
421Journal of Logic, Language and Information 13: 421–438, 2004.
C© 2004 Kluwer Academic Publishers. Printed in the Netherlands.

On the Expressive Power of Abstract Categorial
Grammars: Representing Context-Free Formalisms

PHILIPPE DE GROOTE and SYLVAIN POGODALLA
INRIA Lorraine, 615 rue du Jardin Botanique, B. P. 101, 54602 Villers-lès-Nancy Cedex, France

(Received 7 June 2004)

Abstract. We show how to encode context-free string grammars, linear context-free tree grammars,
and linear context-free rewriting systems as Abstract Categorial Grammars. These three encodings
share the same constructs, the only difference being the interpretation of the composition of the
production rules. It is interpreted as a first-order operation in the case of context-free string grammars,
as a second-order operation in the case of linear context-free tree grammars, and as a third-order
operation in the case of linear context-free rewriting systems. This suggest the possibility of defining
an Abstract Categorial Hierarchy.

Key words: Abstract categorial grammars, context-free grammars, formal language theory, lambda-
calculus

1. Introduction

Abstract Categorial Grammars (ACGs) (de Groote, 2001) are a new categorial
formalism based on Girard linear logic (Girard, 1987). This formalism, which
sticks to the spirit of current type-logical grammars (Carpenter, 1996; Moortgat,
1997; Morrill, 1994; Oehrle, 1994), offers the following features:

• Every ACG generates two languages, an abstract language and an object lan-
guage. The abstract language may be seen as a set of abstract grammatical struc-
tures, and the object language as the set of concrete forms generated from these
abstract structures. Consequently, one has a direct control on the parse structures
of the grammar.

• The languages generated by the ACGs are sets of linear λ-terms, which general-
izes both string-languages and tree-languages.

• ACGs are based on a small set of mathematical primitives that combine via simple
composition rules. Consequently, ACGs offer a rather flexible framework.

Abstract Categorial Grammars are not intended to be yet another grammatical
formalism that would compete with other well-established formalisms. They should
rather be seen as the kernel of a grammatical framework – in the spirit of (Ranta,

422 PHILIPPE DE GROOTE AND SYLVAIN POGODALLA

2004) – in which other existing grammatical models may be encoded. In this paper,
we illustrate this fact by exploring the expressive power of ACGs. We show how to
encode three context-free formalisms (namely, context-free string grammars, linear
context-free tree grammars, and linear context-free rewriting systems) as ACGs.

The paper is organized as follows. In the next section, we introduce the notion
of Abstract Categorial Grammar. Section 3 gives a natural encoding of strings as
linear λ-terms. In Section 4, we remind the reader of the definitions of a context-
free string grammar, a linear context-free tree grammar, and a linear context-free
rewriting system. In Sections 5, we explain how to encode context-free derivations.
Then, Sections 6–8 give the encodings of context-free string grammars, linear
context-free tree grammars, and linear context-free rewriting systems, respectively.
Finally, we conclude in Section 9.

2. Abstract Categorial Grammars

This section gives the definition of an Abstract Categorial Grammar, which is based
on the notions of linear implicative types, higher-order linear signature, and linear
λ-terms built upon a higher-order linear signature.

Let A be a set of atomic types. The set �(A) of linear implicative types built
upon A is inductively defined as follows:

1. if a ∈ A, then a ∈ �(A);
2. if α, β ∈ �(A), then (α −◦ β) ∈ �(A).

We use the usual convention of right association of the parentheses, i.e., we write
α −◦ β −◦ γ −◦ δ for (α −◦(β −◦(γ −◦ δ))). We also write αn −◦ β for

α −◦ · · · −◦ α︸ ︷︷ ︸
n×

−◦ β.

A higher-order linear signature consists of a triple � = 〈A, C, τ 〉, where:

1. A is a finite set of atomic types;
2. C is a finite set of constants;
3. τ : C → �(A) is a function that assigns to each constant in C a linear implicative

type in �(A).

Let X be an infinite countable set of λ-variables. The set �(�) of linear λ-terms
built upon a higher-order linear signature � = 〈A, C, τ 〉 is inductively defined as
follows:

1. if c ∈ C , then c ∈ �(�);
2. if x ∈ X , then x ∈ �(�);

ABSTRACT CATEGORIAL GRAMMARS 423

3. if x ∈ X, t ∈ �(�), and x occurs free in t exactly once, then (λx .t) ∈ �(�);
4. if t, u ∈ �(�), and the sets of free variables of t and u are disjoint, then

(tu) ∈ �(�).

�(�) is provided with the usual notion of capture avoiding substitution, and the rela-
tions of α-conversion, β-reduction, β-conversion, and βη-conversion (Barendregt,
1984), this latter relation being used as the notion of equality between λ-terms.
We use the usual conventions when writing λ-terms: t u1u2 . . . un will stand for
(. . . ((t u1)u2) . . . un), and λx1 . . . xn.t for λx1λxn.t . Moreover, when x denotes
a sequence of λ-variables x1, . . . , xn , We write λx.t for λx1 . . . xn.t .

