Spaan, 1993). Moreover, mechanization of the guarded fragment is



DECIDING REGULAR GRAMMAR LOGICS WITH CONVERSE 291

possible thanks to the design of efficient resolution-based decision procedures (de
Nivelle, 1998; Ganzinger and de Nivelle, 1999). In Hladik (2002), a tableau pro-
cedure for the guarded fragment with equality based on Hirsch and Tobies (2002)
is implemented and tested; see also a prover for FO2 described in Marx et al.
(1999).

However, there are some simple modal logics with the satisfiability problem in
PSPACE (Ladner, 1977) that cannot be translated into GF through the relational
translation. The reason for this is the fact that the frame condition that characterizes
the logic cannot be expressed in GF. The simplest example of such a logic is prob-
ably S4 which is characterized by reflexivity and transitivity. Many other examples
will be given throughout the paper. Adding transitivity axioms to a GF-formula
causes undecidability (see Grädel, 1999a).

Because of the apparent insufficiency of GF to capture basic modal logics,
various extensions of GF have been proposed and studied. In Ganzinger et al.
(1999), it was shown that GF2 with transitivity axioms is decidable, on the condition
that binary predicates occur only in guards. The complexity bound given there is
non-elementary, which makes the fragment not very relevant to deal with logics,
say in EXPTIME.

In Szwast and Tendera (2001), the complexity bound for GF2 with transitive
guards is improved to 2EXPTIME and it was shown 2EXPTIME-hard in (Kieronski,
2003). As a consequence, the resulting strategy is not the most efficient strategy to
mechanize modal logics with transitive relations (such as S4).

Another fragment was explored in Grädel and Walukiewicz (1999), see also
(Grädel, 1999a). There it was shown that µGF, the guarded fragment extended
with a µ-calculus-style fixed-point operator is still decidable and in 2EXPTIME.
This fragment does contain the simple modal logic S4, but the machinery is much
more heavy than a direct decision procedure would be. After all, there exist simple
tableaux procedures for S4. In addition,µGF does not have the finite model property,
although S4 has.

Almost structure-preserving translations. In this paper, we put emphasis on the fact
that GF2 is a sufficiently well-designed fragment of classical logic for dealing with
a large variety of modal logics. An approach that seems better suited for theorem
proving than the translation into the rich logic µGF, and that does more justice to the
low complexities of simple modal logics is the approach taken in de Nivelle (1999,
2001). There, an almost structure-preserving translation from the modal logics S4,
S5 and K5 into GF2 was given. The subformulae of a modal formula are translated
in the standard way, except for subformulae that are -formulae. The translation
of -formulae ψ depends on the frame condition and encodes the propagation
of single-steps constraints (as done in Massacci (2000)) so that ψ holds true in
successor states. In de Nivelle (1999, 2001), the translations and their correctness
proofs were ad hoc, and it was not clear upon which principles they are based. In
this paper we show that the almost structure preserving translation relies on the fact



292 S. DEMRI AND H. DE NIVELLE

that the frame conditions for K4, S4 and K5 are regular in some sense that will
be made precise in Section 2.2. The simplicity of the almost structure-preserving
translation leaves hope that GF2 may be rich enough after all to naturally capture
most of the basic modal logics.

We call the translation method almost structure-preserving because it preserves
the structure of the formula almost completely. Only for subformulae of the form
[a]φ does the translation differ from the usual relational translation. On these sub-
formulae, the translation simulates an NDFA based on the frame condition of
the modal logic. In our view this translation also provides an explanation why
some modal logics like S4, have nice tableau procedures (see e.g. Heuerding et
al., 1996; Goré, 1999; Massacci, 2000; Fariñas del Cerro and Gasquet, 2002, 2004;
Horrocks and Sattler, 2004): the tableau rule for subformulae of the form [a]φ can be
viewed as simulating an NDFA, in the same way as the almost structure-preserving
translation.

In this paper, we show that the methods of de Nivelle (1999) can be extended
to a very large class of modal logics. Some of the modal logics in this class have
frame properties that can be expressed only by recursive conditions, like for example
transitivity. By a recursive condition we mean a condition that needs to be iterated in
order to reach a fixed point. The class of modal logics that we consider is the class of
regular grammar logics with converse. The axioms of such modal logics are of form
[a0]p ⇒ [a1] . . . [an]p where each [ai ] is either a forward or a backward modality.
Another condition called regularity is required and will be formally defined in
Section 2.2.

With our translation, we are able to translate numerous modal logics into GF2 =
FO2 ∩ GF, despite the fact that their frame conditions are not expressible in FO2 ∪
GF. These logics include the standard modal logics K4, S4, K5, K45, S5, some
information logics (see e.g. Vakarelov, 1987), nominal tense logics (see e.g. Areces
et al., 2000), description logics (see e.g. Sattler, 1996; Horrocks and Sattler, 1999),
propositional intuitionistic logic (see e.g. Chagrov and Zakharyaschev, 1997) and
bimodal logics for intuitionistic modal logics IntK + � as those considered in
Wolter and Zakharyashev (1997). Hence the main contribution of the paper is the
design of a very simple and generic translation from regular grammar logics with
converse into the decidable fragment of classical logic GF2. The translation is
easy to implement and it mimics the behavior of some tableaux-based calculi for
modal logics. As a consequence, we are able to show that the source logics that
can be translated into GF2 have a satisfiability problem in EXPTIME. This allows
us to establish such an upper bound uniformly for a very large class of modal
logics, for instance for intuitionistic modal logics (another approach is followed in
Alechina and Shkatov (2003) leading to less sharp complexity upper bounds). We
are considering here the satisfiability problem. However because of the very nature
of the regular grammar logics with converse, our results apply also to the global
satisfiability problem and to the logical consequence problem.



DECIDING REGULAR GRAMMAR LOGICS WITH CONVERSE 293

We do not claim that for most source logics the existence of a transformation
into GF2 of low complexity is surprising at all. In fact it is easy to see that from
each simple modal logic for instance in PSPACE there must exist a polynomial-
time transformation into GF2, because PSPACE is a subclass of EXPTIME. The
EXPTIME-completeness of fixed-arity GF implies that there exists a polynomial-
time transformation from every logic in PSPACE into fixed-arity GF. It can even be
shown that there exists a logarithmic space transformation. However, the translation
that establishes the reduction would normally make use of first principles on Turing
machines. Trying to efficiently decide modal logics through such a transformation
would amount to finding an optimal implementation in Turing machines, which is
no easier than a direct implementation on a standard computer.

Our paper also answers a question stated in Demri (2001): Is there a decidable
first-order fragment, into which the regular grammar logics can be translated in a
natural way? The translation method that we give in this paper suggests that GF2

is the answer. It is too early to state that the transformation from regular grammar
logics with converse into GF2 defined in this paper can be used to mechanize
efficiently such source logics with a prover for GF2, but we show evidence that
GF2 is a most valuable decidable first-order fragment to translate modal logics into,
even when their frame conditions are not expressible in GF2.

Structure of the paper. The paper starts by introducing multimodal languages with
converses, semi-Thue systems, and some formal language theory. Using this, we
can define regular grammar logics in Section 2.2. The same section also contains
examples of regular grammar logics, which show that there are some natural modal
logics covered by our framework.

Section 2.3 starts by repeating a standard result about derivability in Hilbert-style
systems. After that, we prove a new result which characterizes when a grammar
rule is a consequence of a set of grammar rules. This characterization will be used
in Section 4 for determining which grammars define the same logic. In addition,
we prove a closure theorem, which will be used in Section 3.2.

Section 3.1 presents the translation into GF2. In Section 3.2 it is proven correct.
In Section 4, we explore the borders of the translation method, and state some
conjectures concerning which classes of logics can be translated. Section 5 contains
the comparison of related works with ours. Section 6 concludes the paper and states
some open questions, and future directions of research.

2. Multimodal Logic with Converse

We first introduce modal languages, after that we introduce modal frames and
models. In standard modal logic, one has two operators φ, and ♦φ, which denote
that φ is true in all successor states, or true in at least one successor state. In
multimodal logic, different types of successor relations are distinguished, which



294 S. DEMRI AND H. DE NIVELLE

are labelled by elements of an alphabet �. As usual, an alphabet � is a finite set
{a1, . . . , am} of symbols. We write �∗ to denote the set of finite strings that can be
built from the elements of �, and we write ε for the empty string. We write u1 · u2

for the concatenation of u1 and u2. For a string u ∈ �∗, we write |u| to denote its
length. A language over some alphabet � is defined as a subset of �∗.

DEFINITION 2.1. We assume a countably infinite set PROP of propositional
variables. Let � be an alphabet. The multimodal language ML� based on � is
defined by the following schema:

φ, ψ ::= p | ⊥ | 	 | ¬φ | φ ∧ ψ | φ ∨ ψ | [a]φ | 〈a〉φ

where p ∈ PROP and a ∈ �. The -formulae are the formulae of the form [a]ψ .
We write |φ| to denote the size of the formula φ, that is the number of symbols
needed to write φ down. A formula φ is in negation normal form (NNF) if ¬ occurs
only in front of propositional variables.

Without any loss of generality, we can make use of the NNF when we translate
formulae to GF2. The use is not essential, but it simplifies the presentation.

DEFINITION 2.2. Let � be an alphabet. A �-frame is a pair F = 〈W, R〉, such
that W is a non-empty set, and R is a mapping from the elements of � to binary
relations over W. We usually write Ra instead of R(a). A �-modelM = 〈W, R, V 〉
is obtained by adding a valuation function V with signature PROP → P(W ) to the
frame. For every p ∈ PROP, V (p) denotes the set of worlds where p is true.

The satisfaction relation |= is defined in the usual way:

– For every p ∈ PROP, M, x |= p iff x ∈ V (p).
– For every a ∈ �, M, x |= [a]φ iff for every y such that Ra(x, y), M, y |= φ.
– For every a ∈ �,M, x |= 〈a〉φ iff there is an y such that Ra(x, y) andM, y |= φ.
– M, x |= φ ∧ ψ iff M, x |= φ and M, x |= ψ .
– M, x |= φ ∨ ψ iff M, x |= φ or M, x |= ψ .
– M, x |= ¬φ iff it is not the case that M, x |= φ.

A formula φ is said to be true in the �-model M (written M |= φ) iff for every
x ∈ W , M, x |= φ. A formula φ is said to be satisfiable if there exist a �-model
M = 〈W, R, V 〉 and w ∈ W, such that M, w |= φ.

In order to be able to cope with properties such as symmetry and euclideanity, one
needs to be able to express converses. Probably the most natural way to do this,
is by extending the modal language with backward modal operators [a]−1φ and
〈a〉−1φ. Unfortunately, this approach does not work for us, because we want to



DECIDING REGULAR GRAMMAR LOGICS WITH CONVERSE 295

be able to express frame conditions using languages over �, and in this way the
backward modalities have no counterpart in �.

Because of this, we follow another approach and we assume that to each a in the
alphabet �, a unique converse symbol ā is associated, which is also in �. In this
way, one can partition � into two parts, the forward part and the backward part.

DEFINITION 2.3. Let � be an alphabet. We call a function ·̄ on � a converse
mapping if for every a ∈ �, we have ā �= a and ¯̄a = a.

It is easy to prove the following result.

LEMMA 2.1. Let � be an alphabet with converse mapping ·̄. Then ·̄ is a bijection
on �. In addition, � can be partitioned into two disjoint sets �+ and �−, such
that (1) for every a ∈ �+, ā ∈ �−, (2) for every a ∈ �−, ā ∈ �+.

In fact, there exist many partitions � = �−∪�+. When we refer to such a partition,
we assume that an arbitrary one is chosen. We call the modal operators indexed by
letters in �+ forward modalities (conditions on successor states) whereas the modal
operators indexed by letters in �− are called backward modalities (conditions on
predecessor states). In the sequel, the set �+ will denote the forward part of �

rather than the set of non-empty strings of �∗.

DEFINITION 2.4. Let � be an alphabet with converse mapping ·̄. The converse
mapping ·̄ is extended to words over �∗ as follows:

1. ε̄
def= ε,

2. if u ∈ �∗ and a ∈ �, then u · a
def= ā · ū.

In order to ensure that converses behave like converses should, we impose the
following, obvious constraint on the �-frames:

DEFINITION 2.5. Let � be an alphabet with converse mapping ·̄. We call a
�-frame a 〈�, ·̄ 〉-frame if, for every a ∈ �, Rā equals {〈y, x〉 | Ra(x, y)}.

