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Abstract
In this study, we propose an adaptive neural network (NN) control approach for a 2-DOF helicopter system characterized
by finite-time prescribed performance and input saturation. Initially, the NN is utilized to estimate the system’s uncertainty.
Subsequently, a novel performance function with finite-time attributes is formulated to ensure that the system’s tracking error
converges to a narrow margin within a predefined time span. Furthermore, adaptive parameters are integrated to address the
inherent input saturation within the system. The boundedness of the system is then demonstrated through stability analysis
employing the Lyapunov function. Finally, the effectiveness of the control strategy delineated in this investigation is validated
through simulations and experiments.

Keywords Adaptive control · NN control · 2-DOF helicopter systems · Finite-time prescribed performance · Input saturation

1 Introduction

Helicopters are widely utilized in various fields such as
transportation, logistics, freight forwarding, and geological
surveys, primarily due to their distinct advantages of vertical
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takeoff and landing capabilities, hovering flight capability,
and minimal takeoff requirements [1]. However, helicopters
pose a challenging control problem due to their inherently
nonlinear nature,multi-input,multi-output dynamics, and the
presence of uncertainties and cross-coupling effects among
their axes. These characteristics present substantial hurdles
in the development of robust control systems for helicopters.

Researchers have proposed various control algorithms
to address challenges such as uncertainty in helicopter
dynamics. For instance, in [2], an accelerated feedback aug-
mentation control was developed as a robust enhancement of
the H∞ algorithm, effectively mitigating uncertainties and
external disturbances during UAV flight. In [3], an adap-
tive integral inversion method with an online uncertainty
estimation algorithm was introduced for robust control of
3-DOF helicopters. However, with the rapid advancement
of neural networks (NNs) in recent years, scholars have
increasingly employed them in handling nonlinear systems.
The rapid learning capability and localized approximation
advantages of radial basis function NNs (RBFNNs) have
led to their widespread use in nonlinear control applica-
tions [4]. In [5, 6], the authors devised an adaptive control
scheme employing NNs to address uncertainties inherent in
3-DOF helicopter systems. In [7], the authors employed NNs
to estimate unknown functions within the same system and
validated the algorithm’s efficacy through simulation. For 2-
DOF helicopter systems afflicted by model uncertainty and
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unknownbacklash, deterministic learning strategies based on
adaptive NNs were proposed by the authors in [8]. However,
the literature reviewed primarily focuses on the convergence
and steady-state behavior of the system. In practical engineer-
ing applications, it is crucial for the system to satisfy specific
performance requirements, necessitating further investiga-
tion.

Recently, several control strategies have emerged to
explore prescribed performance. For instance, in [9], the
authors proposed a function to characterize performance,
delineating constraints on tracking errors. They employed
an error transformation technique to convert the constrained
problem of tracking the trajectory of a robotic manipula-
tor into an unconstrained stabilization problem. In [10], the
authors introduced a prescribed performance function (PPF)
with an error transformation to ensure that constraints satisfy
the system’s output requirements by transforming the con-
strained problem into an unconstrained one. Furthermore,
in [11], the authors presented a control strategy utilizing
neural networks to address performance constraints within
the system, employing an adaptive prescribed performance
approach. Additionally, in [12], researchers introduced a
robust control strategy tailored for 3-DOF helicopter sys-
tems, with a focus on achieving prescribed transient and
steady-state performance. While the PPF can manage both
transient and steady-state constraints of the system, the
aforementioned studies have concentrated on prescribed
performance as time approaches infinity. However, some
practical systems, such as unmanned aerial vehicles and
robotic systems, necessitate achieving the desired perfor-
mance and completing the control task within a finite time.

Finite-time control research has recently witnessed sig-
nificant advancements, boasting a quicker convergence rate
compared to asymptotic stability control, rendering it widely
applicable across various practical systems. In [13], to tackle
issues such as the sluggish convergence of the adaptive law
attributed to the traditional gradient algorithm, thereby com-
promising systemperformance, the authors introduced finite-
time convergence for adaptive NNs. In [14, 15], researchers
devised finite-time control strategies employing adaptive
NNs, aimed at addressing challenges encountered in diverse
nonlinear systems, including issues pertaining to gradual
convergence. Alongside finite-time convergence techniques,
input saturation emerges as a prevalent phenomenon in real
systems, posing a significant challenge and thereby paving
the way for further research opportunities.