Given a higher-order linear signature � = 〈A, C, τ 〉, each linear λ-term in �(�)
may be assigned a linear implicative type in �(A). This type assignment obeys an
inference system whose judgements are sequents of the following form:

 �� t : α

where:

1.
 is a finite set of λ-variable typing declarations of the form ‘x : β’ (with x ∈ X
and β ∈ �(A)), such that any λ-variable is declared at most once;

2. t ∈ �(�);
3. α ∈ �(A).

The axioms and inference rules are the following:

�� c : τ (c) (cons)

x : αλx : α (var)

, x : α t : β

 �� (λx . t) : (α −◦ β)
(abs)

 �� t : (α −◦ β) � �� u : α

, � �� (t u) : β
(app)

Given two higher-order linear signatures �1 and �2, we define a lexicon � :
�1 → �2 to be a realization of �1 into �2 i.e., an interpretation of the atomic types
of �1 as types built upon �2 together with an interpretation of the constants of �1

as linear λ-terms built upon �2. These two interpretations must be such that their
homomorphic extensions commute with the typing relations. This is spelled out in
the next definition.

DEFINITION 1. Let �1 = 〈A1, C1, τ1〉 and �2 = 〈A2, C2, τ2〉 be two higher-
order linear signatures. A lexicon � from �1 to �2 is defined to be a pair � = 〈F, G〉
such that:

424 PHILIPPE DE GROOTE AND SYLVAIN POGODALLA

1. F : A1 → �(A2) is a function that interprets the atomic types of �1 as linear
implicative types built upon A2;

2. G : C1 → �(�2) is a function that interprets the constants of �1 as linear λ-terms
built upon �2;

3. the interpretation functions are compatible with the typing relation, i.e., for any
c ∈ C1, the following typing judgement is derivable:

��2 G(c) : F̂(τ1(c)),

where F̂ is the unique homomorphic extension of F .

In the sequel, given such a lexicon � = 〈F, G〉, �(a) will stand for either F̂(a) or
Ĝ(a), according to the context.

We are now in a position of defining the notion of Abstract Categorial Grammar.

DEFINITION 2. An Abstract Categorial Grammar is a quadruple � =
〈�1, �2, �, s〉 where:

1. �1 and �2 are two higher-order linear signatures; they are called the abstract
vocabulary and the object vocabulary, respectively;

2. � : �1 → �2 is a lexicon from the abstract vocabulary to the object vocabulary;
3. s is an atomic type of the abstract vocabulary; it is called the distinguished type

of the grammar.

Every ACG � generates two languages: an abstract language, A(�), and an
object language O(�).

The abstract language, which may be seen as a set of abstract parse structures, is
the set of closed linear λ-terms built upon the abstract vocabulary and whose type
is the distinguished type of the grammar.

DEFINITION 3. Let � = 〈�1, �2, �, s〉 be an Abstract Categorial Grammar. The
abstract language A(�), generated by � is defined as follows:

A(�) = {t ∈ �(�1) | ��1 t : s is derivable}

On the other hand, the object language, which may be seen as the set of concrete
forms generated by the grammar, is defined to be the image of the abstract language
by the term homomorphism induced by the lexicon.

DEFINITION 4. Let � = 〈�1, �2, �, s〉 be an Abstract Categorial Grammar. The
object language O(�), generated by � is defined as follows:

O(�) = {t ∈ �(�2) | ∃u ∈ A(�). t = �(u)}

ABSTRACT CATEGORIAL GRAMMARS 425

3. Strings as Linear λ-Terms

We are concerned, in this paper, with the representation of grammatical formalisms
that generate strings. We must, therefore, specify a higher-order linear signature
that allows strings to be defined and manipulated. This signature will serve as the
object vocabulary of the several ACGs we will define.

There is, in fact, a canonical way of representing strings as linear λ-terms.
It consists of encoding a string of symbols as a composition of functions. Con-
sider, for instance, a string such as ‘abbac’. It may be represented by the linear
λ-term:

λx .a(b(b(a(cx)))),

where the atomic strings ‘a’, ‘b’, and ‘c’ are declared to be constants of functional
type.

More formally, the higher-order linear signature corresponding to an alphabet
obeys the following definition.

DEFINITION 5. let T = {a1, . . . , an} be an alphabet. The higher-order linear
signature, �T = 〈A, C, τ 〉, is defined as follows:

1. A = {σ };
2. C = {a1, . . . , an} ;
3. τ (ai) = (σ −◦ σ), for all 1 ≤ i ≤ n.

Given such a signature, the empty word (ε) is represented by the iden-
tity function (λx .x), and concatenation is defined to be functional composition
(λ f.λg.λx . f (g x)), which is indeed an associative operator that admits the identity
function as a unit.

We define string to be the type (σ −◦ σ), and λ-terms of type string, such as
λx .a(b(b(a(c x)))), will be written /abbac/. Finally, the infix operator + will denote
the composition (i.e., the concatenation) of such λ-terms.

4. Three Context-Free Formalisms

In this section, we remind the reader of the definitions of the grammatical formalisms
we intend to encode as ACGs.

4.1. CONTEXT-FREE STRING GRAMMARS

A context-free string grammar is a quadruple G = 〈N , T, P, s〉 where:

1. N is a finite set of symbols called the alphabet of non-terminal symbols;
2. T is a finite set of symbols, disjoint from N, called the alphabet of terminal

symbols;

426 PHILIPPE DE GROOTE AND SYLVAIN POGODALLA

3. P is a finite set of production rules of the form a → α, where a ∈ N , and
α ∈ (N ∪ T)∗;

4. s ∈ N is called the start symbol of the grammar.

