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Abstract
We use a highly water-soluble acyclic cucurbit[n]uril ACB-01 that bears eight carboxylate groups. ACB-01 has excellent 
solubility in water and high affinity to the cyanine dyes pseudoisocyanine (PIC) and pinacyanol (PIN) to afford 1:1 com-
plexes. The complexation has been studied by UV–vis absorption, fluorescence and nuclear magnetic resonance (NMR) 
spectroscopy, and the binding constants (Ka) are determined to be (1.54 ± 0.15) × 106 M−1 and (6.09 ± 0.82) × 105 M−1, 
respectively. This complexation leads to the inhibition of the J-aggregation of PIC and H-aggregation of PIN. However, 
competitive guests methyl viologen and 1-adamantanamine hydrochloride can recover their respective J- and H-aggregation 
due to more stable complexation occurs between them and ACB-01. Thus, we have established a new method of reversibly 
controlling dye aggregation by regulating the concentration of ACB-01 and competitive guests.
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Introduction

Cucurbit[n]urils (CB[n]s) are a family of macrocyclic host 
homologues [1–12]. CB[n]s are known for their ability to 
form high affinity inclusion complexes with suitable guests 

in water. However, further applications of CB[n]s are lim-
ited by their inadequate aqueous solubility, and the labori-
ous process of isolating homologues [1, 2, 13–16]. Acyclic 
CB[n]s (ACBs), derived from glycoluril oligomers, have 
been developed to provide new approaches [17–22]. Acy-
clic CB[n]s are composed of glycoluril tetramers linked by 
methylene bridges, and two aromatic O-xylylene walls bear-
ing substituents. Acyclic CB[n]s are capable of recognizing 
suitable ammonium salts, dyes and pharmaceuticals, and are 
widely used for sensing and imaging [23–26], drug delivery 
and controlled release [27, 28], and drug sequestration [29, 
30]. The investigations well demonstrate that ACBs can cre-
ate guest binding features that complement those of CB[n]s 
or other acyclic receptors [31–33].
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The self-aggregation of organic dyes often occurs in 
aqueous phase, which is mainly driven by or intermolecular 
noncovalent interactions like van der Waals force or π–π 
stacking interactions [33]. This aggregating phenomenon 
can be observed in UV–vis spectra, manifesting as the shifts 
in the absorption band compared with the monomeric spe-
cies. J-aggregation and H-aggregation are two of the most 
common aggregation patterns. J-aggregation, which was 
named due to the obvious red-shifted J-bands with high 
absorbance coefficient, is the head-to-tail stacking of dye 
molecules in a staircase shape [34–36]. H-aggregation is 
a ladder-like face-to-face stacking of dyes, which exhibits 
weak blue shift H-bands [37–39].

The aggregation behavior of dyes mainly depends on dye 
structure, temperature and solution composition [40]. In this 
context, host-guest interactions have been developed as a 
useful strategy to control the aggregation of various organic 
dyes [10, 41–45]. Herein we report the use of a highly 
water-soluble acyclic CB[n] host ACB-01 to form stable 
complexes with two cyanine dyes pseudoisocyanine (PIC) 
and pinacyanol (PIN) (Fig. 1). These host-guest complexes 
could disrupt the aggregation process of dyes. Moreover, dye 
aggregation could be recovered by adding competing guest 
methyl viologen (MV) or 1-adamantanamine hydrochloride 
(AD).

Results and discussion

Acyclic CB[n] host ACB-01 was prepared by our previous 
work [46]. Aromatic tetraesters were synthesized by three-
step nucleophilic substitution reactions. The glycoluril 
tetramer, synthesized from glycoluril and paraformalde-
hyde, underwent a double electrophilic aromatic substitution 

reaction with two equivalents of aromatic tetraester to form 
an octaester, which was hydrolyzed to obtain the final prod-
uct. ACB-01 contained a C-shape glycoluril tetramer and 
two terminal substituted aromatic walls with eight carboxy-
late groups. The glycoluril tetramer provided a hydrophobic 
cavity and two electron-rich carbonyl portals for the bind-
ing of cationic guests. Due to the eight carboxylate groups, 
ACB-01 had significantly higher solubility of 155 mM 
than CB [7] (~ 20 mM). The eight carboxylate groups not 
only increased the aqueous solubility of the host, but also 
improved the binding towards cationic guests.