In the rest of the paper, we adopt the following working definition for a logic.

DEFINITION 2.6. Let � be an alphabet with converse mapping ·̄. A logic L is
pair 〈ML�, C〉 such that C is a class of 〈�, ·̄ 〉-frames. A formula φ ∈ ML� is
L-satisfiable [resp. L-valid] iff there exist a 〈�, ·̄ 〉-model M = 〈W, R, V 〉 and
w ∈ W such that M, w |= φ and 〈W, R〉 ∈ C [resp. ¬φ is not L-satisfiable].

2.1. DEFINING LOGICS BY PRODUCTION RULES

We want to study validity and satisfiability in various modal logics. Modal logics are
traditionally defined by subclasses of frames (see Definition 2.6), or by axioms. For



296 S. DEMRI AND H. DE NIVELLE

example, the logic S4 can be either defined by the modal axioms [a]φ → [a][a]φ
and [a]φ → φ or by the subclass of frames in which all relations Ra are reflexive
and transitive. For many modal logics, the axioms stand in natural correspondence
to the condition that has to be imposed on the frames.

We will use a language theoretical framework for defining frame conditions.
Since the accessibility relations are labelled by letters, paths through a frame can be
labelled by words. Using this, certain conditions on the accessibility relation can be
represented by production rules. For example, the transitivity rule ∀xyz Ra(x, y) ∧
Ra(y, z) ⇒ Ra(x, z) can be represented by the rule a → a · a. Similarly, the
implication ∀xyz Ra(x, y) ∧ Rb(y, z) ⇒ Rc(x, z) can be represented by the rule
c → a · b. In order to formally define how a frame satisfies a production rule, we
need the following definition.

DEFINITION 2.7. Let � be an alphabet and F = 〈W, R〉 be a �-frame. The
interpretations Ra are recursively extended to words u ∈ �∗ as follows:

– Rε
def= {〈x, x〉 | x ∈ W },

– for all u ∈ �∗ and a ∈ �,

Ru·a
def= {〈x, y〉 | ∃z ∈ W, Ru(x, z) and Ra(z, y)}.

DEFINITION 2.8. Let � be an alphabet with converse mapping ·̄. A semi-Thue
system S over � is a set of production rules of form u → v with u, v ∈ �∗.

A semi-Thue system is similar to a grammar, but it has no start symbol, and there
is no distinction between terminal and non-terminal symbols. Using semi-Thue
systems, we can define more precisely how semi-Thue systems encode conditions
on �-frames.

DEFINITION 2.9. Let u → v be a production rule over some alphabet � with
converse mapping ·̄. We say that a 〈�, ·̄ 〉-frame F = 〈W, R〉 satisfies u → v if
the inclusion Rv ⊆ Ru holds. A 〈�, ·̄ 〉-frame F satisfies a semi-Thue system S if
it satisfies each of its rules. We also say that the production rule (or the semi-Thue
system) is true in F .

Observe that in Definition 2.9, u and v are swapped when passing from the
production rule to the relation inclusion.

DEFINITION 2.10. A formula φ is said to be S-satisfiable iff there is a 〈�, ·̄ 〉-
model M = 〈W, R, V 〉 which satisfies S, and which has an x ∈ W such that
M, x |= φ. Similarly, a formula φ is said to be S-valid iff in all 〈�, ·̄ 〉-models
M = 〈W, R, V 〉 that satisfy S, for every x ∈ W, we have M, x |= φ.



DECIDING REGULAR GRAMMAR LOGICS WITH CONVERSE 297

Transitivity on the relation Ra can be expressed by the semi-Thue system {a →
a · a}. Similarly, reflexivity can be expressed by the system {a → ε}.

Semi-Thue systems are obviously related to formal grammars, but in a semi-
Thue system, the production rules are used for defining a relation between words,
rather than for defining a subset of words. The former is precisely what we need to
define grammar logics.

DEFINITION 2.11. A multimodal logic 〈ML�, C〉 with � an alphabet with con-
verse mapping ·̄ is said to be a grammar logic with converse if there is a finite
semi-Thue system S over � such that C is the set of 〈�, ·̄ 〉-frames satisfying S.

We will mostly omit the suffix ‘with converse’, because we study only grammar
logics with converse in this paper. One could give Definition 2.9 without converse,
but this will bring no increased generality, because a logic without converse can
always be viewed as a sublogic of a logic with converse. Consider a grammar logic
L without converse defined by a semi-Thue system S over alphabet �. One can put
�′ = � ∪ {ā | a ∈ �}, and for each a ∈ �, put ¯̄a = a. Each �-frame can now be
obviously extended to a 〈�′, ·̄ 〉-frame.

The modal logic S4 can be defined by the context-free semi-Thue system {a →
ε, a → aa}. The modal logic B can be defined by {a → ā}. The following
correspondence result is standard, see for example (van Benthem, 1984).

THEOREM 2.2. Let � be an alphabet with converse mapping ·̄, and S be a
semi-Thue system over �. The following statements are equivalent:

1. In every 〈�, ·̄ 〉-frame F satisfying S, for every p ∈ PROP, [u]p ⇒ [v]p is valid.
For a word u = (u1, . . . , um), [u]p is an abbreviation for [u1] · · · [um]p.

2. Rv ⊆ Ru in every 〈�, ·̄ 〉-frame satisfying S.
This is the same as saying that F makes u → v true.

Originally, grammar logics were defined with formal grammars in Fariñas del Cerro
and Penttonen (1988) (as in Baldoni (1998) and Demri (2001, 2002)), and they
form a subclass of Sahlqvist modal logics (Sahlqvist, 1975) with frame conditions
expressible in �1 when S is context-free (see e.g. Definition 2.13). �1 is the class
of first-order formulae of the form ∀ x1 ∀ x2. . .∀ xn φ where φ is quantifier-free. In
the present paper, we adopt a lighter presentation based on semi-Thue systems as
done in (Chagrov and Shehtman, 1994), which is more appropriate.

2.2. REGULAR GRAMMAR LOGICS WITH CONVERSE

In order to define the class of regular grammar logics with converse, we need to
recall a few notions from formal language theory.



298 S. DEMRI AND H. DE NIVELLE

DEFINITION 2.12. Let S be a semi-Thue system. The one-step derivation relation
⇒S based on S is defined as follows: u ⇒S v iff there exist u1, u2 ∈ �∗, and
u′ → v′ ∈ S, such that u = u1 · u′ · u2, and v = u1 · v′ · u2. The full derivation
relation ⇒∗

S is defined as the reflexive and transitive closure of ⇒S. For every
u ∈ �∗, we write LS(u) to denote the language {v ∈ �∗ | u ⇒∗

S v}.
DEFINITION 2.13. The system S is context-free if all production rules are of the
form a → v with a ∈ � and v ∈ �∗. A context-free semi-Thue system S, based
on �, is called regular if for every a ∈ �, the language LS(a) is regular. In that
case, we assume there is a function that associates to each a ∈ �, an automaton
Aa that accepts LS(a).

The converse closure S̄ of a system S over an alphabet � with converse mapping
·̄ is the semi-Thue system {ū → v̄ : u → v ∈ S}. A system S is said to be closed
under converse if S = S̄.

Regular languages can be recognized by finite-state automata. We recall the
definition of finite-state automaton, so that we can refer to it later.

DEFINITION 2.14. A non-deterministic finite automaton (NDFA) A is defined
by a tuple (Q, s, F, δ). Here Q is the finite, non-empty set of states. s ∈ Q is the
initial state. F ⊆ Q is the set of accepting states. δ ⊆ Q × (� ∪ {ε}) × Q is the
transition relation.

The extension δ∗ of δ is recursively defined as follows:

– For every state q ∈ Q, 〈q, ε, q〉 ∈ δ∗.
– For all strings u and states q, q ′, q ′′, if 〈q, u, q ′〉 ∈ δ∗ and 〈q ′, ε, q ′′〉 ∈ δ, then

〈q, u, q ′′〉 ∈ δ∗.
– For all strings u, letters a, and states q, q ′, q ′′, if 〈q, u, q ′〉 ∈ δ∗ and 〈q ′, a, q ′′〉 ∈

δ, then 〈q, u · a, q ′′〉 ∈ δ∗.

A accepts a word u if there is a state q ∈ F, such that 〈s, u, q〉 ∈ δ∗. We write
L(A) to denote the set of finite words accepted by A. A language L is regular if
there exists an NDFA A, such that L = {u | A accepts u}.
For more details on NDFA’s, we refer to (Hopcroft and Ullman, 1979). In
Definition 2.13, we do not specify which automaton Aa is associated to a.

DEFINITION 2.15. A multimodal logic 〈ML�, C〉 with � an alphabet with con-
verse mapping ·̄ is said to be a regular grammar logic with converse if there is a
finite regular semi-Thue system S over � closed under converse such that C is the
set of 〈�, ·̄ 〉-frames satisfying S.

EXAMPLE 2.1. The standard modal logics K, T, B, S4, K5, K45, and S5 can be
defined as regular grammar logics over the singleton alphabet � = {a}. In Table I,



DECIDING REGULAR GRAMMAR LOGICS WITH CONVERSE 299

Table I. Regular languages for standard modal logics

Logic LS(a) Frame condition

K {a} (none)

KT {a, ε} reflexivity

KB {a, ā} symmetry

KTB {a, ā, ε} refl. and sym.

K4 {a} · {a}∗ transitivity

KT4 = S4 {a}∗ refl. and trans.

KB4 {a, ā} · {a, ā}∗ sym. and trans.

K5 ({ā} · {a, ā}∗ · {a}) ∪ {a} euclideanity

KT5 = S5 {a, ā}∗ equivalence rel.

K45 ({ā}∗ · {a})∗ trans. and eucl.

we specify the semi-Thue systems through regular expressions for the languages
LS(a).

Numerous other logics for specific application domains are in fact regular grammar
logics with converse, or logics that can be reduced to such logics. We list below
some examples:

– description logics (with role hierarchy, transitive roles), see e.g. (Horrocks and
Sattler, 1999).

– knowledge logics, see e.g. S5m(DE) in Fagin et al. (1995).
– bimodal logics for intuitionistic modal logics of the form IntK + � (Wolter

and Zakharyashev, 1997). Indeed, let S be a regular semi-Thue system (over �)
closed under converse and let �′ ⊂ � be such that for every a ∈ �, either a �∈ �′

or ā �∈ �′. Then, the semi-Thue system S ∪ {b → bab, b̄ → b̄āb̄ | a ∈ �′} over
� ∪{b, b̄} is also regular, assuming b, b̄ �∈ �. By taking advantage of Ganzinger
et al. (1999), in Alechina and Shkatov (2003) decidability of intuitionistic modal
logics is also shown in a uniform manner.

– fragments of logics designed for the access control in distributed systems (Abadi
et al., 1993; Massacci, 1997).

– extensions with the universal modality (Goranko and Passy, 1992). Indeed, for
every regular grammar logic with converse, its extension with a universal modal
operator is also a regular grammar logic with converse by using simple argu-
ments from Goranko and Passy (1992) (add a new letter U such that [U ] is an
S5 modality and [U ]p ⇒ [a]p is a modal axiom for every letter a). Hence, satis-
fiability, global satisfiability and logical consequence can be handled uniformly
with no increase of worst-case complexity.

– information logics, see e.g. (Vakarelov, 1987). For instance, the Nondeterministic
Information Logic NIL introduced in Vakarelov (1987) and Demri (2000) can



300 S. DEMRI AND H. DE NIVELLE

be shown to be a fragment of a regular grammar logic with converse with �+ =
{fin, sim} and the production rules below (augmented with the converse closure):

• fin → fin · fin, fin → ε,
• sim → sim, sim → ε,
• sim → fin · sim · fin.

For instance LS(sim) = {fin}∗ · {sim, sim, ε} · {fin}∗.