Given two words α, β ∈ (N ∪ T)∗, one says that β is directly derivable from α

if and only if there exist β1, β2, β3 ∈ (N ∪ T)∗ and a ∈ N such that:

1. a → β2 is a production rule of P;
2. α = β1aβ3;
3. β = β1β2β3.

This relation of direct derivability is written α ⇒ β and, as usual, ⇒∗ denotes the
reflexive, transitive closure of ⇒. Finally, the language generated by G is defined
to be the set of terminal words α ∈ T ∗ such that s ⇒∗ α.

4.2. LINEAR CONTEXT-FREE TREE GRAMMARS

A ranked alphabet is defined to be a pair � = 〈F�, r�〉 such that F� is a finite set
of symbols, and r� : F� → N is a function that assigns to each symbol a natural
number called its rank. By a slight abuse of notation, we will write a ∈ � for
a ∈ F� .

Given such a ranked alphabet�, and a possibly inifinite countable set of variables
X , the set of trees T�(X) is inductively defined as follows:

1. X ⊂ T�(X);
2. if f ∈ � and r�(f) = 0 then f ∈ T�(X);
3. if f ∈ �, r�(f) = n, and t1, . . . , tn ∈ T�(X) then f (t1, . . . , tn) ∈ T�(X).

In case X is the empty set, the set of trees T� (φ) is simply written T� . Let Xn =
{x1, . . . , xn} be a finite set of variables. A tree t ∈ T�(Xn) that contains exactly
one occurrence of each variable xi (1 ≤ i ≤ n) is called an n-context. Let t be
such an n-context, and let u1, . . . , un ∈ T� . We write t[u1, . . . , un] to denote the
tree obtained from t by replacing x1, . . . , xn by u1, . . . , un , respectively. The set
of n-contexts built upon a given ranked alphabet � will be written C�(n). Strictly
speaking, the notion of n-context should not depend on the choice of the set Xn .
Nevertheless, in the sequel, we will use the following convention: if t is an n-context
then t and t[x1, . . . , xn] denote the same tree.

Let X be a set of variables, let � be a ranked alphabet, and let �0 be the set of
symbols a ∈ � such that r�(a) = 0. To each tree t ∈ T�(X), one associates its
yield t , which is a string over �0 inductively defined as follows:

1. x = x, for x ∈ X ;
2. a = a, for a ∈ �0;
3. f (t1, . . . , tn) = t1 . . . tn.

ABSTRACT CATEGORIAL GRAMMARS 427

A linear context-free tree grammar is a quadruple G = 〈N , T, P, s〉 where:

1. N is a ranked alphabet of non-terminal symbols;
2. T is a ranked alphabet of terminal symbols, disjoint from N;
3. P is a finite set of production rules of the form a(x1, . . . , xn) → t[x1, . . . , xn],

where a ∈ N , rN (a) = n, the variable x1, . . . , xn are all distinct, and t ∈
CN∪T (n).

4. the start symbol s ∈ N is such that rN (s) = 0.

Let u, v ∈ TN∪T . v is directly derivable from u (u ⇒ v) if and only if there exist
c ∈ CN∪T (1), a ∈ N with rN (a) = n, t ∈ CN∪T (n) and u1, . . . , un ∈ TN∪T such
that:

1. a(x1, . . . , xn) → t[x1, . . . , xn] is a production rule of P;
2. u = c[a(u1, . . . , un)];
3. v = c[t[u1, . . . , un]].

The tree language generated by G is then defined to be the set of terminal trees
t ∈ TT such that s ⇒∗ t , where ⇒∗ stands for the reflexive, transitive closure of
⇒.

Note that the tree language generated by a linear context-free tree grammar is
not sensitive to the derivation mode. This is due to the linearity condition which
derives from the fact that the right-hand side of a production rule is restricted to be
a context rather than an arbitrary tree. Consequently, the usual distinction between
outside-in and inside-out tree languages does not apply in the present case.

In this paper, we are interested in string languages rather than in tree languages.
Consequently, we will focus on the yield language generated by a linear context-free
tree grammar, i.e., the set of strings α such that α = t for some tree t ∈ TT such that
s ⇒∗ t . In the general case, the class of yield languages generated by the context-
free tree grammars corresponds to the class of indexed languages. In our case,
because of the linearity constraint, the class of yield languages we consider is much
more restrictive. To the best of our knowledge, whether this class corresponds to a
class of languages definable by some other well-established formalism is an open
question. Nevertheless, it is worth noting that it contains Joshi’s Tree Adjoining
Languages (Joshi and Schabes, 1997) as a proper subclass (Mönnich, 1997).

4.3. LINEAR CONTEXT-FREE REWRITING SYSTEMS

Linear context-free rewriting systems (Vijay-Shanker et al., 1987; Weir, 1988) may
be defined as a proper subclass of multiple context-free grammars (Seki et al.,
1991), which are themeselves a particular case of generalized context-free gram-
mars (Pollard, 1984). We do not follow this general approach here, but give a direct
tailor-made definition, which is indeed equivalent to Weir’s.