In water the cyanine dye PIC showed maximum absorp-
tion wavelengths at 485 and 525 nm in monomeric form 
[47]. At a lower temperature or with higher concentrations 
of dye and inorganic salts, PIC preferred to form J-aggre-
gates which exhibited a characteristic sharp absorption band 
at 575 nm [48]. In order to estimate the affinity between 
ACB-01 and PIC, the J-aggregation has to be inhibited by 
controlling the condition with a low dye concentration and 
moderate temperature. In Fig. 2, there were two character-
istic absorption bands of the monomeric form of PIC with 
a concentration of 0.01 mM and at room temperature. No 
absorption peak appeared at 575 nm, which indicated that no 
J-aggregation occurred. The absorbance of PIC decreased as 
host ACB-01 was added, and the absorption band also had 
a minor red shift by 3 nm. The change of PIC absorption 
spectra revealed that PIC was complexed by host ACB-01 
and stabilized by the strong host-guest interaction. Fitting 
results from Job plots and the absorbance at 500 nm (Fig. 
S1) showed that PIC followed a 1:1 binding stoichiometry 
with host ACB-01. The binding constant (Ka) was deter-
mined to be (1.54 ± 0.15 ) × 106 M−1.
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Fig. 1   Chemical structures of acyclic CB[n], organic dyes and cati-
onic guests

Fig. 2   UV–vis absorbance of PIC (0.01 mM) with ACB-01 
(0–4.0 eq.) added at 25 °C. Inset: Variation of the UV–vis absorbance 
of PIC (0.01 mM) with ACB-01 (0–4.0 eq.) added at 505 nm
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1H NMR titration was used to illustrate the binding mode 
between PIC and ACB-01. PIC had a large symmetrical 
π-conjugated structure with only one positive charge, result-
ing in its poor aqueous solubility. We mixed 10% (v/v) of 
DMSO-d6 with D2O to solubilize the dye to a higher con-
centration of 1.0 mM, and reduced the influence of solvent 
effect as low as possible (Fig. S2). As ACB-01 was added, 
the chemical resonances of PIC shifted upfield (Fig. 3a). 
The resonance of hydrogen near positive charge like Ha 
showed a relatively minor shift (~ 0.45 ppm), while those of 
terminal hydrogen like Hf underwent a larger upfield shift 
(~ 0.66 ppm). This result showed that the hydrophobic cavity 

of ACB-01 was capable to encapsulate the quinolinic ring 
of PIC, and the more electropositive part was closer to the 
edge of the cavity where carboxylate oxygen could provide 
a stronger electrostatic interaction. Job’s plot based on the 
variation of Hf chemical shift also confirmed that PIC and 
ACB-01 formed a 1:1 complex (Fig. 3b).

The well-matched structure between ACB-01 and PIC 
and strong host-guest interaction made it possible for ACB-
01 to depress PIC’s J-aggregation in aqueous phase. At low 
temperature such as 5 °C with 1.0 M NaCl added, the spec-
trum of 0.05 mM PIC exhibited a clear sharp absorption 
peak at 574 nm (Fig. 4a). As the solution was heated up 

Fig. 3   a 1H NMR spectrum (400 MHz) of PIC (1.0 mM) and ACB-01 (0-1.5 mM) in D2O (10% DMSO-d6) at 25 °C (Aromatic moiety). b Job’s 
plots of PIC and ACB-01 based on chemical shift of PIC proton Hf ([ACB-01] + [PIC] = 1.0 mM). The binding ratio is 1:1
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Fig. 4   UV–vis spectra of a PIC (0.05 mM) and b PIN (0.05 mM) in the presence or absence of ACB-01 (1.0 eq.) at different temperatures. All 
solutions were prepared in (a) 1.0 M NaCl or (b) 0.05 M NaCl with 1% MeOH
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to 70 °C, the peak disappeared completely. The aggregation 
of PIC molecules is a negative enthalpy change process. 
According to the van ‘t Hoff equation, the increase in envi-
ronmental temperature led to a decrease in the equilibrium 
constant K, resulting in the deaggregation of PIC. After the 
solution was cooled down back to 5 °C, 1.0 equivalent of 
ACB-01 was added and we observed the disappearance of 
J-band. This difference showed that the host-guest interac-
tion between PIC and ACB-01 was stronger than the π–π 
stacking interaction of PIC itself. As a result, ACB-01 
could disturb the J-aggregation of PIC by forming stable 
PIC@ACB-01 complexes.

The disturbance from ACB-01 could also be observed in 
fluorescence spectra (Fig. 5). PIC showed an emission band 
around 580 nm at 5 °C with the presence of 1.0 M NaCl on 
excitation at 400 nm. The J-aggregation band disappeared 

as the temperature rose up to 70 °C. The addition of excess 
ACB-01 could also quench the fluorescence of J-aggregates, 
preventing PIC molecules from π–π stacking.

