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Abstract Six new dioxadiaza macrocyclic Schiff bases

with 18-, 19-, 20- and 22-membered rings have been syn-

thesized from diamine and dialdehyde building blocks. An

X-ray diffraction study and molecular modelling (at the

HF/6-31G(d,p) level of theory) have been performed to

determine their molecular geometries and structural con-

figurations. According to the theoretical studies the most

stable conformers of the macrocycles are those, in which

the lone pair electrons localized on the nitrogen atoms are

exo-oriented, and those on the oxygen atoms are endo-

oriented with respect to the cavity. In order to obtain more

proper metal ion receptors with all lone pair electrons

directed into the cavity, two Schiff base macrocycles have

been reduced to the corresponding diamines, of which one

could be isolated only as a very stable oxaazacyclophane

borane adduct.

Keywords Schiff bases � Macrocycles �
Oxaazacyclophanes � Molecular modelling

Introduction

The interest in exploring new metal ion complexes with

macrocycles containing nitrogen and oxygen donor atoms

has been increasing, because they result very attractive for

supramolecular and coordination chemistry. Particularly

important are systems that are related to bioactive molecules

such as metalloporphyrins, corrins and antibiotics [1, 2].

A convenient route for the construction of polyoxaaza

macrocycles is Schiff base condensation, a method that has

been developed already for the synthesis of one of the first

macrocycles employed for metal complexation. Varying

the number, position and orientation of the donor atom lone

pair electrons within the polyoxaaza macrocycles as well as

the cavity size, highly selective receptors for a variety of

metal ions can be designed [2]. On the other hand, through

the proper choice of building blocks for the formation of

the Schiff base macrocycles it is possible to obtain com-

pounds with attractive and sophisticated structures, which

could be employed for creating new materials such as

chemical sensors, catalysts, liquid crystals, and pharma-

ceutical substances [3–5].

Many synthetic protocols for the preparation of tetra-

[6–11], penta- [12–32], hexa-, and polydentate Schiff base

macrocyclic compounds involve metal ions as templating

agents that orient all or part of the ligand donor atoms into

an optimal conformation for the ring closure [1, 2, 33–41].

However, the template synthetic method can have the

disadvantage that stable metal-complexed macrocycles are

generated, thus making the preparation of the metal-free

ligand difficult. Therefore, during the last two decades,

considerable effort has been made to develop metal-free

methods for the synthesis of macrocycles [2, 42], in par-

ticular to overcome the common problem that the desired

product is obtained in very low yield.
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We are interested in new synthetic [43–45] and semi-

synthetic [46–50] macrocycles containing oxygen and

nitrogen atoms in order to study their coordinating capacity

towards metal cations as well as their ability to act as hosts

for neutral and charged guest atoms and molecules. We

report herein on the synthesis and structural characteriza-

tion of six new Schiff base dioxadiaza macrocycles and

some of their hydrogen-reduced amine analogues.

Experimental section

All reagents for synthesis were purchased from commercial

suppliers and used without further purification. NMR spec-

tra were recorded on 400 MHz Bruker AVANCE 400 and

Varian UNITY INOVA spectrometers. Chemical shifts (d)

are reported in ppm relative to tetramethylsilane and J values

are given in Hertz. Mass spectra were recorded on a high

resolution Jeol MStation 700 mass spectrometer using the

FAB? technique. Infrared spectra were recorded on a Per-

kin-Elmer Spectrum GX FTIR spectrophotometer. Melting

points are uncorrected.

X-ray crystallography

Compound 3 was crystallized from ethanol and the oxa-

azacyclophane-borane adduct 10 from chloroform. X-ray

diffraction studies were performed at 293(2) K on a BRU-

KER-AXS APEX diffractometer with a CCD area detector

(MoKa, k = 0.71073 Å, monochromator: graphite). Frames

were collected via x//-rotation at 10 s per frame (SMART)

[51]. The measured intensities were reduced to F2 and cor-

rected for absorption with SADABS (SAINT-NT) [52].

Structure solution, refinement, and data output were carried

out with the SHELXTL-NT software package [53]. Non-

hydrogen atoms were refined anisotropically, while hydro-

gen atoms were placed in geometrically calculated positions

using a riding model. The N–H and B–H hydrogen atoms in

compound 10 have been localized by difference Fourier

maps. The crystals of compound 10 were weak and con-

tained solvent molecules (CHCl3), thus giving somewhat

elevated R values.

