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Abstract
The purpose of this novel research is to explore the formation of inclusion complexes of a drug, namely, chloroquine diphos-
phate with cyclic oligosaccharides. The solubility, versatility and bioavailability of the drug are enhanced and some of its side 
effects are reduced after encapsulation. Various sophisticated approaches have been employed to synthesize and characterize 
the inclusion phenomenon, which confirm the 1:1 stoichiometry of the complexes. The association constant is found higher 
in case of β-cyclodextrin which was explicated based on their molecular structure. The work explores the enhancement of 
overall bioavailability of this essential biologically active molecule.
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Introduction

Cyclodextrins (CD) are the most fascinating host molecules 
in supramolecular chemistry [1]. They have the capacity to 
construct stable encapsulated complexes (inclusion complex, 
IC) with various guest molecules on account of their excep-
tional truncated cone structure [2–7]. Stabilisation by hydro-
phobic interaction between the cavity of the cyclodextrin 
and hydrophobic part of the guest molecule is responsible 
for the formation of this type of steady host–guest encap-
sulated complexes. The weak intermolecular forces acting 
between the host and guest molecules are mainly van der 
Waals force, dipolar interaction, electrostatic and hydrogen 
bonding attractions [8]. They are broadly used in the phar-
maceutical production as drug carrier to modify the bioavail-
ability of biologically active molecules [9]. They are non-
poisonous and can be taken safely by humans. Cyclodextrin 
based inclusion is the best method to develop inclusion 

complexes to improve the physicochemical properties of 
the drug molecule [10]. CDs are macro cyclic water soluble 
oligosaccharides composed of six (α-CD), seven (β-CD) and 
eight (γ-CD) glucopyranose units linked through α-(1–4) 
bond [11]. Primary hydroxyl groups are situated at narrow 
end and secondary hydroxyl groups are placed around the 
wider end (Scheme 1) [12]. This type of unique structure 
permits them to enclose comprehensive guest molecules.

The drug chloroquine diphosphate (CDP) is a medi-
cine that is primarily used to prevent and treat malaria 
(Scheme 2). Certain types of complicated cases of malaria 
typically require additional medication. CDP is occasionally 
used for amebiasis, rheumatoid arthritis and lupus erythe-
matosus. [13, 14] It is a component of drug class 4-amino-
quinoline. It appears to be safe during pregnancy time. It 
works in opposition to the asexual form of malaria inside red 
blood cell. This drug has some ordinary side effects includ-
ing muscle problems, loss of hunger, diarrhea and skin 
complaint [15]. Controlled release of this drug using CD as 
the encapsulating agent can minimize these side effects and 
the drug molecule should be able to penetrate the lipophilic 
membrane to facilitate its biological activity. By forming 
inclusion complex CD can transport the drug to the physi-
ological spot without losing any of its bioactivity [9].

In this article we endeavor to explore the formation and 
nature of IC of CDP with two cyclic oligosaccharides in 
aqueous environment with the help of spectroscopic and 
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physicochemical studies keeping in mind that the drug mol-
ecule must retain its biological activity.

Experimental section

Source and purity of samples

Chloroquinediphosphate, α-CD and β-CD of puriss grade 
were purchased from Sigma-Aldrich, Germany and used 
in the experiment as it received. The mass fraction purity 
of CDP, α-CD and β-CD were ≥ 0.98, ≥ 0.99 and ≥ 0.98 
respectively.
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Apparatus and procedure

Triple distilled & degassed water was utilized for check-
ing the solubility of the drug CDP, α-CD and β-CD. The 
drug and both the CD molecules are completely soluble in 
water. The solutions were set up by mass at 298.15 K. Solu-
tions were made with proper care to avoid weight loss by 
evaporation.

1H NMR was done at 300 MHz in  D2O solution using 
Bruker Avance machine at 298 K. Signals are shown as δ 
in ppm using solvent signals (HDO: δ 4.79 ppm) as internal 
standard.

Surface tension experiment was done by tensiometer 
(K9, KRUSS; Germany) by platinum ring detachment at 
298.15 K. During experiment the temperature of the system 
was kept constant by thermostat water circulating through 
double wall glass vessel enclosing the solution.

The conductances of the solutions were determined by 
MT Seven Multi conductivity meter. The uncertainty of the 
result was approximately ± 1.0 µSm−1. The experiments 
were done in a thermostat water bath keeping the tempera-
ture fixed at 298.15 K.

Ultra-violet visible spectra were recorded by spectro-
photometer (JASCO V-530), with an uncertainty ± 2 nm. A 
digital thermostat was used to keep the temperature constant.

Fourier transform IR spectra were taken on a spectrom-
eter (Perkin Elmer) applying the KBr disk procedure. Sam-
ples were formulated as KBr disks with complex (1 mg) and 
KBr (100 mg). The scanning range was 4000−400 cm−1 at 
normal temperature.