In practical engineering applications, the input of the sys-
tem actuator often faces an upper limit, resulting in input
saturation that is unavoidable. Input saturation constrains the
system’s performance and significantly impacts its stability
[16]. Consequently, addressing the input saturation problem
has become a focal point of current research. In [17–19],
authors applied the Nussbaum gain technique to manage the

nonlinearity caused by saturation in spacecraft or other non-
linear systems. Similarly, in [20, 21], the phenomenon of
input saturation in robotic arms and helicopter systems was
addressed by utilizing NNs to approximate the saturation
error and developing adaptive NN controllers. Additionally,
in [22], authors employed adaptive laws with multiplica-
tive operation solutions to handle the saturation error term
and devised an adaptive NN control strategy. Despite the
availability of several treatment approaches for input satura-
tion, there remains a dearth of studies considering finite-time
control, prescribed performance, and input saturation simul-
taneously for 2-DOF helicopter systems. This research gap
serves as a motivation for further investigation.

Based on the existing literature, this study proposes an
adaptive finite time control (AFTC) strategy integrating NNs
for 2-DOF helicopter systems. This approach is specifically
designed to cope with the input saturation challenge and
achieve the prescribed performance. The main contributions
of this paper compared to previous literature are summarized
below:

1) Unlike the PPF in [9–12], this study introduces a finite
time performance function. This novel approach enables
the system error to converge to a narrow zero domain
within a finite time. Moreover, it facilitates the conver-
gence of bothNNweights and adaptive parameterswithin
a finite time.

2) In contrast to [17–19],which employs theNussbaumgain
technique to address input saturation, this study proposes
the use of adaptive parameters to tackle the input satura-
tion problem. This approach avoids the high-frequency
oscillatory characteristics associated with the Nussbaum
function and the selection of controller parameters that
can significantly affect system stability.

3) The controller proposed in this study not only ensures
fast convergence of the system error within the specified
performance region but also preserves the system’s tran-
sient properties within the a priori bounds. Furthermore,
all signals in the closed-loop system are semi-globally
consistent and bounded, ensuring system stability.

2 Problem Formulation and Preliminaries

2.1 Problem Formulation

From [23], the dynamics model of the 2-DOF helicopter sys-
tem can be deduced in the following

χ̈ = −Mogolo cosχ − Doppχ̇ − Mol2oψ̇
2 sin χ cosχ

(Jopp + Mol2o)
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+ KoppVp + KopyVy

(Jopp + Mol2o)
, (1)

ψ̈ = −Doyyψ̇ + 2Mol2oψ̇χ̇ sin χ cosχ

(Joyy + Mol2ocos
2 χ)

+ KoypVp + KoyyVy

(Joyy + Mol2ocos2 χ)
, (2)

where χ and ψ indicate the pitch and yaw angle. Mo is the
weight of the helicopter system. lo is the distance between
the fixed frame of the helicopter and the center of mass. go
denotes the gravitational acceleration. Dopp and Doyy denote
the coefficient of viscous friction. Jopp and Joyy denote the
moments of inertia. Kopp, Kopy , Koyy and Koyp denote the
thrust torques [24].

Subsequently, a unique performance metric is suggested
as follows.

Definition 1 ([25]) If the conditions outlined below are met
by a continuous function ζi (t).

1) For any t ≤ Tl , there are lim
t→Tl

ζi (t) = ζiTl and ζi (t) = ζiTl

with ζiTl and Tl being design parameter and setting time,
respesctinely;

2) ζ̇i ≤ 0;
3) ζi (t) > 0.

Then, the function ζi (t) is denoted as the FTPF.
According to Definition 1, we apply the FTPF as follows.

ζi (t) =
⎧
⎨

⎩

ζ̄i (ζi0 − t
Tl

)e
λi (1− Tl

Tl−t ) + ζiTl , t ∈ [0, Tl ]
ζiTl , t ∈ [Tl ,+∞]

(3)

where ζi0 ≥ 1, ζ̄i > 0, λi > 0, and ζiTl > 0 are design
parameters.

Next, a transformation of error is suggested in the follow-
ing manner.

