
385Journal of Logic, Language and Information 13: 385–402, 2004.
C© 2004 Kluwer Academic Publishers. Printed in the Netherlands.

Scope Dominance with Monotone Quantifiers
over Finite Domains

GILAD BEN-AVI and YOAD WINTER
Computer Science Department, Technion—Israel Institute of Technology, Haifa 32000, Israel
E-mails: bagilad, winter@cs.technion.ac.il

(Received in final form 7 June 2004)

Abstract. We characterize pairs of monotone generalized quantifiers Q1 and Q2 over finite domains
that give rise to an entailment relation between their two relative scope construals. This relation
between quantifiers, which is referred to as scope dominance, is used for identifying entailment
relations between the two scopal interpretations of simple sentences of the form NP1–V–NP2. Simple
numerical or set-theoretical considerations that follow from our main result are used for characterizing
such relations. The variety of examples in which they hold are shown to go far beyond the familiar
existential-universal type.
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1. Introduction

Scope ambiguity in simple transitive sentences of the form NP1–V–NP2 is one
of the well-studied areas in natural language semantics. It has been often ob-
served that whether this kind of ambiguity is manifested in natural language may
depend on entailment relations between the readings of such sentences. For in-
stance, Zimmermann (1993) characterizes the class of scopeless (“name like”)
noun phrases – the class of NP2s for which the two scope construals of the sentence
NP1–V–NP2 are equivalent for any noun phrase NP1 and transitive verb V. A more
general notion, first addressed by Westerståhl (1986), involves uni-directional en-
tailment between the two analyses, which is referred to here as scope dominance.
A sentence NP1–V–NP2 exhibits scope dominance if one of its two analyses entails
the other. A familiar case is when the subject (or object) denotes an existential
quantifier (e.g., some student) and the object (or subject, respectively) denotes a
universal quantifier (e.g., every teacher). Westerståhl shows that in the class of non-
trivial upward monotone quantifiers over finite domains, scope dominance appears
if and only if the subject or object are existential or universal.

Altman et al. (2002) generalize Westerståhl’s result, and show a full charac-
terization of scope dominance with arbitrary upward monotone quantifiers over
countable domains. In this paper, we generalize Westerståhl’s result in another
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way, and characterize scope dominance between simple upward or downward
monotone quantifiers over finite domains. It leads to a general characterization
of entailments over finite domains between the semantic analyses of sentences
with (potential) scope ambiguity as in the following cases, where both subject and
object are monotone.

(1) Less than five referees read each of the abstracts.
(2) Less than five referees read at least one of the abstracts.

In sentence (2), the object narrow scope construal entails the object wide scope
construal. In (1), the entailment between the two construals is in the opposite
direction. Note that the definite noun phrase the abstracts leads in both sentences
to the presupposition that there are at least two abstracts, which is crucial for
the respective entailments to hold. Similarly to Westerståhl’s result about upward
monotone quantifiers, in both examples scope dominance is created by the presence
of an existential or universal quantifier. However, as we shall see, our extension of
Westerståhl’s characterization reveals many more cases of scope dominance with
monotone quantifiers other than every or some.

This work is part of a broader enterprise that aims to characterize general en-
tailment patterns between different readings of ambiguous sentences in natural lan-
guage. One central motivation for studying this question comes from the promise it
carries for improving existing techniques for reasoning under ambiguity. Towards
the end of this paper we describe this new line of research.

The rest of this paper is organized as follows. Section 2 gives some essential back-
ground on generalized quantifier theory. Section 3 briefly discusses some previous
results on various scope dominance relations. Section 4 proves our characterization
of scope dominance relations with monotone quantifiers over finite domains, and
exemplifies its relevance for the analysis of scopally ambiguous English sentences.
Section 5 concludes the article and elaborates in some detail on its relevance for
reasoning under ambiguity.

2. Background

This section reviews some notions from generalized quantifier theory that will be
used in our characterization of scope dominance.

A (generalized) quantifier over a domain E is a set Q ⊆ ℘(E). In this paper,
we are particularly interested in monotone quantifiers, those quantifiers that are
closed under supersets or subsets. Formally, a quantifier Q over E is called upward
(downward) monotone iff for any set A in Q and A′ a superset (subset) of A: A′

is in Q as well. In the sequel, we sometimes use the abbreviations “MON↑” and
“MON↓” for “upward/downward monotone.” Two “degenerate” kinds of monotone
quantifiers over a domain E are the two trivial quantifiers: the empty quantifier
and the quantifier ℘(E). For an upward (downward) monotone quantifier Q, it
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is sometimes useful to designate the collection of Q’s minimal (maximal) sets.
Formally, given a quantifier Q, a set A ∈ Q is minimal in Q iff for any A′⊆� A:
A′ /∈ Q. Analogously, given a quantifier Q, a set A ∈ Q is maximal in Q iff for any
A⊆� A′ : A′ /∈ Q.

Given a binary relation R ⊆ E2 and a ∈ E, we write Ra =def {y ∈ E : R(a, y)}
and Ra =def {x ∈ E : R(x, a)}. The Object Narrow Scope (ONS) analysis of a
simple transitive sentence NP1–V–NP2 is naturally interpreted in a domain E as
the proposition Q1 Q2 R as defined below, where Q1 and Q2 are the subject and
object quantifiers (NP1 and NP2, respectively) over E, and the relation R ⊆ E2 is
the denotation of the verb V.

(3) Q1 Q2 R ⇔def {x ∈ E : Rx ∈ Q2} ∈ Q1.