Assuming thatL = 〈ML�, CS〉 is a grammar logic with converse, checking whether
L is regular is not an easy task. It is undecidable to check whether a context-free
semi-Thue system is regular since it is undecidable whether the language generated
by a linear grammar is regular (see e.g. Mateescu and Salomaa,, 1997, page 31).
However, if S is closed under converse and all the production rules in S are either
right-linear or left-linear, then L is regular. We recall that S is right-linear if there is
a partition {V, T } of � such that the production rules in S are in V → T ∗ ·(V ∪{ε}).
Similarly, S is left-linear if there is a partition {V, T } of � such that the production
rules are in V → (V ∪{ε}) · T ∗. Also, regularity is guaranteed if one can show that
for every a ∈ �, the language LS(a) is regular. All the modal logics cited above
fall in this category. However, there is a remaining possible situation which is quite
interesting. It might be the case that for some a ∈ �, the language LS(a) is not
regular but that there is another semi-Thue system S′ such that 〈ML�, CS′ 〉 defines
the same logic as 〈ML�, CS〉 and all LS(a) are regular. This topic will be discussed
in Section 4. In full generality, one should not expect to find a way to compute
effectively a regular system S′ but this shows the large scope of our translation.

2.3. CHARACTERIZATIONS OF CONSEQUENCES

In this section we study the following two questions. Let � be an alphabet and S
be a finite context-free semi-Thue system over �.

1. Which formulas are true in all 〈�, ·̄ 〉-frames that satisfy S?
2. Which production rules u → v are true in all 〈�, ·̄ 〉-frames that satisfy S?

The first question can be answered in the standard way by Hilbert-style deduction
systems.

DEFINITION 2.16. Let � be an alphabet with converse mapping ·̄. Let S be
semi-Thue system over �. The set of derivable formulas H is recursively defined
as follows:

1. If φ is a propositional tautology, then φ ∈ H.

2. For all formulae φ and letters a ∈ �, [a]φ ↔ ¬〈a〉¬φ ∈ H.



DECIDING REGULAR GRAMMAR LOGICS WITH CONVERSE 301

3. If φ ∈ H, and a ∈ �, then also [a]φ ∈ H.
4. For all formulae φ, ψ and letters a ∈ �, [a]φ ∧ [a](φ ⇒ ψ) ⇒ [a]ψ ∈ H,
5. For all formulas φ and letters a ∈ �, 〈a〉[ā]φ → φ ∈ H.

6. For every rule u → v ∈ S, for every formula φ,

[u]φ → [v]φ ∈ H and [ū]φ → [v̄]φ ∈ H.

The following follows from Sahlqvist (1975).

THEOREM 2.3. Let � be an alphabet with converse mapping ·̄. Let S be a semi-
Thue system over �. Then φ ∈ H if and only if φ is true in all 〈�, ·̄〉-frames
satisfying S.

Regarding the second question, it is quite easy to see that u ⇒∗
S v implies

that u → v is true in every 〈�, ·̄ 〉-frame that satisfies S. The converse does not
always hold as shown in Example 2.2 below. When there is no converse mapping,
it is indeed the case that all rules of form u → v, which are true in all 〈�, ·̄ 〉-
frames, are derivable as u ⇒∗

S v. This follows from Chagrov and Shehtman (1994,
Theorem 3) (see also the tableaux-based proof in Baldoni (1998)) and it is related
to the fact that every ordered monoid is embeddable into some ordered monoid of
binary relations (see more details in Chagrov and Shehtman (1994)).

EXAMPLE 2.2. Consider the semi-Thue system S = {a → ā, b → a3}. In
this system, b �⇒∗

S a. However, the rule a → ā expresses symmetry, which means
that in a 〈�, ·̄ 〉-frame satisfying S, whenever 〈x, y〉 ∈ Ra, then also 〈x, y〉 ∈ Ra3 .

Therefore, Ra ⊆ Rb. One may think that the situation improves when the converse
rules are added to S, but if one puts S′ = {a → ā, ā → a, b → a3, b̄ → ā3},
then still b �⇒∗

S′ a.
The production rule b ⇒∗

S a can be derived as follows: whenever 〈x, y〉 ∈ Ra,

then 〈y, x〉 ∈ Rā. As a consequence, 〈x, y〉 ∈ Raāa. This means that the (non
context-free) production rule aāa → a is true in every frame. By combining
b → aaa, a → ā, and aāa → a, we can derive b → a.

In the sequel, we provide a complete characterization of the production rules
that follow from a semi-Thue system S inspired from the (non context-free) rules
added in Example 2.2.

DEFINITION 2.17. Let � be an alphabet with converse mapping ·̄. The expansion
system E� of � is the semi-Thue system

{u · ū · u → u | u ∈ �∗\{ε}}.

LEMMA 2.4. Let � be an alphabet with converse mapping ·̄.



302 S. DEMRI AND H. DE NIVELLE

(I) Every production rule in E� is true in all 〈�, ·̄〉-frames.
(II) For all 〈�, ·̄〉-frames F and production rules u → v, F satisfies u → v iff

F satisfies ū → v̄.
(III) Let S be a semi-Thue system over �, u, v be two strings verifying u ⇒∗

S v,
and F be a 〈�, ·̄〉-frame satisfying S. Then F satisfies u → v.

Proof. (I), (II) and (III) are by an easy verification. For instance, (III) can be
proven by induction on the i for which u ⇒i

S v.

THEOREM 2.5. Let � be an alphabet with converse mapping ·̄ and S be a context-
free semi-Thue system over �. Then, for all strings u, v ∈ �∗, the following are
equivalent:

1. In every 〈�, ·̄ 〉-frame F = 〈W, R〉 that satisfies S, we have Rv ⊆ Ru.
2. There exists a string z ∈ �∗ such that u ⇒∗

S∪S̄ z and z ⇒∗
E�

v.

3. u ⇒∗
S∪S̄∪E�

v.

It is easy to see that (2) implies (3). It follows from Lemma 2.3 that (3) implies
(1). We will use the rest of this section to show that (1) implies (2). In order to do
this, it is convenient to use the notion of closure. The closure will be also used in
Section 3.2. If some 〈�, ·̄〉-frame F = 〈W, R〉 does not satisfy some context-free
semi-Thue system, then one can add the missing edges to R and obtain a 〈�, ·̄〉-
frame that does satisfy the semi-Thue system. For context-free semi-Thue systems,
one can define a function that assigns to each 〈�, ·̄〉-frame the smallest frame that
satisfies the semi-Thue system.

DEFINITION 2.18. We first define an inclusion relation on 〈�, ·̄〉-frames. Let �

be an alphabet with converse mapping ·̄. Let F1 = 〈W, R1〉 and F2 = 〈W, R2〉 be
two 〈�, ·̄〉-frames sharing the same set of worlds W. We say that F1 is a subframe
of F2 if for every a ∈ �, R1,a ⊆ R2,a .

Using the inclusion relation, we define the closure operator CS as follows: for
a context-free semi-Thue system S over alphabet � with converse mapping ·̄, for a
〈�, ·̄〉-frameF, the closure ofF under S is defined as the smallest 〈�, ·̄〉-frame that
satisfies S, and which has F as a subframe. We write CS for the closure operator.

The closure always exists, and is unique, due to the Knaster-Tarski fixed point
theorem. It can also be proven from Theorem 2.6, which states a crucial property
of CS, namely that every edge added by CS can be justified by ⇒∗

S∪S̄ .

When S is regular, the map CS is a monadic second-order definable graph trans-
duction in the sense of Courcelle (1994) and it is precisely the inverse substitution
h−1 in the sense of Caucal (2003) (see also Caucal (1996)) when the extended
substitution h is defined by a ∈ � �→ LS(a).



DECIDING REGULAR GRAMMAR LOGICS WITH CONVERSE 303

THEOREM 2.6. Let S be a context-free semi-Thue system over alphabet � with
converse mapping ·̄. Let F = 〈W, R〉 be a 〈�, ·̄〉-frame. For every letter a ∈ �, the
relations R′

a of the 〈�, ·̄〉-frame F ′ = CS(F) = 〈W, R′〉 are defined as follows:

R′
a = {〈x, y〉 | ∃u ∈ �∗such that a ⇒∗

S∪S̄ u and 〈x, y〉 ∈ Ru}.

Then F ′ is the closure of F .

Proof. We have to show that

1. 〈W, R′〉 satisfies S,

2. 〈W, R′〉 is a 〈�, ·̄〉-frame, and
3. among the 〈S, ·̄〉-frames that satisfy S and that have F as subframe, 〈W, R′〉 is

the minimal such frame.

In order to show (1), we show that for every rule a → u in S, the inclusion R′
u ⊆ R′

a
holds. Write u = (u1, . . . , un) with n ≥ 0, and each ui ∈ �. Let 〈x, y〉 ∈ R′

u . We
need to show that 〈x, y〉 ∈ R′

a.

By definition, there are z1, . . . , zn−1 ∈ W, such that

〈x, z1〉 ∈ R′
u1

, 〈z1, z2〉 ∈ R′
u2

, . . . , 〈zn−1, y〉 ∈ R′
un

.

By construction of R′, there are words v1, . . . , vn ∈ �∗, such that
u1 ⇒∗

S∪S̄ v1, . . . , un ⇒∗
S∪S̄ vn, and

〈x, z1〉 ∈ Rv1, 〈z1, z2〉 ∈ Rv2, . . . , 〈zn−1, y〉 ∈ Rvn .

As a consequence, 〈x, y〉 ∈ Rv1·...·vn . Because a ⇒S∪S̄ u, u = (u1, . . . , un), and
each ui ⇒∗

S∪S̄ vi , we also have a ⇒∗
S∪S̄ v1 · . . . · vn. It follows that 〈x, y〉 ∈ R′

a,

from the way R′
a was constructed.

Next we show (2). As a preparation, it can be shown by induction that a ⇒∗
S∪S̄ u

iff ā ⇒∗
S∪S̄ ū. We need to show that for every a ∈ �,

〈x, y〉 ∈ R′
a iff 〈y, x〉 ∈ R′

ā.

〈x, y〉 ∈ R′
a iff

there exists a word u ∈ �∗, for which a ⇒∗
S∪S̄ u, and 〈x, y〉 ∈ Ru iff

there exists a word ū ∈ �∗, for which ā ⇒∗
S∪S̄ ū and 〈y, x〉 ∈ Rū iff

〈y, x〉 ∈ Rā.

Finally we show (3). Let 〈W, R′′〉 be a 〈�, ·̄〉-frame, such that 〈W, R〉 is a subframe
of 〈W, R′′〉 and 〈W, R′′〉 satisfies S. We want to show that for every a ∈ �,

R′
a ⊆ R′′

a .



304 S. DEMRI AND H. DE NIVELLE

Assume that 〈x, y〉 ∈ R′
a. This means that there exists an u ∈ �∗, for which

〈x, y〉 ∈ Ru and a ⇒∗
S∪S̄ u. From Lemma 2.4 (II, III), we know that a → u is

true in 〈W, R〉. Therefore, we have 〈x, y〉 ∈ Ra. Because Ra ⊆ R′′
a , we also have

〈x, y〉 ∈ R′′
a .

Actually, only Part 1 and Part 2 of Theorem 2.6 are needed in the proof of Theo-
rem 2.5 and in Section 3.2.

We can now give the proof of Theorem 2.5 “(1) implies (2)”. Let S be a context-
free semi-Thue system. Let u, v be two words, such that in every 〈�, ·̄ 〉-frame
F = 〈W, R〉 satisfying S, we have Rv ⊆ Ru .

Write v = (v1, . . . , vn) with n ≥ 0. Let the frame Fv = 〈W, R〉 be defined as
follows:

– W = {w1, . . . , wn, wn+1},
– If (and only if) vi = a, then 〈wi , wi+1〉 ∈ Ra, for 1 ≤ i ≤ n and a ∈ �.

Intuitively, the frame Fv consists of a single path, which is labelled with the word
v. Let F ′

v = 〈W, R′〉 be obtained from Fv by the construction of Theorem 2.6, i.e.
F ′

v = CS(Fv). Since by Theorem 2.6, F ′
v is a frame satisfying S and by hypothesis

R′
v ⊆ R′

u , we have 〈w1, wn+1〉 ∈ R′
u .

If one writes u = (u1, . . . , um), then there must exist w′
1, . . . , w

′
m+1 ∈ W, such

that

〈w′
1, w

′
2〉 ∈ R′

u1
, 〈w′

2, w
′
3〉 ∈ R′

u2
, . . . , 〈w′

m, w′
m+1〉 ∈ R′

um
,

with w′
1 = w1 and w′

m+1 = wn+1.

By construction of F ′
v, there exist words z1, . . . , zm ∈ �∗, such that

〈w′
1, w

′
2〉 ∈ Rz1, 〈w′

2, w
′
3〉 ∈ Rz2, . . . , 〈w′

m, w′
m+1〉 ∈ Rzm ,

and

u1 ⇒∗
S∪S̄ z1, u2 ⇒∗

S∪S̄ z2, . . . , um ⇒∗
S∪S̄ zm .

