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Abstract. We give a complete characterization of the class of upward monotone generalized quan-
tifiers Q1 and Q2 over countable domains that satisfy the scheme Q1x Q2 y φ → Q2 y Q1x φ.
This generalizes the characterization of such quantifiers over finite domains, according to which the
scheme holds iff Q1 is ∃ or Q2 is ∀ (excluding trivial cases). Our result shows that in infinite domains,
there are more general types of quantifiers that support these entailments.
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1. Introduction

A type 1 generalized quantifier over a domain E is a set Q ⊆ ℘(E). We henceforth
refer to such sets more briefly as quantifiers. For instance, over a domain E and
some X ⊆ E , the following are the quantifiers that are more traditionally written
as ∃x ∈ X and ∀x ∈ X , respectively:

EXIST(X )
def= {A ⊆ E : X ∩ A �= ∅}.

UNIV(X )
def= {A ⊆ E : X ⊆ A}.

We call such quantifiers EXIST (“existential”) and UNIV (“universal”),
respectively.1 The quantifiers Q that are both EXIST and UNIV are of the form {A ⊆
E : x ∈ A} for some x ∈ E , which are precisely the principal ultrafilters over E .

When Q1 and Q2 are quantifiers and R a binary relation, the formula
Q1x Q2 y R(x, y) is often written Q1 Q2 R, which is interpreted in E as follows.

{x ∈ E : Rx ∈ Q2} ∈ Q1, (1)

where Rx = {y ∈ E : R(x, y)}. Henceforth we will also use the notation Ry for
{x ∈ E : R(x, y)}, considering the following equivalence:

Q2 Q1 R−1 ⇔ {y ∈ E : Ry ∈ Q1} ∈ Q2. (2)
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Previous studies of generalized quantifiers have characterized various scope
commutativity properties of quantifiers in constructions with multiple quantifica-
tion. Notably (Westerståhl, 1996) characterizes the class of self-commuting quan-
tifiers – those quantifiers Q that satisfy the following equivalence:

For all R ⊆ E2:Q Q R ⇔ Q Q R−1. (3)

Zimmermann (1993) characterizes the class of scopeless quantifiers – those quan-
tifiers Q that satisfy the following equivalence.

For all Q1 ⊆ ℘(E), for all R ⊆ E2:Q Q1 R ⇔ Q1 Q R−1. (4)

He shows that the scopeless quantifiers over E are precisely the ultrafilters over E .
Westerståhl (1986) studies the more general problem of characterizing the quan-

tifiers Q1, Q2 that satisfy the following unidirectional entailment.

For all R ⊆ E2: Q1 Q2 R ⇒ Q2 Q1 R−1. (5)

When this entailment holds, we say that Q1 is (scopally) dominant over Q2.
We denote the complement of a quantifier Q over E by Q

def= ℘(E)\ Q. (Keenan,
1993) defines the postcomplement of a quantifier Q over E as the set Q − def= {A ⊆
E : E \ A ∈ Q}. The dual Qd (cf. Barwise and Cooper (1981)) of a quantifier Q
is the complement of Q’s postcomplement:

Qd def= (Q−) = (Q)− = {A ⊆ E : E \ A /∈ Q}.
Note that for any quantifier Q: (Qd)d = Q and Q is EXIST iff Qd is UNIV. Further,
over a domain E the two trivial quantifiers – ∅ and ℘(E) – are each other’s duals.
As the following simple fact shows, there is a close relation between quantifier
duality and scope dominance.

FACT 1. For all quantifiers Q1 and Q2: Q1 is dominant over Q2 iff Qd
2 is dominant

over Qd
1 .

This fact follows directly from the definition of scope dominance and duality, and
the observation that for any R ⊆ E2 we have:

Q1 Q2 R ⇔ ¬(
Qd

1 Qd
2 (E2 \ R)

)
.

For the sake of completeness we give in Section 2 a simple proof of Westerståhl’s
characterization of dominance between quantifiers in finite domains. The main
part of the paper is Section 3, where this characterization is extended to count-
able domains. Section 4 concludes with some remarks about scope commutativity,
finiteness and monotonicity in natural language semantics.
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2. Finite Domains

Westerståhl’s characterization is restricted to upward monotone quantifiers over
finite domains. Standardly, by saying that a quantifier Q over E is upward monotone
we mean that Q is closed under supersets: A ∈ Q and A ⊆ B implies B ∈ Q. Note
that Q is upward monotone iff Qd is. Under upward monotonicity and finiteness
of the domain, Westerståhl’s claim can be stated as follows.2

FACT 2. Let Q1 and Q2 be upward monotone quantifiers over a finite domain E.
Q1 is dominant over Q2 iff these quantifiers fall under at least one of the following
cases.