T (z1i ) = ez1i − e−z1i

ez1i + e−z1i
(4)

where z1 is the transformed error.

Remark 1 We can find that i) the function (4) is a mono-
tonically increasing function; ii) T (z1i ) ∈ (−1, 1); iii)
lim

z1i→+∞T (z1i ) = 1 and lim
z1i→−∞T (z1i ) = −1.

Define r = [r1, r2]T , r1 = [χ,ψ]T , and r2 =
[χ̇ , ψ̇]T .Referring to Eqs. 1 and 2, the transformation of the
2-DOF helicopter system model into the general form of a

MIMO system is achievable.

ṙ1 = r2, (5)

ṙ2 = X(r) + �X(r) + G(r)u, (6)

y = r1, (7)

where u = [Vp, Vy]T is the control input of the system and
also the output of saturation nonlinearity. �X(r) represent
a unknown smooth nonlinear function. X(r) and G(r) are
given as follows.

X(r) =
⎡

⎣

−Mogolo cos(r11)−Doppr21−Mol2or
2
22 sin(r11) cos(r11)

Jopp+Mol2o
−Doyyr22+2Mol2or22r21 sin(r11) cos(r11)

Joyy+Mol2o cos
2(r11)

⎤

⎦,

(8)

G(r) =
⎡

⎣

Kopp

Jopp+Mol2o

Kopy

Jopp+Mol2o
Koyp

Joyy+Mol2o cos2(r11)
Koyy

Joyy+Mol2o cos2(r11)

⎤

⎦. (9)

Moreover, the input saturation ui (t), i = 1, 2 is proposeed
by

u(μi (t)) =

⎧
⎪⎨

⎪⎩

μ̄i (t), μi (t) > μ̄i (t)

μi (t), μi
(t) ≤ μi (t) ≤ μ̄i (t)

μ
i
(t), μi (t) < μ

i
(t)

(10)

where μi (t) denotes the controler variable to be design later.
μ̄i (t) and μ

i
(t) are the upper and the lower of the control

input.
The control input can be represented as

u(μ(t)) = μ(t) + �(μ) (11)

where μ = [μ1, μ2]T and the saturation error �(μ) =
[�(μ1),�(μ2)]T is given as

�(μi ) =

⎧
⎪⎨

⎪⎩

μ̄i − μi , μi > μ̄i

0, μ
i
≤ μi ≤ μ̄i

μi − μ
i
, μi < μ

i

(12)

Then, substituting (11) into (6), we have

ṙ2 = X(r) + �X(r) + G(r)μ + d∗ (13)

where d∗ = G�(μ).

2.2 Preliminaries

Assumption 1 [26] There exists an unknown constant Ḡ > 0
such that it satisfies ||G(r)|| ≤ Ḡ.
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Assumption 2 [27]The input saturation error�(μ) is bound
and satisfies ||�(μ)|| ≤ �̄ with �̄ > 0 being a constant.

Lemma 1 [28] In this study, the RBFNN is used to approxi-
mate the unknown continuous function f (K ) : Rn → R:

f (K ) = WT D(K ) (14)

where K ∈ Rn andn denote the input of theNNand its dimen-
sion, respectively. W = [w1, w2, . . . , wN0 ]T is the weight
vector of the NN. D(K ) = [D1(K ), D2(K ), . . . , DN0(K )]T
represents the basis function.

Due to its very strong approximation ability, the RBFNN
is able to approximate any function on a tight set to arbitrary
accuracy as follows

f (K ) = W ∗T D(K ) + δ(K ) (15)

where W ∗ indicates the ideal weight vector. δ(K ) is the
approximation error of the NN and satisfies ||δ(K )|| ≤ δ̄

with δ̄ being a small positive constant.

Lemma 2 [29] For any z ∈ R and c > 0, the subsequent
inequality is valid.

|z| − z tanh(
z

c
) ≤ 0.2785c (16)

3 Controller Design and Stability Analysis

The objective of the control strategy in this study is to ensure
that the helicopter’s output closely follows the desired tra-
jectory motion and that the system’s error converges to a
region near zero within a finite amount of time during the
control process. Furthermore, the uncertainty in the system
is addressed using a NN-based approach, while the issue of
input saturation is managed using an adaptive parameter sys-
tem. The flowchart of the algorithm is depicted in Fig. 1.