Therefore, for the word z = z1 · z2 · . . . · zm, it follows that 〈w1, wn+1〉 ∈ Rz

and u ⇒∗
S∪S̄ z. We will show that also z ⇒∗

E�
v, from which then follows that

u ⇒∗
S∪S̄∪E�

v.

LEMMA 2.7. Let Fv = 〈W, R〉 be the frame defined above from v. Let z ∈ �∗

be a string such that 〈w1, wn+1〉 ∈ Rz. Then z ⇒∗
E�

v.

The word z corresponds to a walk from w1 to wn+1 in the frame Fv. The frame
Fv consists of a single path, which is labelled by the word v. The word z is obtained
by a walk on this path, which possibly changes direction a few times (see Figure 1).



DECIDING REGULAR GRAMMAR LOGICS WITH CONVERSE 305

Figure 1. A walk from w1 to wn+1 with 5 segments. In the corresponding string, it is possible
to replace the substring (v2, v3, v3, v2, v2, v3) by (v2, v3).

We call a maximal subpath that does not change direction a segment. A segment
is either forward directed, or backward directed. So a segment s is of the form either

s = (wi , wi+1, . . . , w j−1, w j )

or

s = (wi , wi−1, . . . , w j+1, w j )

with 1 ≤ i, j ≤ n + 1 and i �= j.
Using segments, the path can be written in the form

s1 = (x1, . . . , y1), . . . , sk = (xk, . . . , yk), (1)

where

– all the states in the segments are in {w1, . . . , wn+1},
– k is odd,
– for every i , xi �= yi and xi+1 = yi (assuming i + 1 ≤ k).

Given two states w, w′ ∈ {w1, . . . , wn+1}, we write w < w′ whenever there are
1 ≤ j < j ′ ≤ n + 1 such that w j = w and w j ′ = w′. Observe that if i is



306 S. DEMRI AND H. DE NIVELLE

odd, then xi < yi . If i is even, then xi > yi . For every i , there is a unique string
vi ∈ ((�+)∗ ∪ (�−)∗)\ {ε} such that 〈xi , yi 〉 ∈ Rvi . If i is odd, then vi is a substring
of v. If i is even, then vi is a substring of v̄. We call vi the associated string of the
segment si = (xi , . . . , yi ). We have z = v1 · . . . · vk .

If k = 1, then z = v1 = v, and we are done because z ⇒0
E�

v. Otherwise,
let i with 1 < i < k be chosen in such a way that (xi , . . . , yi ) is a segment with
minimal length. Such an i must exist, because k ≥ 3. The segment (xi−1, . . . , yi−1)
before (xi , . . . , yi ) cannot be strictly shorter than (xi , . . . , yi ). Suppose that it were.
Then, if i > 2, the position i − 1 would have been chosen instead of i. If i = 2,

then (x2, . . . , y2) is a segment that walks backwards in the direction of w1. The
first segment (x1, . . . , y1) starts with x1 = w1 and must be at least as long, because
otherwise (x2, . . . , y2) would walk back through w1, which is not possible because
Fv is a chain starting in w1.

For the same reason, the segment (xi+1, . . . , yi+1) cannot be strictly shorter than
(xi , . . . , yi ). As a consequence, the neightbours of the i-th segment si are of the
form

si−1 = (xi−1, . . . , yi−1) = (xi−1, . . . , yi , . . . , xi ),

and

si+1 = (xi+1, . . . , yi+1) = (yi , . . . , xi , . . . , yi+1).

Then the associated strings are of the form

vi−1 = α · vi and vi+1 = vi · β, for some α, β ∈ �∗.

The complete walk can be written as

s1, . . . , (xi−1, . . . , yi , . . . , xi ), (xi , . . . , yi ), (yi , . . . , xi , . . . , yi+1), . . . sk . (2)

The complete string z is of the form

z = v1 · . . . · α · vi · vi · vi · β · . . . · vk,

which can be rewritten by the following rule, which is in E�:

vi · vi · vi → vi .

The result is the string

v1 · . . . · α · vi · β · . . . · vk . (3)



DECIDING REGULAR GRAMMAR LOGICS WITH CONVERSE 307

If one replaces walk 2 by

s1, . . . , (xi−1, . . . , yi , . . . , xi , . . . , yi+1), . . . , sk,

then the result is a walk from w1 to wn+1 with associated string 3. Since the walk
consists of k − 2 segments, it follows by induction that

v1 · . . . · α · vi · β · . . . · vk ⇒∗
E�

v,

from which follows that

v1 · . . . · α · vi · vi · vi · β · . . . · vk ⇒∗
E�

v.

EXAMPLE 2.3. Assume that � = {a, ā}, and that S = {a → aaa}. In every
〈�, ·̄〉-frame in which S is true, also the production rule a → āaa is true. This can
be seen as follows. Let F = 〈W, R〉 be a 〈�, ·̄〉-frame for which 〈x, y〉 ∈ Rāaa.

Then there are w1, w2 ∈ W, such that

〈x, w1〉 ∈ Rā, 〈w1, w2〉 ∈ Ra, 〈w2, y〉 ∈ Ra.

Since F is a 〈�, ·̄〉-frame, we have

〈y, w2〉 ∈ Rā, 〈w2, w1〉 ∈ Rā, 〈w1, x〉 ∈ Ra.

Because S is true in F, also

〈y, x〉 ∈ Ra.

Now we have

〈x, y〉 ∈ Rā, 〈y, w2〉 ∈ Rā, 〈w2, y〉 ∈ Ra,

which implies 〈x, y〉 ∈ Ra. Clearly not a ⇒∗
S āaa, and also not a ⇒∗

S∪S̄ āaa.
However, a ⇒S (aaa) ⇒S̄ (āaa)āa ⇒E�

āaa.

3. The Translation into GF2

In this section, we define the transformation from regular grammar logics with
converse into GF2. The transformation can be carried out in logarithmic space. It
behaves the same as the standard relational translation on all subformulae, with the
exception of -subformulae. On a -subformula, it simulates the behaviour of an



308 S. DEMRI AND H. DE NIVELLE

NDFA in order to determine to which worlds the -formula applies. The translation
generalises the results in de Nivelle (1999, 2001) for the logics S4 and K5, which
were at an ad hoc basis.

Unless otherwise stated, in the rest of this section, we assume thatL = 〈ML�, C〉
is a regular grammar logic with converse such that C is the class of 〈�, ·̄〉-frames
satisfying S, a finite regular semi-Thue system closed under converse. For every
a ∈ �, the automaton Aa is an NDFA recognizing the language LS(a). It would be
possible to make Aa canonic, for example by defining Aa to be the minimal DFA
accepting LS(a) – which is unique up to isomorphism – but there is no advantage in
this. In contrast, as we shall see, this could even blow up the translation because an
NDFA can have exponentially less states than a DFA accepting the same language
(see e.g. Hopcroft and Ullman, 1979). It is in principle possible that Aa and Aā are
different automata, although they have to accept isomorphic languages (because
u ∈ LS(a) iff ū ∈ LS(ā) for every u ∈ �∗). We write Aa = (Qa, sa, Fa, δa). When
all rules in S are either right-linear or left-linear, then each automaton Aa can be
effectively built in logarithmic space in |S|, the size of S with some reasonably
succinct encoding.

3.1. THE TRANSFORMATION

In the sequel we assume that the two variables in GF2 are {x0, x1}. The symbols α

and β are used as distinct meta-variables in {x0, x1}. Observe that in Definition 3.2
the quantification alternates over α and β.

In the translation, we use atomic formulae of the form Ra(α, β) for every a ∈ �.
Because of the conditions between Ra and Rā in 〈�, ·̄ 〉-frames, we add the axioms of
the form ∀αβ Ra(α, β) ⇔ Rā(β, α) which belong to GF2. Although this treatment
of converse relations allows us to avoid some case distinctions in the proofs, in
practice we might adopt an alternative treatment with a smaller signature. Indeed,
one can replace syntactically in the translation process Rā(α, β) by Ra(β, α) for
every a ∈ �+.

DEFINITION 3.1. We assume that to each letter a ∈ �, a unique binary predicate
symbol Ra is associated. The formula CONV� defined below deals with converses:

CONV�
def=

∧

a∈�+
∀x0 x1 Ra(x0, x1) ⇔ Rā(x1, x0).

The formula CONV� is in GF2. When a subformula [a]φ is translated, it is replaced
by formulae stating

At every point that is reachable through via a sequence of transitions labelled
by a word in LS(a) (i.e. accepted by the automaton Aa), the translation of φ

holds.



DECIDING REGULAR GRAMMAR LOGICS WITH CONVERSE 309

We define a function that takes two parameters, a one-place first-order formula
and an NDFA. The result of the translation is a first-order formula (one-place again)
that has the following meaning:

In every point that is reachable by a sequence of transitions labelled by a word
that accepted by the automaton, the original one-place formula holds.

DEFINITION 3.2. Let A = 〈Q, s, F, δ〉 be an NDFA and ϕ(α) be a first-order
formula with one free variable α. Assume that for every state q ∈ Q, a fresh unary
predicate symbol q is given. We define tA(α, ϕ) as the conjunction of the following
formulas (the purpose of the first argument is to remember that α is the free variable
of ϕ).

– For the initial state s, the formula s(α) is included in the conjunction.
– For every transition 〈q, a, r〉 ∈ δ, the formula

∀αβ [Ra(α, β) ⇒ (q(α) ⇒ r(β))]

is included in the conjunction.
– For every ε-transition, 〈q, ε, r〉 ∈ δ, the formula

∀α [(q(α) ⇒ r(α))]

is included in the conjunction.
– For each accepting state q ∈ F, the formula

∀α [q(α) → ϕ(α)]

is included in the conjunction.

The function tA(α, ψ) is applied on formulas ψ that are subformulae of an initial
formula φ. Definition 3.2. requires that in each application of tA, distinct predicate
symbols of form q for q ∈ Q are introduced. This can be done either occurrence-
wise, or subformula-wise. Occurrence-wise means that, if some subformula ψ of φ

occurs more than once, then different fresh predicate symbols have to be introduced
for each occurrence. Subformula-wise means that the different occurrences can
share the fresh predicates. In the sequel, we adopt the subformula-wise approach.
For every state q ∈ Q, we should write qϕ instead of q in the translation of tA(α, ϕ).
We sometimes omit the subscript when it is not confusing.

If the automaton A has more than one accepting state, then ϕ(α) occurs more
than once in the translation tA(α, ϕ). This may cause an exponential blow-up in the
translation process but this problem can be easily solved by adding a new accepting
state to the automaton, and adding ε-translations from the old accepting states into
the new accepting state.



310 S. DEMRI AND H. DE NIVELLE

Now we can give the translation itself. It behaves like a standard relational
translation on all subformulae, except for those of the form [a]ψ , on which tAa will
be used. In order to easily recognize the -subformulae, we require the formula φ

to be in negation normal form. One could define the translation without it, but it
would have more cases.

DEFINITION 3.3. Let φ ∈ ML� be a modal formula in NNF. We define the
translation TS(φ) as t(φ, x0, x1) from the following function t(ψ, α, β), which is
defined by recursion on the subformulae ψ of φ:

– t(p, α, β) equals p(α), where p is a unary predicate symbol uniquely associated
to the propositional variable p.

– t(¬p, α, β) equals ¬p(α),
– t(ψ ∧ ψ ′, α, β) equals t(ψ, α, β) ∧ t(ψ ′, α, β),
– t(ψ ∨ ψ ′, α, β) equals t(ψ, α, β) ∨ t(ψ ′, α, β),
– for every a ∈ �, t(〈a〉ψ, α, β) equals ∃β [Ra(α, β) ∧ t(ψ, β, α)],
– for every a ∈ �, t([a]ψ, α, β) equals tAa (α, t(ψ, α, β)).

Hence, the first-order vocabulary used in TS(φ) includes

– unary predicate symbols p for every propositional variable p occurring in φ,
– binary predicate symbols Ra for every letter a ∈ �,
– unary predicate symbols q[a]ψ for every -subformula [a]ψ of φ and q ∈ Qa .

LEMMA 3.1. Let φ ∈ ML� be a modal formula in NNF such that m = max{|Aa| |
a ∈ �}.

1. The only variables occurring in TS(φ) are in {x0, x1} and α is the only free
variable in t(ψ, α, β).

2. TS(φ) is in the guarded fragment.
3. The size of TS(φ) is in O(|φ| × m).
4. TS(φ) can be computed in logarithmic space in |φ| + m.

