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wastewater treatment. Among many methods, the adsorp-
tion method has the advantages of strong anti-interference 
ability and low environmental pollution, and the adsorption 
material has the advantages of low synthesis cost, vari-
ety and recyclability, which is used in water purification. 
However, the adsorption capacity, selectivity and chemical 
stability in water environment of adsorption materials still 
restrict the wide application of adsorption method. There-
fore, the design and synthesis of adsorption materials with 
high adsorption capacity, high selectivity and good chemi-
cal stability is a research hotspot in recent years. Among 
many adsorption materials, porous organic polymers 
[13–19] show unique advantages in improving adsorption 
capacity and selectivity: on the one hand, porous structure 
provides more adsorption sites for pollutants, on the other 
hand, organic polymer materials are easy to modify, which 
can further improve the adsorption capacity and selectivity 
of adsorption materials.

As a class of macrocyclic molecules connected by mul-
tiple heteroatoms, crown ethers are a very important class of 
macrocyclic receptors. The abundant oxygen atoms in crown 
ethers can selectively recognize some metal ions through 
coordination interactions and electrostatic interactions and 
catch some organic molecules depends on the hydrophobic 
cavity of the crown ether and the hydrogen bond interaction 

Introduction

Nowadays, with the rapid development of economy and 
society, the threat of pollutants in the water to human pro-
duction, life and the environment is becoming more and 
more serious, and the global water environment is showing 
a deteriorating trend. As the main pollution sources of water 
environment, heavy metal ions, organic dye molecules, pes-
ticides and other organic micro-pollutants are enriched in 
large quantities in water, which are difficult to degrade and 
beyond the normal purification capacity of water. This is a 
huge challenge for environmental protection and sustain-
able development [1–4]. At present, for these pollutants, 
although chemical precipitation [5], membrane separation 
[6], ion exchange [7], solvent extraction [8], biological 
method [9], electrochemical method [10] and adsorption 
separation [11, 12] have been developed for wastewater 
treatment, the development of efficient, rapid and low-
cost treatment technologies is still the focus of research on 
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Abstract
As the first generation of macrocyclic hosts, crown ethers have excellent host-guest recognition characteristics and are 
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between the guest and the oxygen atoms in the crown ether. 
This excellent recognition selectivity makes it widely con-
cerned in the field of adsorption and separation. Introducing 
crown ether structure into porous organic polymers can not 
only improve the adsorption capacity of polymers materials 
for pollutants, but also improve the adsorption selectivity. 
This method of introducing macrocyclic host into the poly-
mer can obtain high performance polymers materials [20, 
21].

In this paper, we discuss the adsorption of different types 
of pollutants by crown ether-based porous organic poly-
mers, summarize the relationship between structural design 
and adsorption performance, and propose some challenges 
and future development directions of crown ether-based 
polymers in the field of pollutant treatment.

Adsorption of metal ions by crown ether-
based porous organic polymers

The selective adsorption of metal ions by crown ether 
porous organic polymers is fully dependent on the abil-
ity of the crown ether cavity to different metal ions. Espe-
cially in water, the difference of binding ability of crown 
ether to different metal ions indicates that ion recognition 
is closely related to the environment of aqueous solution. 
Yudan Zhu [22] et al. explained the underlying mechanism 
of selective recognition of crown ether monomers in water 
through experiments and simulation calculations. As shown 

in Fig.  1a, in water, this recognition difference is directly 
reflected in the distance between different metal ions and 
the crown ether cavity, the degree of aggregation of metal 
ions in a certain area near the crown ether and the length of 
the existence time, and the energy barrier of metal ions pass-
ing through the crown ether. Studies have shown that the 
adsorption interaction of 18-crown-6 ether to K+ is stron-
ger than other alkali metal ions and divalent metal ions. 
The selective recognition ability of monomer crown ether 
provides a reference for the design and synthesis of porous 
organic polymers with ultra-high selective adsorption based 
on crown ether. Due to the excellent performance of crown 
ether in selective recognition, many adsorption materials 
with crown ether as the identification sites have been devel-
oped, such as amorphous polymers containing crown ether 
rings, MOF, COF and other materials [23–25]. These works 
indicate that the development of organic polymer adsorp-
tion materials containing crown ether has a good application 
prospect.

L. I. Trakhtenberg [26] et al.prepared two types of crown 
ether-containing polymers by chemical binding and immo-
bilization of acrylamide and monomers containing crown 
ether structure, and studied the adsorption of Cu2+ and Pb2+ 
in aqueous solution. The results showed that the adsorp-
tion efficiency was improved by introducing crown ether 
into the polymer system through chemical combination. 
When the content of crown ether increased from 3 to 6%, 
the adsorption efficiency of these adsorbents for metal ions 