428 PHILIPPE DE GROOTE AND SYLVAIN POGODALLA

Let T be an alphabet, and consider a function f : (T ∗)m → (T ∗)n that acts on
tuples of strings. Such a function is called a linear transform if and only if there
exist

α10, α11, . . . , α1p1, . . . , αn0, αn1, . . . , αnpn ∈ T ∗

such that:

f 〈x1, . . . , xm〉 = 〈α10x11α11 . . . x1p1α1p1, . . . , αn0xn1αn1 . . . xnpnαnpn 〉

where
⋃m

i=1{xi } = ⋃n
i=1

pi

j=1{xi j }, and xi j �= xkl , whenever i �= k or j �= l.
In the sequel, we work modulo the associativity of the cartesian prod-

uct, i.e., we identify (T ∗)n × (T ∗)m with (T ∗)n+m and, consequently,
〈〈α1, . . . , αn〉, 〈β1, . . . , βm〉〉 with 〈α1, . . . , αn, β1, . . . , βm〉.

A linear context-free rewriting system is defined to be a quadruple G =
〈N , T, P, s〉 where:

1. N is a ranked alphabet of non-terminal symbols;
2. T is an alphabet of terminal symbols, disjoint from N;
3. P is a finite set of production rules of the form 〈 f, a → α〉 where:

(a) a ∈ N ,

(b) α = a1 . . . an ∈ N ∗,
(c) f is a linear transform from (T ∗)�

n
i=1rN (ai) into (T ∗)rN (a),

4. the start symbol s ∈ N is such that rN (s) = 1.

In Clause 3, the non-terminal word α is possibly empty, in which case the linear
transform f degenerates into a constant tuple f 〈〉.

To each non-terminal symbol a ∈ N , one associates a set L(a) ⊂ (T ∗)rN (a),
inductively defined as follows:

1. for each production rule 〈 f, a → ε〉, where ε stands for the empty word, one
has f 〈〉 ∈ L(a);

2. If t1 ∈ L(a1), . . . , tn ∈ L(an), and 〈 f, a → a1 . . . an〉 is a production rule of P,
then f 〈t1, . . . , tn〉 ∈ L(a).

The language generated by G is then defined to be the set L(s). Observe that this
set is indeed a set of strings because rN (s) = 1.

5. Specifying Context-Free Derivations

In order to encode a formalism as an ACG, we have to give an abstract vocabulary,
an object vocabulary, and a lexicon. The three formalisms of Section 4 generate

ABSTRACT CATEGORIAL GRAMMARS 429

string languages. Consequently, their object vocabulary will obey the construct of
Definition 5. They will also share the same kind of abstract vocabulary, whose
construction is explained in the present section.

Let a → α be a production rule of a context-free string grammar. We define the
skeleton of this rule to be the pair 〈a, �α�〉, where �α� is a word of non-terminal
symbols inductively defined as follows:

1. �b� = ε, if b is a terminal symbol;
2. �b� = b, if b is a non-terminal symbol;
3. �bβ� = �β�, if b is a terminal symbol;
4. �bβ� = b�β�, if b is a non-terminal symbol.

Similarly, let a(x1, . . . , xn) → t be a production rule of a context-free tree
grammar. Its skeleton is defined to be the pair 〈a, �t�〉, where �t� is inductively
defined as follows:

1. �xi� = ε, for xi a variable;
2. � f � = ε, if f is a terminal symbol of rank 0;
3. � f � = f , if f is a non-terminal symbol of rank 0;
4. � f (t1, . . . , tn)� = �t1� . . . �tn�, if f is a terminal symbol;
5. � f (t1, . . . , tn)� = f �t1� . . . �tn�, if f is a non-terminal symbol.

Finally, let 〈 f, a → α〉 be a production rule of a linear context-free rewriting
system. Its skeleton is defined to be the pair 〈a, α〉.

To summarize, in the three cases, the skeleton of a production rule is a pair 〈a, α〉,
where a is the non-terminal symbol occurring in the left-hand side of the rule, and
α is a word consisting of the non-terminal symbols occurring in its right-hand
side.

This notion of skeleton of a production rule allows us to define the higher-order
linear signature associated to a given context-free string grammar, linear context-
free tree grammar, or linear context-free rewriting system.

DEFINITION 6. Let G = 〈N , T, P, s〉 be a context-free string grammar, a
linear context-free tree grammar, or a linear context-free rewriting system. The
higher-order linear signature �G = 〈A, C, τ 〉, associated to G, is defined as
follows:

1. A = N ;
2. to each p ∈ P , one associates a constant cp, and C = ⋃

p∈P {cp};
3. τ (cp) = a1 −◦ . . . an −◦ a, where 〈a, a1 . . . an〉 is the skeleton of rule p.

It is not difficult to see that the closed λ-terms of atomic type built upon the
above signature are regular trees that correspond to context-free parse trees.

430 PHILIPPE DE GROOTE AND SYLVAIN POGODALLA

6. Composition as First-Order Susbtitution

In order to define ACGs representing the formalisms of Section 4, it remains to
specify appropriate lexicons. This section explains the construction of such lexicons
in the case of context-free string grammars.