When S is formed from production rules of a semi-Thue system that is either
right-linear or left-linear, then m is in O(|S|). For a given semi-Thue system S, the
number m is fixed. As a consequence, TS(φ) has size linear in |φ| for a given logic.
Observe also that |CONV�| is a constant of the logic.

EXAMPLE 3.1. Let φ = ♦p∧♦ ¬p be the negation normal form of the formula
¬(♦p ⇒ ♦p). We consider K5, and assume one modality a, so is an abbreviation
for [a], and ♦ is an abbreviation for 〈a〉. Table II contains to the left an automaton
Aa recognizing the language defined in Table I for K5 (page 299). To the right is the



DECIDING REGULAR GRAMMAR LOGICS WITH CONVERSE 311

Table II. The K5 automaton and tAa (α, ϕ(α)) for arbitrary ϕ(α)

translation tAa (α, ϕ(α)) for some first-order formula ϕ(α). The translation TS(φ) of
φ is equal to

∃β [Ra(α, β) ∧ p(β)] ∧ ∃β [Ra(α, β) ∧ tAa (β, p(β))].

Since we perform the introduction of new symbols subformula-wise, it is pos-
sible to put the translation of the automaton outside of the translation of the modal
formula. At the position where tAa (α, t(ψ, α, β)) is translated, only q0,ψ (α) needs
to be inserted where q0 is the initial state of Aa . The rest of the (translation of the)
automaton yields an independent conjunct of translation.

Extension with nominals. The map TS can be obviously extended to admit nominals
in the language of the regular grammar logics with converse. The treatment of
nominals can be done in the usual way by extending the definition of t as follows:
t(i, α, β)

def= ci = α where ci is a constant associated with the nominal i. The
target first-order fragment is GF2 with constants and identity. For instance, nominal
tense logics with transitive frames (see e.g., Areces et al., 2000), and description
logics with transitive roles and converse (see e.g., Sattler, 1996), can be translated
into GF2[=] with constants in such a way. Additionnally, by using Blackburn and
Marx (2002, Section 4) regular grammar logics with converse augmented with
Gregory’s “actually” operator (Gregory, 2001) can be translated into such nominal
tense logics.



312 S. DEMRI AND H. DE NIVELLE

3.2. SATISFIABILITY PRESERVATION

We show that the map TS preserves satisfiability. First, we introduce some notation.
A first-order model is denoted by 〈W, V 〉 where W is a non-empty set and V
maps unary [resp. binary] predicate symbols into subsets of W [resp. W × W ].
Given a variable valuation v : {x0, x1} → W and a first-order formula ψ using at
most the individual variables {x0, x1}, we write M, v |= ψ to denote that ψ holds
true in M under the valuation v (we use here the standard definition). We write
v′ = v[α ← w] to denote the valuation obtained from v by putting v′(β) = v(β)
and v′(α) = w.

The following, rather technical, lemma states roughly the following: suppose we
have a first-order model 〈W, V 〉 containing some point w ∈ W, such that in every
point v that is reachable from w through a path labelled by a finite word accepted
by the automaton A, the formula ϕ(α) is true, then we can extend V in such a way,
that the new model 〈W, V ′〉 will satisfy the translation tA(α, ϕ) in w.

LEMMA 3.2. Let A be an NDFA and ϕ(α) be a first-order formula with one free
variable α. Let M = 〈W, V 〉 be a first-order structure not interpreting any of the
fresh symbols introduced by tA(α, ϕ) (those of the form q for every state q of A).
Then there is an extension M′ = 〈W, V ′〉 of M such that, for every w ∈ W , (�)
below is satisfied:

(�) For every word b1 · · · bn ∈ �∗ that is accepted by A, for every sequence
w1, . . . , wn of elements of W, such that

〈w, w1〉 ∈ V (Rb1 ), 〈w1, w2〉 ∈ V (Rb2 ), . . . , 〈wn−1, wn〉 ∈ V (Rbn ),

we have M, v[α ← wn] |= ϕ(α),

we have

M′, v[α ← w] |= tA(α, ϕ).

Proof. Write A = 〈Q, s, F, δ〉. We extend V to also interpret the symbols q,
and also we do this in a way that is consistent with the runs of A. For all w ∈ W
and states q of A, we define w ∈ V ′(q)

def⇔

– for every word b1 · · · bn ∈ L(A) and for every sequence w1, . . . , wn of elements
of W, such that

〈w, w1〉 ∈ V (Rb1 ), 〈w1, w2〉 ∈ V (Rb2 ), . . . , 〈wn−1, wn〉 ∈ V (Rbn ),

we have M, v[α ← wn] |= ϕ(α).



DECIDING REGULAR GRAMMAR LOGICS WITH CONVERSE 313

It is easy to check (but tedious to write out because of the size of the statements
involved) that for every w ∈ W satisfying the condition (�), we have

– for the initial state s,

M′, v[α ← w] |= s(α).

– for every transition 〈q, a, r〉 ∈ δ,

M′ |= ∀αβ [Ra(α, β) ⇒ (q(α) ⇒ r(β))].

– for every ε-transition 〈q, ε, r〉 ∈ δ,

M′ |= ∀α [q(α) → r(α)].

– for each accepting state q ∈ F ,

M′ |= ∀α [q(α) → ϕ(α)].

M′ and M agree on all formulas that do not contain any symbols introduced by
tA(α, ϕ), i.e. those of the form q for some state q of A.

Next follows the main theorem about satisfiability preservation.

THEOREM 3.3. Let φ ∈ ML� be a modal formula in NNF. Then the following
are equivalent:

1. There exist a 〈�, ·̄〉-model M = 〈W, R, V 〉 and a state w ∈ W such that M
satisfies S and M, w |= φ.

2. TS(φ) ∧ CONV� is satisfiable in FOL.

Proof. We first prove that (1) implies (2). Assume that there exists a 〈�, ·̄ 〉-
model M = 〈W, R, V 〉 with a w ∈ W such that M, w |= φ and 〈W, R〉 satisfies
S. We need to construct a model M′ of TS(φ) ∧ CONV� .

In order to do this, we first construct an incomplete interpretation M0 =
〈W, V0〉, which will be completed through successive applications of Lemma 3.2.
V0 is obtained as follows:

– For every a ∈ �, V0(Ra)
def= Ra ,

– For every propositional variable p occurring in φ, we set V0(p)
def= V (p).

We now have a model interpreting the symbols introduced by t(ψ, α, β), but not
the symbols introduced by tA(α, ψ). It is easily checked that CONV� holds true in



314 S. DEMRI AND H. DE NIVELLE

〈W, V0〉. In order to complete the model construction, we order the -subformulae
of φ in a sequence [a1]ψ1, . . . , [an]ψn such that every -subformula is preceeded
by all its -subformulae. Hence, i < j implies that [a j ]ψ j is not a subformula of
[ai ]ψi . Then we iterate the following construction (1 ≤ i ≤ n):

– Mi = 〈W, Vi 〉 is obtained fromMi−1 = 〈W, Vi−1〉 by applying the construction
of Lemma 3.2 on Aai and t(ψi , α, β).

Then Mn = 〈W, Vn〉 is our final model. Roughly speaking, Vi is equal to Vi−1

extended with the unary predicate symbols of the form qψi with q a state of Aai .
The values of the other predicate symbols remain unchanged. We have

– for every a ∈ �, V0(Ra) = · · · = Vn(Ra),
– for every propositional variable p of φ, V0(p) = · · · = Vn(p).

Additionally,

– for every j ∈ {1, . . . , n}, for every state q of Aa j ,
Vj (qψ j ) = Vj+1(qψ j ) = · · · = Vn(qψ j ).

We show by induction that for every subformula ψ of φ, for every x ∈ W , for
every valuation v, M, x |= ψ implies Mn, v[α ← x] |= t(ψ, α, β). We treat only
the modal cases, because the propositional cases are trivial.

– If ψ has form [a]ψ ′ with a ∈ �, then t([a]ψ ′, α, β) = tAa (α, t(ψ ′, α, β)).
For every word b1 · · · bk accepted by Aa , for every sequence w1, . . . , wk ∈ Wn

such that

〈x, w1〉 ∈ Vn(Rb1 ), 〈w1, w2〉 ∈ Vn(Rb2 ), . . . , 〈wk−1, wk〉 ∈ Vn(Rbk ),

also

〈x, w1〉 ∈ Rb1, 〈w1, w2〉 ∈ Rb2, . . . , 〈wk−1, wk〉 ∈ Rbk ,

by construction of V0, V1, . . . , Vn . BecauseM satisfies S, by Lemma 2.4, we also
have 〈x, wk〉 ∈ Ra, which in turn implies 〈x, wk〉 ∈ Vn(Ra), by construction of
the Vi . Therefore, we have M, wk |= ψ ′. By the induction hypothesis, we have
Mn, v[β ← wk] |= t(ψ ′, β, α). Let n′ be the position of ψ ′ in the enumeration
of -subformulae [a1]ψ1, . . . , [an]ψn. It is easily checked that

Mn′, v[β ← wk] |= t(ψ ′, β, α).

Now we have all ingredients of Lemma 3.2 complete, and it follows that

Mn′, v[α ← x] |= tAa (α, t(ψ ′, α, β)).



DECIDING REGULAR GRAMMAR LOGICS WITH CONVERSE 315

Since Mn is a conservative extension Mn′ , we also get

Mn, v[α ← x] |= tAa (α, t(ψ ′, α, β)).

– If ψ has form 〈a〉ψ ′, then there is a y such that 〈x, y〉 ∈ Ra and M, y |= ψ ′. By
definition of V0, we have 〈x, y〉 ∈ V0(Ra) and therefore also 〈x, y〉 ∈ Vn(Ra).
By the induction hypothesis, Mn, v[β ← y] |= t(ψ ′, β, α). Hence,

Mn, v[α ← x] |= ∃β [Ra(α, β) ∧ t(ψ ′, β, α)].

Next we show that (2) implies (1). Assume that TS(φ)∧CONV� is FOL-satisfiable.
This means that there exist a FOL model M = 〈W, V 〉 and a valuation v such that
M, v |= TS(φ) ∧ CONV� . We construct a model M′ of φ in two stages. First we
construct M′′ = 〈W ′′, R′′, V ′′〉 as follows.

– W ′′ def= W .
– For every a ∈ �, R′′

a
def= V (Ra).

– For every propositional variable p, V ′′(p)
def= V (p).

Then defineM′ = 〈W ′, R′, V ′〉 where R′ is defined from 〈W ′, R′〉 = CS(〈W ′′, R′′〉)
and V ′ = V ′′. Here CS is the closure operator, defined in Definition 2.18. Intuitively,
we construct M′ by copying W and the interpretation of the accessibility relations
from M, and applying CS on it. The constructions imply that W ′ = W . Because
M |= CONV� , the frame M′′ is a 〈�, ·̄〉-frame. By definition of CS, the structure
M′ is an S-model, and also a 〈�, ·̄〉-frame. We now show by induction that for
every subformula ψ of φ, M, v |= t(ψ, α, β) implies M′, v(α) |= ψ .

– If ψ has form 〈a〉ψ ′, thenM, v |= t(〈a〉ψ ′, α, β), that isM, v |= ∃β [Ra(α, β)∧
t(ψ ′, β, α)].

This means there is a y ∈ W , such that 〈v(α), y〉 ∈ V (Ra) and

M, v[β ← y] |= t(ψ ′, β, α).

By the induction hypothesis, M′, y |= ψ ′. It follows from the definition of R′,
using the fact that CS is increasing (by its definition), that 〈x, y〉 ∈ R′

a , so we
have M′, x |= 〈a〉ψ.

– If ψ has form [a]ψ ′, then assume thatM, v |= tAa (α, t(ψ ′, α, β)). First, we show
that for every word b1 · · · bk accepted by Aa , for every sequence w1, . . . , wk of
elements of W , for which it is the case that

〈v(α), w1〉 ∈ V (Rb1 ), 〈w1, w2〉 ∈ V (Rb2 ), . . . , 〈wk−1, wk〉 ∈ V (Rbk ),

the following holds

M, v[α ← wk] |= t(ψ ′, α, β).