Details of the crystal structure determination and solu-

tion refinement of 3 (C28H22N2O2): colourless rectangular

prism with dimensions 0.52 9 0.20 9 0.16 mm3, M =

418.48 g mol-1, orthorhombic, P212121, a = 9.4764(13),

b = 10.7696(14), c = 21.506(3) Å, V = 2,194.8(5) Å3,

Z = 4, qcalc = 1.266 mg/m3, l = 0.080 mm-1, 2430

independent reflections measured, 1719 reflections

observed with I C 2r(I), parameters refined 289,

R = 0.078, Rw = 0.1338, goodness of fit = 1.158. Details

of the crystal structure determination and solution

refinement of 10 (C28H40B2N2O2 � CHCl3): [50] colourless

rectangular prism with dimensions 0.35 9 0.23 9

0.18 mm3, M = 577.61 g mol-1, triclinic, P-1, a =

10.3152(10), b = 10.9207(11), c = 15.6942(16) Å,

a = 110.262(2), b = 98.274(2), c = 101.512(2), V =

1,580.9(3) Å3, Z = 2, qcalc = 1.213 mg/m3, l =

0.318 mm-1, 5548 independent reflections measured, 3824

reflections observed with I C 2r(I), parameters refined

367, R = 0.1228, Rw = 0.2416, goodness of fit = 1.253.

Crystallographic data for 3 and 10 have been deposited

at the Cambridge Crystallographic Data Center as CCDC

No. 663938 and No. 650762 respectively. Copies of the

data can be obtained free of charge upon application

to CCDC, 12 Union Road, Cambridge CB2 1EZ, U.K.

(e-mail: deposit@ccdc.cam.ac.uk).

Computational methods

The geometry of each stationary point was fully optimized

using the Gaussian 03 software package [54] with the

double zeta 6-31G(d,p) basis set. All stationary points were

characterized as minima as proved by an analysis of the

harmonic vibrational frequencies, using analytical second

derivatives. All of the structures were visualized with the

Chemcraft 1.5 program [55].

Dialdehyde 1

This compound was prepared by a modified procedure to

that reported previously [56, 57] A solution of salicylalde-

hyde (1.00 g, 8 mmol) in anhydrous DMF (5 mL) was

added to a suspension of K2CO3 (in excess) in the same

solvent (25 mL). The suspension was kept under nitrogen

and stirred at 80 �C during 30 min. Then, a solution of a,a0-
dibromo-m-xylene (1.08 g, 4 mmol) in anhydrous DMF

(5 mL) was added slowly to the mixture and the resulting

suspension was then stirred at 80 �C. The reaction was

monitored by TLC (heptane:acetone 60:40) until a single

product was observed and the starting material disappeared.

The suspension was filtered in order to remove the potassium

salt. The filtrate was evaporated in vacuum to dryness and

acetone was added until a precipitate appeared. A light-

brown solid was obtained after filtration, acetone washing,

and drying in vacuum.
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Yield: 95%; m.p. 112–114� (from acetone); 1H NMR

(400 MHz, DMSO-d6, 25 �C, TMS): d = 10.56 (s, 2 H, H-

1), 7.86 ppm (dd, 3J(H–H) = 7.6 Hz, 4J(H–H) = 2 Hz, 2

H; H-3), 7.57 ppm (d, 3J(H–H) = 7.6 Hz, 2 H; H-10),

7.54 ppm (dt, 4J(H–H) = 1.6 Hz, 3J(H–H) = 8 Hz, 2 H;