Fig. 1  (a) Identification of metal 
ions in water by 18 crown 6 
ether; (b) Crown ether hyper-
crosslinked polymer; (c) Side 
chain type crownEther covalent 
organic framework; (d) Main 
chain crown ether covalent 
organic framework
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was increased. In the coexistence system of copper and lead 
ions, the adsorbent containing 18-crown-6 ether showed 
high adsorption selectivity for Pb2+. However, when the 
polymers containing crown ether were prepared by chemical 
grafting, the grafting rate became one of the factors affect-
ing the adsorption performance of the adsorption material. 
Due to the existence of benzene ring, dibenzo-18-crown-6 
ether showed higher grafting rate on polyacrylamide than 
18-crown-6 ether, and its adsorption material has better per-
formance. Comparing the adsorption performance of the 
adsorption materials prepared by introducing crown ether 
into the polymer through chemical binding and non-chemi-
cal binding, the results showed that the non-chemical binding 
crown ether polymer has the loss of crown ether molecules 
during use, resulting in poor adsorption performance and 
recycling performance. Therefore, when designing and syn-
thesizing crown ether-based adsorption materials, chemical 
binding should be considered. At the same time, the adsorp-
tion performance of crown ether-based organic polymer will 
be greatly improved by rationally designing polymers with 
specific binding sites and specific topological structures.

Bao-HangHan [27]et al.used Friedel-Crafts reaction to 
crosslink 1,4-dimethoxybenzene with dibenzo-18-crown-6 
ether (DB18C6) and dibenzo-24-crown-8 ether (DB24C8) 
respectively, and successfully synthesized crown ether-
based hypercrosslinked porous polymers, as shown in 
Fig. 1b. There is a uniformly distributed crown ether struc-
ture in the polymer system, and the rigid cross-linked chain 
ensures the stability of the polymer microporous structure. 
The adsorption results of the crown ether-based hypercross-
linked porous polymer for metal ions show that the adsorp-
tion performance of the two polymers for Au3+ is much 
higher than that of K+ ( the adsorption capacities are 1096 
mg g− 1 and 1667 mg g− 1, respectively ). This adsorption 
behavior is attributed to the change of the structure of the 
crown ether in the polymer, which leads to a higher binding 
of smaller Au3+.

In the above amorphous polymers, the disordered 
arrangement of the polymer chains easily leads to the dis-
tortion of the crown ether structure, which makes the recog-
nition properties of the crown ether in the polymer have the 
opposite results to the recognition properties of the monomer 
crown ether. However, the long-range ordered arrangement 
of the polymer chains can maintain the stability of the crown 
ether structure, which is beneficial to predict the adsorption 
selectivity of the polymer. In 2019, Xin Zhao [28] et al. suc-
cessfully synthesized crown ether-based crystalline COF 
materials for the first time, as shown in Fig. 1c, it opened the 
way for the exploration of crown ether-functionalized COF. 
The research group used crown ether-functionalized p-tri-
phenyldiamine monomer and trimesic aldehyde to prepare 
three different crown ether-functionalized COF materials: 

12C4-COF, 15C5-COF and 18C6-COF. With the increase of 
crown ether size in the building blocks, the specific surface 
area of the three COFs decreased, and all of them showed 
mesoporous with single pore size. 12C4-COF, 15C5-COF 
and 18C6-COF showed different binding preferences for 
Li+, Na+ and K+, respectively. For example, the equilibrium 
adsorption capacities of 18C6-COF for K+, Na+ and Li+ 
were 1.2, 0.7 and 0.2 mmol/g, respectively, the adsorption 
capacity can intuitively reflect that the adsorption selectivity 
of crown ether polymers is consistent with the identification 
characteristics of crown ether monomers. The COF material 
of the side chain crown ether blocks the pores of the poly-
mer, and the specific surface area of the synthesized COF 
material is not high, resulting in limited adsorption capacity.

In order to improve the specific surface area of crown 
ether-based COF, the introduction of crown ether into the 
main chain through reasonable structural design can effec-
tively reduce the pore blockage of crown ether. Honglai Liu 
[29] et al.integrated crown ether molecules into a covalent 
organic framework to synthesize two main-chain crown 
ether-based COF materials ( Py-B18C6-COF, Py-B24C8-
COF ), as shown in Fig. 1d. Compared with the side chain 
type 18C6-COF [28], the Py-B18C6-COF synthesized by 
this group has an ultra-high BET specific surface area of 
1356 m2 g− 1. Py-B18C6-COF and Py-B24C8-COF were 
used to adsorb Li+, Na+, K+ and Cs+ solutions with the 
same initial concentration. In a short time, the maximum 
K+ capture capacity of Py-B18C6-COF was 244.21 mg 
g− 1, and the maximum Cs+ capture capacity of Py-B24C8-
COF was 223.05 mg g− 1. The pore size of the crown ether 
channel in the main chain crown ether-based COF and the 
high specific surface area of the polymer make its adsorp-
tion performance far superior to the same type of adsorption 
material.

Adsorption of organic molecules by crown 
ether-based porous organic polymers

The oxygen atoms in the crown ether structure provide 
abundant lone electron pairs, which can not only recognize 
metal ions, but also recognize cationic organic molecules 
containing ammonium ions or neutral organic molecules 
through hydrogen bonds, electrostatic interactions, hydro-
phobic interactions, etc. The introduction of crown ether 
into the polymer, using the recognition selectivity of crown 
ether, through reasonable structural design, the synthesized 
crown ether-based porous organic polymer can be used for 
the adsorption and separation of organic matter in water.