(i) Q1 is EXIST or Q2 is UNIV.
(ii) Q1 = ℘(E) and Q2 �= ∅, or Q2 = ∅ and Q1 �= ℘(E).

Proof. The “if” direction of the proof is easy, and does not require finiteness of
the domain. For the “only if” direction, assume that Q1 is dominant over Q2. First
it is easy to see that if Q1 = ℘(E) then Q2 �= ∅ and (dually) that if Q2 = ∅ then
Q1 �= ℘(E). Assume for contradiction that neither (i) nor (ii) holds. Then by finite-
ness of E there is a minimal set A ∈ Q1 such that |A| ≥ 2 (otherwise by upward
monotonicity, Q1 = ℘(E) or Q1 = EXIST(

⋃
{x}∈Q1

{x})). By the dual considera-
tion, there are B1, B2 ∈ Q2 such that B1∩B2 /∈ Q2. Given the sets A, B1 and B2, and
an arbitrary a ∈ A, it is easy to verify that the relation ({a}× B1) ∪ ((A \ {a}) × B2)
contradicts our assumption that Q1 is dominant over Q2.

Westerståhl (1996) calls two quantifiers Q1, Q2 ⊆ ℘(E) independent if they satisfy
the following equivalence.

For all R ⊆ E2:Q1 Q2 R ⇔ Q2 Q1 R−1. (6)

Using Fact 2 it is easy to establish the following corollary.

COROLLARY 3. Let Q1 and Q2 be upward monotone quantifiers over a finite
domain E. Then Q1 and Q2 are independent iff Q1 and Q2 fall under at least one
of the following cases.

(i) Q1 and Q2 are EXIST, or Q1 and Q2 are UNIV.
(ii) Q1 or Q2 are principal ultrafilters.

(iii) Q1 or Q2 are trivial, and Q1 �= Q2.

Recall that the trivial quantifiers over a domain E are ℘(E) and ∅.

EXAMPLES. For illustrating scope dominance in simple natural language sen-
tences, consider first a well-known type of example.

Some priest visited every city. (7)
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Let us assume that the nouns priest and city are denote the sets P, C ⊆ E respec-
tively, and that the verb visited denotes the binary relation V ⊆ E2. Sentence (7)
has two readings, depending on the order in which the quantifiers operate on the
arguments of the relation V :

a. EXIST(P) UNIV(C) V

b. UNIV(C) EXIST(P) V −1 (8)

The statement in (8a) is called the object narrow scope (ONS) reading of
Sentence (7), whereas the the statement in (8b) is called the object wide scope
(OWS) reading of the sentence. As a matter of first-order logic, (8a) entails (8b)
but not vice versa. Thus, the quantifier EXIST(P) is dominant over the quantifier
UNIV(C) for any P, C ⊆ E , but the opposite does not hold.

The situation is similar in cases where (exactly) one of the existential/universal
quantifiers is replaced by another upward monotone quantifier, not necessarily first-
order. The sentences in (9) below illustrate some cases like that, where the ONS
reading entails the OWS reading. The corresponding quantifiers we assume are
given in (10).

a. At least half/at least two/all but at most five of the priests visited
every city.

b. Some priest visited at least half/at least two/all but at most five of
the cities.

(9)

at least half of the(X ) = {A ⊆ E : |X ∩ A| ≥ |X \ A|}
at least n(X ) = {A ⊆ E : |X ∩ A| ≥ n}
all but at most n of the(X ) = {A ⊆ E : |A \ X | ≤ n}

(10)

Note that the quantifier at least half of the(X ) is not first-order definable.
Westerståhl’s result shows that over finite domains, the EXIST quantifiers (for

Q1) and the UNIV quantifiers (for Q2) are the only non-trivial upward monotone
quantifiers that lead to entailments as in (5). Thus, the sentences in (7) and (9) are
representative of the cases where upward monotone quantifiers lead to an entailment
from the ONS reading to the OWS reading on finite domains.