Let G = 〈N , T, P, s〉 be a context-free string grammar, and let p ∈ P be the
following production rule:

a → α0a1α1 . . . anαn

where a1, a1 . . . , an ∈ N and α0, α1, . . . , αn ∈ T ∗. The linear λ-term [[p]] is defined
to be:

λy1 . . . yn./α0/ + y1 + /α1/ + · · · + yn + /αn/

We now define the ACG corresponding to a given context-free string grammar.

DEFINITION 7. Let G = 〈N , T, P, s〉 be a context-free string grammar. The
Abstract Categorial Grammar �G = 〈�G, �T , �G, s〉 is defined as follows:

1. the abstract vocabulary �G is constructed according to Definition 6;
2. the object vocabulary �T is constructed according to Definition 5;
3. the lexicon �G : �G → �T is such that:

(a) �G(a) = string, for all a ∈ N
(b) �G(cp) = [[p]] for all p ∈ P;

4. the distinguished type s is identical to the start symbol of G.

It remains to prove that the ACG constructed according to the above definition is
indeed a correct representation of the corresponding context-free string grammar.
This is established by the next two propositions.

PROPOSITION 1. Let G = 〈N , T, P, s〉 be a context-free string grammar, and
let �G = 〈�G, �T , �G, s〉 be the Abstract Categorial Grammar constructed from
G according to Definition 7.

For all a ∈ N and all α ∈ T ∗, if a ⇒∗ α then there exists a closed λ-term
t ∈ �(�G) such that ��G t : a and �G(t) = /α/ .

Proof. We proceed by induction on the length of the derivation a ⇒∗ α.
If a ⇒∗ α because of a production rule a → α, there must exist an abstract

constant c corresponding to this production rule, which is of type a and such that
�G(c) = /α/ .

ABSTRACT CATEGORIAL GRAMMARS 431

Now, suppose that the first rule of the derivation is

a → α0a1α1 . . . anαn (1)

Consequently, there exists β1, . . . , βn ∈ T ∗ such that ai ⇒∗ βi and α =
α0β1α1 . . . βnαn. Then, by induction hypothesis, there must exist closed λ-terms
t1, . . . , tn of type a1, . . . , an , respectively, such that �G(ti) = /βi/. On the other
hand, there exists an abstract constant c corresponding to (1), whose type is
a1 −◦ . . . an −◦ a and such that

�G(c) = λy1 . . . yn./α0/ + y1 + /α1/ + · · · + yn + /αn/.

Consequently, we have that

�G(ct1 . . . tn) = /α0/ + /β1/ + /α1/ + · · · + /βn/ + /αn/ = /α/.

PROPOSITION 2. Let �G = 〈�G, �T , �G, s〉 be the Abstract Categorial Gram-
mar constructed from a given context-free string grammar G = 〈N , T, P, s〉,
according to Definition 7.

For all a ∈ N , and all closed λ-term t ∈ �(�G) such that ��G t : a, there exists
α ∈ T ∗ such that �G(t) = /α/, and a ⇒∗ α.

Proof. We proceed by induction on the structure of t. Note that, t being a closed
term of atomic type, it is either a constant or an application.

If t is a constant then t = cp for some p ∈ P whose skeleton is 〈a, ε〉. Then, by
definition of �G, p must be of the form a → α with �G(cp) = /α/.

If t is an application then t = cpt1, . . . , tn for some p ∈ P whose skeleton is
〈a, a1, . . . , an〉. In this case, each λ-term ti must be a closed λ-term of type ai , and
p must be of the form,

a → α0a1α1 . . . anαn

where α0, α1 . . . αn ∈ T ∗, and

�G(cp) = λy1 . . . yn./α0/ + y1 + /α1/ + · · · + yn + /αn/.

Then, by induction hypothesis, there exist β1, . . . , βn ∈ T ∗ such that �G(ti) = /βi/

and ai ⇒∗ βi . This implies that

�G(t) = /α0/ + /β1/ + /α1/ + · · · + /βn/ + /αn/,

and that a ⇒∗ αoβ1α1 . . . βnαn.

432 PHILIPPE DE GROOTE AND SYLVAIN POGODALLA

7. Composition as Second-Order Substitution

In order to adapt the construction of the previous section to the case of linear context-
free tree grammars, we will interpret the atomic types of the abstract vocabulary as
second-order types over strings.

Let G = 〈N , T, P, s〉 be a linear context-free tree grammar, and let p ∈ P be
a production rule a(x1, . . . , xn) → t whose skeleton is 〈a, a1 . . . am〉. The linear
λ-term [[p]] is defined to be:

λy1 . . . ym . λx1 . . . xn.|t |

where |t | is inductively defined as follows:

1. |xi | = xi ;
2. | f | = / f/, if f is a terminal symbol of rank 0;
3. |ai | = yi , if the non-terminal ai is of rank 0;
4. | f (t1, . . . , tk)| = |t1| + · · · + |tk |, if f is a terminal symbol;
5. |ai (t1, . . . , tk)| = yi |t1| · · · |tn|.

Adapting Definition 7 to the case of linear context-free tree grammar is then
straightforward.

DEFINITION 8. Let G = 〈N , T, P, s〉 be a linear context-free tree grammar. The
Abstract Categorial Grammar �G = 〈�G, �T , �G, s〉 is defined as follows:

1. the abstract vocabulary �G is constructed according to Definition 6;
2. the object vocabulary �T is constructed according to Definition 5;
3. the lexicon �G : �G → �T is such that:

(a) �G(a) = stringrn(a) −◦ string, for all a ∈ N
(b) �G(cp) = [[p]], for all p ∈ P .