The Object Wide Scope (OWS) analysis is Q2 Q1 R−1, which by (3) is equivalent to
the requirement {y ∈ E : Ry ∈ Q1} ∈ Q2. The notion of scope dominance, which
plays a special role in this paper, is defined as follows.

DEFINITION 1 (Scope dominance). Given two quantifiers Q1 and Q2 over E we
say that Q1 is scopally dominant over Q2 iff for every R ⊆ E2 : Q1 Q2 R ⇒
Q2 Q1 R−1.

Consider for instance the following familiar type of sentences.

(4) A competent referee read every abstract.

In this case, we say that the ONS reading, with the ∃∀ order of quantifiers, is
dominant over the OWS reading, with the opposite order.1

For a quantifier Q over E, the following notions of quantifier negation will be
useful for characterizing scope dominance:

¬Q = {X ⊆ E : X /∈ Q} (Q’s complement)

Q¬ = {X ⊆ E : E\X ∈ Q} (Q’s post-complement)

Qd = ¬Q¬ = {X ⊆ E : E\X /∈ Q} (Q’s dual)

Some simple properties of quantifier duality are the following, for any quantifier Q
over E:

1. (Qd)d = Q
2. Q = ∅ ⇔ Qd = ℘(E)
3. Q is MON↑ (MON↓) iff Qd is MON↑ (MON↓).

The relevance of duality to scope dominance comes from the following simple
fact.
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FACT 1. For any two quantifiers Q1 and Q2 over E: Q1 is scopally dominant over
Q2 iff Qd

2 is scopally dominant over Qd
1 .

A determiner over a domain E is a function D that assigns to every A ⊆ E a
quantifier D(A). Two important properties of determiners are conservativity and
permutation invariance. A determiner D over E is called conservative iff for all
A, B ⊆ E : B ∈ D(A) ⇔ B ∩ A ∈ D(A). A determiner D over E is called per-
mutation invariant iff for every permutation π on E, and for all A, B ⊆ E : B ∈
D(A) ⇔ π B ∈ D(π A), where for a set X ⊆ E, π X = {π (x) : x ∈ X}.

In part of Section 4, we will concentrate on quantifiers that satisfy Q = D(A)
for some A ⊆ E and a conservative and permutation invariant determiner D. In the
sequel, we refer to such quantifiers as CPI-based.

As pointed out by Väänänen and Westerståhl (2001), every monotone CPI-based
quantifier Q over a finite domain E can be represented as follows, for some A ⊆ E
and n ≥ 0.

(5a) Q = {X : |A ∩ X | ≥ n}, if Q is MON↑
(5b) Q = {X : |A ∩ X | < n}, if Q is MON↓

The duals of such CPI-based quantifiers can be represented as follows, respectively
(note that a dual of a CPI-based quantifier is also CPI-based).

(6a) Qd = {X : |A ∩ X | ≥ |A| − n + 1}
(6b) Qd = {X : |A ∩ X | < |A| − n + 1}

In Table I we give some examples of monotone CPI-based quantifiers D(A) over a
finite domain E for various determiners D and arbitrary sets A ⊆ E, together with
their presentation according to the scheme in (5). In these examples, for any real
number r, the notations �r� and �r� standardly stand for the integer value closet to
r from below and from above, respectively.

Table I. CPI-based quantifiers.

every′ (A) = {X ⊆ E : |A ∩ X | ≥ |A|}
not every′ (A) = {X ⊆ E : |A ∩ X | < |A|}
some′ (A) = {X ⊆ E : |A ∩ X | ≥ 1}
no′ (A) = {X ⊆ E : |A ∩ X | < 1}
more than n′ (A) = {X ⊆ E : |A ∩ X | > n + 1}
less than n′ (A) = {X ⊆ E : |A ∩ X | < n}
more than half′ (A) = {X ⊆ E : |A ∩ X | ≥ � |A|

2 � + 1}
at least half′ (A) = {X ⊆ E : |A ∩ X | ≥ � |A|

2 �}
less than half′ (A) = {X ⊆ E : |A ∩ X | < � |A|

2 �}
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3. Related Works

Westerståhl (1986) characterizes the pairs Q1 and Q2 of CPI-based, upward mono-
tone quantifiers over finite domains, for which Q1 is scopally dominant over Q2. He
shows that if both quantifiers are not trivial, then Q1 is dominant over Q2 iff Q1 =
some′ (A) or Q2 = every′ (B), for some A, B ⊆ E . Some more results about scope
dominance appear in van Benthem (1989). He shows that a quantifier Q is domi-
nant over any upward monotone quantifier iff Q = some′ (A), for some A ⊆ E .
Furthermore, he shows that a quantifier Q is dominant over any (not necessarily
monotone) quantifier iff it is a principal ultrafilter, or the empty quantifier.

Altman et al. (2002) extend Westerståhl’s result for all upward monotone quan-
tifiers over countable domains. They show that for such quantifiers, Q1 is scopally
dominant over Q2 iff one of the following requirements holds:

(i) Q1 is existential
(ii) Q2 is universal

(iii) Q1 satisfies (U), Q2 �= ∅ and Q2 satisfies (DCC)
(iv) Q2 is a filter, Q1 �= ℘(E) and Q1 satisfies (FIN)

where (U), (DCC) and (FIN) are defined as follows:

• A quantifier Q satisfies the union property (U) if for all A1, A2 ⊆ E : if A1 ∪
A2 ∈ Q then A1 ∈ Q or A2 ∈ Q.

