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Abstract
Phototherapy is a type of medical treatment that involves exposure to ultraviolet-visible (UV–Vis) region or near-infrared 
(NIR) region light to treat certain medical conditions. Compared to other treatment methods such as chemotherapy and 
radiotherapy, it attracts a lot of attention today due to its lower cost, more effect on the tumor cell, and less side effects. 
Today’s clinical therapy research shows that combining chemotherapeutic methods and phototherapeutic methods on a single 
nanostructure increases the therapeutic effect that each method alone has, and this is even more effective in destroying cancer 
cells. The emergence of nanomaterials recently opens up new opportunities to increase therapeutic efficacy and overcome 
limitations in current phototherapy techniques. Gold nanostars (GNSs) are a kind of promising photothermal agent recently 
in the biomedical field with its strong absorption in the NIR field, high photothermal conversion efficiency, excellent pho-
tothermal stability, and biocompatibility. In this study, the synthesis methods, optical properties of GNSs, and their current 
studies on cancer diagnosis and treatments are summarized.
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NIR	� Near-infrared
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PDT	� Photodynamic therapy
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SERS	� Surface-enhanced Raman spectroscopy
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UV–Vis	� Ultraviolet-visible
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Introduction

Cancer occurs as a result of excessive and uncontrolled 
proliferation of any group of cells in the body. While the 
World Health Organization data showed about 18.1 million 
new cancer cases in the world last year, 9.6 million people 
died from cancer [1]. Cancer is also a personal disease, 
although there are more than 100 known types of cancer 
and standard approaches have been developed for certain 
types of cancers. The early diagnosis of cancer is very 
important in the success of cancer treatment [2, 3]. Today, 
some imaging techniques such as X-ray computed tomog-
raphy (CT) [4], magnetic resonance imaging (MRI) [5], 
positron emission tomography (PET) [6], near-infrared 
(NIR) fluorescence imaging [7] and photoacoustic imag-
ing (PAI) [8, 9] are used to diagnose cancer.

NIR region light has unique advantages like high sen-
sitivity and negligible irradiation risk compared to visible 
region light [10, 11]. For this reason, NIR fluorescence 
imaging is highly used in cancer detection [12]. Unfortu-
nately, NIR fluorescence imaging has disadvantages such 
as limited spatial resolution and limited depth of tissue 
penetration [13]. As a new imaging method, PAI is a bio-
medical imaging method based on photoacoustic effect [9, 
14]. Overcoming penetration limitations and high spatial 
resolution have some advantages over NIR fluorescence 
imaging, while the sensitivity needs to be further improved 
[15, 16] NIR fluorescence imaging and PAI methods are 
used together to provide sufficient information in cancer 
diagnosis [17, 18].

The primary purpose of cancer treatment is to select 
and destroy diseased tissues without causing any damage 

to normal tissues. Modern cancer treatment methods com-
monly used today are chemotherapy, radiotherapy and sur-
gical methods [19]. These methods have many disadvan-
tages such as weakness, nausea and vomiting, skin and 
nail problems, intestinal problems, infection, blood and 
clotting problems, limited range of effects, and causing 
drug resistance [20, 21].

Phototherapy is a method in which UV–Vis or NIR 
region light is used for therapeutic purposes. Compared 
to other cancer treatment methods such as, chemotherapy, 
and radiotherapy, it attracts a lot of attention today because 
of its lower cost, more effect on the tumor cell and fewer 
side effects [22–24]. Phototherapy can be examined under 
two main titles as photothermal therapy (PTT) and photo-
dynamic therapy (PDT). Photothermal therapy (PTT) is a 
therapeutic method whereby cancers are ablated by the heat 
generated from absorbed NIR light energy (Fig. 1) [25–27]. 
The substance used in PTT is an optical absorbing agent that 
can absorb strongly in the NIR region and can destroy the 
cancerous cells by effectively converting the photo energy 
within it to NIR irradiation [28].

PDT, is based on the principle of exposing the photosen-
sitizer (PS) selectively accumulated in the target tissue to 
visible light of suitable

wavelength. In the presence of molecular oxygen, free 
radicals formed as a result of light activation of PS and sin-
glet oxygen destroy cells in the targeted region by interact-
ing with many biological molecules such as oxygen, lipid, 
protein, and nucleic acids(Fig. 2) [29, 30].