4. the distinguished type s is identical to the start symbol of G.

In order to establish the correctness of the above construction, we first state two
technical lemmas concerning the operator | · | used in the definition of [[p]]. Their
proofs, which consist of simple inductions, are left to the reader.

LEMMA 1. Let G = 〈N , T, P, s〉 be a linear context-free tree grammar. For all
terminal trees t ∈ TT , |t | = /t/.

LEMMA 2. Let G = 〈N , T, P, s〉 be a linear context-free tree grammar. Let
u, u1, . . . , un ∈ TN∪T , c ∈ CN∪T (1), a1, . . . , am ∈ N, and t ∈ CT (n) be such that:

ABSTRACT CATEGORIAL GRAMMARS 433

1. a1, . . . , am is the sequence of occurences of non-terminal symbols in u;
2. rN (a1) = n;
3. u = c[a1(u1, . . . , un)];

Then, (λy1 . . . ym .|u|)(λx1 . . . xn.|t |) = λy2 . . . ym .|c[t[u1, . . . , un]]|.

PROPOSITION 3. Let G = 〈N , T, P, s〉 be a linear context-free tree grammar,
and let �G = 〈�G, �T , �G, s〉 be the Abstract Categorial Grammar constructed
from G according to Definition 8.

For all a ∈ N such that rN (a) = n, all v ∈ CT (n), and all u1, . . . , un ∈ TT , if
a(u1, . . . , un) ⇒∗ v[u1, . . . , un] then there exists a closed λ-term t ∈ �(�G) such
that ��G t : a and �G(t)/u1/ · · · /un/ = /v[u1, . . . , un]/.

Proof. We proceed by induction on the length of the derivation a(u1, . . . , un)
⇒∗ v[u1, . . . , un].

If a(u1, . . . , un) ⇒∗ v[u1, . . . , un] because of a production rule
a(x1, . . . , xn) → v[x1, . . . , xn], there exists an abstract constant corresponding
to this rule, and we are done by taking t to be this abstract constant.

Now suppose that the first rule of the derivation is the production rule
p, a(x1, . . . , xn) → w[x1, . . . , xn], whose skeleton is 〈a, a1 . . . am〉. Then, for all ai

there exist c ∈ CN∪T (1), wi1, . . . , wirN (ai) ∈ TN∪T , c′ ∈ CT (1), w′
i1, . . . , w

′
irN (ai)

∈
TT , and vi ∈ CT (rN (ai)) such that

1. w(u1, . . . , un) = c[ai (wi1, . . . , wirN (ai))];
2. v(u1, . . . , un) = c′[vi (w′

i1, . . . , w
′
irN (ai)

)];
3. c[s] ⇒∗ c′[s], for all s ∈ TN∪T ;
4. ai (s1, . . . , srN (ai)) ⇒∗ vi (s1, . . . , srN (ai)), for all s1, . . . , srN (ai) ∈ TN∪T ;
5. wi j ⇒∗ w′

i j .

Therefore, by induction hypothesis, there exist closed λ-terms t1, . . . , tm ∈ �(�G)
such that ��G ti : ai and

�G(ti)/s1/ . . . /srN (ai)/ = /vi [s1, . . . , srN (ai)]/

for all s1, . . . , srN (ai) ∈ TN∪T . This implies that

�G(ti) = λx1 . . . xrN (ai)./vi/.

Then we take

t = cpt1 · · · tm,

and the result follows by iterating Lemma 2.

434 PHILIPPE DE GROOTE AND SYLVAIN POGODALLA

PROPOSITION 4. Let �G = 〈�G, �T , �G, s〉 be the Abstract Categorial Gram-
mar constructed from a given context-free tree grammar G = 〈N , T, P, s〉, ac-
cording to Definition 8.

For all a ∈ N such that rN (a) = n, and all closed λ-term t ∈ �(�G) such
that ��G t : a, there exists a context v ∈ CT (n) such that, for all u1, . . . , un ∈
TT , �G(t)/u1/ · · · /un/ = /v[u1, . . . , un]/, and a(u1, . . . , un) ⇒∗ v[u1, . . . , un].

Proof. We proceed by induction on the structure of t.
If t is a constant then t = cp for some p ∈ P whose skeleton is 〈a, ε〉. Conse-

quently, p must be of the form a(x1, . . . , xn) → w[x1, . . . , xn] with w ∈ CT (n).
On the one hand, we have that

a(u1, . . . , un) ⇒ w[u1, . . . , un].

On the other hand, by Lemma 1,

�G(cp) = λx1 . . . xn./w/,

which implies that

�G(cp)/u1/ · · · /un/ = /w[u1, . . . , un]/.

If t is an application then t = cpt1 . . . tm for some p ∈ P whose skeleton is
〈a, a1 . . . am〉, and each λ-term ti must be a closed λ-term of type ai . Consequently,
by induction hypothesis, there exist contexts v1, . . . , vm such that vi ∈ CT (rN (ai))
and, for all all u1, . . . , urN (ai) ∈ TT ,

�G(ti)/u1/ · · · /urN (ai)/ = /vi [u1, . . . , urN (ai)]/,

and

a(u1, . . . , urN (ai)) ⇒∗ vi [u1, . . . , urN (ai)].