• A quantifier Q satisfies the Descending Chain Condition (DCC) if for every
descending sequence A1 ⊇ A2 ⊇ · · · An ⊇ · · · in Q, the intersection ∩Ai is in
Q as well.

• A quantifier Q satisfies (FIN) if every set in Q contains a finite subset that is
also in Q.

Other scope commutativity properties of qunatifiers were studied by
Zimmermann (1993) and Westerståhl (1996). Zimmermann characterizes the class
of scopeless quantifiers: those quantifiers Q that satisfy for all Q1 ⊆ ℘(E) and
R ⊆ E2 : QQ1 R ⇔ Q1QR−1. He shows that the scopeless quantifiers over E are
precisely the principal ultrafilters over E.2 Westerståhl (1996) characterizes the
class of self-commuting quantifiers: those quantifiers Q, such that for every
R ⊆ E2 : QQR ⇔ QQR−1. He shows that Q ⊆ ℘(E) is self-commuting iff Q is
either a union or an intersection of atoms, or a finite symmetric difference of atoms,
or a negation of such a symmetric difference. Clearly, the notion of scope dom-
inance is more general than scopelessness or self-commutativity: a quantifier Q
is scopeless iff Q and Qd are both scopally dominant over any quantifier Q1;
Q is self-commuting iff it is scopally dominant over itself. However, it should
be noted that the actual results of Altman et al., as well as the new results
presented in this paper, do not fully subsume the results by Zimmermann and
Westerståhl.
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4. Scope Dominance with Monotone Quantifiers over Finite Domains

In this section, we introduce a general result that completely characterizes the re-
lations of scope dominance between pairs of upward monotone quantifiers and
downward monotone quantifiers over finite domains. We then study the implica-
tions of this result for the natural subclass of CPI-based quantifiers, and extend
the coverage of our technique to scope dominance over finite domains between
pairs of CPI-based downward monotone quantifiers. Throughout this section, we
exemplify how these results are used for characterizing scope dominance in nat-
ural language, which leads to the identification of previously unobserved entail-
ments between wide scope and narrow scope analyses of potentially ambiguous
sentences.

4.1. SCOPE DOMINANCE WITH QUANTIFIERS OF MIXED MONOTONICITY

The following proposition, the central result in this subsection, characterizes scope
dominance between pairs of upward monotone quantifiers and downward monotone
quantifiers over finite domains.

PROPOSITION 2. Let Q1 and Q2 be two quantifiers over a finite domain E, s.t.
Q1 is MON↑ and Q2 is MON↓. Let the natural number n be defined by:

n = max{|Y | : Y is minimal in ¬Q2}.

Then Q1 is scopally dominant over Q2 iff one of the following holds:

(i) Neither quantifier is trivial, and for every Q ⊆ Q1, if |Q| = n + 1 then⋂
Q �= ∅.

(ii) Q1 = ∅
(iii) Q2 = ℘(E).
(iv) Q2 = ∅ and Q1 �= ℘(E).

Proof. It is easy to verify that if at least one of Q1 and Q2 is trivial, then Q1

is scopally dominant over Q2 iff one of the clauses (ii)–(iv) holds. We therefore
assume that both quantifiers are not trivial, and prove that Q1 is scopally dominant
over Q2 iff (i) holds.

Only if: In order to obtain a contradiction assume that Q1 is scopally dominant
over Q2, but there is a subset Q of Q1 s.t. |Q| = n + 1 and

⋂
Q = ∅. Denote

Q = {X, X1, . . . , Xn}. Let Y be any minimal set in ¬Q2 of cardinality n, and
denote Y = {y1, . . . , yn}. Let R = ⋃n

i=1(Xi × {yi }). From
⋂

Q = ∅ it follows
that for every x ∈ X, Rx � Y , and because Y is minimal in ¬Q2, Rx ∈ Q2. Hence,
X ⊆ {x ∈ E : Rx ∈ Q2}. Since X ∈ Q1 and Q1 is MON↑: {x ∈ E : Rx ∈ Q2}
∈ Q1. However, {y ∈ E : Ry ∈ Q1}= Y /∈ Q2, in contradiction to the assumption
that Q1 is scopally dominant over Q2.
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If: Assume for obtaining a contradiction that for every Q ⊆ Q1 s.t. |Q| = n+1 :⋂
Q �= ∅, but Q1 is not scopally dominant over Q2. Then there is R ⊆ E2 s.t.

{x ∈ E : Rx ∈ Q2} ∈ Q1 and {y ∈ E : Ry ∈ Q1} /∈ Q2. Let Y ⊆ {y ∈ E : Ry ∈
Q1} be a minimal set in ¬Q2. Since Q2 is MON↓ and not empty, it follows that
∅ ∈ Q2, hence Y ∈ ¬Q2 is not empty. Since E is finite, |Y | < ℵ0. For every y ∈ Y
let Ay be a minimal set in Q1 s.t. Ay ⊆ Ry . Let A ⊆ {x ∈ E : Rx ∈ Q2} be also a
minimal set in Q1. Let Q = {A} ∪ {Ay : y ∈ Y }. If x ∈ ⋂

y∈Y Ay then Y ⊆ Rx , and
because Q2 is MON↓ and Y /∈ Q2, also Rx /∈ Q2. It follows that for such x, x /∈ A,
and therefore

⋂
Q = ∅. By definition of n, |Y | ≤ n (since Y is minimal in ¬Q2).