316 S. DEMRI AND H. DE NIVELLE

Indeed, M, v |= s(α), for the initial state s of Aa . It is easy to show by induction
on k that the following holds: Let b1 · · · bk be some word over �k . Let q be a
state of Aa such that 〈s, b1 · . . . · bk, q〉 ∈ δ∗, for the initial state s ∈ Q. Then
for every sequence w1, . . . , wk of elements of W such that

〈v(α), w1〉 ∈ V (Rb1 ), 〈w1, w2〉 ∈ V (Rb2 ), . . . , 〈wk−1, wk〉 ∈ V (Rbk ),

it must be the case that M, v[α ← wk] |= q(α). Then the result follows from
the fact thatM, v[α ← wk] |= q(α) ⇒ ψ ′(α), for every accepting state q ofAa .

Now assume that in M′, we have a world y for which R′
a(x, y). Then, by

Theorem 2.6, there is a word u ∈ L(Aa) for which a ⇒∗
S∪S̄ u and R′′

u (x, y). By
the above property, we have

M, v[α ← y] |= t(ψ ′, α, β).

By the induction hypothesis, we obtain M′, y |= ψ ′.

The uniformity of the translation allows us to establish forthcoming Theorem 3.4.
We first define the general satisfiability problem for regular grammar logic with
converse, denoted by GSP(REGc), as follows:

input: A finite semi-Thue system S closed under converse, in which either all
production rules are left-linear, or all production rules are right-linear, and an
ML�-formula φ;

question: is φ S-satisfiable?

We need to restrict the form of the semi-Thue system to a form from which the
automata Aa can be computed. Even if one knows that some language L is regular,
then there is no effective way of obtaining an NDFA for L. This is a consequence
of Theorem 2.12 (iii) in Rozenberg and Salomaa (1994).

THEOREM 3.4.

(I) The S-satisfiability problem is in EXPTIME for every regular semi-Thue system
closed under converse.

(II) GSP(REGc) is EXPTIME-complete.

Theorem 3.4(I) is a corollary of Theorem 3.3. The lower bound in
Theorem 3.4(II) is easily obtained by observing that there exist known regular
grammar logics (even without converse) that are already EXPTIME-complete, e.g.
K with the universal modality. The upper bound in Theorem 3.4(II) is a consequence
of the facts that TS(φ) can be computed in logarithmic space in |φ| + |S| and the



DECIDING REGULAR GRAMMAR LOGICS WITH CONVERSE 317

guarded fragment has an EXPTIME-complete satisfiability problem when the arity
of the predicate symbols is bounded by some fixed k ≥ 2 (Grädel, 1999b). We
use here the fact that one needs only logarithmic space to build a finite automaton
recognizing the language of a right-linear [resp. left-linear] grammar.

Extensions to context-free grammar logics with converse. When S is a context-free
semi-Thue system with converse, S-satisfiability can be encoded as for the case of
regular semi-Thue systems with converse by adding an argument to the predicate
symbols of the form qψ . The details are omitted here but we provide the basic
intuition. Each language LS(a) is context-free and therefore there is a pushdown
automaton (PDA) A recognizing it. The extra argument for the qψs represents the
content of the stack and the map tA(α, ϕ) can be easily extended in the presence of
stacks. For instance, the stack content aab can be represented by the first-order term
a(a(b(ε))) with the adequate arity for the function symbols a, b, and ε. Suppose we
have the following transition rule: if the PDA is in state q, the current input symbol
is a, and the top symbol of the stack is b0, then the new state is q ′ and b0 is replaced
by b1 · · · bn on the top of the stack. This rule is encoded in FOL as follows:

∀ α, β, γ, (Ra(α, β) ⇒ (q(α, b0(γ )) ⇒ q′(β, b1(. . . bn(γ ) . . .)))).

The translation TS is then defined with the context-free version of tA(α, ϕ). Satis-
fiability preservation is also guaranteed but the first-order fragment in which the
translation is performed (beyond GF) is no longer decidable. Hence, although this
provides a new translation of context-free grammar logics with converse, from the
point of view of effectivity, this is not better than the relational translation which is
also known to be possible when S is a context-free semi-Thue system with converse.

4. The Borders of the Translation Method

In this section we try to answer the following question: given a finite context-free
semi-Thue system S closed under converse, how to find out whether the modal
logic based on S can be translated by the method of Section 3.1? This is a natural
question, because modal logics are usually presented by modal axioms, and in most
cases the semi-Thue system naturally corresponds to the modal axioms.

As stated in Section 2.2, a logic can be translated if for every letter a ∈ �,
the language LS(a) = {u ∈ �∗ | a ⇒∗

S u} is regular. This question is in general
undecidable, because it is already undecidable whether the language generated by
a linear grammar is regular (see e.g. Mateescu and Salomaa, 1997, page 31).

However, regularity of the languages LS(a) is not a necessary condition for
existence of a translation. The reason for this is that different semi-Thue systems
may characterize the same logic. Exactly which context-free semi-Thue systems
characterize the same logic is determined by Theorem 4.1 below.



318 S. DEMRI AND H. DE NIVELLE

THEOREM 4.1. Let � be an alphabet with converse mapping ·̄ and S1, S2

be context-free semi-Thue systems closed under converse. If for all (i1, i2) ∈
{(1, 2), (2, 1)} and rules u → v ∈ Si1, there is a string z ∈ �∗, such that

u ⇒∗
Si2

z and z ⇒∗
E�

v,

then S1 and S2 define the same set of 〈�, ·̄〉-frames.

Proof. It follows from Theorem 2.5 that a 〈�, ·̄〉-frame satisfies S1 if and only
if it satisfies S2.

Theorem 4.1 determines when two context-free semi-Thue systems define the same
modal logic. Using this equivalence, the criterion above can be refined to: a modal
logic L based on finite context-free semi-Thue system S closed under converse can
be translated by the method of Section 3.1 if (and approximately only-if) there is
a finite regular semi-Thue system S′ closed under converse which is equivalent to
S, for which the languages LS′(a) are regular. We do not have a general method for
answering this question, and we don’t know whether the problem is decidable.

There exist pairs of context-free semi-Thue systems S1 and S2 defining the same
logic, where S1 is non-regular while S2 is regular. An example of such a pair is
given in the following examples.

EXAMPLE 4.1. The euclideanity condition can be generalized by considering
frame conditions of the form (R−1

a )n; Ra ⊆ Ra for some n ≥ 1. The context-free
semi-Thue system corresponding to this inclusion is Sn = {a → āna, ā → āan}.
The case n = 1 corresponds to euclideanity, which is regular, see Example 2.1
and Example 3.1. We will show that in general, for n > 1, the language LSn (a)
is not regular. Nevertheless, Sn-satisfiability restricted to formulae with only the
modal operator [a] is known to be decidable (see e.g. Gabbay, 1975; Hustadt and
Schmidt, 2003). To see why the languages LSn (a) are not regular, consider strings
of the following form:

σn(i1, i2) = (āan−1)i1 a (ān−1a)i2 .

σ̄n(i1, i2) = (āan−1)i1 ā (ān−1a)i2 .

We show that

(a ⇒∗
Sn

σn(i1, i2) and a ⇒∗
Sn

σ̄n(i1, i2 + 1)) iff i1 = i2.

In order to check that the equivalence holds from right to left, observe that a =
σn(0, 0), and

σn(0, 0) ⇒Sn σ̄n(0, 1) ⇒Sn σn(1, 1) ⇒Sn · · ·
⇒Sn σn(i, i) ⇒Sn σ̄n(i, i + 1) ⇒Sn σn(i + 1, i + 1) ⇒Sn · · ·



DECIDING REGULAR GRAMMAR LOGICS WITH CONVERSE 319

We now prove the equivalence from left to right. Let us say that u is a predecessor
of v if u ⇒Sn v. Then it is sufficient to observe the following:

1. A string of form σn(0, j) with j > 0 has no predecessor.
2. A string of form σn(i + 1, j) has only one predecessor, namely σ̄n(i, j).
3. A string of form σ̄n(i, 0) with i ≥ 0 has no predecessor.
4. A string of form σ̄n(i, j + 1) has only one predecessor, namely σn(i, j).

To have a predecessor, a string must have a sequence of at least n consecutive a’s
or ā’s. The strings of the form either 1 or 3 have no such sequence. The strings of
the form either 2 or 4 have exactly one such sequence.

We have

LSn (a) ∩ {σn(i, j) | i ≥ 0, j ≥ 0} = {σn(i, i) | i ≥ 0}.

The language {σn(i, i) | i ≥ 0} is clearly not regular (we assume n > 1) and
{σn(i, j) | i ≥ 0, j ≥ 0} is clearly regular. Since the regular languages are closed
under intersection, LSn (a) cannot be regular for n > 1.

We will now show that, although

S2 = {a → aaa, ā → āaa}

is not regular, the logic defined by it, is regular. The reason for this is the fact that
S2 defines the same logic as

S′
2 = {a → aaa, a → āaa, ā → aaa, ā → āaa},

which is regular. In order to show that S2 and S′
2 define the same logic, it suffices

to observe that S2 ⊆ S′
2, and that

a ⇒S2 aaa ⇒S2 (āaa)āa ⇒E{a,ā} āa(a), and

ā ⇒S2 āaa ⇒S2 āa(aaa) ⇒E{a,ā} (ā)āa.

In order to show that S′
2 is regular, we show that LS′

2
(a) is recognized by the

automaton of Table III.

LEMMA 4.2. The automaton in Table III recognizes the language LS′
2
(a).

Proof. It is clear that state s1 accepts only the word a. Every run ending in s5

consists of three parts:

1. The path (s0, s2, s4), accepting either āa or aa.



320 S. DEMRI AND H. DE NIVELLE

Table III. Automaton for LS′
2
(a)

2. A number of cycles of form (s4, s5, s4), or (s4, s2, s4) accepting aa, aā, āa, or
aa. These are all possible words of length two.

3. The path (s4, s5), accepting the word a.

As a consequence, a word u is accepted by the automaton iff it has one of the
following three forms:

a, āa�2i a, or aa�2i a, (4)

where �2i is an arbitrary word of length 2i on the alphabet � = {a, ā}.
We first show that every string in LS′

2
(a) has the form 4. The language LS′

2
(a) is

inductively defined as the smallest set containing a and closed under rewriting by
rules of S′

2. Therefore, it is sufficient to show that a has form 4 and that form 4 is
preserved by rewriting under rules in S′

2.
If u is of form āa�2i a, rewriting at ā results in (aaa)a�2i a or (āaa)a�2i a,

which is of the form aa�2i+1a or āa�2i+1a. Rewriting at the first a results either in
ā(aaa)�2i a or ā(āaa)�2i a. Both can be written as aa�2i+1a. Rewriting at the last
a results either in āa�2i aaa or āa�2i āaa, which both can be written as āa�2i+1a.
Rewriting in �2i results also in a string of one of the three forms. The 7 possible
rewrites in aa�2i a can be analyzed analogously.

Next we show by induction on i that every word of the form 4 is in LS′
2
(a). For

the base case i = 0, it is immediate that a, āaa, aaa ∈ LS′
2
(a). Now assume that,

for some i, every word of the form āa�2i a or aa�2i a belongs to LS′
2
(a). We show

that every word of the form āa�2(i+1)a or aa�2(i+1)a also belongs to LS′
2
(a). In

each case, we find a string of form 4 (but with parameter i) from which the current
string can be obtained using a single rewrite step by a rule in S′

2. If one expands the
first two letters of �2i+2, one obtains the following forms:

āa(aa)�2i a, āa(aā)�2i a, āa(āa)�2i a, āa(aa)�2i a, and

aa(aa)�2i a, aa(aā)�2i a, aa(āa)�2i a, aa(aa)�2i a.



DECIDING REGULAR GRAMMAR LOGICS WITH CONVERSE 321

Case 1.
By induction hypothesis, āa�2i a ∈ LS′

2
(a) and

āa�2i a ⇒{ā→āaa} āa(aa)�2i a

by rewriting at the first position. Hence, āa(aa)�2i a ∈ LS′
2
(a).

Case 2.
By induction hypothesis, aa�2i a ∈ LS′

2
(a) and

aa�2i a ⇒{ā→āaa} āa(aā)�2i a

by rewriting at the first position. Hence, āa(aā)�2i a ∈ LS′
2
(a).

Cases 5 and 6. Similar to the cases 5 and 6 using the rule ā → aaa.

Case 7.
By induction hypothesis, aa�2i a ∈ LS′

2
(a) and

aa�2i a ⇒{ā→aaa} aa(āa)�2i a

by rewriting at the second position. Hence, aa(āa)�2i a ∈ LS′
2
(a).