Let us define the tracking error

e1 = r1 − rd (17)

where rd is the desired trajectory.
To simplify the controller design, we suggest the error

transformations outlined below.

e1i = ζi (t)T (z1i ) (18)

Based on Eq. 4, the transformed error is converted as

z1i = 1

2
log

ζi (t) + e1i (t)

ζi (t) − e1i (t)
(19)

The time derivative of z1 yields

ż1i = ζi (t)ė1i − ζ̇i (t)e1i (t)

2[ζ 2
i (t) − e21i (t)]

(20)

Define z1 = [z11, z12]T , we can rewrite (20) as

ż1 = 1

2
Sė1 − 1

2
SQe1 (21)

where S = diag{si }, si = ζi (t)
[ζ 2i (t)−e21i (t)]

, i = 1, 2 and Q =
diag{ ζ̇1(t)

ζ1(t)
,

ζ̇2(t)
ζ2(t)

}.
Next, we define the coordinate transformation as follows.

θ1 = z1 (22)

θ2 = r2 − α (23)

with α is a virtual controller.
Considering the Lyapunov function as

V1 = 1

2
θT1 θ1 (24)

Fig. 1 Control scheme design
figure
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Substituting (21) and (22) into the time derivative of V1
yields

V̇1 = θT1 θ̇1

= 1

2
θT1

(
Sė1 − SQe1

)

= 1

2
θT1 S(θ2 + α − ṙd − Qe1) (25)

The virtual controller is selected as

α = −c1θ1 + ṙd + Qe1(t) (26)

where c1 is a design parameter.
Substituting (26) into (25), we have

V̇1 = −1

2
c1θ

T
1 Sθ1 + 1

2
θT1 Sθ2 (27)

As �X(r) represents an unidentified smooth nonlinear
function, the RBFNN can be employed to approximate it.

�X(r) = W ∗T D(K ) + δ(K ) (28)

where K = [rT1 , rT2 , rTd , ṙ Td ]T represents the input vector of
the NN. δ(K ) signifies the approximation error associated
with the NN and adheres to the condition ||δ(K )|| ≤ δ̄ with
δ̄ > 0 is an unknown constant.

According to Assumption 1 and 3, it is known that d∗
is bounded such that satisfies ||d∗|| ≤ d. We define W̃ =
Ŵ − W ∗ and d̃ = d̂ − d. Set Ŵ and d̂ to be the estimates of
W ∗ and d, respectively.

Putting (13) and (28) into the time derivative of Eq. 23,
we have

θ̇2 = X(r) + W ∗T D(K ) + δ(K ) + G(r)μ + d∗ − α̇ (29)

Then, we develop NN-based adaptive finite-time con-
troller as follows:

μ = −G−1(X(r) + Ŵ T D(K ) + d̂ tanh(
θ2

c
)

+ 1

2
Sθ1 + c2θ2 − α̇) (30)

where c2 is a positive constant.
Next, we design the adaptive updating rates for Ŵ and d̂

as follows

˙̂W = 
1(D(k)θT2 − γ1Ŵ ), (31)

˙̂d = 
2(θ
T
2 tanh(

θ2

c
) − γ2d̂) (32)

where
1 = 
T
1 ∈ R2×2 is a diagonalmatrixand the elements

within the matrix are all positive constants. 
2, γ1, γ2, and c
are the design parameters.

Remark 2 Because of lim
t→T+

f

[ ∂2ζi (t)
∂t2

] = lim
t→T−

f

[ ∂2ζi (t)
∂t2

] = 0,

the FTPF is twice differentiable. This also yields the terms
ζ̇i , ζ̈i and α. For a detailed proof refer to [25].

Theorem 1 Consider the existence of finite-time prescribed
performance and input saturation for 2-DOF helicopter
systems (1) and (2). An NN-based adaptive finite-time con-
troller (30) is proposed and the corresponding update rate
(31), and (32) is designed. The developed NN-based AFTC
strategy ensures the boundedness of the closed-loop system
without violating the finite-timeprescribedperformance inEq. 3.