WanQi Zhang [30] et al.prepared nanofibers with different 
ratios of polystyrene (PS) and polydibenzo-18-crown-6-ether 
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interactions and size effect during the adsorption process 
together improved the adsorption capacity and selectivity of 
chlorophenol organic pollutants.

In the design and synthesis of porous organic polymers, 
in order to obtain more porous and structurally stable poly-
mers, monomers with rigid non-planar structures are usually 
introduced into the polymer. Honglai Liu [32] et al. selected 
trienes as the building unit, which not only ensured the high 
porosity of the polymer, but also introduced crown ether 
into the polymer skeleton, which significantly enhanced the 
affinity for organic dye molecules. The structure is shown 
in Fig. 2c. POP-T CE-15 has a high BET specific surface 
area (up to 848.27 m2 g− 1) and a hierarchical pores. The 
polymer showed good adsorption performance for the tar-
get adsorbent cationic dyes methylene blue, Rhodamine B 
and anionic dyes methyl orange. This is due to the selective 
advantage of crown ether structure, the adsorption of cat-
ionic dyes can reach equilibrium quickly and the adsorption 
capacity is maximum in a short time, while it takes a longer 
time to reach equilibrium for anionic dyes. In the polymer 
system, the electrostatic interaction between the crown ether 
and dye molecules and the screening of organic dye mol-
ecules by the pore size of the polymer jointly determined the 
selective adsorption behavior of the crown ether polyporous 
organic polymer.

COF materials have become a research hotspot due to 
their excellent porous properties and structural stability. 
Although crown ether-based COF materials are difficult to 
synthesize, some COF materials have been continuously 
developed with the deepening of research, and have shown 

by electrospinning, as shown in Fig.  2a. Compared with 
crown ether monomer modified nanofibers, PDB18C6 func-
tionalized nanofibers provide a polymer skeleton, which 
solves the solubility problem of dissolution of crown ether 
monomers in most solvents. When the concentration of PS 
was 8% ~ 15%, the composite nanofibers had the highest 
removal efficiency of catecholamine under near neutral con-
ditions, which could be used as an adsorbent for the pretreat-
ment of trace catecholamine. The introduction of polycrown 
ether structure increases the surface roughness and porosity 
of the fiber to a certain extent. However, too much poly-
crown ether content cannot form continuous fibers, which 
hinders the further improvement of adsorption performance. 
However, the bottom-up construction strategy can effec-
tively ensure the uniform distribution and high content of 
the crown ether structure in the polymer, and the use of non-
planar building blocks can significantly increase the specific 
surface area of the porous material. Cheng-Xiong Yang [31] 
et al. constructed microporous organic networks using the 
reaction of crown ether bromide and arylene with differ-
ent structures, as shown in Fig. 2b. Polymers with different 
topologies were synthesized by using building blocks with 
different structures. TEPM-MON constructed with non-
planar arylene blocks has a larger specific surface area and 
pore structure, which is attributed to the rigid twisted struc-
ture that inhibits the close packing of polymer chains. The 
microporous organic network showed good removal abil-
ity for chlorophenol organic pollutants, and the adsorption 
capacity of TEPM-MON for 2,4, 6-trichlorophenol was up 
to 294.6 mg g− 1. Hydrophobic, π-π and hydrogen bonding 

Fig. 2  (a) Crown ether composite 
nanofiber; (b) Covalent organic 
micropores for chlorophenol 
contaminant capture; (c) Crown 
ether copolymer for dye capture; 
(d) Crown ether covalent organic 
framework synthesis
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ether structure in polymer system. In the polymer system, 
crown ether not only has the effect of pore-forming, but 
also can interact with metal ions, organic dye molecules 
and other pollutants as an adsorption site, which has higher 
selectivity than traditional amino, carboxyl, hydroxyl and 
other functional groups.

From the perspective of future research direction, the 
adsorption method will be combined with fluorescence 
detection and other means to detect pollutants in the water 
environment, which also requires the design and synthesis 
of materials must be developed in the direction of multi-
function. Although crown ether based porous organic 
polymers have made some achievements in wastewater 
treatment, there are still some challenges. The first aspect is 
the structural design. The selective adsorption of metal ions 
by crown ether based polyporous organic polymers depends 
on the structure of crown ether. How to regulate the confor-
mational change of flexible crown ether rings in polymers 
more accurately is a problem that needs further explored. 
Secondly, the selective adsorption of metal ions by crown 
ether based porous organic polymers is more demanding 
than the adsorption of organic pollutants, while the differ-
ence in the selective adsorption of organic pollutants by 
amorphous and crystalline polymers has not been explored. 
Thirdly, the adsorption tests on actual water samples of the 
crown ether-based porous organic polymer are less, which 
is also the key data for optimizing its performance in the 
future. We believe that with more in-depth research, these 
problems will eventually be resolved.
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