Today, clinical therapy researches show that combining 
chemotherapeutic methods and phototherapeutic methods 
on a single nanostructure increases the therapeutic effect 
that each method alone has, and this is even more effective 

Fig. 1   Schematic illustration 
of the photothermal imaging 
system set up by Zhou and 
coworkers [25]
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in the destruction of cancer cells [31, 32]. Because, the 
increase in temperature in tumor microenvironment causes 
drug release into the tumor cells and increases the toxic 
effect of the drugs [33]. The emergence of nanomateri-
als recently opens up new opportunities to increase thera-
peutic efficacy and overcome restrictions in current PTT 
and PDT applications [34, 35]. Nanomaterials designed 
for cancer treatment are very important in terms of their 
good water solubility, biocompatibility, high therapeutic 
efficacy, low toxicity, and selective collection in cancer-
ous cells, less harm to other healthy cells [36]. The use 
of NIR region in these nanomaterials in the wavelength 
range of 700–1100 nm is preferred in terms of high tissue 
permeability and no harm to healthy cells [37, 38]. For 

this reason, studies on functional NPs that can effectively 
load drug molecules and emit with NIR light activation 
are increasing.

Gold nanoparticles (GNPs) are a promising photother-
mal agent recently in the biomedical field with their strong 
absorption in the NIR field, high photothermal conversion 
efficiency, excellent photothermal stability, and biocom-
patibility [39, 40]. GNPs can be obtained in shapes (Fig. 3) 
such as spheres [41], rods [42], stars [43], and have found 
many application areas in biomedical systems. Gold 
nanostars (GNSs) are highly effective in converting light 
into heat, with multiple sharp ends, among anisotropic 
GNPs [44]. These features have been confirmed experi-
mentally and theoretically in many studies [45] (Fig. 4). 

Fig. 2   Schematic illustration of 
the photodynamic therapy [30]

Fig. 3   Library of nanoparticle 
shapes: TEM and SEM micro-
graphs of gold nanoparticles 
by Dr Željka Krpetić (CBNI, 
UCD) [41]
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Gold nanoparticles (GNPs)

Over the centuries, the fascinating natural luster of gold has 
attracted much attention. Gold has an intense yellow color 
because it absorbs light in the blue range of the electromag-
netic spectrum. However, by changing the size and shape 
of gold particles in nanoscale, it turns pink, violet, and blue 
[46]. The interesting optical properties of GNPs are caused 
by the vibration of free electrons in the structure of these 
NPs when exposed to electromagnetic radiation. When the 
vibration frequency of the incoming light is compatible 
with the oscillation frequency of the free electrons, the light 
absorbs the maximum, which is called surface plasmon reso-
nance [47]. GNPs are widely applied in colorimetric experi-
ments because of their strong localized surface plasmon res-
onance (LSPR) and outstanding damping coefficient with a 
wide range of regions from visible to infrared [48]. It can be 
synthesized in various forms such as gold nanorods (GNRs), 
gold nanostars (GNSs), and gold nanocages (GNCs) [49].

Gold nanostars

Nanostars are pointed nano-objects that come out of a spher-
ical core [50]. Recently, as a kind of new material, GNS has 
gained much more attention due to its circular structure with 
sharp protruding branches. Sharp-tip anisotropic NPs can 
provide significantly larger near field enhancements, called 
"hot spot" regions at the sharp ends [51, 52]. The light inten-
sity can be increased up to 106 times in hot spot areas [53]. 
The importance of hot spots for the production of hot carri-
ers has been confirmed by various experimental and theoreti-
cal studies [54]. Recently, it has been proven that hot spots 
can have a significant photothermal effect by loosening hot 
electrons [55]. Therefore, photothermal production as well 

as more efficient hot carriers can be expected through LSPR 
stimulation in anisotropic GNS. GNSs with very sharp 
branches showed stronger SERS increase with the "light-
ning rod" effect compared to spheres, cubes and bars GNPs 
[56, 57]. The applications of bare GNSs are very limited due 
to its low solubility in water and its aggregation easily. To 
increase the stability, monodispersity, and water solubility 
of naked GNS, the GNS surface can be modified through 
molecules such as PEG, and BSA, [58, 59]] through the 
Au-S bond. Also, GNSs have great applications in photonic 
catalysis, sensing, plasmonics, and building blocks, PTT, 
PDT, and biomedical engineering.

Synthesis methods of GNSs

The seeded growth method, and seedless homogeneous 
nucleation methods have been developed for the synthe-
sis of GNSs. The seeded growth method usually includes 
seeds (small spherical NPs), silver ions (Ag+), shape-guid-
ing agents, and additional gold ions [50, 60]. The resulting 
nanostar size and the sharpness, multiplicity, and size of the 
ends are highly dependent on the number of seeds, reduc-
ers, and Ag concentrations. The presence of silver in the 
growth solution is also very important for the formation of 
nanostars; NPs do not form when there is no silver [61]. 
Reduction in seedless growth, which is a simple and fast 
synthesis method, is performed in a single step in which both 
nucleation and growth occur together. This method is being 
explored as a way to overcome complications in two-stage 
seeding growth [62–64].