Proof Construct the following Lyapunov function:

V2 = V1 + 1

2
θT2 θ2 + 1

2
tr{W̃ T
−1

1 W̃ } + 1

2
2
d̃2 (33)

The time derivative of V2 yields

V̇2 = V̇1 + θT2 θ̇2 + tr{W̃ T
−1
1

˙̂W } + 1


2
d̃ ˙̂d (34)

Substituting (30) into (29), we have

θT2 θ̇2 = θT2 (X(r) + W ∗T D(K ) + δ(K ) + G(r)v + d∗

− α̇)

= −θT2 W̃ T D(K ) + eT2 δ(K ) + θT2 d
∗ − θT2 d̂ tanh(

θ2

c
)

− 1

2
θT2 Sθ1 − c2θ

T
2 θ2 (35)

Then, inserting (27) and (35) into (34), we get

V̇2 = −1

2
c1θ

T
1 Sθ1 + 1

2
θT1 Sθ2 − θT2 W̃ T D(K ) + eT2 δ(K )

+ θT2 d
∗ − θT2 d̂ tanh(

θ2

c
) − 1

2
θT2 Sθ1 − c2θ

T
2 θ2

+ tr{W̃ T
−1
1

˙̂W } + 1


2
d̃ ˙̂d (36)

Since d∗ is bounded such that satisfies ||d∗|| ≤ d, and

θT2 d
∗ ≤ d

2∑

i=1

|θ2i | (37)

In addition, we can obtain the following conversion

dθT2 tanh(
θ2

c
) = d

2∑

i=1

(θ2i tanh(
θ2i

c
)) (38)
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Table 1 System paramaters [26]

Symbol Value Unit Symbol Value Unit

Jopp 0.0215 kg·m2 lo 0.0071 m

Joyy 0.0237 kg·m2 Kopp 0.022 N·m/V

Mo 1.0750 kg Kopy 0.0221 N·m/V

Dopp 0.0071 N/V Koyp −0.0227 N·m/V

Doyy 0.0220 N/V Koyy 0.0022 N·m/V

go 9.8 m/s2

According to Lemma 2, the ensuing inequality can be
derived

d
2∑

i=1

|θ2i | − d
2∑

i=1

(θ2i tanh(
θ2i

c
)) ≤ 0.557cd (39)

Substituting (31)- (32) and (37)- (39) into Eq. 36, we have

V̇2 = −1

2
c1θ

T
1 Sθ1 − c2θ

T
2 θ2 − θT2 W̃ T D(K ) + θT2 δ(K )

+ θT2 d
∗ − dθT2 tanh(

θ2

c
) − d̃θT2 tanh(

θ2

c
)

+ tr{W̃ T (D(k)θT2 − γ1Ŵ )} + d̃(θT2 tanh(
θ2

c
) − γ2d̂)

≤ −1

2
c1θ

T
1 Sθ1 − c2θ

T
2 θ2 + θT2 δ(K ) + a0ι

+ 0.557cd − tr{γ1W̃ T Ŵ } − γ2d̃d̂ (40)

Utilizing Young’s inequality, we obtain

−tr{γ1W̃ T Ŵ } ≤ −γ1

2
||W̃ ||2F + γ1

2
||W ∗||2F (41)

θT2 δ(K ) ≤ 1

2
θT2 θ2 + 1

2
δ̄2 (42)

−γ2d̃ d̂ ≤ −1

2
γ2d̃

2 + 1

2
γ2d

2 (43)

Inserting (41)- (43) into (40), we have

V̇2 ≤ −1

2
c1θ

T
1 Sθ1 − (c2 − 1

2
)θT2 θ2 − γ1

2
||W̃ ||2F

− 1

2
γ2d̃

2 + 1

2
δ̄2 + 0.557cd + γ1

2
||W ∗||2F + 1

2
γ2d

2

(44)

From Eqs. 3 and 4, it is clear that 0 < ζiTl ≤ ζi ≤ ζi (0).
Thus, we can known that 1

ζi (0)
≤ 1

ζi
≤ si = ζi (t)

[ζ 2i (t)−e21i (t)]
. Let

� = diag{ 1
ζi (0)

}, i = 1, 2, Eq. 44 can be rewritten as

V̇2 ≤ −1

2
c1θ

T
1 �θ1 − (c2 − 1

2
)θT2 θ2 − γ1

2
||W̃ ||2F

− 1

2
γ2d̃

2 + 1

2
δ̄2 + 0.557cd + γ1

2
||W ∗||2F + 1

2
γ2d

2

≤ −κV2 + L (45)

where

κ = min{c1λmin(�), 2(c2 − 1

2
),

γ1

λmax(

−1
1 )