3. Countable Domains

As Westerståhl observes, his characterization of scope dominance over finite do-
mains in Fact 2 does not hold for infinite domains. Thus, over infinite domains there
are non-trivial upward monotonic quantifiers besides the EXIST and UNIV quanti-
fiers that give rise to scope dominance. Consider the following example (following
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Westerståhl), where E is assumed to be countable.

Infinitely many dots are contained in at least one of the three circles.

Q1= {A ⊆ E : |D ∩ A| = ℵ0} (11)

Q2= {A ⊆ E : C ∩ A �= ∅}, where |C | = 3

It is easy to verify that Q1 is dominant over Q2, but Q1 and Q2 are upward monotone
and the conditions in Fact 2 do not hold. Incidentally, since Q2 is EXIST, it is
dominant over Q1. In this section we characterize such cases of scope dominance
in the class of upward monotone quantifiers over countable domains.

Let us define some properties of quantifiers that will be useful for characterizing
scope dominance. First, we say that a quantifier Q satisfies the union property
(U) when Qd is closed under finite intersections. Thus, for all A1, A2 ⊆ E : if
A1 ∪ A2 ∈ Q then A1 ∈ Q or A2 ∈ Q. For example, any EXIST quantifier satisfies
(U), while a UNIV quantifier UNIV(X ) satisfies (U) if and only if X is either a
singleton or the empty set. The set of all infinite subsets of E satisfies (U) as well.

Further, we say that a quantifier Q satisfies the Descending Chain Condition
(DCC) if for every descending sequence A1 ⊇ A2 ⊇. . . An ⊇. . . in Q, the inter-
section

⋂
i Ai is in Q as well. For example, any UNIV quantifier satisfies (DCC).

A quantifier EXIST(X ) satisfies (DCC) if and only if X is finite. Another quantifier
that satisfies (DCC) is the following, where the domain E = N is the set of natural
numbers:

{A ⊆ N : ∀n ∈ N [2n ∈ A ∨ 2n + 1 ∈ A]}.

If every set in a quantifier Q contains a finite subset that is also in Q, we say that
Q satisfies (FIN). The following fact shows that for upward monotone quantifiers
over countable domains, the (FIN) property is dual to (DCC).

FACT 4. For any upward monotone quantifier Q over a countable domain E: Q
satisfies (DCC) iff Qd satisfies (FIN).

Proof. Assume that Q satisfies (DCC) and assume for contradiction that there
is A ∈ Qd such that for all B ⊆ A: if B ∈ Qd then B is infinite. Let B0 ⊂ A
be a finite set. Hence B0 /∈ Qd , and E \ B0 ∈ Q. By countability of E , we can
denote A \ B0 = {ai }∞i=1. Let Bi+1 = Bi ∪{ai+1}, for any i ≥ 0. By our assumption
on A we have Bi /∈ Qd for any i ≥ 0, hence E \ Bi ∈ Q for any i ≥ 0. But⋂

i (E \ Bi ) = E \ A /∈ Q, in contradiction to Q satisfying (DCC).
Conversely, assume that Qd satisfies (FIN). Let B1 ⊇ B2 ⊇ . . . be a descending

chain in Q, so E \ Bi /∈ Qd for any i ≥ 1. Assume leading to a contradiction
that B = ⋂

i Bi /∈ Q, thus E \ B = ⋃
i (E \ Bi ) ∈ Qd . By (FIN) there is a finite

A′ ∈ Qd s.t. A′ ⊆ ⋃
i (E \ Bi ). Hence for some n, A′ ⊆ E \ Bn , and from the

upward monotonicity of Q, and hence of Qd , E \ Bn ∈ Qd , a contradiction.
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These two pairs of dual properties will be used in the proof of the following
theorem, which is the main result of this paper.

THEOREM 5. Let Q1 and Q2 be upward monotone quantifiers over a count-
able domain E. Then Q1 is dominant over Q2 if and only if all of the following
requirements hold:

(i) Qd
1 or Q2 are closed under finite intersections;

(ii) Qd
1 or Q2 satisfy (DCC);

(iii) Qd
1 or Q2 are not empty.

Proof.

For the “if” direction, assume that requirements (i)–(iii) hold. Consider first the
case where Qd

1 is closed under finite intersections and Q2 satisfies (DCC), where
both Qd

1 and Q2 are non-trivial.

Assume that A
def= {x ∈ E : Rx ∈ Q2} is in Q1, and let B

def= {y ∈ E : Ry ∈ Q1}.
We need to show that B ∈ Q2. Since E is countable and Q2 satisfies (DCC) it is
sufficient to prove that for every finite F ⊆ E \ B, we have E \ F ∈ Q2.