Thus, |Q| ≤ |Y | + 1 ≤ n + 1. But |Q| �= n + 1 since
⋂

Q = ∅, and we assumed
that if |Q| = n + 1 then

⋂
Q �= 0. Thus, |Q| = k for 0 < k < n + 1, and we show

that there is Q′ ⊆ Q1 s.t. |Q′| = n + 1 − k and Q′ ∩ Q = ∅.
To do that we first claim that |{x ∈ E : E\{x} /∈ Q}| ≥ n − k. This is true

because |{x ∈ E : E\{x} /∈ Q}| = |E\{x ∈ E : E\{x} ∈ Q}| = |E | − |{x ∈
E : E\{x} ∈ Q}|. But |E | ≥ n, and |{x ∈ E : E\{x} ∈ Q}| ≤ |Q| = k. Thus,
|E | − |{x ∈ E : E\{x} ∈ Q}| ≥ n − k.

So let X ⊆ {x ∈ E : E\{x} /∈ Q} with |X | = n − k, and let Q′ = {E\{x} :
x ∈ X} ∪ {E}.Q′ ⊆ Q1, because if x ∈ X then there is A′ ∈ Q s.t. x /∈ A′ (since⋂

Q = ∅), and therefore A′ ⊆ E\{x}; from the upward monotonicity of Q1, it
follows that E\{x} ∈ Q1. To see that Q′ ∩ Q = ∅ note that by the definition of X :
if x ∈ X then E\{x} /∈ Q. Furthermore, if E ∈ Q then, since all the sets in Q are
minimal in Q1, E is the only minimal set in Q1, which implies that Q = {E}. But this
contradicts the fact that

⋂
Q = ∅, hence E /∈ Q. Thus, every set in Q′ is not in Q.

From Q′ ∩ Q = ∅ it follows that |Q′ ∪ Q| = |Q′| + |Q| = n + 1. Furthermore,
from

⋂
Q = ∅ it follows that

⋂
(Q′ ∪ Q) = ∅, in contradiction to the assumption

that for every Q ⊆ Q1 s.t. |Q| = n + 1 :
⋂

Q �= ∅.

The dual of the kind of scope dominance that is introduced in Proposition 2 is
the case in which Q1 is MON↓ and Q2 is MON↑. Corollary 3 below is a direct
consequence of Proposition 2.

COROLLARY 3. Let Q1 and Q2 be two quantifiers over a finite domain E, s.t. Q1

is MON↓ and Q2 is MON↑. Let

n = max {|Y | : Y is minimal in Q1¬}.

Then Q1 is scopally dominant over Q2 iff one of the following holds:

(i) Neither quantifier is trivial, and for every Q ⊆ Qd
2 , if |Q| = n + 1 then⋂

Q �= ∅.
(ii) Q1 = ∅.

(iii) Q2 = ℘(E).
(iv) Q1 = ℘(E) and Q2 �= ∅.
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4.2. EXAMPLES

Let us now consider some examples for the application of Proposition 2 and
Corollary 3 to natural language. First, note that Proposition 2 implies that if B �= ∅
then every′ (B) is scopally dominant over any MON↓ quantifier. By duality, if
B �= ∅ then every MON↓ quantifier is scopally dominant over some′ (B). Another
consequence of Proposition 2 is that if |B| ≥ 2 then some′ (B) is not scopally dom-
inant over any non-trivial MON↓ quantifier. Incidently, these three consequences
hold in infinite domains as well. Example 1 below illustrates these facts using
CPI-based quantifiers with simple determiners.

EXAMPLE 1. Reconsider sentences (1) and (2), restated below as (7) and (8).
Since the set of abstracts B is presupposed to be non-empty,3 the OWS reading (7b)
of sentence (7) entails its ONS reading (7a). Similarly, the ONS analysis (8a) of
sentence (8) entails its OWS analysis (8b).

(7) Less than five referees read each of the abstracts.
a. less than 5′ (A) every′ (B) R
b. every′ (B) less than 5′ (A) R−1

(8) Less than five referees read at least one of the abstracts.
a. less than 5′ (A) some′ (B) R
b. some′ (B) less than 5′ (A) R−1

Such examples with existential and universal quantifiers do not exhaust the
cases of scope dominance with monotone quantifiers, as the following example
demonstrates.

EXAMPLE 2. By Proposition 2, more than half′ (A) is scopally dominant over
no′ (B) for all A, B ⊆ E . By Corollary 3, not every′ (A) (=(no′ (A))d) is scopally
dominant over at least half′ (B) (=(more than half′ (B))d), for all A, B ⊆ E .

Consider now the following sentences.

(9) More than half of the referees read no abstract.
(10) No abstract was read by more than half of the referees.

To begin with, it is not at all clear that these two sentences are scopally ambigu-
ous. For many speakers both sentences are unambiguous, and have only an ONS
reading. Under this unambiguous interpretation, our characterization accounts for
the entailment from (the unambiguous) sentence (9) to (the unambiguous) sentence
(10). For speakers who may consider these sentences (or their parallels in other
languages) ambiguous, our characterization accounts for the entailment from the
ONS analysis of (9) to its OWS analysis, and for the entailment in the opposite
direction in (10).
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Note that the more than/ at least half of quantifiers that are involved in Example
2 are not first order definable, so these entailments cannot be derived by any axiom
system of the first order Predicate Calculus.