Cases 4 and 8.
In order to treat both cases, we pose u to denote a string in {āa, aa}. By induction
hypothesis, u�2i a ∈ LS′

2
(a) and

u�2i a ∈ LS′
2
(a) ⇒{a→aaa} u(aa)�2i a

by rewriting at the first occurrence of a in �2i a. Hence, u(aa)�2i a ∈ LS′
2
(a).

Case 3.
By induction hypothesis, āa�2i a ∈ LS′

2
(a). Write �2i = (āa)i1�2i2, where i =

i1 + i2, and i1 is maximal.

Case 3.1.: �2i2a starts by a.
We have

āa�2i a ⇒{a→āaa} āa(āa)�2i a

by rewriting at the first occurrence of a in �2i2a.

Case 3.2: �2i2 starts with aa.
�2i2a is of the form ākau for some k ≥ 2 and string u. Since āk−2au ⇒{a→aaa} ākau
and (āa)i1 āk−2au ∈ LS′

2
(a) by induction hypothesis, we have that āaāa�2i a ∈

LS′
2
(a).



322 S. DEMRI AND H. DE NIVELLE

The regularity of S′
2 and its equivalence to S2 make it possible to deduce the

following upper bound.

THEOREM 4.3. The bimodal logic whose set of frames is the set of frames satis-
fying S2 is a regular grammar logic with converse. Hence, its satisfiability problem
can be solved in EXPTIME.

The automaton in Table III was discovered by a computer program. Given
a language L over an alphabet �, one can define the following equivalence
relation ≡L on strings over �: For two words u1, u2 ∈ �∗, u1 ≡L u2 iff for all
v ∈ �∗, u1 · v ∈ L ⇔ u2 · v ∈ L. By the Myhill-Nerode theorem, if ≡L partitions
�∗ into a finite set of equivalence-classes, then L is regular, and the equivalence
classes define the states of the minimal DF A recognizing L. If one tries sufficiently
many v’s, one has a high chance of finding the right equivalence classes. Of course
one cannot be certain in general that the automata returned by the program are cor-
rect, but in most cases verifying an automaton is easier than finding one. The same
computer program has also proposed an automaton for the modal logic defined by
S3 = {a → ā3a, ā → āa3}. This automaton has 19 states. Based on the fact that
the grammar logics defined by S1, S2 and S3 can be characterized by a regular lan-
guage, we conjecture that all of the grammar logics defined by a grammar of form Si

are regular. At the same time, it appears that the modal logics defined by the context-
free semi-Thue systems Ŝi = {a → ai ā, ā → aāi } with i > 1, are non-regular,
based on the output of the same computer program. We conjecture that the output of
the program is correct and that the grammar logics defined by Ŝi , i > 1 are indeed
non-regular.

5. Related Work

In this section, we compare our contribution to translations of modal logics similar
to ours, and to the characterization of star-free languages with first-order logic over
finite words. Before doing so, let us mention some other relevant works.

Complexity issues for regular grammar logics have been studied in Demri (2001,
2002) (see also Baldoni, 1998; Baldoni et al., 1998) whereas grammar logics are
introduced in Fariñas del Cerro and Penttonen (1988). Frame conditions involving
the converse relations are not treated in Demri (2001, 2002). These are needed for
example for S5 modal connectives. The current work can be viewed as a natural
continuation of de Nivelle (1999) and Demri (2001). Translation of regular grammar
logics into converse PDL can be found in the preprint (Demri and Nivelle, 2004,
Section 4) extending (Demri, 2001).

The frame conditions considered in the present work can be defined by the MSO
definable closure operators (Ganzinger et al., 1999). However, it is worth noting
that by contrast to what is done in Ganzinger et al. (1999), we obtain the optimal
complexity upper bound for the class of regular grammar logics with converse



DECIDING REGULAR GRAMMAR LOGICS WITH CONVERSE 323

(EXPTIME) since the first-order fragment we consider is much more restricted
than the one in Ganzinger et al. (1999). Moreover, we do not use MSO definable
built-in relations, just plain GF2.

5.1. INCORPORATING A THEORY IN THE TRANSLATION

Unlike the standard relational translation from modal logic into classical predicate
logic (see e.g., Fine, 1975; van Benthem, 1976; Morgan, 1976; Moore, 1977), the
subformulae in TS(φ) mix the frame conditions and the interpretation of the logical
connectives. Frame conditions are incorporated in our translation as done also in
Schmidt and Hustadt (2004). Such a feature is shared by many other translations
dealing for modal logics, see e.g. (Balbiani and Herzig, 1994; Demri and Goré,
2002). However, the work (Schmidt and Hustadt, 2004) is closely related to ours.
Probably the main similarities are the following ones.

– Both translations are from a large class of modal logics into GF2.
– Translations of the modal logics K, T, K4 and S4 in Schmidt and Hustadt (2004)

and in this paper are essentially the same, once minor differences are disgarded
(NNF is our work and renaming in Schmidt and Hustadt (2004)). For example,
the clause schema for the K4 axiom [a]p ⇒ [a][a]p in Schmidt and Hustadt
(2004) is the following:

∀x Q p(x) ⇒ (∀y Ra(x, y) ⇒ Q p(y)).

This clause schema is obtained from p ⇒ p by performing a partial transla-
tion that stops before the innermost modalities are eliminated and by renaming
subformulae. In this paper, the letter a from a K4 modal operator [a] is related
to the regular language a+ that can be recognized by the finite-state automa-
ton A0 = 〈{q0, q1}, q0, q1, {q0

a→ q1, q1
a→ q1}〉. The formula tA0 (α, ϕ(α))

introduced in Definition 3.2 contains a conjunct of the form

∀x q1(x) ⇒ (∀y Ra(x, y) ⇒ q1(y)),

where q1 is also a monadic predicate symbol depending on ϕ(α) which is after
all nothing else than a predicate symbol of the above form Q p depending on p.

– Both methods require some preliminary knowledge. In our case, the grammar
logic at hand needs to be shown regular whereas in Schmidt and Hustadt (2004)
one needs to determine how many finite instances of the clause schemata ob-
tained from axioms are sufficient for completeness. Both problems are difficult
in general but for many known logics the problem can be solved.

5.2. RELATIONSHIPS WITH FIRST-ORDER LOGIC OVER FINITE WORDS

The method of translating finite automata into first-order formulas by introducing
unary predicate symbols for the states, is reminiscent to the characterization of



324 S. DEMRI AND H. DE NIVELLE

regular languages in terms of Monadic Second-Order Logic over finite words,
namely SOM[+1], see e.g. (Straubing, 1994). Similarly, the class of languages with
a finite syntactic monoid is precisely the class of regular languages. Our encoding
into GF2 is quite specific since

– we translate into an EXPTIME fragment of FOL, namely GF2, neither into full
FOL nor into a logic over finite words;

– we do not encode regular languages into GF2 but rather modal logics whose frame
conditions satisfy some regularity conditions, expressible in GF with built-in
relations (Ganzinger et al., 1999);

– not every regularity condition can be encoded by our method since we require a
closure condition.

Hence, the similarity between the encoding of regular languages into SOM[+1]
and our translation is quite superficial. The following argument provides some
more evidence that the similarity exists only at the syntactic level. The class of
regular languages definable with the first-order theory of SOM[+1] is known as
the class of star-free languages (their syntactic monoids are finite and aperiodic),
see e.g. (Perrin, 1990). However, the regular language LS(a) = (b · b)∗(a ∪ ε)
obtained with the regular semi-Thue system S = {a → bba, a → ε} produces a
regular grammar logic with converse that can be translated into GF2 by our method.
Observe that the language (b · b)∗(a ∪ ε) is not star-free, see e.g. (Pin, 1994). By
contrast, (a · b)∗ is star-free but it is not difficult to show that there is no context-
free semi-Thue system S such that LS(a) = (a · b)∗ since a is not in (a · b)∗. As
a conclusion, our translation into GF2 is based on principles different from those
between star-free regular languages and first-order logic on finite words. Other
problems on (tree) automata translatable into classical logic can be found in Verma
(2003).

6. Concluding Remarks

The two main contributions of the paper are the following:

– for every regular grammar logic with converse the design of a logspace translation
into GF2,

– to characterize when two regular grammar logics define the same set of satisfiable
formulae.

As a by-product, our work allows us to answer positively to some questions left
open in Demri (2001). Typically, we provide evidence that the first-order fragment
to translate the regular grammar logics with converse into is simply GF2: there is
no need for first-order fragment augmented with fixed-point operators, as far as
regular grammar logics are concerned.



DECIDING REGULAR GRAMMAR LOGICS WITH CONVERSE 325

In our view, Theorem 2.5 can be interpreted as confirming that the use of gram-
mars for defining modal logics, is natural. Theorem 2.5 completely determines
the behaviour of grammar rules on frames in terms of the behaviour of grammar
rules on words. We end by listing a few open problems that we believe are worth
investigating.

1. The study of the computational behaviour of the translation to mechanize modal
logics using for instance (de Nivelle and Pratt-Hartmann, 2001) should be further
investigated.

2. Although regular grammar logics (with converse) can be viewed as fragments
of propositional dynamic logic (see e.g. Demri and Nivelle, 2004, Section 4), it
remains open whether the full PDL can be translated into GF2 with a similar,
almost-structure preserving transformation. We know that there exists a loga-
rithmic space transformation, but we do not want to use first principles on Turing
machines.

3. Is there a PSPACE fragment of GF2 in which the following modal logics can
be naturally embedded: S4, S4t (S4 with past-time operators), Grz, and G? (to
quote a few modal logics in PSPACE, see e.g. (Chagrov and Zakharyaschev,
1997)).

4. Can our translation method be extended to a reasonable fragment of first-order
modal logics?

5. Combining the translation from S4 into GF2 with Gödel’s translation from in-
tuitionistic logic into S4 (see Troelstra and Schwichtenberg, 1996), one obtains
a translation from intuitionistic logic into GF2, see e.g. the preprint (Demri
and Nivelle, 2004, Section 5). Can it be extended to a reasonable fragment of
first-order intuitionistic logic?

6. Are the conjectures at the end of Section 4 true?

Acknowledgements

The authors would like to thank the referees for many valuable remarks and sug-
gestions greatly improving the readability of this document.

References

Abadi, M., Burrows, M., Lampson, B., and Plotkin, G., 1993, “A calculus for access control in
distributed systems,” ACM Transactions on Prog. Languages and Systems 15(4), 706–734.

Alechina, N. and Shkatov, D., 2003, “On decidability of intuitionistic modal logics,” in Third Workshop
on Methods for Modalities, Nancy.

Andreka, H., Nemeti, I., and van Benthem, J., 1998, “Modal languages and bounded fragments of
predicate logic,” Journal of Philosophical Logic 27(3), 217–274.

Areces, C., Blackburn, P., and Marx, M., 2000, “Complexity of hybrid temporal logics,” Logic Journal
of the IGPL 8(5), 653–679.

Balbiani, P. and Herzig, A., 1994, “A translation from the modal logic of provability into K4,” Journal
of Applied Non-Classical Logics 4, 73–77.



326 S. DEMRI AND H. DE NIVELLE

Baldoni, M., 1998, Normal Multimodal Logics: Automated Deduction and Logic Programming. PhD
thesis, Università degli Studi di Torino.

Baldoni, M., Giordano, L., and Martelli, A., 1998, “A tableau calculus for multimodal logics and some
(un)decidability results,” in TABLEAUX-8, volume 1397 of Lecture Notes in Artificial Intelligence,
H. de Swart, ed, pp. 44–59. Springer.

Blackburn, P. and Marx, M., 2002, “Remarks in Gregory’s ‘actually’ operator,” Journal of Philosoph-
ical Logic 31(1), 281–288.

Caucal, D., 1996, “On infinite transition graphs having a decidable monadic theory,” in
ICALP’96, volume 1099 of Lecture Notes in Computer Science, pp. 194–205. Springer,
Berlin.

Caucal, D., 2003, “On infinite transition graphs having a decidable monadic theory,” Theoretical
Computer Science 290, 79–115.

Chagrov, A. and Shehtman, V., 1994, “Algorithmic aspects of propositional tense logics,” in CSL-8,
Kazimierz, Poland, volume 933 of Lecture Notes in Computer Science, L. Pacholski and J. Tiuryn
eds., pp. 442–455. Springer, Berlin.