For every b /∈ B, Rb /∈ Q1. Since Q1 has property (U) (by assumption about Qd
1)

and E ∈ Q1 (by upward monotonicity and non-triviality), we have E \ Rb ∈ Q1.
Thus, by the definition of Rb and Rx , the set Ab

def= {x : b /∈ Rx} is in Q1.
Now for any F = {b1, . . . , bn} ⊆ E \ B, the sets Ab1, . . . , Abn are all in Q1, and

since Q1 is closed under finite intersections, we have A ∩ Ab1∩ . . . ∩Abn ∈ Q1.
Since Q1 is non-trivial, this last set is non-empty, and hence there is x ∈ E such

that Rx ∈ Q2 and also F ∩ Rx = ∅. By the upward monotonicity of Q2 it follows
that E \ F ∈ Q2.

For the other cases in requirements (i)–(iii), dominance of Q1 over Q2 now
follows directly from Fact 1 about duality, and from the observation that for any non-
empty quantifier Q over a countable domain: if Q is closed under finite intersections
and satisfies (DCC), then Q is UNIV.

For the “only if” direction, assume that Q1 is dominant over Q2. To show that
(i) holds, assume that Qd

1 is not closed under finite intersections, so Q1 does not
satisfy (U). Hence, by upward monotonicity of Q1, it contains a set A = A1 ∪ A2

where A1 and A2 are disjoint and neither of them is in Q1. To show that Q2 is
closed under finite intersections, let us denote for any B1, B2 ∈ Q2:

R = (A1 × B1) ∪ (A2 × B2).

We have {x : Rx ∈ Q2} ∈ Q1 and therefore B
def= {y : Ry ∈ Q1} ∈ Q2. But, since

A1, A2 /∈ Q1, we have B = B1 ∩ B2, hence B1 ∩ B2 ∈ Q2.
To show that (ii) holds, assume that Qd

1 does not satisfy (DCC), so from Fact
3 it follows that there is a set A ∈ Q1 such that every subset of A that is also in
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Q1 is infinite. To show that Q2 satisfies (DCC), let B1 ⊇ B2 . . . ⊇ Bn ⊇ . . . be a
sequence of sets in Q2, and let B be their intersection. We assume that E is the set
of natural numbers, and enumerate A = {a1, a2, . . . }. Consider the relation

R =
∞⋃

n=1

({an} × Bn).

Then the set {x : Rx ∈ Q2} = A ∈ Q1, or Q1 Q2 R, and by our assumption it
follows that Q2 Q1 R−1 holds, or {y : Ry ∈ Q1} ∈ Q2. We claim that this last
set equals B, so Q2 satisfies (DCC). Clearly, for every y ∈ B: Ry = A ∈ Q1.
However, if y /∈ B then there is n such that y /∈ Bm for all m ≥ n, and therefore
Ry ⊆ A is finite. By our previous observation, such Ry is not in Q1.

Clause (iii) is easily seen to hold.

From this theorem it is easy to conclude the following, more direct, classification
of the upward monotone quantifiers Q1, Q2 that support scope dominance over
countable domains. These are precisely the pairs of quantifiers Q1 and Q2 that
satisfy at least one of the following requirements.

(i) Q1 is EXIST or Q2 is UNIV.

(ii) Q1 satisfies (U), Q2 �= ∅ and Q2 satisfies (DCC), or Q2 is closed
under finite intersections, Q1 �= ℘(E) and Q1 satisfies (FIN).

(iii) Q1 = ℘(E) and Q2 �= ∅, or Q2 = ∅ and Q1 �= ℘(E).

(12)

That Theorem 5 is a generalization of Fact 2 for countable domains is obvious from
clauses (i) and (iii) in the statement of the theorem. Clause (12)(ii) becomes redun-
dant over finite domains, since over such domains the upward monotone quantifiers
that satisfy (U) are exactly the EXIST quantifiers and ℘(E), and the (DCC) require-
ment for Q2 is trivially satisfied. Dually, over finite domains the upward monotone
quantifiers that are closed under finite intersections are the UNIV quantifiers and
∅, and the “finiteness” requirement for Q2 is trivially satisfied. However, as we
shall exemplify below, over infinite domains (also countably infinite), there are
non-trivial non-EXIST upward monotone quantifiers that satisfy (U), and (dually)
there are non-trivial non-UNIV upward monotone quantifiers that are closed under
finite intersections. Thus, clause (12)(ii) is where Theorem 5 generalizes Fact 2.