HRMS were performed with Q-TOF instrument (high 
resolution) by positive mode electro-spray ionization.

ICs (α-CD + CDP and β-CD + CDP) were also prepared 
in the solid state taking 1:1 mol ratio of the drug CDP and 
each CD. For this purpose 1.0 mmol CD was dissolved in 
20 mL water and 1.0 mmol drug CDP was dissolved in 
20 mL water. These two solutions are allowed to stir sepa-
rately in a magnetic stirrer for 3 h. The aqueous solution of 
the drug was added dropwise into the aqueous solution of 
the cyclodextrin. Then the mixture is constantly stirred for 
4 days at 40–45 °C. The solution was filtered at that tem-
perature, then cooled to 5 °C and kept for 24 h. The resulting 
suspension was filtered and the white polycrystalline powder 
was found, it was dried in air.

Result and discussion

1H NMR spectra analysis

The formation of IC and stoichiometry is verified by 1H 
NMR study. When the drug molecule is encapsulated into 
the hydrophobic cavity of CD molecule it consequences the 

shift of protons of the CDP and CD molecules [16, 17]. 
The aromatic ring of CDP molecule produces diamagnetic 
shielding of protons present in it according to the interac-
tion with the CD protons after encapsulation. The location 
of various protons in the CD molecules are illustrated in 
Scheme 3. The protons H3 and H5 are located within the 
cone of CD close to the wider rim and narrower rim respec-
tively. The remaining H1, H2 and H4 protons have their 
positions at the outer surface of the CD molecule [18–20]. 
The chemical shift (δ) values of the drug CDP, α-CD, β-CD 
and ICs are mentioned in table S1. The signals of the protons 
of the host and aromatic ring of the drug shifted towards 
upfield in the resulting inclusion complex of the drug and 
CD (Figs. 1, 2). Chemical shift indicates that the aromatic 
moiety of the drug interact with the H3 than H5 protons 
signifying that the drug molecule enter into the hydrophobic 
cavity from wider rim. The change in δ value of CDP and 
CD is mainly because of change of environment after inclu-
sion complex formation. The upfield shift is basically due to 
formation of hydrogen bond of the guest with rim hydroxyl 
groups of CD. The shielding of H3 and H5 protons are due 
to ring current effect as the aromatic part of the ring was 
positioned perpendicular to the to the cyclodextrin molecule 
cavity [2]. These results show the formation of inclusion 
complex.

Surface tension study

Surface tension study nicely explains the formation of IC 
[21, 22]. CDs being hydrophobic in nature do not express 
considerable change of surface tension (γ) of aqueous solu-
tion [23]. The drug molecule CDP exist as charged structure 
and behave like surface active molecule. Therefore when 
CDP forms IC with the host molecule notable modification 
in surface tension is detected. The γ value of the aqueous 
solution of this drug is less than that of water. In this article 
the γ value of various solutions of CDP with gradual addi-
tion of α and β-CD were determined at 298.15 K (Tables 
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Scheme 3  Truncated conical structure of cyclodextrin
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S4, S5). The γ regularly increases for both the CDs, per-
haps owing to the inclusion of the surfactant like drug mol-
ecules from solution to the hydrophobic cavity of the CDs 
(Scheme 4). There is a solo noticeable break in both the 
plots (Fig. 3) which propose the formation of IC [24, 25]. 
The concentration ratios of the CDs and CDP at the break 
point (Table 1) are roughly 1:1 which surely indicate the 
stoichiometric ratio of the IC to be 1:1. If more than one 
break point would be detected in the surface tension plot it 
would indicate other stoichiometry of the IC.  

Conductivity study

Conductivity (κ) provides important information concerning 
the stoichiometry of the IC [26, 27]. The aqueous solution 
of the drug CDP is conductive in nature as it can exist as 
a charged structure. For this purpose the conductivity of a 
sequence of solutions of this drug with gradual addition of 
α and β-CD were determined at 298.15 K. When dropwise 
CD solution is added to the drug solution the conductivity 
value regularly decreases and there is an appearance of a 
sharp break point after that the conductivity value do not 

show any change (Tables S6, S7). α and β-CD show same 
type of tendency in their conductivity values (Fig. 4). The 
manifestation of sharp break points imply the formation of 
IC [3, 28]. The decreasing κ value is mainly due to the inser-
tion of the guest drug molecule in the conical cavity of CD. 
The values of κ and subsequent concentration of the CD 
molecules are mentioned in Table 1 which proposes that 
the ratio of concentration of CDP and the CD at the break 
point is around 1:1. This confirms the stoichiometry of the 
IC to be 1:1.