Josep and co-workers [50] have developed a single-
step seedless green method for the synthesis of gold-silver 
(AuAg) spiny branched nanostars where the main ingredient 
is 90% gold (Fig. 5) In this method, zwitterionic surfactant 
lauryl sulfobetaine (LSB) was used in the synthesis of bime-
tallic nanostars. It has been noted that the LSB concentration 
plays an important role in determining the shape and size of 
nano objects and a minimum concentration of 50 mM LSB 
is required for the formation of pointed branched nanostars. 
This method is a seedless approach that does not need a 
surfactant. It not only reduces the synthesis time but also 
removes the step of eliminating the surfactant.

Phan et al. have also developed a new method for prepar-
ing GNS using environmentally friendly materials [65]. In 
this one-step method, chitosan (CS) was used as a stabilizer, 
vitamin C as a reducing agent and water as a solvent. In 
the study, it was stated that in the synthesis of GNS, the 
particle size can be controlled by CS. Vitamin C is a good 
antioxidant derived from citrus and other vegetables, it can 
reduce the Au (III) ion to the Au (0) atom [66]. CS can 
be used to increase the stability of unstable NPs because it 
has properties such as multiple reactive functional groups, 
high positive charge, biodegradability, biocompatibility, 

Fig. 4   Schematic illustration of the structure and application of mul-
tifunctional GNSs snthesized by Song and co workers for cancer cell-
targeted NIR SERS-imaging and PTT [58]
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nontoxicity, and low cost [67]. CS is a linear polymer that 
consists of glucosamine and acetylglucosamine units that act 
as a polyelectrolyte with a high positive charge density in 
low pH solutions. Therefore, changing pH levels can affect 
the behavior and properties of CS. Low environmental pH 
increases the positive charge in CS [68]. In this study, to 
evaluate the effect of pH on GNS formation, three experi-
mental conditions with constant CS concentration (0.05 %) 
and pH = 1, 3, and 5 were determined. It was determined 
that gold structures with indeterminate ends were formed 
in pH = 5 and pH = 3 solutions, and the absorption of gold 
solutions was not in the NIR region but at 570 nm and 
605nm, respectively. However, in experiments carried out 
at pH 1, it was stated that the star structure is seen and it has 
a strong absorption at 750 nm. The study also examined the 
effect of CS concentration on the gold nanostar structure. 
TEM images of NPs obtained by increasing CS concentra-
tion from 0.05 to 0.9% were taken. When the CS concentra-
tion is 0.05% the nanoparticle size obtained is 225.9 ± 52.9 
nm, while the CS ratio is 0.9%, it is 111.3 ± 56.2 nm, and as 
the CS concentration increases, the ends are not shorter and 
sharper and the NIR region. They stated that the absorption 
was weakened.

Gold nanostars in cancer diagnosis 
and therapy

GNSs can produce singlet oxygen [69] through various 
mechanisms such as various photochemical pathways [70] 
and hot electron emissions [71]. Wang et.al [72] demostrated 
that, GNSs under NIR light irradiation can exert not only 
cancer photothermal therapy via heat production but also 
photodynamic therapy via generation of reactive oxygen spe-
cies. As a result of this study, GNSs were able to enter the 

cytoplasm as well as nuclei of human breast michigan cancer 
foundation-7 (MCF-7) cells, and under NIR light irradiation, 
GNSs caused more severe DNA damage, arrest the cell cycle 
in G0/G1 phase, and reduce more cellular glutathione level, 
causing more severe apoptosis and cell death in vitro. Two 
different sizes of GNSs were synthesized by Duong et al. 
[73] and their surfaces were coated with N- (3-aminopropyl) 
methacrylamide hydrochloride (PA) to examine the ability 
to produce singlet oxygen. In the study, it was found that 
the production of singlet oxygen is more than multi-tailed 
and large size GNS, that methylene blue (MB) function-
alized GNSs produce more singlet oxygen than MB, also 
only PA coated GNSs are used for the production of singlet 
oxygen. Fales and coworkers developed a theranostic system 
combining Raman imaging and the photodynamic therapy 
(PDT) effect. The theranostic nanoplatform was created 
by loading the photosensitizer, protoporphyrin IX, onto a 
Raman-labeled gold nanostar [74]. In their study, Tan et al 
[75] loaded the IR820 and DTX by functionalizing the gold 
nanostar with CD133 antibody via PEG. (GNS @ IR820/
DTX-CD133). It is stated that the synthesized nanoparticle 
is approximately 120 nm in size and the surface plasmon 
peak is at 810 nm (Fig. 6).