So far we have considered only “simple” natural language quantifiers – quanti-
fiers that are denoted by simple NPs of the form Determiner-Noun. However, when
NP coordination comes into play, many of the potentially infinite number of quan-
tifiers that are created in this way are not CPI-based – hence, according to standard
assumptions, they are not expressible as NPs of the form Determiner-Noun in any
natural language. For example, the quantifier every′ (A1) ∪ every′ (A2) that is de-
noted by coordinations such as every author or every teacher is CPI-based only
when either A1 ⊆ A2 or A2 ⊆ A1. The following simple (dual) lemmas help in
characterizing scope dominance also with non-CPI-based quantifiers.4

LEMMA 4. Let Q1 and Q2 be two quantifiers over a domain E s.t. Q2 is MON↓
and Q1 is scopally dominant over Q2. Then every quantifier Q s.t. Q ⊆ Q1 is also
scopally dominant over Q2.

LEMMA 5. Let Q1 and Q2 be two quantifiers over a domain E s.t. Q1 is MON↓
and Q1 is scopally dominant over Q2. Then for every quantifier Q s.t. Q2 ⊆ Q, Q1

is scopally dominant over Q.

EXAMPLE 3. Sentences (11), (12) and (13) exhibit the same scope dominance
relations as sentences (7), (9) and (10) respectively, due to Lemma 4.

(11) Less than five referees read each of the abstracts and more than three
manuscripts.

(12) More than half of the referees and more than three TAs read no abstract.
(13) No abstract was read by more than half of the referees and more than three

TAs.

Similarly, sentence (14) exhibits the same scope dominance relations as sentence
(8), due to Lemma 5.

(14) Less than five referees read at least one of the abstracts or more than three
manuscripts.

Note that the coordinate NPs in this example do not necessarily denote CPI-
based quantifiers. For instance, if there are five abstracts in A and five manuscripts
in M, the quantifier every′ (A) ∩ more than 3′ (M), which is denoted by the object
of sentence (11), is not CPI-based.

The following example demonstrates how Lemma 4 can be used to identify that
a disjunction (union) of two quantifiers is not scopally dominant over a downward
monotone quantifier, even when one of the disjuncts is.
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EXAMPLE 4. Let A, B ⊆ E s.t. |A| ≥ 2 and |B| ≥ 2.
Then Q1 = at least half′ (A) = {X ⊆ E : |A ∩ X | ≥ |A\X} is not scopally
dominant over Q2 = less than 2′ (B) = {X ⊆ E : |B ∩ X | < 2}. This fact follows
from Proposition 2, since 2 = max{|Y | : Y is minimal in ¬Q2}, and there is
Q ⊆ Q1 s.t. |Q| = 3 and

⋂
Q = ∅. By Lemma 4, for every A′ ⊆ E, Q1∪ every′

(A′) is not scopally dominant over Q2.5 As a result of these facts, the ONS reading
of sentence (15) below does not entail the ONS reading of sentence (16).

(15) At least half of the referees (or each of the TAs) read less than two of the
abstracts.

(16) Less than two of the abstracts was read by at least half of the referees (or each
of the TAs).

The following examples demonstrate that conjectures analogous to Lemmas 4
and 5, but in which the inclusions are in opposite direction, do not hold.

EXAMPLE 5. Let B be a non-empty subset of E and b′, j ′, m ′ ∈ E . Let Q′
1 = {X ⊆

E : m ′ ∈ X ∨{b′, j ′} ⊆ X}, Q′′
1 = {X ⊆ E : b′ ∈ X ∨{m ′, j ′} ⊆ X}. Then neither Q′

1
nor Q′′

1 is scopally dominant over no′ (B), since these quantifiers contain disjoint
sets. However Q′

1 ∩ Q′′
1 = {X ⊆ E : {m ′, b′} ⊆ X ∨ {m ′, j ′} ⊆ X ∨ {b′, j ′} ⊆ X}

is scopally dominant over no′ (B). This accounts for the entailment between the
ONS and the OWS analyses of sentence (19), as opposed to the lack of similar
entailments in sentences (17) and (18).

(17) Mary or [Bill and John] read no paper.
(18) Bill or [Mary and John] read no paper.
(19) [Mary or [Bill and John]] and [Bill or [Mary and John]] read no paper.

EXAMPLE 6. Let A1, A2 and B be non-empty subsets of E.
Then every′ (A1) and every′ (A2) are scopally dominant over no′ (B), but every′

(A1) ∪ every′ (A2) is scopally dominant over no′ (B) only if (and if) A1 ∩ A2 �= ∅.

In the examples we have seen thus far, all the downward monotone quantifiers
were CPI-based. In the following example this is not necessarily so.

EXAMPLE 7. Let A, B1, B2 ⊆ E , s.t. |A| = 4, |B1| ≥ 2, |B2| ≥ 1 and B1 ∩ B2 =
∅. Let Q1 = {X ⊆ E : |A ∩ X | ≥ 3} (= at least 3′ (A)), Q′

2 = {Y ⊆ E :
|B1 ∩ Y | < 2} (= at most 1′ (B1)) and Q′′

2 = Y ⊆ E : |B2 ∩ Y | < 1} (= no′ (B2)).
Then,

2 = max{|Y | : Y is minimal in ¬(Q′
2 ∩ Q′′

2)}
and for every Q ⊆ Q1, if |Q| = 3, then

⋂
Q �= ∅. By Proposition 2, Q1 is scopally

dominant over Q′
2 ∩ Q′′

2. Hence the ONS reading of sentence (20) entails the ONS
reading of sentence (21).



SCOPE DOMINANCE WITH MONOTONE QUANTIfiERS OVER fiNITE DOMAINS 395

(20) At least three referees read at most one abstract and no manuscript.
(21) At most one abstract and no manuscript was read by at least three referees.