Host-guest complexation was a reversible process. The 
introduction of a competing guest could displace PIC from 
PIC@ACB-01 complexes and re-establish J-aggregation. 
Previous researches [47] had reported that methyl viologen 
(MV) and 1-adamantanamine hydrochloride (AD) showed 
high binding affinity with acyclic CB[n]s. We first confirmed 
the binding stoichiometry between ACB-01 and two guests 
(Fig. S3-4). The host could form 1:1 supramolecular com-
plex with the two guests. We also estimated the binding 
constants of MV@ACB-01 and AD@ACB-01 by UV–vis 
competing titration (Fig. S5-6), which was determined to be 
(1.15 ± 0.31) × 108 M−1 and (2.23 ± 0.05) × 106 M−1, respec-
tively (Table 1). The Ka value for MV@ACB-01 was about 
two orders of magnitude higher than that for PIC@ACB-01, 
while the Ka value for AD@ACB-01 was slightly higher 
than that of the dye. Therefore, these two competing guests 
were capable to displace the dye from the cavity of ACB-
01. As expected, the J-band around 574 nm was regener-
ated after MV was added gradually into the solution of 
PIC@ACB-01 complexes at 5 °C (Fig. 6a). The absorbance 
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Fig. 6   UV–vis spectra of PIC (0.05 mM) with ACB-01 (1.0 eq.) by adding a MV or b AD at 5 °C. Inset: absorbance at 573 nm of the dyes 
against [MV] or [AD]. All solutions were prepared in aqueous solution of NaCl (1.0 M)

Table 1   Binding constants (Ka) 
for ACB-01 with cationic guests

a Determined by UV–vis direct 
titration
b Determined by indicator dis-
placement assay

Guests Ka (M−1)

PICa (1.54 ± 0.15) × 106

PINa (6.09 ± 0.82) × 105

MVb (1.15 ± 0.31) × 108

ADb (2.23 ± 0.05) × 106
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of PIC J-aggregates continued to increase until the concen-
tration of MV reached one equivalent. AD had similar affin-
ity with ACB-01 compared with PIC, which made it difficult 
to displace ACB-01. The J-band fully regenerated until 1.4 
equivalents of AD was added (Fig. 6b). Therefore, we were 
certain that J-aggregation of PIC could be precisely con-
trolled by the host ACB-01 as an inhibitor and competing 
guests MV or AD as regenerants.

PIN was pooly soluble in water, and 1% volume ratio 
of methanol was added to solubilize PIN. UV–vis absorp-
tion measurement was first carried out to reveal the 
PIN@ACB-01 complexation properties. In the concentra-
tion of 0.01 mM PIN showed absorption maxima at 551 
and 600 nm (Fig. S7). These two absorption bands under-
went obvious red shift (16 nm and 11 nm respectively) as 
the concentration of ACB-01 increased, and the absorbance 
decreased slightly at first and then increased. The binding 
stoichiometry was fitted to be 1:1 and the corresponding 
Ka value for PIN@ACB-01 complex was determined to be 
(6.09 ± 0.82) × 105 M−1. This value was lower than that of 
PIC. 1 H NMR spectroscopy was unable to be used to study 
the binding mode due to the poor solubility of PIC. We 
propose that the large conjugative structure of PIN mol-
ecule spread out the only one positive charge, which rela-
tively weakened the electrostatic interaction between host 
and guest.

With 0.05 mM NaCl added, the solution of 0.05 mM PIN 
showed a new absorption band at 473 nm (Fig. 4b) at 5 °C, 
which should be ascribed to H-aggregation as it was blue-
shifted from original [49]. Another new red-shifted peak at 
642 nm was ascribed to J-aggregation [50]. The two absorp-
tion bands disappeared after the solution was heated up to 
70 °C, which again suggested the decrease in equilibrium 
constant on H- or J- aggregation caused by enthalpy effect, 
similarly as PIC. Addition of one equivalent of ACB-01 
caused significant changes on the UV–vis spectrum. Both 
new absorption bands were diminished and the other two 
underwent a red shift like low dye concentration. The two 
phenomena both indicated the formation of PIN@ACB-01 
complexes and the inhibition of aggregation.

MV and AD were used to remove ACB-01 from the 
complexes as competing guests. PIN was relatively weakly 
associated with ACB-01 compared to PIC. The binding con-
stant of the former was three and two orders of magnitude 
lower than that of MV and AD, respectively. As a result, 
one equivalent of competing guest was adequate to displace 
the dye from the complexes, observed in the reappearance 
of H-band (Fig. S8-9). The concentration of the competing 
guests required for complete regeneration of aggregation 
absorption band showed the difference of stability between 
two dyes.

All the optical phenomena could be summarized as three 
relevant equilibria:

Conclusions

In conclusion, we use a highly water-soluble acyclic CB[n] 
with eight carboxylate tails to bind cyanine dyes PIC and 
PIN. The formation of dye@ACB-01 complexes could 
inhibit dyes’ aggregation in aqueous solutions (J-aggrega-
tion for PIC and H-aggregation for PIN), which could be 
reversed by stronger competing guests MV and AD as regen-
erants. All these processes were under direct influence of 
binding ability of ACB-01, which could help to realize the 
precise control of the equilibrium between dye monomers 
and aggregates. These results showed us the potential appli-
cation of acyclic cucurbiturils in aqueous dye stabilization.
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