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Abstract
Connectivity is an integral trait for swarm robotic systems to enable effective collaboration between the robots in the swarm. 
However, connectivity can be lost due to events that could not have been a priori accounted for. This paper presents a novel 
probabilistic connectivity-restoration strategy for swarms with limited communication capabilities. Namely, it is assumed 
that the swarm comprises a group of follower robots whose global connectivity to a base can only be achieved via a localized 
leader robot. In this context, the proposed strategy incrementally restores swarm connectivity by searching for the lost robots 
in regions-of-interest (RoIs) determined using probability theory. Once detected, newly found robots are either recruited to 
help the leader in the restoration process, or directly guided to their respective destinations through accurate localization 
and corrective motion commands. The proposed swarm-connectivity strategy, thus, comprises the following three stages: (i) 
identifying a discrete set of optimal RoIs, (ii) visitation of these RoIs, by the leader robot, via an optimal inter-region search 
path, and (iii) searching for lost robots within the individual RoIs via an optimal intra-region search path. The strategy is 
novel in its use of a probabilistic approach to guide the leader robot’s search as well as the potential recruitment of detected 
lost robots to help in the restoration process. The effectiveness of the proposed probabilistic swarm connectivity-restoration 
strategy is represented, herein, through a detailed simulated experiment. The significant efficiency of the strategy is also 
illustrated numerically via a comparison to a competing random-walk based method.
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1 Introduction

Swarm robotic systems (SRSs) represent teams of large num-
ber of robots that collaborate to accomplish complex tasks 
[1–4] such as environmental monitoring [5], collective per-
ception [6], and exploration [7]. Collaboration is, typically, 
achieved through exchange of information amongst the mem-
ber robots as well as between the robots and possible external 
infrastructure via wireless communication devices and/or 
onboard sensors [8–15]. In order to achieve effective commu-
nication, however, swarm members must maintain a desired 
degree of connectivity, which specifies for each member what 

other teammates and/or external infrastructure it should be 
able to communicate with (e.g., [16]). Real-time connectivity 
maintenance, however, may be a challenging problem due to 
limited sensing/ communication range, constrained line-of-
sight, interference, etc.

Connectivity must, thus, be considered while planning 
the motion of the swarm members, for example, via online 
relocation of the member robots when they get close to their 
communication limits [17–24], or through offline constrained 
trajectory planning [25–27]. While such methods may suc-
cessfully maintain connectivity in ‘controlled’ environments, 
they may fail when unexpected/unplanned-for events occur; 
including, loss of member robots due to hardware failure, 
obstacles in the environment whose positions were a priori 
unknown, or errors in the execution of (robot) motion com-
mands. Such events would result in the swarm being discon-
nected, necessitating the implementation of a (connectivity) 
restoration process for the (disconnected) ‘lost’ robots.
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Connectivity-restoration is, typically, a two-stage process that 
involves (1) estimating the state of all swarm robots and, then, 
(2) planning their motion to new locations to re-establish con-
nectivity. The ‘state’ of the robots could include their own posi-
tions and/or a model of their surrounding environment. Though, 
as will be discussed below, some existing methodologies ignore 
the state-estimation step, and directly plan the robots’ motion 
independently of an estimate of the swarm’s state.

This paper presents a novel swarm-connectivity strategy that 
addresses the connectivity-restoration problem for a swarm that 
has moved from an initial configuration/formation to another 
configuration some tangible distance away. Specifically, we con-
sider a swarm comprising a leader robot with accurate localiza-
tion and motion capabilities, achieved through (i) GPS technol-
ogy, (ii) complex onboard sensors (e.g., cameras) coupled with 
a map of the operating environment, or (iii) an environment 
that includes active markers (e.g., beacons) that can localize the 
leader robot. The leader robot guides several follower robots that 
do not have accurate localization and are subject to cumulative 
random errors in the execution of their motion. These errors may 
directly lead to disconnectivity in the swarm when arriving at 
its desired destination. Furthermore, they present a challenge 
as (1) the positions of the disconnected follower robots must 
be estimated (with uncertainty), and (2) the accumulation of 
random errors in the execution of their motion commands must 
be considered in the restoration process.

A review of the pertinent literature and the contribution 
of this work are detailed in Section 2. The connectivity-
restoration problem considered herein is formulated in Sec-
tion 3, and the proposed solution methodology is detailed 
in Section 4, respectively. Section 5 presents an in-depth 
illustrative example, and compares the proposed strategy to 
a competing random-walk based method. The paper is con-
cluded in Section 6.

2  Literature Review

Existing works on connectivity restoration are first discussed 
in detail in Section 2.1 below. In some pertinence to the 
objective at hand, a review of connectivity restoration in the 
context of wireless sensor networks (WSN) is provided next 
in Section 2.2, and a review of the multi-target search prob-
lem, whose formulation can be applied to the connectivity-
restoration problem addressed in this paper is provided in 
Section 2.3, respectively.