As in the case of scope dominance over finite domains (cf. Corollary 3),
Theorem 5 allows us to characterize the pairs of independent quantifiers. To do
so, let us first prove the following two lemmas.

LEMMA 6. An upward monotone quantifier Q over a countable domain E satisfies
both (U) and (DCC) iff Q = ℘(E) or Q = EXIST(X ) for some finite X ⊆ E.

Proof. The proof of the “if” direction is easy. For the “only if” direction, assume
that Q satisfies (U) and Q �= ℘(E). We will show that there are no minimal sets in
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Q other than singletons. Let A be some arbitrary set in Q. If A is finite then it must
contain a singleton in Q. If A is infinite, then either it contains a singleton in Q, or
by (U) and the countability of E , we can form a descending chain of subsets of A,
all in Q, whose intersection is empty. From (DCC) it follows that ∅ ∈ Q and by
upward monotonicity Q = ℘(E), in contradiction to our assumption. Thus, every
set in Q contains a singleton in Q, and if X = {x ∈ E : {x} ∈ Q} then by upward
monotonicity Q = EXIST(X ). Suppose for contradiction that X is infinite, then
again by (DCC), we conclude that ∅ ∈ Q, contradiction.

LEMMA 7. If a quantifier Q satisfies (DCC) and (FIN) then there are finitely
many minimal sets in Q, all of them finite.

Proof. By (FIN) it follows that the minimal sets in Q are all finite. Assume for
contradiction that there are infinitely many (finite) minimal sets in Q, and denote
this collection of sets by X . It follows that for any A, B ∈ X such that A �= B,
A ∩ B is a proper subset of both A and B. Let F1 be in X . Because F1 is finite
and X is infinite, there must be some F ′

1 � F1 such that the collection of sets
X1 = {F ∈ X : F ∩ F1 = F ′

1} is infinite. We can continue this process by defining
Fi , F ′

i and Xi for every i ≥ 1 as follows:

Fi+1 is some set in Xi .

F ′
i+1 is some proper subset of Fi+1 such that {F ∈ Xi : F ∩ Fi+1 = F ′

i+1} is
infinite.

Xi+1
de f= {F ∈ Xi : F ∩ Fi+1 = F ′

i+1}

We obtain an infinite sequence F1, . . . , Fi , . . . of finite minimal sets in Q, together
with F ′

1, . . . , F ′
i , . . . , such that for every i , F ′

i � Fi and for every m > n, Fm ∩Fn =
F ′

n .
We now let An = ⋃

m≥n Fm . This is a decreasing sequence of sets, all in Q,
so by (DCC), A = ⋂∞

n=1 An is in Q. We claim that A = ⋃∞
n=1 F ′

n . Indeed, note
that A consists of all elements which belong to infinitely many sets Fn . Let x be
some element in

⋃∞
n=1 F ′

n , thus x ∈ F ′
n for some n. For every m > n, x ∈ Fm

because Fm ∈ Xn . Thus x is in infinitely many sets Fm , and therefore x ∈ A. For
the opposite direction, assume that x ∈ A, thus belongs to infinitely many Fn . In
particular it belongs to some Fm, Fn for m > n. But then x ∈ (Fm ∩ Fn) = F ′

n , thus
belonging to

⋃∞
n=1 F ′

n .
By our assumption on Q, the set A contains a finite subset B ∈ Q. The set

B is then contained in the union of finitely many sets F ′
n , which implies that for

some m (larger than all these n’s): B � Fm . Because both Fm and B are in Q, this
contradicts the minimality of Fm .

Using Theorem 5 and the two lemmas above, the proof of the following claim
is by a simple enumeration of cases.
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COROLLARY 8. Let Q1 and Q2 be upward monotone quantifiers over a countable
domain E. Then Q1 and Q2 are independent iff these two quantifiers or their duals
Qd

1 and Qd
2 constitute a pair S1, S2, not necessarily in this order, which falls under

at least one of the following cases.

(i) S1 = EXIST(X ) for some X �= ∅, s.t. X is finite and S2 satisfies (U), or X is
infinite and S2 is EXIST.

(ii) S1 or S2 are principal ultrafilters.
(iii) For some finite collection X ⊆ ℘(E) of finite sets, S1 = ⋃

X∈X UNIV(X ), and
S2 is an ultrafilter.