The break point is the point at which the conductivity 
value corresponds to the maximum inclusion of the drug 
molecules in CD molecule cavity [18]. There exists an 
active equilibrium between the free and encapsulated drug 
molecules.

Drug + Cyclodextrin ⇌ Inclusion complex

Fig. 1  1H NMR spectra of (a) α-CD (b) CDP and (c) IC of α-CD + CDP in  D2O in 298.15 K
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Job plots confirm the stoichiometric ratio

Job’s method can be utilized to recognize the stoichiom-
etry of the ICs formed [29, 30]. Job plots are constructed 
by the continuous variation method by UV–Visible 

spectroscopy. For this purpose a series of solutions for the 
drug CDP and both the CDs were prepared with the varia-
tion of the mole fraction of the drug molecule (Tables S2, 
S3). ∆A × ∆R was plotted against R to obtain these plots 
where ∆A is the difference in the absorbance of the drug 
without and with the presence of host CDs and R = [CDP]/

Fig. 2  1H NMR spectra of (a) β-CD (b) CDP and (c) IC of β-CD + CDP in  D2O in 298.15 K
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Scheme 4  Probable mechanism of encapsulation of CDP into α and β-cyclodextrins
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Fig. 3  Change of surface tension of aqueous CDP solution with rising concentration of a α-CD b β-CD correspondingly at 298.15 K

Table 1  Values of surface 
tension (γ) and conductance 
(κ) data the break point with 
subsequent concentration of α 
and β-CD at 298.15 K

Standard uncertainties (u): temperature: u(T) =  ± 0.01 K, surface tension: u(γ) =  ± 0.1  mNm−1, conductiv-
ity: u(κ) =  ± 0.001  mSm−1

CDP

α-CD β-CD

Surface tension concentration/mM
5.08

γ/mNm−1

70.34
Surface tension concentration/mM
5.07

γ/mNm−1

70.75

Conductivity concentration/mM
5.01

κ/mSm−1
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Fig. 4  Change of conductivity of aqueous CDP solution with rising concentration of a α-CD b β-CD respectively at 298.15 K
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([CDP] + [CD]) [21, 31]. Absorbance values were recorded 
at the respective λmax for each of the solutions at 298.15 K. 
The stoichiometry of the inclusion complex was found 
from the R values at maximum deviation, that is the ratio 
of host and guest at R = 0.5 is for 1:1 complex; R = 0.33 for 
1:2 complex; R = 0.66 for 2:1 complex [8]. From Fig. 5, it 
has been found that the maxima is at R = 0.5 for each plot 
which confirms the 1:1 stoichiometry of the ICs.

Association constant and thermodynamic 
parameters

Association constants were determined for both the CDP-
CD ICs from UV–Visible spectra [32]. When the drug 
molecule is encapsulated in the CD cavity there is a change 

from polar aqueous environment to the apolar hydrophobic 
cavity. As a result the change in molar absorptivity (∆ε) of 
the drug molecule changes after inclusion. The difference 
in absorbance intensity (∆A) of the drug is observed as a 
function of concentration of both the CD molecules to find 
out the  Ka value (Tables 2, S2 and S3). Double reciprocal 
plots were generated on the basis of Benesi–Hildebrand 
method for 1:1 host–guest ICs [8, 33] (Figs. S1, S2, Eq. 1)

The aforementioned equation is a linear one and the  Ka 
was calculated dividing intercept by slope from double-
reciprocal plots for both the ICs [34].
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1
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Fig. 5  Job plot of a CDP-α-CD system at λmax = 254  nm b CDP-β-CD system at λmax = 254  nm at 298.15  K. R = [CDP]/([CDP] + [CD]), 
∆A = absorbance difference of CDP without and with CD

Table 2  Ka, ∆H°, ∆S° and ∆G° 
of various CDP-CD ICs

a Standard uncertainties in temperature u are: u(T) =  ± 0.01 K
b Mean errors in  Ka =  ± 0.02 ×  10–3  M−1; ΔH° =  ± 0.01  kJ  mol−1; ΔS° =  ± 0.01  J  mol−1  K−1, ΔG° =  
± 0.01 kJ mol−1

CDP

Temp (K)a Ka × 10–3(M−1)b ∆H° (kJ  mol−1)b ∆S° (J  mol−1 K−1)b ∆G° (kJ  mol−1)b

(298.15 K)

CDP + α-CD 288.15 1.99
293.15 1.71
298.15 1.50  − 22.19  − 13.78  − 18.08
303.15 1.28
308.15 1.08

CDP + β-CD 288.15 2.38
293.15 2.13
298.15 1.89  − 19.06  − 1.35  − 18.65
303.15 1.64
308.15 1.42
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The thermodynamic parameters can also be evaluated 
using the  Ka values found at various temperatures on the 
basis of above method using van’t Hoff equation mentioned 
below [35].