On the other hand, Q1 is not scopally dominant over Q′
2 ∪ Q′′

2, since

3 = max{|Y | : Y is minimal in ¬(Q′
2 ∪ Q′′

2)}

and there is a Q ⊆ Q1 s.t. |Q| = 4 and
⋂

Q = ∅. Thus, the ONS reading of
sentence (22) does not entail the ONS reading of sentence (23).

(22) At least three referees read at most one abstract or no manuscript.
(23) At most one abstract or no manuscript was read by at least three referees.

4.3. SCOPE DOMINANCE WITH CPI-BASED QUANTIfiERS OF MIXED

MONOTONICITY

Proposition 2 is a general characterization of scope dominance with quantifiers of
mixed monotonicity over finite domains. As we have seen in the previous subsection,
checking whether two given quantifiers satisfy the condition in this proposition is
not always straightforward. But when both quantifiers are CPI-based, which is the
case in simple NPs in natural language, the task of identifying scope dominance
can be simplified using Väänänen and Westerståhl’s presentation (5) of monotone
CPI-based quantifiers Q, which is reproduced below.

(24a) Q = {X : |A ∩ X | ≥ n}, if Q is MON↑
(24b) Q = {X : |A ∩ X | < n}, if Q is MON↓

In this presentation, the values of n and |A| characterize Q completely, and it is
therefore possible to identify scope dominance using a simple condition on these
values of the two quantifiers. To do that, the following simple combinatorial lemma
is useful, whose proof is given in an appendix for sake of completeness.

LEMMA 6. Let �, m, k, n ∈ IN s.t. �, k > 0, m ≥ 0 and 0 < n ≤ k. Let X be a
set with |X | = k. Then 1 and 2 below are equivalent:

1. There is an �-ary sequence of (not necessarily distinct) subsets X1, . . . , X� of
X , s.t. |Xi | = n, 1 ≤ i ≤ �, and every x ∈ X is in at most m of the Xi s.

2. �n ≤ mk.

Using this lemma, we observe the following corollary of Proposition 2.

COROLLARY 7. Let Q1 and Q2 be two CPI-based quantifiers over a finite domain
E s.t. Q1 is MON↑ and Q2 is MON↓. According to the presentation in (24),
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assume that for some A, B ⊆ E and n, m ≥ 0 : Q1 = {X : |A ∩ X | ≥ n} and
Q2 = {Y : |B ∩ Y | < m}. Then Q1 is scopally dominant over Q2 iff one of the
following holds:

(i) |A|
n < m+1

m and both 0 < n ≤ |A| and 0 < m ≤ |B| (both quantifiers are not
trivial).

(ii) n > |A| (Q1 = ∅).
(iii) m > |B| (Q2 = ℘(E)).
(iv) n > 0 and m = 0 (Q2 = ∅ and Q1 �= ℘(E)).

Proof. Note that m = max {Y | : Y is minimal in ¬Q2}. Assume that both Q1

and Q2 are non-trivial. According to Proposition 2, Q1 is scopally dominant over
Q2 iff the following condition holds.

(i) ∀Q ⊆ Q1[|Q| = m + 1 ⇀
⋂

Q �= ∅].

Now, (i) is equivalent to the following condition:

(ii) For every sequence A1, . . . , Am+1 of (not necessarily different) subsets of A :⋂m+1
i=1 Ai �= ∅.

To see that, assume first that (i) does not hold, and let Q ⊆ Q1 s.t. |Q| = m + 1
and

⋂
Q = ∅. Let us denote Q = {X1, . . . , Xm+1}. For every i s.t. 1 ≤ i ≤ m + 1,

let Ai ⊆ Xi ∩ A s.t. |Ai | = n. Clearly,
⋂m+1

i=1 Ai = ∅, hence (ii) does not hold.
As for the other direction, assume that (ii) does not hold, and let A1, . . . , Am+1

be a sequence of subsets of A s.t.
⋂m+1

i=1 Ai = ∅. Let Q = {A1, . . . , Am+1}. If
|Q| = m + 1, then we are done. Otherwise, |Q| = k for 0 < k < m + 1, and it
is left to be shown that there is Q′ ⊆ Q1 s.t. |Q′| = m + 1 − k and Q′ ∩ Q = ∅.
To see that, simply apply the same argument from the “if” direction in the proof of
Proposition 2 (with a substitution of m for n.) Thus, (i) does not hold. By Lemma
6, (ii) holds iff |A|

n < m+1
m .

For the dual case, of two CPI-based quantifiers where Q1 is MON↓ and Q2 is
MON↑, Corollary 7 can be used to prove the following characterization.

COROLLARY 8. Let Q1 and Q2 be two CPI-based quantifiers over a finite domain
E s.t. Q1 is MON↓ and Q2 is MON↑. According to the presentation in (24), assume
that for some A, B ⊆ E and n, m ≥ 0 : Q1 = {X : |A ∩ X | < n} and Q2 =
{Y : |B ∩ Y | ≥ m}. Then Q1 is scopally dominant over Q2 iff one of the following
holds:

(i) |B| > (m − 1)(|A| − n + 2) and both 0 < n ≤ |A| and 0 < m ≤ |B| (both
quantifiers are not trivial.)

(ii) n = 0 (Q1 = ∅).
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(iii) m = 0 (Q2 = ℘(E)).
(iv) n > |A| and m ≤ |B| (Q1 = ℘(E) and Q2 �= ∅).

EXAMPLE 8. Corollaries 7 and 8 allow us to characterize scope dominance
with simple NPs using simple numerical considerations. For instance, the scope
dominance in sentence (9) is derived from the following numerical consideration,
Corollary 7, and the representation in Table I.