(iv) S1 = ∅ and S2 �= ℘(E).

Remark: Since we assume here the Axiom of Choice, non-principal ultrafilters
exist over E , so (iii) is not subsumed by (ii).

EXAMPLES. First let us note that in example (11) above, Q2 = EXIST(C) for
a finite C (|C | = 3). Q1 satisfies (U), hence Q1 and Q2 fall under clause (i) in
Corollary 8, and the ONS reading of the sentence is equivalent to the OWS reading.
The following example illustrates the dual case covered by clause (i) in Corollary
8, where Q1 = UNIV(C) for a finite C , and Q2 is closed under finite intersections.

Each of the three circles contains all but finitely many dots.

Q1 = {A ⊆ E : C ⊆ A}, where |C | = 3 (13)

Q2 = {A ⊆ E : |D \ A| < ℵ0}
To illustrate non-trivial usages of clause (iii) in Corollary 8, we would have to use
non-principal ultrafilters, which we here omit.

As for dominance between quantifiers without independence, the quantifiers
in (14) and (15) below satisfy clause (ii) of (12). Hence, in these cases the ONS
reading entails the OWS reading, but not vice versa (assuming a finite n > 0).

Infinitely many dots are contained in all but at most n circles. (14)

At least n circles contain all but finitely many dots. (15)

Similarly, consider the following examples.

Infinitely many dots are contained in circle 1 or [circles 2 and 3]. (16)

Circle 1 and [circles 2 or 3] contain all but finitely many dots. (17)

We assume that the object of Sentence (16) and the subject of Sentence (17) denote
the following quantifiers respectively, for three different circles c1, c2 and c3.

{A ⊆ E : c1 ∈ A ∨ (c2 ∈ A ∧ c3 ∈ A)}
{A ⊆ E : c1 ∈ A ∧ (c2 ∈ A ∨ c3 ∈ A)}
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Also the quantifiers in these sentences satisfy clause (ii) of (12), hence the scope
dominance, but the two quantifiers in each sentence are not independent.

4. Concluding Remarks

In this paper we have characterized scope dominance and independence for up-
ward monotone quantifiers over countable domains. This is a natural extension of
the results by Westerståhl and Zimmermann about self-commuting and scopeless
quantifiers. This characterization directly extends a previous result by (Altman et al.,
2001), which concentrated on a subclass of quantifiers on countable domains, called
finitely based quantifiers. Our results are still partial in some obvious respects. First,
we did not characterize scope dominance for uncountable domains. Theorem 3 does
not hold for such domains, for a similar reason to the reason that Fact 2 about finite
domains does not hold for countable domains. Consider for instance the following
sentence and quantifiers, parallel to (11) above over countable domains.

Uncountably many dots are contained in at least one of the countably
many circles. (18)

Q1 = {A ⊆ E : |D ∩ A| = ℵ1}
Q2 = {A ⊆ E : C ∩ A �= ∅}, where |C | = ℵ0

The quantifier Q1 is dominant over Q2, but these quantifiers do not satisfy the
conditions of Theorem 3. Thus, a further generalization of our result is called for.

It is also natural to look for a characterization of dominance with non-upward
monotone quantifiers. One recent result in this area is the characterization in
Ben-Avi and Winter (2005) of scope dominance with downward monotone quan-
tifiers over finite domains. One can also add further requirements on the relation R
in (5), and obtain more quantifiers Q1 and Q2 that exhibit scope dominance for this
restricted class of relations. Such more refined characterizations are relevant for nat-
ural language, where there are often logical restrictions on the possible denotations
of binary relations. For instance, in the sentence every priest is taller than some
peasant, where the relation be taller than is transitive, the ONS reading and the OWS
reading are equivalent over finite domains, in contrast to the case with general R’s.

Characterizations of scope independence are useful for reducing ambiguity in
computational representations of natural language sentences. One system that goes
in this direction, using the results that were obtained in the present paper, is described
in Altman and Winter (2003). Another system with the same motivations, based on
slightly different formal assumptions, is described in Chaves (2003).
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Notes

1. We do not simply say that EXIST(X) is existential to avoid confusion with the larger class of
quantifiers that (Keenan and Westerståhl, 1996) call intersective, and which are often referred to
as existential.

2. Westerstå hl characterizes scope entailments for determiners – functions from sets to generalized
quantifiers. The following is a simpler statement of the result for generalized quantifiers.
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