H-5), 7.45 ppm (t, 3J(H–H) = 7.6 Hz, 1 H; H-11),

7.46 ppm (s, 1 H; H-12), 7.08 ppm (t, 3J(H–H) = 7.6 Hz,

2 H; H-4), 7.05 ppm (d, 3J(H–H) = 8 Hz, 2 H; H-6),

5.23 ppm (s, 4 H; H-8); 13C NMR (400 MHz, DMSO-d6,

25 �C; d, ppm): d = 189.8 (C-1), 161.0 (C-7), 136.9 (C-9),

136.1 (C-10), 129.4 (C-12), 128.9 (C-3), 127.3 (C-11),

126.2 (C-5), 125.3 (C-2), 121.3 (C-6), 113.1 (C-4), 70.4 (C-

8); IR (KBr, cm-1): m = 3014 (w), 2935 (w), 2878 (m),

2765 (w), 1668 (s), 1600 (s), 1482 (s), 1459 (s), 1403 (m),

1369 (m), 1303 (s), 1288 (s), 1233 (s), 1185 (m), 1164 (m),

1104 (m), 1008 (s), 898 (m), 846 (m), 821 (m), 790 (m),

773 (m), 711 (s); FAB-MS: m/z (%) 347 ([M?], 25), 307

(21), 289 (13), 225 (45), 224 (13), 197 (16), 195 (11), 154

(100), 136 (64), 121 (9), 106 (6); Elem anal. Calcd for

C22H18O4 (346.38): C, 76.29; H, 5.24; O, 18.48; found: C,

75.96; H, 5.24.

Dialdehyde 2

Compound 2 was prepared in a similar manner to that

described for dialdehyde 1 using a,a0-dibromo-m-xylene

(1.08 g, 4 mmol) and salicylaldehyde (1.00 g, 8 mmol).

The product was obtained as white crystals in higher yield

(see below) to that reported previously in the literature

(84%) [57].
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Yield: 98%; m.p. 188–190 �C (from acetone); 1H NMR

(400 MHz, DMSO-d6, 25 �C, TMS): d = 10.57 (s, 2 H;

H-1), 7.87 ppm (dd, 3J(H–H) = 8.0 Hz, 4J(H–H) =

1.8 Hz, 2 H; H-3), 7.56 ppm (dt, 3J(H–H) = 8.0 Hz, 4J(H–H) =

1.8 Hz, 2 H; H-5), 7.50 ppm (s, 4 H, H-10), 7.07 ppm (t,
3J(H–H) = 8.0 Hz, 2 H; H-4), 7.05 ppm (d, 3J(H–

H) = 8.0 Hz, 2 H; H-6), 5.24 ppm (s, 4 H; H-8); 13C NMR

(400 MHz, DMSO-d6, 25 �C; d, ppm): d = 189.9 (C-1),

161.1 (C-7), 136.4 (C-9), 136.1 (C-5), 128.8 (C-3), 127.9

(C-10), 125.4 (C-2), 121.3 (C-4), 113.2 (C-6), 70.3 (C-8);

IR (KBr, cm-1): m = 2936 (w), 2850 (m), 2763 (m), 1687

(s), 1599 (s), 1488 (s), 1458 (s), 1401 (m), 1376 (s), 1307

(s), 1286 (s), 1242 (s), 1191 (s), 1164 (s), 1102 (s), 1009

(s), 994 (s), 866 (m), 851 (m), 803 (m), 779 (s); FAB-MS:

m/z (%) 345 ([M?], 28), 329 (1), 307 (22), 289 (14), 273

(2), 260 (2), 242 (2), 225 (9), 219 (5), 192 (100), 165 (4).

Elem anal. Calcd for C22H18O4 (346.38): C, 76.29; H, 5.24;

O, 18.48; found: C, 76.10; H, 5.24.

Macrocycle 3

Compound 3 was synthesized from 1 (0.16 g, 0.46 mmol)

and 1,3-benzenediamine (0.05 g, 0.46 mmol). The reaction

mixture was stirred in ethanol under high pressure during

24 h at 70 �C. A considerable amount of yellow crystals

appeared during the reaction, which were removed by fil-

tration and then washed with ethanol and dried in vacuum.
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Yield: 31%; m.p. 311–314 �C (from ethanol); 1H NMR

(400 MHz, DMSO-d6, 25 �C, TMS): d = 9.07 (s, 2 H; H-

1), 8.22 ppm (dd, 3J(H–H) = 8 Hz, 4J(H–H) = 2 Hz, 2 H;

H-3), 7.94 ppm (s, 1 H, H-12), 7.49 ppm (dt, 3J(H–

H) = 8 Hz, 4J(H–H) = 2 Hz, 2 H; H-5), 7.35 ppm (m, 3

H, H-10, H-11), 7.21 ppm (dt, 3J(H–H) = 8 Hz, 4J(H–

H) = 2 Hz, 2 H; H-15), 7.17 ppm (t, 3J(H–H) = 8 Hz, 1

H; H-16), 7.12 ppm (d, 3J(H–H) = 8 Hz, 2 H; H-6),

7.10 ppm (t, 3J(H–H) = 8 Hz, 2 H; H-4), 6.90 ppm (t,
4J(H–H) = 2 Hz, 1 H; H-13), 5.09 ppm (s, 4 H, H-8); 13C