• In more than half′ (A): n = �|A|
2 � + 1;

• In no′ (B): m = 1;
• |A|

n = |A|
� |A|

2 �+1
< 2 = m+1

m .

Similar considerations according to these corollaries point to scope dominance also
in examples like the following:

(25) At least four of the five referees read less than three of the seven abstracts.
(26) Less than four of the five referees read at least three of the seven abstracts.

4.4. SCOPE DOMINANCE WITH DOWNWARD MONOTONE CPI-BASED QUANTIfiERS

Proposition 10 below characterizes scope dominance with two CPI-based quanti-
fiers that are MON↓. Its proof uses the following consequence of Lemma 6, the
proof of which appears in Appendix A.

COROLLARY 9. Let k, n, m > 0. Let Y be a set with |Y | ≥ m. Then 1 and 2 below
are equivalent:

1. There is a sequence of (not necessarily different) subsets of Y: Y1, . . . , Yk, s.t.
|Yi | = m, 1 ≤ i ≤ k, and

|{y ∈ Y : y is in at most n − 1 of the Yi s}| ≥ m.

2. k(2m − |Y |) ≤ (n − 1)m.

PROPOSITION 10. Let Q1 and Q2 be two MON↓ CPI-based quantifiers over a
finite domain E. According to the presentation in (24), assume that for some A, B
⊆ E and n, m ≥ 0 : Q1 = {X : |A ∩ X | < n} and Q2 = {Y : |B ∩ Y | < m}. Then
Q1 is scopally dominant over Q2 iff one of the following holds:

(i) 2 − |B|
m > n−1

|A|−n+1 and both 0 < n ≤ |A| and 0 < m ≤ |B| (both quantifiers
are not trivial ).

(ii) n = 0 (Q1 = ∅).
(iii) m > |B| (Q2 = ℘(E)).
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Proof. It is easy to verify that if at least one of Q1 and Q2 is trivial, then Q1

is scopally dominant over Q2 iff one of the clauses (ii)–(iii) holds. We therefore
assume that both quantifiers are not trivial, and prove that Q1 is scopally dominant
over Q2 iff (i) holds.
Q1 is not scopally dominant over Q2 iff the following condition holds:

C1. There exists R ⊆ E2 such that

• |{x ∈ A : |Rx ∩ B| < m}| < n, which holds iff: |{x ∈ A : |Rx ∩ B| ≥ m}| ≥
|A| − n + 1; and

• |{y ∈ B : |Ry ∩ A| < n}| ≥ m.

We claim that C1 is equivalent to the following condition.

C2. There are T ⊆ E2 and A′ ⊆ A with |A′| = |A| − n + 1 such that

|Ta ∩ B| = m for every a ∈ A′, and

|{y ∈ B : |{a ∈ A′ : y ∈ Ta}| < n}| ≥ m.

To see that, assume first that C1 holds, and consider the subset A′ ⊆ {x ∈ A :
|Rx ∩B| ≥ m} s.t.|A′| = |A|−n+1. For each a ∈ A′, let Ba ⊆ Ra∩B s.t.|Ba| = m.
Define T = ⋃

a∈A′({a} × Ba), and note that {y ∈ B : |Ry ∩ A| < n} ⊆ {y ∈ B :
|{a ∈ A′ : y ∈ Ta}| < n}.

As for the other direction, if C2 holds, define R = T ∩ (A′ × B).
Now, C2 is equivalent to the requirement that there are |A| − n + 1 subsets of

B : B1, . . . , B|A|−n+1,s.t.|Bi | = m, and

|{b ∈ B : b is in at most n − 1 of the Bi s}| ≥ m.

By Corollary 9, this requirement holds iff (|A| − n + 1) (2m − |B|) ≤ (n − 1)m.

EXAMPLE 9. As an example in which both quantifiers are MON↓, note
that Proposition 10 entails that less than half′ (A) is scopally dominant over
not every′ (B), for any A ⊆ E and any non-empty B ⊆ E . Such a case appears in
the following sentence, in which the OWS analysis entails the ONS reading.

(27) Not every one of the referees read less than half of the abstracts.

5. Conclusions – Scope Dominance and Reasoning under Ambiguity

In this paper we have introduced results that go beyond previously known facts
about scope dominance. We showed a general characterization of scope dominance
with upward–downward pairs of monotone quantifiers over finite domains, and gave
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a simple numerical characterization of scope dominance with all pairs of upward or
downward monotone CPI-based quantifiers. One obvious area for further research
is the extension of the formal coverage of our results. This includes questions
like scope dominance between non-CPI-based downward monotone quantifiers,
over infinite domains, with non-monotone quantifiers or with scope permutations
of more than two quantifiers. Another question for further research is the use of
formal results about scope dominance for computing entailment relations in simple
fragments of natural language. For instance, given a simple transitive sentence
NP1–V–NP2, the task is to decide whether the ONS analysis entails the OWS
analysis. In other words: whether the subject quantifier is scopally dominant over
the object quantifier under any model. For a recent work that studies this question
with upward monotone quantifiers, see Altman and Winter (2003).

One area where answers to this type of questions may be especially use-
ful is reasoning under ambiguity. Consider for instance the following two
sentences.

(28) At least three referees read Abstract 1 or Abstract 2.
(29) At least two referees read Abstract 1 or Abstract 2.

It is easy to see that each of the two readings of sentence (28) entails each of the
two readings of sentence (29). More explicitly, each of the two statements in (30)
below entails each of the two statements in (31).