This implies that

�G(ti) = λx1 . . . xrN (ai).vi [x1, . . . , xrN (ai)],

and the result follows by iterating Lemma 2 and applying Lemma 1.

ABSTRACT CATEGORIAL GRAMMARS 435

8. Composition as Third-Order Substitution

Finally, in this section, we define the ACG corresponding to a linear context-free
rewriting system. To this end, we interpret the atomic types of the abstract vocab-
ulary as third-order types over strings.

Let G = 〈N , T, P, s〉 be a linear context-free rewriting system, and let p ∈ P be
a production rule 〈 f, a → a1a2 . . . a1〉, whose linear transform obeys the following
equation:

f 〈x1, . . . , xm〉 = 〈α10x11α11 . . . x1p1α1p1, . . . , αn0xn1αn1 . . . xnpnαnpn 〉.

We define the λ-terms u1, . . . , un as follows:

ui = /αi0/ + xi1 + /αi1/ + · · · + xipi + /αi pi /

The linear λ-term [[p]] is then defined to be:

λy1 y2 . . . y1.λz.y1(λx1.y2(λx2. · · · yl(λxl .zu1 · · · un)))

Where x1 is the sequence of λ-variables x1 . . . xrN (a1), x2 is the sequence of λ-
variables xrN (a1)+1 . . . xrN (a1)+rN (a2), etc.

Then, the ACG corresponding to a given linear context-free rewriting system is
defined as follows.

DEFINITION 9. Let G = 〈N , T, P, s〉 be a linear context-free rewriting system.
The Abstract Categorial Grammar �G = 〈�G, �T , �G, s〉 is defined as follows:

1. the abstract vocabulary �G is constructed according to Definition 6;
2. the object vocabulary �T is constructed according to Definition 5;
3. the lexicon �G : �G → �T is such that:

(a) �G(a) = (stringrN (a) −◦ string) −◦ string, for all a ∈ N
(b) �G(cp) = [[p]], for all p ∈ P;

4. the distinguished type s is identical to the start symbol of G.

In order to prove the correctness of the above construction, we start by stating
a technical lemma, whose proof is left to the reader.

LEMMA 3. Let G = 〈N , T, P, s〉 be a linear context-free rewriting system, let
p ∈ P be the production rule 〈 f, a → a1 . . . an〉, and let αi1, . . . , αirN (ai) ∈ T ∗, for
1 ≤ i ≤ n. Then, there exists α1, . . . , αrN (a) ∈ T ∗ such that

436 PHILIPPE DE GROOTE AND SYLVAIN POGODALLA

1. f 〈α11, . . . , α1rN (a1), . . . , αn1, . . . , αnrN (an)〉 = 〈α1, . . . , αrN (a)〉
2. [[p]](λz.z/α11/ · · · /α1rN (a1)/) · · · (λz.z/αn1/ · · · /αnrN (an)/) = λz.z/α1/ · · ·

/αrN (a)/.

PROPOSITION 5. Let G = 〈N , T, P, s〉 be a linear context-free rewriting system,
and let �G = 〈�G, �T , �G, s〉 be the Abstract Categorial Grammar constructed
from G according to Definition 9.

For all a ∈ N such that rN (a) = n, and all α1, . . . , αn ∈ T ∗, if 〈α1, . . . , αn〉 ∈
L(a) then there exists a closed λ-term t ∈ �(�G) such that ��G t : a and �G(t) =
λz.z/α1/ · · · /αn/.

Proof. We proceed by induction on the definition of L(a).
If f 〈〉 = 〈α1, . . . , αn〉 ∈ L(a) because there exists a production rule p of

the form 〈 f, a → ε〉, there exists an abstract constant cp of type a such that
�G(cp) = λz.z/α1/ · · · /αn/.

Now suppose that 〈α1, . . . , αn〉 ∈ L(a) because there exists a production rule
〈 f, a → a1 · · · am〉, together with tuples 〈αi1, . . . , αirN (ai)〉 ∈ L(ai) such that

f 〈α11, . . . , α1rN (aI), . . . , αm1, . . . , αmrN (am)〉 = 〈α1, . . . , αn〉.

Hence, by induction hypothesis, there exist closed λ-terms t1, . . . , tm ∈ �(�G)
such that ��G ti : ai and �G(ti) = λz.z/αi1/ · · · /αirN (ai)/. Then, the result follows
by Lemma 3.

PROPOSITION 6. Let �G = 〈�G, �T , �G, s〉 be the Abstract Categorial
Grammar constructed from a given linear context-free rewriting system G =
〈N , T, P, s〉, according to Definition 9.

For all a ∈ N such that rN (a) = n, and all closed λ-term t ∈ �(�G) such that
��G t : a, there exist α1, . . . , αn ∈ T ∗ such that �G(t) = λz.z/α1/ · · · /αn/, and
〈α1, . . . , αn〉 ∈ L(a).

Proof. We proceed by induction on the structure of t.
If t is a constant then t = cp for some p ∈ P whose skeleton is 〈a, ε〉. Conse-

quently, p must be of the form 〈 f, a → ε〉 Then, there exist α1, . . . , αn ∈ T ∗ such
that f 〈〉 = 〈α1, . . . , αn〉. Hence, by definition, �G(cp) = λz.z/α1/ · · · /αn/, and
〈α1, . . . , αn〉 ∈ L(a).