NMR (400 MHz, DMSO-d6, 25 �C; d, ppm): d = 158.5

(C-1), 157.2 (C-7), 153.6 (C-14), 136.6 (C-9), 132.7 (C-5),

128.9 (C-16), 128.8 (C-3), 128.4 (C-11), 127.0 (C-10),

124.3 (C-12), 121.5 (C-4), 121.2 (C-15), 112.1 (C-2), 112.0

(C-13), 108.2 (C-6), 71.2 (C-8); IR (KBr, cm-1): m = 3063

(w), 3006 (w), 2928 (w), 2876 (w), 1615 (s), 1599 (s), 1574

(s), 1478 (s), 1456 (s), 1368 (s), 1299 (s), 1265 (s), 1226

(s), 1162 (s), 1145 (m), 11034 (s), 1006 (s), 964 (m), 864

(m), 763 (s); FAB-MS: m/z (%) 419 ([M?], 15), 391 (7),

346 (5), 341 (5), 329 (3), 307 (100), 289 (38), 273 (7), 260

(5), 235 (5), 219 (9). Elem anal. Calcd for C28H22N2O2

(418.49): C, 80.35; H, 5.30; N, 6.69; O, 7.66; found: C,

80.45; H, 5.29; N, 6.92.

Macrocycle 4

Compound 4 was prepared in an analogous manner to that

described for macrocycle 3, using 1 (0.16 g, 0.46 mmol)

and 1,3-propanediamine (0.342 g, 0.46 mmol). The prod-

uct was obtained as a white solid.
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Yield: 39%; m.p. 95–197 �C (from ethanol); 1H

NMR (400 MHz, DMSO-d6, 25 �C, TMS): d = 8.83 (s, 2

H; H-1), 8.02 ppm (dd, 3J(H–H) = 8 Hz, 4J(H–H) =

2 Hz, 2 H; H-3), 7.92 ppm (s, 1 H; H-12), 7.38 ppm (dt,
3J(H–H) = 8 Hz, 4J(H–H) = 2 Hz, 2 H; H-5), 7.28 ppm

(m, 3 H; H-10 and H-11), 7.03 ppm (d, 3J(H–H) = 8 Hz, 2

H; H-6), 7.01 ppm (t, 3J(H–H) = 8 Hz, 2 H; H-4), 5.20 ppm

(s, 4 H; H-8), 3.59 ppm (t, 4 H; H-13), 2.25 ppm (m, 2 H; H-

14); 13C NMR (400 MHz, DMSO-d6, 25 �C; d, ppm):

d = 161.8 (C-1), 157.0 (C-7), 137.5 (C-9), 131.8 (C-5),

128.2 (C-3), 127.6 (C-11), 126.0 (C-12), 125.0 (C-10), 124.0

(C-2), 121.2 (C-4), 112.0 (C-6), 69.3 (C-8), 57.2 (C-13), 29.7

(C-14); IR (KBr, cm-1): m = 3680 (w), 3654 (w), 3446 (m),

2911 (w), 2886 (w), 1640 (s), 1598 (s), 1489 (m), 1449 (s),

1371 (m), 1290 (m), 1241 (s), 1044 (m), 752 (m); FAB-MS:

m/z (%) 385 ([M?], 100), 369 (2), 341 (2), 309 (9), 307 (57),

289 (26), 273 (5), 260 (3), 242 (3), 235 (4), 219 (5), 207 (2),

202 (1). Elem anal. Calcd for C25H24N2O2 (384.47): C, 78.08;

H, 6.29; N, 7.29; O, 8.34; found: C, 78.48; H, 6.29; N, 7.27.