In vitro and in vivo experiments were performed on 
human castration resistant prostate cancer PC3 cell line. 
The in vitro therapeutic potential of the GNS @ IR820/
DTX-CD133 nanoparticle was determined by evaluating 
the photo-thermal effect, singlet oxygen production, cel-
lular uptake capability, biocompatibility, and killing of 
cancer cells. The results showed that the GNS @ IR820/
DTX-CD133 NPs were also stable in water, and also had 
excellent targeting-tumor capability and exceptional tumor 
affinity after NIR laser-mediated treatment.

Nanoprobes used in PAI are becoming increasingly 
important in the diagnosis and treatment of various 

Fig. 5   Schematic representa-
tion of the proposed micelle 
formation process using 50 mM 
LSB and the nanostars that 
are expected to grow over the 
micelles by Joseph and cowork-
ers [50]
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diseases, especially liver cancer [76] However, the mono-
nuclear phagocytic system (MPS) exhibits a significant 
barrier to probe use by preventing probe buildup in the 
liver. To overcome the MPS clearance, Huang et al. [76] 
synthesized a biomimetic probe composed of golden 
nanostars camouflaged with an erythrocyte membrane 
(Fig. 7). The experimental results have shown that the 
resulting probe; has a strong NIR absorption, sufficient 
stability, high photothermal conversion efficiency, and 
suitable photostability. In the study, RBCm-AuNS was 
used to diagnose and treat mice carrying liver cancer after 
an in vitro feasibility assessment. It is stated that the pho-
toacoustic imaging supported by RBCm-AuNSs can also 
reveal the location and size of tumors smaller than 2 mm 
in diameter. As can be seen, probes synthesized from gold 
nanostar are promising to assist in noninvasive diagnosis 

and treatment of early stage cancers for translational and 
clinical applications.

Xia and co workers [59] synthesized functional GNSs for 
targeted lung cancer therapy. MMPP polypets were used as 
targeting agent and IR-780 iodide were used both as NIR flu-
orescence imaging agent and PTT/PDT agent. IR-780 iodide 
is an FDA approved molecule for clinical applications and it 
shows PTT and PDT effect in the presence of laser irradia-
tion. However, the lack of tumor specificity and hydrophobic 
properties of photosensitizers limit their clinical application. 
In this system, GNS-coupled IR-780 molecules are said to 
exert a high therapeutic effect through synergistic action.

2D MnO2 nanoplates are new nanomaterials, which have 
begun to attract attention as drug delivery systems, bioimag-
ing, and theranostic agents. These nanoplates can easily be 
converted into Mn2+ ions in the tumor microenvironment 

Fig. 6   Schematic illustra-
tions of the synthetic route of 
GNS@IR820/DTX-CD133 as 
the synergistic PTT/PDT/CT 
nanoplatform for CRPC under 
the monitoring of multimodal 
imaging by Tan et.al. [75]

Fig. 7   Schematic illustration 
of RBCm-AuNSs for enhanced 
liver cancer photoacoustic diag-
nosis and photothermal therapy 
by Huang et.al. [76]
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(high levels of H2O2 and GSH and low pH) [77]. Leverag-
ing this feature of MnO2 nanosheets, GNS-MnO2 nanoprobe 
have been synthesized by Liu et al. for magnetic resonance 
imaging-guided photothermal therapy of lung cancer. PTT 
studies have shown that nanoprobe kills lung cancer cells 
in a controlled manner, while not damaging normal lung 
epithelial cells [78].

Sardo et. al [79] coated GNS with two different poly-
mers to deliver siRNAs inside cells with the advantages of 
gold nanoparticles, which can act as theranostic agents and 
radiotherapy enhancers through laser- induced hyperther-
mia. They determined that the siRNA complexes of all the 
coated GNS that they have tested were able to be internal-
ized by MCF-7cells to a larger extent than siRNA alone. 
Furthermore, they efficiently suppressed Luciferase expres-
sion within the cells without eliciting severe cytotoxicity.

Summary and outlook

GNSs is a versatile platform showing great promise for pre-
treatment cancer diagnostics and cancer therapy, thanks to 
unique physicochemical properties such as surface plasmon 
resonance (SPR), light-thermal conversion ability, light scat-
tering, and easy synthesis. However, due to the lack of tumor 
selectivity and its hydrophobic properties, GNS needs to be 
functionalized in various ways to be used in multifunctional 
diagnostic/treatment platforms.
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