If t is an application then t = cpt1 . . . tm for some p ∈ P whose form is
〈 f, a → a1 . . . am〉, and each λ-term ti must be a closed λ-term of type ai . Therefore,
by induction hypothesis, there exist αi1, . . . , αirN (ai) ∈ T ∗ such that �G(ti) =
λz.z/αi1/ · · · /αirN (ai)/ and 〈αi1, . . . , αirN (ai)〉 ∈ L(ai). Then, the result follows by
Lemma 3.

Observe that we do not have that α ∈ L(s) if and only if /α/ ∈ O(�G) We have
instead that α ∈ L(s) if and only if λz.z/α/ ∈ O(�G). This possible defect can be

ABSTRACT CATEGORIAL GRAMMARS 437

easily fixed by changing the distinguished type of the grammar to be a new abstract
atomic type s ′, and by adding a new abstract constant c of type s −◦s ′. The lexicon
is then extended in such a way that �G(s ′) = string and �G(c) = λy.y(λx .x).

9. Conclusions

The embeding of context-free string grammars, linear context-free tree grammars,
and linear context-free rewriting systems in Abstract Categorial Grammars exem-
plifies some of the features of the ACG framework.

The fact that an ACG generates two languages offer an explicit control of the
parse structure of the grammar. Consequently, the three encodings we have given
are in fact strong equivalences.1

The fact that the basic objects manipulated by an ACG are linear λ-terms allows
higher-order operations to be defined. Typically, tree-adjunction is such a higher-
order operation (Abrusci et al., 1999; Joshi and Kulick, 1997; Mönnich, 1997),
and we have seen that the possibility of defining such higher-order operations is
the keystone in encoding linear context-free tree grammars and linear context-free
rewriting systems.

Finally, the fact that the embeddings of the three context-free formalisms are
based, respectively, on first-order, second-order, and third-order interpretations sug-
gests the existence of an Abstract Categorial Hierachy that would allow the expres-
sive power of the ACGs to be controlled.

Note

1. In the case of linear context-free tree grammars, this claim might be discussed because our encoding
does not give access to the tree-language generated by the linear context-free tree grammar. This
possible problem may be fixed by defining the embedding in two stages as is done in (de Groote,
2002)

References

Abrusci, M., Fouqueré, C., and Vauzeilles, J., 1999, “Tree-adjoining grammars in a fragment of the
Lambek calculus,” Computational Linguistics 25, 209–236.

Barendregt, H., 1984, The Lambda Calculus, its Syntax and Semantics, North-Holland, revised edition.
Carpenter, B., 1996, Type-Logical Semantics, Cambridge, MA and London, U.K.: MIT Press.
de Groote, P., 2001, “Towards Abstract Categorial Grammars,” pp. 148–155 in Association for Com-

putational Linguistics, 39th Annual Meeting and 10th Conference of the European Chapter,
Proceedings of the Conference.

de Groote, P., 2002, “Tree-adjoining grammars as Abstract Categorial Grammars,” in pp. 145–150
TAG+6, Proceedings of the Sixth International Workshop on Tree Adjoining Grammars and
Related Frameworks.

Girard, J.-Y., 1987, “Linear logic,” Theoretical Computer Science 50, 1–102.
Joshi, A.K. and Kulick, S., 1997, “Partial proof trees as building blocks for a categorial grammar,”

Linguistic & Philosophy 20, 637–667.

438 PHILIPPE DE GROOTE AND SYLVAIN POGODALLA

Joshi, A.K. and Schabes, Y., 1997, “Tree-adjoining grammars,” in Handbook of Formal Languages,
Vol. 3, G.R. and A. Salomaa, ed., Springer, Chapter 2.

Mönnich, U., 1997, “Adjunction as substitution,” pp. 169–178. in G.-J. Kruiff, G. Morrill, and D.
Oehrle (eds.) Formal Grammar.

Moortgat, M., 1997, “Categorial type logics,” in Handbook of Logic and Language, J. van Benthem
and A. ter Meulen, eds., Elsevier, Chapter 2.

Morrill, G., 1994, Type Logical Grammar: Categorial Logic of Signs, Dordrecht: Kluwer Academic
Publishers.

Oehrle, R.T., 1994, “Term-labeled categorial type systems,” Linguistic & Philosophy 17, 633–678.
Pollard, C., 1984, “Generalized phrase structure grammars, head grammars, and natural language,”

Ph.D. Thesis, Stanford University, CA.
Ranta, A., 2002, “Grammatical Framework,” Journal of Functional Programming 14, 145–189.
Seki, H., Matsumura, T., Fujii, M., and Kasami T., 1991, “On multiple context-free grammars,”

Theoretical Computer Science 223, 87–120.
Vijay-Shanker, K., Weir, D. J., and Joshi, A. K. 1987, ‘Characterizing structural descriptions produced

by various grammatical formalisms,” pp. 104–111 in Proceedings of the 25th ACL, Stanford, CA.
Weir, D.J., 1988, “Characterizing mildly context-sensitive grammar formalisms,” Ph.D. Thesis, Uni-

versity of Pennsylvania.