Macrocycle 5

Compound 5 was prepared in an analogous manner to that

described for macrocycle 3, using 1 (0.16 g, 0.46 mmol)

and 1,4-butanediamine (0.037 g, 0.46 mmol). The product

was obtained as a pale yellow solid.
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Yield: 44%; m.p. 97–102 �C (from ethanol); 1H

NMR (400 MHz, DMSO-d6, 25 �C, TMS): d = 8.80 (s, 2

H; H-1), 7.97 ppm (dd, 3J(H–H) = 8 Hz, 4J(H–H) =

2 Hz, 2 H; H-3), 7.75 ppm (s, 1 H; H-12), 7.41 ppm (dt,

3J(H–H) = 8 Hz, 4J(H–H) = 2 Hz, 2 H; H-5), 7.31 ppm

(m, 3 H; H-10 and H-11), 6.97 ppm (t, 3J(H–H) = 8 Hz, 2

H; H-4), 6.93 ppm (d, 3J(H–H) = 8 Hz, 2 H; H-6),

5.16 ppm (s, 4 H; H-8), 3.67 ppm (t, 4 H; H-13), 1.26 ppm

(q, 4 H; H-14); 13C NMR (400 MHz, DMSO-d6, 25 �C; d,

ppm): d = 157.6 (C-1), 156.7 (C-7), 137.6 (C-9), 131.6 (C-

5), 128.4 (C-11), 127.3 (C-3), 126.5 (C-12), 125.3 (C-10),

124.7 (C-2), 121.1 (C-4), 111.9 (C-6), 69.5 (C-8), 60.5 (C-

13), 27.0 (C-14); IR (KBr, cm-1): m = 3331 (w), 3029 (w),

2938 (s), 2839 (s), 1638 (s), 1599 (s), 1581 (m), 1488 (s),

1456 (s), 1372 (s), 1342 (m), 1298 (s), 1286 (s), 1242 (s),

1156 (s), 1111 (m), 1017 (s), 999 (s), 789 (m), 749 (s);

FAB-MS: m/z (%) 399 ([M?], 7), 329 (29), 277 (22), 222

(8), 208 (6), 174 (37), 172 (24), 132 (45), 104 (100), 78

(54), 77 (28), 65 (6).

Macrocycle 6

Compound 6 was prepared in an analogous manner to that

described for compound 3, using 2 (0.16 g, 0.46 mmol)

and 1,3-benzenediamine (0.05 g, 0.46 mmol). The product

was obtained as a yellow solid.
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Yield: 53%; m.p. 161–164 �C (from ethanol); 1H NMR

(400 MHz, DMSO-d6, 25 �C, TMS): d = 8.64 (s, 2 H; H-

1), 8.10 (dd, 3J(H–H) = 8 Hz, 4J(H–H) = 2 Hz, 2 H; H-

3), 7.48 ppm (dt, 3J(H–H) = 8 Hz, 4J(H–H) = 2 Hz, 2 H;

H-5), 7.34 ppm (t, 3J(H–H) = 8 Hz, 1 H; H-14), 7.33 (t,
3J(H–H) = 8 Hz, 2 H; H-4), 7.24 ppm (s, 4 H; H-10),

7.15 ppm (dd, 3J(H–H) = 8 Hz, 4J(H–H) = 2 Hz, 2 H; H-

13), 7.10 ppm (d, 3J(H–H) = 8 Hz, 2 H; H-6), 6.51 ppm

(t, 4J(H–H) = 2 Hz, 1 H; H-11), 5.14 ppm (s, 4 H; H-8);
13C NMR (400 MHz, DMSO-d6, 25 �C; d, ppm):

d = 159.9 (C-1), 156.6 (C-7), 153.0 (C-12), 137.4 (C-9),

132.9 (C-5), 129.6 (C-10), 129.3 (C-14), 127.5 (C-3), 126.0

(C-4), 122.9 (C-13), 121.9 (C-11), 114.7 (C-2), 105.9 (C-

6), 73.6 (C-8); IR (KBr, cm-1): m = 3057 (w), 3034 (w),

2942 (w), 2878 (w), 1614 (s), 1598 (s), 1573 (s), 1483 (s),

1452 (s), 1420 (m), 1360 (s), 1261 (s), 1160 (s), 1138 (m),

1100 (s), 1038 (m), 985 (s), 955 (s), 893 (m), 855 (m), 748

(s); FAB-MS: m/z (%) 419 ([M?], 100), 418 (16), 314 (3),

307 (83), 289 (42), 230 (9), 219 (12), 207 (40), 190 (14);
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Elem anal. Calcd for C28H22N2O2 (418.49): C, 80.36; H,

5.30; N, 6.69; O, 7.65; found: C, 79.96; H, 5.26; N, 6.78.