, 
2γ2} (46)

and

L = 1

2
δ̄2 + 0.557cd + γ1

2
||W ∗||2F + 1

2
γ2d

2 (47)

For all the signals in the system to be bounded, the con-
ditions that should be satisfied by c1, c2, γ1, 
1, 
2, γ2 are
shown below

c1 > 0, λmin(�), c2 − 1

2
> 0, γ1 > 0,

λmax(

−1
1 ) > 0, 
2γ2 > 0 (48)

Fig. 2 Comparison of the control performance of Case 1 and 2
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According to Lemma 2 and Eq. 44, we obtain

0 ≤ V2 ≤ L

κ
+ [V2(0) − L

κ
]e−κt (49)

From which we have lim
t→∞V2 = L

κ
. That is, V2 is con-

vergent. As a result, the signals θ1, θ2, W̃ , ρ̃, and d̃ are all
bounded. FromEq. 19, the steady state error can be calculated

as

lim
t→Tl

|z1i | ≤ �i (50)

where �i = e f −1
e f +1

ζiTl , with f =
√

8V0 + 8 L
κ
. It is clear that

�i < ζiTl can be obtained by the definition of�i . Hence, the

Fig. 3 The control performance of Case 2
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Fig. 4 Comparison of the control performance of Case 2 and 3
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tracking error e1 converges within a specified region. This
concludes the proof. �	

Remark 3 This research introduces an adaptive finite-time
NN for 2-DOF helicopters with prescribed performance and
input saturation. The approach can offer direction for 4-DOF
helicopter control, even if it cannot be directly extended to
other nonlinear systems like 4-DOF and 6-DOF helicopter
systems. Our next research path will be to apply the con-
trol approach developed in this study to 4-DOF helicopter
systems. Furthermore, this study suggests a new FTPF that
permits the system’s error, NN weights, and adaptive param-
eters to converge in finite time, in contrast to [9–12]. Unlike
[17–19], this study uses adaptive parameters to compensate
for saturation error. This avoids the high-frequency oscilla-
tory characteristics associated with the Nussbaum function,
as well as the selection of controller parameters, which can
significantly affect the system’s stability.

4 Simulation Results

Simulations are employed to validate the efficacy of the
AFTC strategy based on NNs proposed in this study.
The parameters for the 2-DOF helicopter system are pro-
vided in Table 1. The system’s initial trajectory is set as
r1(0) = [0, 0]T . The specified trajectory is denoted by
rd = [ π

10 sin(t),
π
18 cos(t)]T . The initial value for the NN

weight is set to zero. The design parameters of the system
are c1 = 10, c2 = 10, 
1 = 32I128×128, 
2 = 15, γ1 = 0.5,
γ2 = 0.5, and c = 0, 1. The FTPF parapeters are choose as
ζi0 = 1, ζ̄i = 0.2, λi = 0.2, Tl = 1.5, and ζiTl = 0.02.
The upper and lower of the input saturation are μ̄i = 24 and
μ
i
= −24, respectively.

4.1 Case 1: Proportional-Differential (PD) Control

In this case, we formulate a PD controller for comparison
with the control strategy introduced in this investigation. The
PD controller is structured as follows:

v = −Kpe1 − Kdė1 (51)

where Kp and Kd denote the proportional and differential
gains with Kp = diag{30, 30} and Kd = diag{40, 40}.

Figure 2(a) shows the output tracking response, while
Fig. 2(b) illustrates the error trajectory. As depicted in Fig. 2,
the system error in the PD controller fails to converge in
finite time and exceeds the specified performance constraints,
resulting in decreased system stability.

4.2 Case 2: Under the Proposed Control

The effectiveness of the controller suggested in Eq. 30 is
affirmed through this case study. Figure 3(a) displays the
tracking of the system output trajectory, while Fig. 3(b)
illustrates that the system error remains confined within the
specified region. Figure 3(c) and (d) illustrate the system’s
control input and controller input, respectively. Addition-
ally, Fig. 3(e) and (f) depict the trajectories of the NN
weights and adaptive parameters, showcasing their semi-
global finite-time stabilization. The results clearly indicate
that our suggested control strategy effectively resolves the
saturation phenomenon in the system and rapidly constrains
the system error within the prescribed range.