(2)ln Ka = −
ΔH◦

RT
+

ΔS◦

R

Linear relationship exists between  lnKa and 1/T. The 
slope of the plot of equilibrium constant at various tem-
peratures gives a negative value for ΔH°, thus indicating 
that the process is exothermic [31]. The thermodynamic 
parameters are listed in Table  2. The negative values 
of ΔG° for both systems indicate that the formation of 
inclusion complexes is spontaneous. The decrease in ΔS° 
value implies that the process is entropy controlled but not 

Fig. 6  FTIR spectra of CDP, α-CD and CDP + α-CD IC
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entropy driven. The negative value of ΔS°, unfavorable to 
the inclusion process, is overcome by the negative value 
of ΔH°, leading to an overall thermodynamically favorable 
process.

The entropic contribution for β-CD is less unfavora-
ble compared to α-CD as found from the spectroscopic 
studies. This may be attributed to the fact that both α and 
β-CD comprise of few water molecules inside the cavity. 

While the hydrophobic guest enters into the cavity of CD, 
these water molecules are released into the bulk increas-
ing the overall entropy of the system. Now, as found from 
the other studies that β-CD has higher tendency for the 
formation of inclusion complex, it is typical that the drop 
of entropy would be much less in case of β-CD as respect 
to α-CD.

Fig. 7  FTIR spectra of CDP, β-CD and CDP + β-CD IC
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FT‑IR spectra analysis

FT-IR spectral study helps to determine the interaction 
between the host and guest in the IC [36, 37]. The drug CDP 
and the CDs form solid inclusion complexes by other than 
covalent interactions such as hydrophobic interactions, van 
der Waals interaction and hydrogen bonding. After encapsu-
lation of the drug molecule by the CDs, the resulting absorp-
tion bands from the encapsulated part of the guest have been 
shifted in their position [38, 39]. The FT-IR spectrum of 
pure CDP, α-CD, β-CD and the two ICs are shown in the 
Figs. 6 and 7. The different frequencies of the above men-
tioned compounds are reported in table S10. The spectrum 
of CDP is characterised by peaks of –N–H, –C=N, –C–N, 
–C–Cl, aromatic –C=C, –C–H of –CH2 and –CH3 etc. The 
broad –O–H stretching frequency for α-CD and β-CD was 
observed at 3412.11 cm−1 and 3349.85 cm−1 respectively. 
In the ICs the –O–H frequency shifted to lower region i.e., 
3384.08 and 3329.76 cm−1 for α-CD and β-CD respectively. 
This shift occurs probably due to participation of the –O–H 
groups of both the CDs in hydrogen bonding with the guest 
drug molecule. The peaks of –C=N, –C–N, aromatic –C=C 
of the drug CDP are shifted in the spectra of the ICs. The 

changes in the FT-IR spectra of ICs are due to the restriction 
of the vibration of free CDP molecules as the quinoline part 
of the drug with Cl groups is encapsulated in the hollow 
space of CD molecules [40, 41]. No additional peaks are 
found in the spectra of the ICs. This fact again confirms that 
only non covalent interaction exists between the host and 
guest, only Vanderwaal’s interaction are present.

HRMS study

ESI–MS study is a extensively acknowledged practice to 
describe host–guest IC [42, 43]. The result of ESI–MS 
study can simply be matched up with other experiments, 
for instance Job Plot titration obtained from UV–Visible 
spectra. The solid ICs synthesized by the method men-
tioned in the experimental section are used for MS study. 
Figure 8a, b show the mass spectra of the two CDP-CD 
ICs. The strong peaks at m/z 1293.54 and 1454.61 refers 
to the proton adduct of CDP + α-CD IC and CDP + β-CD 
IC. Since no additional intense peak was detected at higher 
values the ESI–MS experiment verifies the 1:1 stoichiom-
etry of the ICs [44, 45].

Fig. 8  ESI mass spectra of a 
CDP + α-CD and b CDP + β-CD 
ICs
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Conclusion

It can be concluded from the present study that chlo-
roquine diphosphate form ICs with α-CD and β-CD in 
aqueous solution and in solid phase, thus enhances the 
bioavailability of the drug. These two inclusion com-
plexes have found applications for controlled release of 
this drug. The inclusion phenomenon is explained by 1H-
NMR study whereas surface tension, conductivity and Job 
plot variation suggest the 1:1 stoichiometry of the ICs. 
FTIR and HRMS also support the formation of IC. The 
binding constants and thermodynamic data are determined 
by UV–Visible spectroscopy which is come across to be 
higher for β-CD. In general the inclusion process is ther-
modynamically approving. These two ICs have potential 
application in the pharmaceutical industries and biomedi-
cal fields.
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