Macrocycle 7

Compound 7 was prepared in an analogous manner to that

described for compound 3 using 2 (0.16 g, 0.46 mmol) and

1,4-butanediamine (0.037 g, 0.46 mmol). The product was

obtained as a white solid.
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Yield: 30%; m.p. 175–178 �C (from ethanol); NMR

characterization studies could not be performed because of

insolubility of the compound in most common solvents; IR

(KBr, cm-1): m = 3066 (w), 3027 (w), 2930 (s), 2854 (m),

2830 (m), 1644 (s), 1598 (s), 1577 (m), 1518 (m), 1438 (s),

1456 (s), 1374 (s), 1340 (m), 1298 (s), 1281 (s), 1250 (s),

1234 (s), 1160 (m), 1036 (s), 1008 (s), 750 (s); FAB-MS:

m/z (%) 399 ([M?], 31), 391 (4), 371 (3), 345 (6), 307

(100), 289 (52), 273 (9), 235 (10), 196 (4), 192 (12), 165

(10). Elem anal. Calcd. for C26H26N2O2 (398.5): C, 78.36;

H, 6.58; N, 7.03; O, 8.03; found: C, 78.32; H, 6.68; N, 7.09.

Macrocycle 8

Compound 8 was prepared in an analogous manner to that

described for compound 3 using 2 (0.16 g, 0.46 mmol) and

1,6-hexanediamine (0.053 g, 0.46 mmol). The product was

obtained as a white powder.
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Yield: 86%; m.p. 164–166 �C (from ethanol); 1H NMR

(400 MHz, DMSO-d6, 25 �C, TMS): d = 8.72 (s, 2 H; H-1),

7.82 ppm (dd, 3J(H–H) = 8 Hz, 4J(H–H) = 2 Hz, 2 H; H-

3), 7.43 ppm (s, 4 H; H-10), 7.38 ppm (dt, 3J(H–H) = 8 Hz,
4J(H–H) = 2 Hz, 2 H; H-5), 7.04 ppm (d, 3J(H–H) = 8 Hz,

2 H; H-6), 7.01 ppm (t, 3J(H–H) = 8 Hz, 2 H; H-4),

5.16 ppm (s, 4 H; H-8), 3.61 ppm (t, 4 H; H-11), 1.71 ppm

(m, 4 H; H-12) 1.38 ppm (m, 4 H; H-13); 13C NMR

(400 MHz, DMSO-d6, 25 �C; d, ppm): d = 157.9 (C-1),

156.7 (C-7), 131.6 (C-9), 127.8 (C-5), 127.7 (C-3), 127.5

(C-10), 126.1 (C-2), 121.5 (C-4), 113.1 (C-6), 70.3 (C-8),

61.1 (C-11), 29.6 (C-12), 26.2 (C-13); IR (KBr, cm-1):

m = 3398 (w), 3071 (w), 3034 (w), 2926 (m), 2880 (m), 2824

(m), 1911 (w), 1802 (w), 1688 (w), 1633 (s), 1598 (s), 1579

(s), 1519 (w), 1486 (s), 1452 (s), 1371 (s), 1296 (s), 1284 (s),

1239 (s), 1158 (s), 1105 (s), 1042 (s), 1003 (s), 799 (s), 749

(s); FAB-MS: m/z (%) 427 ([M?], 100), 426 (9), 322 (3), 307

(18), 289 (12), 273 (2), 257 (2), 242 (2), 222 (5), 208 (7), 204

(12), 202 (7), 165 (4). Elem anal. Calcd for C28H30N2O2

(426.55): C, 78.84; H, 7.09; N, 6.57; O, 7.50; found: C,

78.49; H, 6.99; N, 6.72.

Macrocycle 9

The diamine 9 was synthesized from the reaction of

Schiff base 3 (0.050 g, 0.11 mmol) and LiBH4 (0.005 g,

0.11 mmol) in dry THF (10 mL) as solvent. The mixture

was first stirred at 60 �C during 7.5 h and then overnight at

room temperature. Then, a little amount of water was

added, the solvents were evaporated in vacuum and a

chloroform-water extraction was performed. A white solid

was recovered after the organic phase had been evaporated.