4.3 Case 3: Under the Proposed Control without
Finite-Time

In this case, we consider a prescribed performance function
without finite time based on the controller design of this
study. The specific form of the prescribed performance func-
tion we use has been given in [30]. The simulation results
are shown in Case 3 of Fig. 4. Figure 4(a) and (b) represent
the output trajectory and error of the system, respectively.
Figure 4(c) and (d) represent the control inputs of the system
and the inputs of the controller, respectively. Figure 4(e) rep-
resents the paradigm of NN weights. Figure 4(f) represents
the convergence trajectory of the adaptive parameters.

Based on Fig. 4(b), (e), and (f), we observe that the control
strategy proposed in this case, compared to the one discussed
in this paper, can ensure that the system’s error remainswithin
the constraints of the prescribed performance and converges
to a smaller region. It also enables the convergence of the

Fig. 5 Helicopter platform
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NN weights and the adaptive parameters. However, it does
not guarantee their convergence in a finite time.

5 Experimental Results

We carry out experimental validation on Quanser’s 2-DOF
helicopter platform, depicted in Fig. 5, to substantiate the
effectiveness and superiority of the control strategy proposed
in this study.

5.1 Scheme 1: Under the Proposed Control

The prescribed trajectory is rd = [ π
18 sin(t),

π
12 sin(t)]T .

Implementing the control algorithm suggested in this research
experimentally produced outcomes, as illustrated in Fig. 6(a)-
(d). Figure 6(a) and (b) portray the reaction of the out-
put variables as they track the intended trajectory, while

Fig. 6(c) demonstrates the tracking error. Figure 6(d) reveals
the control input. These figures corroborate that the system’s
tracking error can be limited to the prescribed region within
a finite time without violating any constraints.

5.2 Scheme 2: Under the Proposed Control without
Finite-Time

To substantiate the superiority of the advanced control strat-
egy suggested, comparative experiments are carried out.
These experiments specifically address the stipulated perfor-
mance constraints and input saturation,with no consideration
for finite-time control. The prescribed performance con-
straints are based on the methodology described in [30]. The
desired trajectory is rd = [ π

18 sin(t),
π
12 sin(t)]T . Figure 7(a)

exhibits the response of the system’s output variables as they
track the specified trajectory, while Fig. 7(b) and (c) display
the system’s tracking error. Additionally, Fig. 7(d) presents

Fig. 6 The control performance of Scheme 1
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Fig. 7 Comparison of the control performance of Scheme 1 and 2

the control inputs to the system. Notably, Fig. 7(b) and (c)
highlight that without considering finite time control, the
system error converges slower and oscillates in a narrower
region, thus leading to a less stable system.

5.3 Scheme 3: Under the Proposed Control without
Saturation Compensation

In this scheme, we examine a control algorithm that does
not account for input saturation compensation. The control
parameters utilized in this algorithm remain consistent with
those in Scheme 1. Figure 8(a) illustrates the output tracking
trajectory of the system, while Fig. 8(b) and (c) depict the
tracking error of the system, and Fig. 8(d) represents the sys-
tem’s input. In comparison to the control strategy advocated
in this paper, the method proposed in this scheme exhibits a
larger error and fails to address input saturation, resulting in
diminished input performance of the system. These circum-

stances contribute to the deterioration of system stability and
may even cause damage to system components under severe
conditions. Consequently, the control strategy proposeded in
this paper substantially enhances system stability and robust-
ness.

6 Conclusion

In this study, an AFTC approach utilizing NNs was intro-
duced to tackle both prescribed performance and input
saturation challenges in the 2-DOF helicopter system. The
NNs were served the purpose of approximating the system’s
uncertainty term. To guarantee a rapid convergence of the
tracking error within the specified performance region in
finite time, an enhanced FTPF was suggested. An adaptive
parameter was incorporated to manage the impact of input
saturation. The effectiveness and superiority of the proposed
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Fig. 8 Comparison of the control performance of Scheme 1 and 3

control strategy were confirmed by a combination of simu-
lations and experiments.
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