Chagrov, A. and Zakharyaschev, M., 1997, Modal Logic. Clarendon Press, Oxford.
Courcelle, B., 1994, “Monadic second-order definable graph transductions: A survey,” Theoretical

Computer Science 126, 53–75.
Fariñas del Cerro, L. and Gasquet, O., 2002, “A general framework for pattern-driven modal tableaux,”

Logic Journal of the IGPL 10(1), 51–83.
Fariñas del Cerro, L. and Gasquet, O., 2004, “Modal tableaux for reasoning about diagrams,” to

appear.
Fariñas del Cerro, L. and Penttonen, M., 1988, “Grammar logics,” Logique et Analyse 121/122,

123–134.
D’Agostino, G., Montanari, A., and Policriti, A., 1995, “A set-theoretical translation method for

polymodal logics,” Journal of Automated Reasoning 15, 317–337.
Demri, S., 2000, “The nondeterministic information logic NIL is PSPACE-complete,” Fundamenta

Informaticae 42, 211–234.
Demri, S., 2001, “The complexity of regularity in grammar logics and related modal logics,” Journal

of Logic and Computation 11(6), 933–960.
Demri, S., 2002, “Modal logics with weak forms of recursion: PSPACE specimens,” in Advances in

Modal Logics, selected papers from 3rd Workshop on Advances in Modal Logics (AIML’2000),
M. de Rijke, H. Wansing, F. Wolter, and M. Zakharyaschev, eds., Leipzig, Germany, Oct. 2000,
pp. 113–138. World Scientific.

Demri, S. and Goré, R., 2002, “Theoremhood preserving maps characterising cut elimination for
modal provability logics.” Journal of Logic and Computation 12(5), 861–884.

Demri, S. and de Nivelle, H., February 2004, “Deciding regular grammar logics with converse through
first-order logic,” arXiv:cs.LO/0306117.

de Nivelle, H., 1998, “A resolution decision procedure for the guarded fragment,” in CADE-15, Lindau,
Germany, vol. 1421 of Lecture Notes in Artificial Intelligence, C. Kirchner and H. Kirchner, eds.,
pp. 191–204. Springer.

de Nivelle, H., 1999, “Translation of S4 and K5 into GF and 2VAR,” Manuscript, available from
http://www.mpi-sb.mpg.de/∼nivelle.

de Nivelle, H., April 2001, “Translation of S4 and K5 into GF and 2VAR,” Slides available from
http://www.mpi-sb.mpg.de/∼nivelle/ on WWW.

de Nivelle, H. and de Rijke, M., 2003, “Deciding the guarded fragments with resolution,” Journal of
Symbolic Computation 35(1), 21–58.

de Nivelle, H. and Pratt-Hartmann, I., 2001, “A resolution-based decision procedure for the two-
variable fragment with equality,” in IJCAR’01, vol. 2083 of Lecture Notes in Computer Science,
R. Goré, A. Leitsch, and T. Nipkow, eds., pp. 211–225. Springer.



DECIDING REGULAR GRAMMAR LOGICS WITH CONVERSE 327

de Nivelle, H., Schmidt, R., and Hustadt, U., 2000. “Resolution-based methods for modal logics,”
Logic Journal of the IGPL 8(3), 265–292.

Fagin, R., Halpern, J., Moses, Y., and Vardi, M., 1995, Reasoning About Knowledge. The MIT Press.
Fine, K., 1975, “Some connections between elementary and modal logic,” in 3rd Scandinavian Logic

Symposium, S. Kanger, ed., pp. 15–31. North Holland.
Gabbay, D., 1975, “Decidability results in non-classical logics,” Annals of Mathematical Logic 8,

237–295.
Gabbay, D., 1981, “Expressive functional completeness in tense logic,” in Aspects of Philosophical

Logic, U. Mönnich ed. pp. 91–117. Reidel.
Ganzinger, H. and de Nivelle, H., 1999, “A superposition decision procedure for the guarded fragment

with equality,” in LICS’99, pp. 295–305.
Ganzinger, H., Meyer, C., and Veanes, M., 1999, “The two-variable guarded fragment with transitive

relations (extended abstract),” in LICS’99, pp. 24–34. IEEE Computer Society Press.
Goré, R., 1999, “Tableaux methods for modal and temporal logics,” in Handbook of Tableaux Methods,

M. d’Agostino, D. Gabbay, R. Hähnle, and J. Posegga, eds., pp. 297–396. Kluwer.
Goranko, V. and Passy, S., 1992, “Using the universal modality: Gains and questions,” Journal of

Logic and Computation 2(1), 5–30.
Grädel, E., 1999a, “Decision procedures for guarded logics,” in CADE’99, vol. 1632 of Lecture Notes

in Artificial Intelligence, H. Ganzinger, ed., pp. 31–51. Springer.
Grädel, E., 1999b, “On the restraining power of guards,” The Journal of Symbolic Logic 64(4), 1719–

1742.
Grädel, E., Kolaitis, P., and Vardi, M., 1997, “On the decision problem for two-variable first-order

logic,” Bulletin of Symbolic Logic 3(1), 53–69.
Gregory, D., 2001, “Completeness and decidability results for some propositional modal logics con-

taining ‘actually’ operators,” Journal of Philosophical Logic 30(1), 57–78.
Grädel, E. and Walukiewicz, I., 1999, “Guarded fixed point logic,” in LICS’99, pp. 45–54.
Herzig, A., 1989, Raisonnement automatique en logique modale et algorithmes d’unification. PhD

thesis, Université Paul Sabatier, Toulouse.
Heuerding, A., Seyfried, M., and Zimmermann, H., 1996, “Efficient loop-check for backward proof

search in some non-classical propositional logic,” in Theorem Proving with Analytic Tableaux and
Related Methods, 5th International Workshop (TABLEAUX’96), volume 1071 of Lecture Notes
in Computer Science, P. Miglioli, U. Moscato, D. Mundici, and M. Ornaghi, eds., pp. 210–225.
Springer, Berlin.

Hirsch, C. and Tobies, S., 2002, “A tableau algorithm for the clique guarded fragment,” in Advances
in Modal Logics, selected papers from 3rd Workshop on Advances in Modal Logics (AIML’2000),
Leipzig, Germany, Oct. 2000, M. de Rijke, H. Wansing, F. Wolter, and M. Zakharyaschev, eds.,
pp. 257–278. World Scientific.

Hladik, J., 2002, “Implementation and optimisation of a tableau algorithm for the guarded frag-
ment,” in Automated Reasoning with Analytic Tableaux and Related Methods, vol. 2381 of
Lecture Notes in Computer Science, U. Egly and C. Fermüller, eds., pp. 145–159. Springer
Verlag.

Hopcroft, J. and Ullman, J., 1979, Introduction to automata theory, languages, and computation.
Addison-Wesley.

Horrocks, I. and Sattler, U., 1999, “A description logic with transitive and inverse roles and role
hierarchies,” Journal of Logic and Computation 9(3), 385–410.

Horrocks, I. and Sattler, U., 2004, “Decidability of SHIQ with complex role inclusion axioms,”
Artificial Intelligence 160(1/2), 79–104.

Hustadt, U. and Schmidt, R., 2003, “A principle for incorporating axioms into the first-order translation
of modal formulae,” in CADE’03, vol. 2741 of Lecture Notes in Artificial Intelligence, pp. 412–
426. Springer, Berlin. Long version in Schmidt and Hustadt (2004).



328 S. DEMRI AND H. DE NIVELLE

Kieronski, E., 2003, “The two-variable guarded fragment with transitive guards is 2EXPTIME-
hard,” in 6th Int. Conf. on Foundations of Software Science and Computational Structures (FOS-
SACS’03), Warsaw, Poland, vol. 2620 of Lecture Notes in Computer Science, A. Gordon, ed., pp.
299–312. Springer, Berlin.

Ladner, R., 1977, “The computational complexity of provability in systems of modal propositional
logic,” SIAM Journal of Computing 6(3), 467–480.

Massacci, F., 1997, “Tableaux methods for access control in distributed systems,” in TABLEAUX’97,
vol. 1227 of Lecture Notes in Artificial Intelligence, D. Galmiche, ed., pp. 246–260. Springer,
Berlin.

Massacci, F., 2000, “Single steps tableaux for modal logics,” Journal of Automated Reasoning 24(3),
319–364.

Marx, M., Mikulas, S., and Schlobach, S., 1999, “Tableau calculus for local cubic modal logic and
its implementation,” Logic Journal of the IGPL 7(6), 755–778.

Mateescu, A. and Salomaa, A., 1997, “Formal languages: An introduction and a synopsis,” in
Handbook of Formal Languages – Volume 1: Word, Language and Grammar, G. Rozenberg and
A. Salomaa, eds., pp. 1–40. Springer.

Moore, R., 1977, “Reasoning about knowledge and action,” in IJCAI-5, pp. 223–227.
Morgan, C., 1976, “Methods for automated theorem proving in non classical logics,” IEEE

Transactions on Computers 25(8), 852–862.
Nonnengart, A., 1996, “Resolution-based calculi for modal and temporal logics,” in 13th Conference

on Automated Deduction, vol. 1104 of Lecture Notes in Artificial Intelligence, M. McRobbie and
J. Slaney, eds., pp. 599–612. Springer, Berlin.

Ohlbach, H.J., 1993, “Translation methods for non-classical logics: An overview,” Bulletin of the
Interest Group in Propositional and Predicate Logics 1(1), 69–90.

Ohlbach, H.J., Nonnengart, A., de Rijke, M., and Gabbay, D., 2001, “Encoding two-valued
non-classical logics in classical logic,” in Handbook of Automated Reasoning, A. Robinson and
A. Voronkov, eds., pp. 1403–1486. Elsevier Science Publishers B.V.

Or�lowska, E., 1988, “Relational interpretation of modal logics,” in Algebraic logic. Colloquia
Mathematica Societatis Janos Bolyai 54, H. Andréka, D. Monk, and I. Németi, eds., pp. 443–471,
Amsterdam, 1988. North Holland.

Perrin, D., 1990, “Finite automata,” in Handbook of Theoretical Computer Science, Volume B,
Formal Models and Semantics, J. Van Leeuwen, ed., pp. 1–57. Elsevier.

Pin, J.E., 1994, “Logic on words,” Bulletin of the European Association of Theoretical Computer
Science 54, 145–165.

Rozenberg, G. and Salomaa, A., 1994, Cornerstones of Undecidability. International Series in
Computer Science, Prentice Hall.

Sahlqvist, H., 1975, “Completeness and correspondence in the first and second order semantics for
modal logics,” in 3rd Scandinavian Logic Symposium, Uppsala, Sweden, 1973, S. Kanger, ed,
pp. 110–143. North Holland.

Sattler, U., 1996, “A concept language extended with different kinds of transitive roles,” in 20.
Deutsche Jahrestagung für Künstliche Intelligenz. LNM 1137, Springer.

Schmidt, R. and Hustadt, U., October 2004, “A principle for incorporating axioms into first-order
translation of modal formulae,” Technical Report CSPP-22, The University of Manchester.

Spaan, E., 1993, Complexity of Modal Logics, PhD thesis, ILLC, Amsterdam University.
Straubing, H., 1994, Finite Automata, Formal Logic, and Circuit Complexity. Progress in Theoretical

Computer Science. Birkhäuser.



DECIDING REGULAR GRAMMAR LOGICS WITH CONVERSE 329

Szwast, W. and Tendera, L., 2001, “On the decision problem for the guarded fragment with
transitivity,” in LICS’01, pp. 147–156.

Troelstra, A.S. and Schwichtenberg, H., 1996, Basic Proof Theory. Cambridge University Press.
Vakarelov, D., 1987, “Abstract characterization of some knowledge representation systems and the

logic NIL of nondeterministic information,” in Artificial Intelligence: Methodology, Systems,
Applications, Ph. Jorrand and V. Sgurev, eds., pp. 255–260. North-Holland, Amsterdam.

van Benthem, J., 1976, Correspondence Theory, PhD thesis, Mathematical Institute, University of
Amsterdam.

van Benthem, J., 1984, “Correspondence theory,” in Handbook of Philosophical Logic, Volume II,
D. Gabbay and F. Günthner, eds., pp. 167–247. Reidel, Dordrecht.

Verma, K., 2003, Automates d’arbres bidirectionnels modulo théories équationnelles. PhD thesis,
ENS de Cachan.

Wolter, F. and Zakharyashev, M., 1997, “On the relation between intuitionistic and classical modal
logics,” Algebra and Logic 36, 121–155.