O O

HN NH

1
2

3
4

5
6

7

8
9

10
11

12

9

13

14
15

16

Yield: 84%; m.p. 210–212 �C (from chloroform); 1H

NMR (400 MHz, DMSO-d6, 25 �C, TMS): d = 7.64 (s, 1

H; H-12), 7.43 ppm (dd, 3J(H–H) = 8 Hz, 4J(H–

H) = 2 Hz, 2 H; H-3), 7.29 ppm (m, 3 H; H-10 and H-11),

7.09 ppm (dt, 3J(H–H) = 8 Hz, 4J(H–H) = 2 Hz, 2 H; H-

5), 6.93 ppm (t, 3J(H–H) = 8 Hz, 1 H; H-16), 6.87 ppm (t,
3J(H–H) = 8 Hz, 2 H; H-4), 6.78 ppm (d, 3J(H–

H) = 8 Hz, 2 H; H-6), 6.07 ppm (dd, 3J(H–H) = 8 Hz,
4J(H–H) = 2 Hz, 2 H; H-15), 5.85 ppm (t, 4J(H–H) = 2, 1

H; H-13), 5.18 ppm (s, 4 H; H-8), 4.33 ppm (s, 4 H; H-1),

1.55 ppm (s, 2 H; N–H); 13C NMR (400 MHz, DMSO-d6,

25 �C; d, ppm): d = 155.9 (C-7), 149.2 (C-14), 138.1 (C-

9), 129.5 (C-16), 128.7 (C-11), 128.6 (C-3), 127.9 (C-5),

127.8 (C-2), 126.5 (C-12), 125.2 (C-10), 120.9 (C-4), 111.9

(C-6), 103.5 (C-15), 97.2 (C-13), 69.6 (C-8), 43.0 (C-1); IR

(KBr, cm-1): m = 3433 (s), 3034 (w), 2917 (m), 1612 (s),

1590 (s), 1519 (s), 1486 (s), 1458 (s), 1361 (m), 1306 (s),

1219 (s), 1155 (m), 1062 (m), 1035 (s), 810 (s), 924 (m),
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810 (s), 778 (s), 755 (s); FAB-MS: m/z (%) 422 ([M?], 20),

420 (17), 401 (48), 341 (33), 327 (59), 281 (100), 267 (41),

207 (74), 191 (45).

Oxaazacyclophane borane adduct 10

Details of the synthesis and characterization of this com-

pound were recently reported by our group [50].

OO
H
N

H
N

10

( )
4

BH3H3B

Results and discussion

Following the two-step protocol shown in Scheme 1, the

Schiff base macrocycles 3–8 were synthesized. Reaction

of salicylaldehyde with a,a0-dibromo-m-xylene and a,a0-

dibromo-p-xylene gave the corresponding dialdehydes 1

and 2, which were then condensed with diamines having a

nitrogen separation proper for the ring closure. In the case

of the m-xylylene dialdehyde derivative, 1,3-benzenedi-

amine, 1,3-propanediamine and 1,4-butanediamine were

chosen, while for the p-xylylene dialdehyde derivative 1,3-

benzenediamine, 1,4-butanediamine and 1,6-hexanedi-

amine have been employed, in order to obtain a series of

compounds that might be suitable for the complexation of

at least one metal ion within the cavity. In such a way

dioxadiaza macrocycles having ring sizes varying from 18

to 22 members have been obtained (18 for 3 and 4, 19 for 5

and 6, 20 for 7 and 22 for 8).

The formation of the Schiff base compounds could be

evidenced by the IR spectra that showed intense bands at

m = 1615, 1640, 1638, 1614, 1644 and 1633 cm-1 for

compounds 3–8, respectively, which correspond to the

stretching vibration of the C=N bonds. The 1H NMR

spectra showed single signals for the protons corresponding

to the –HC=N– group at 9.07, 8.83, 8.80, 8.64 and

8.72 ppm for compounds 3–6 and 8, respectively. Com-

pound 7 is insoluble in most of the common organic sol-

vents and could therefore not be characterized via this

OH

O
BrBr

BrBr

or
+

DMF / K2CO32

O

O

O

O

       ∆

NH2H2N

EtOH / 70 °C

- 2 H2O

1 R = 1,3-CH2-C6H4CH2- 
2 R = 1,4-CH2-C6H4CH2- 

R

OO

NN

OO

NN

R
R

3  R = 1,3-C6H4

4  R = -CH2CH2CH2-
5  R = -CH2(CH2)2CH2-

6  R = 1,3-C6H4

7  R = -CH2(CH2)2CH2-
8  R = -CH2(CH2)4CH2-

Scheme 1 Synthetic protocol

used for the synthesis of

compounds 1–8
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spectroscopic method. In the 13C NMR spectra, the signal

corresponding to the imine group was observed at

d = 158.5, 161.8, 157.6, 159.9 and 157.9 ppm for 3–6 and

8, respectively. FAB? mass spectrometry gave peaks at m/

z = 419, 385, 399, 419, 399 and 427 that correspond to the

[M ? H]? ions of compounds 3–8, respectively.