(30a) at least 3′ (A) {B : a1 ∈ B ∨ a2 ∈ B}R (ONS1)

(30b) {B : a1 ∈ B ∨ a2 ∈ B} at least 3′ (A) R−1 (OWS1)

(31a) at least 2′ (A) {B : a1 ∈ B ∨ a2 ∈ B}R (ONS2)

(31b) {B : a1 ∈ B ∨ a2 ∈ B} at least 2′ (A) R−1 (OWS2)

This is an instance of what van Deemteer (1998) calls the ∀∀ inference relation
between ambiguous sentences: each reading of the antecedent entails each reading
of the consequent. Virtually any system for inference under ambiguity (e.g., Reyle,
1993, 1995, 1996; van Deemter, 1996, 1998, Eijck and Jaspars, 1996) agrees that
∀∀ inferences should be classified as valid when reasoning with natural language
ambiguous sentences. Results about scope dominance show that in the case of
(28)–(29), the validity of the ∀∀ inference can be decided without taking into
account all four readings of the two sentences. Once observing that the ONS1

reading of the antecedent (28) entails the OWS2 reading of the consequent (29),
the other three entailments between the readings of these sentences follow from the
scope dominance of the object over the subject in both of them.

We see that for the purpose of reasoning under ambiguity, we may ignore in
some cases weaker or stronger analyses among the analyses of ambiguous sen-
tences. The study of scope dominance allows us to decide whether such weak or
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strong readings exist in cases of scopally ambiguous sentences, and hence to allow
more economical underspecified representations, and computation of inferences,
for sentences with scope ambiguity of quantifiers. More generally, the study of
entailment patterns between different readings of ambiguous sentences, and their
implications for inference under ambiguity, is a new and potentially fruitful area
for research in this domain, that may improve the design and tractability of un-
derspecified languages for inference and meaning representation. The results that
were reported in this paper were obtained with an eye to this line of research, and
some of their implications are currently studied.

Appendix A: Combinatorial Proofs

Proof of Lemma 6. Let X = {x0, . . . , xk−1}. Then for every sequence X0, . . . , X�−1

of (not necessarily different) subsets of X, for every i s.t. 0 ≤ i ≤ k − 1 let
mi = |{X j : 0 ≤ j ≤ � − 1 ∧ xi ∈ X j }|.
(1) ⇒ (2):
Let X0, . . . , X�−1 be a sequence of (not necessarily different) subsets of X, such that
for every j s.t. 0 ≤ j ≤ �−1 : |X j | = n, and for every i s.t. 0 ≤ i ≤ k−1 : mi ≤ m.

Thus,

�n =
k−1∑

i=0

mi ≤ mk

(2) ⇒ (1):
Assume that �n ≤ mk. Construct a sequence X0, . . . , X�−1 of (not necessarily
different) subsets of X as follows:

X0 = {x0, . . . , xn−1}
...

X j = {x(( jn) mod k,...,x(( j+1)n−1) mod k}
...

X�−1 = {x((�−1)n) mod k,...,x(�n−1) mod k}

It is not hard to verify that for all i, j s.t. 0 ≤ i, j ≤ k − 1 : m j − 1 ≤ mi ≤ m j + 1.
Assume for contradiction that for some i s.t. 0 ≤ i ≤ k − 1 : mi = m ′ > m. Thus,

�n =
k−1∑

i=0

mi ≥ m ′ + (m ′ − 1)(k − 1) = (m ′ − 1)k + 1 > mk

in contradiction to the assumption that �n ≤ mk. Hence, for all i s.t. 0 ≤ i ≤ k −1 :
mi ≤ m.
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Proof of Corollary 9. Note, first, that if |Y | ≥ 2m then both (1) and (2) hold.
So assume 2m − |Y | > 0.

(1) ⇒ (2):
Let Y1, . . . , Yk be a sequence of subsets of Y that satisfy (1). Let X ⊆ {y ∈ Y : y is
in at most n − 1 of the Yi s} s.t. |X | = m. For each i s.t. 1 ≤ i ≤ k let Xi ⊆ X ∩ Yi

with |Xi | = 2m −|Y |.6 Since every x ∈ X is in at most n − 1 of the Xi s, it follows
from Lemma 6 that k(2m − |Y |) ≤ (n − 1)m.
(2)⇒ (1):
Let X ⊆ Y with |X | = m. By Lemma 6 there is a sequence X1, . . . , Xk of (not
necessarily different) subsets of X , s.t. |Xi | = 2m − |Y |, 1 ≤ i ≤ k, and every
x ∈ X is in at most n − 1 of the Xi s. Let Y ′ ⊆ Y\X with |Y ′| = |Y |− m. For every
i s.t. 1 ≤ i ≤ k define Yi = Xi ∪ Y ′.
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Notes

1. Standardly, we henceforth use the term “reading” when referring to a statement that represents an
actual interpretation of a sentence. When referring only to a formal derivation of a statement, with
no commitment as to its empirical status, we refer to an “analysis” of a sentence.

2. Zimmermann characterizes scopelessness in a more general case, where Q and Q1 are not nec-
essarily defined over the same domain. The property we mention here is a direct result of his
characterization.

3. Plausibly, plurality in sentences (7) and (8) leads to the presupposition that there are at least two
abstracts. However, for obtaining the entailment between the analyses of these sentences, the
weaker non-emptiness assumption is sufficient.

4. Thanks to Ya’acov Peterzil for pointing this out to us.
5. The same argument holds for any quantifier, not only every′ (A′).
6. Note that |X ∪ Yi | = |Yi\(Y\X )| ≥ |Yi | − |Y\X | = 2m − |Y |.
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