Since the new Schiff bases contain two nitrogen and two

oxygen donor atoms, a theoretical study was carried out to

evaluate the orientation of the lone pair electrons on the

donor atoms in order to know if the synthesized com-

pounds are suitable to coordinate metal atoms. We

explored all possibilities taking into account that the imine

C=N bond can have E and Z configuration, and found that

the E isomers have lower energy when compared to the Z

isomers. There are two different configurations for the E

isomers, which differ in the orientation of the lone pair

electrons located at the nitrogen atoms. The lowest energy

was found for those structures where the lone pair electrons

Fig. 1 Geometry-optimized

molecular structures for

compounds 3–8 using ab initio

calculations at the HF/6-

31G(d,p) level of theory
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on the nitrogen atoms are oriented towards the periphery of

the macrocycle (exo), while the lone pair electrons of the

oxygen atoms are oriented into the cavity (endo) (Fig. 1).

Structures 3, 4 and 6 belong to the point group Cs, while 5,

7 and 8 belong to the point group C2.

This is supported by the X-ray structure of compound 3.

From Fig. 2 it can be seen that the orientation of the donor

atoms is in agreement with the calculated structure shown

in Fig. 1.

Apparently, in this arrangement the annular tension in

the central heterocycle is minimized and there is an

attractive interaction between the imine hydrogen atoms

and the oxygen atoms within the macrocycle. The NBO

(Natural Bond Orbitals) analysis suggests, for the case of

structure 3, that the lone pair electrons of the oxygen atoms

are delocalized mainly into the aromatic ring of the sali-

cylidene fragment: nO ? p*C=Carom (Fig. 3a). The stabil-

ization energy E(2) for this interaction is 39.04 kcal/mol.

The C–H_O intraannular interaction is much smaller,

E(2) = 0.94 kcal/mol, and results from a delocalization of

the nO ? r*H–C type (Fig. 3b).

The theoretical study discussed before suggests that the

lone pair electrons on the nitrogen atoms are exo-oriented,

which reduces the possibility for coordination to a metal

atom located within the cavity. However, an option to

achieve the reorientation of the nitrogen lone pair electrons

is reduction of the C=N bond. In order to explore

this possibility, Schiff bases 3 and 8 were reduced with

LiBH4 to the corresponding diamines. While reduction of

compound 3 gave the expected free diamine 9 in good yield

(84%), the reduction of 8 provided the oxaazacyclophane-

borane adduct 10 that shows considerable stability in air

and towards hydrolysis [50]. Both compounds have been

characterized by spectroscopic methods (IR, 1H and 13C

NMR) and FAB? mass spectrometry. In the case of com-

pound 10 it was also possible to establish the molecular

structure by X-ray crystallography (Fig. 4). As we can see

from Fig. 4, in this case at least one nitrogen lone pair

electron can be directed into the cavity.

Conclusions

The above discussion has shown that Schiff base macro-

cyclic structures can be formed easily in two steps of

synthesis, which then can be reduced in order to increase

the affinity toward metal atoms. Diimine 8 showed a dif-

ferent behavior in the reaction with LiBH4, when compared

to its analogue 3, and resulted in the formation of a very

stable oxaazacyclophane-borane adduct.

Preliminary experiments with metal salts, such as cop-

per, nickel and zinc perchlorate, have shown that some of

the macrocyclic hosts described herein are capable of metal

complexation. On the other hand, it is important to

emphasize that diamines prepared from the corresponding

Schiff bases could also serve as receptors for anions, in

particular if the nitrogen atoms are protonated. We are

currently working on complexation studies of the

Fig. 2 Perspective view of the

molecular structure of

macrocycle 3
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macrocyclic hosts and on the preparation of further mac-

rocyclic Schiff bases and their hydrogen-reduced amine

analogues with improved structures and additional binding

sites, in order to generate hosts with a more specific

capability for guest complexation in organic and aqueous

media.
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