2.1  Swarm Connectivity Restoration

Connectivity restoration can be categorized according to the 
knowledge of the swarm’s state used for the restoration pro-
cess. They include 1) those that assume the swarm’s state is 
accurately known, Sections 2.1.1, 2) those that estimate the 

state of the swarm, Sections 2.1.2, and 3) those that do not 
use information on the swarm’s state to plan the connectivity 
restoration process, Section 2.1.3.

2.1.1  Swarm‑State Known

Accurate knowledge of a swarm’s state at any given time would 
simplify connectivity restoration as robots can plan their needed 
motion even when disconnected. In [28–30], for example, it is 
assumed that the trajectory of a gateway robot that the swarm 
must remain connected to is accurately known. The discon-
nected robots, who also know their own positions accurately, 
plan their motion to intercept this gateway robot (e.g. [31–34],). 
In [35], each robot calculates the centroid of the swarm based 
on the known position of all other robots in the swarm, and 
moves toward the centroid until swarm connectivity is restored. 
In [36], each robot is assigned a parent robot, and is the child 
of another robot. Once it fails, its parent and child, who know 
their own position and that of the failed robot accurately, move 
toward each other to restore the connectivity of the swarm.

While the aforementioned approaches may be suitable 
in scenarios where the swarm’s state is accurately known, 
they may not be successful in restoring connectivity when 
the positions of the disconnected robots cannot be estimated 
with certainty. Namely, when the positions of the discon-
nected robots are not known with certainty, such methods 
may plan motions that do not restore connectivity. These 
approaches also do not consider cumulative random errors 
in motion execution of the member robots.

2.1.2  Swarm‑State Estimated

Swarm-state estimation in the context of connectivity restora-
tion was addressed in [37] and [38]. In [37], the authors con-
sider a scenario where the swarm loses connectivity due to 
a priori unknown obstacles that are encountered during task 
execution. It is assumed that all robots have accurate knowl-
edge of their own positions and those of their peers. They use 
this information to estimate the environment of their peers and 
plan their motion to intercept them and restore connectivity.

Loss of swarm connectivity due to intermittent com-
munication failure was considered in [38]. In this work, 
a disconnected robot estimates the direction of the rest 
of the swarm, based on the swarm’s learned behavioral 
model, and plans its own motion to intercept the swarm. 
This work assumes that member robots have accurate 
knowledge of their own position.

Both above approaches, [37] and [38], assume the mem-
ber robots have accurate knowledge of their positions, 
which would also allow them to compensate for cumula-
tive random errors in motion execution. Furthermore, they 
do not consider potential uncertainties in the estimated 
state of the swarm.
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2.1.3  Swarm‑State not Used

Methods that plan robot motion without relying on an esti-
mate of the swarm’s latest state have also been suggested, 
including rendezvous-based and behavior-based methods. 
Rendezvous-based methods select a meetup point that the 
robots should move to when connectivity is lost [39–41]. 
This meetup point can be selected before the swarm begins 
executing its task, either arbitrarily [39] or as the point 
of swarm deployment [40]. It may also be selected in an 
online manner based on a shared meetup point selection 
policy. This approach was used in [41], where the discon-
nected robots selected a meetup point as the most distinct 
landmark in their surrounding environment, where it is 
assumed that each landmark has an inherent distinctive-
ness measure that can be sensed by the robots, and that all 
robots have seen this landmark.

Behavior-based methods design ad-hoc control policies 
for the robots to use for restoring connectivity [42–44]. 
These include backtracking to the last position where the 
swarm was connected [42, 43], moving to areas in the 
environment where the robot may have a larger communi-
cation range (e.g., open spaces/higher altitudes) [42], and 
random walks [44].

While above works do not use an estimate of the 
swarm’s latest state to restore connectivity, they do require 
that the robots accurately know their own positions. 
This allows them to compensate for cumulative random 
errors in motion execution and to converge to a state that 
restores the connectivity of the swarm. When this condi-
tion is not met – namely, when robots have uncertainty 
in their estimated positions and are subject to cumulative 
random errors in the execution of their motion commands 
– the robots would not be able to accurately move to their 
selected meetup point or to execute the desired behavior. 
This may result in the robots moving to destinations that 
do not restore connectivity.

2.2  Wireless‑Sensor Networks

Connectivity restoration has also been addressed in the wire-
less-sensor networks (WSNs) literature [45–52]. In such net-
works, it is assumed that the nodes know their own positions 
accurately and can share this information with their neigh-
bors through wireless communication channels. Connectiv-
ity, however, may be lost due to node failure, resulting in 
the partitioning of the network into multiple sub-networks.

Solutions to connectivity restoration in WSNs by deploy-
ing relay nodes have been discussed in [45, 46], or moving 
the partitioned sub-networks toward each other until con-
nectivity is restored in [47], respectively. The use of care-
taker nodes has also been suggested, whose role is to move to 
the position of the failed node for restoring the connectivity 

of the network [48–52]. Such works, typically, address the 
problems of detecting node failure, determining whether the 
failed node was a critical node (i.e., whose failure results in 
the partitioning of the network into multiple disconnected 
sub-networks), and selecting a caretaker node in an online 
manner.

Approaches discussed above for restoring connectivity 
in WSNs, although addressing a similar problem to swarm 
disconnectivity, could not be easily applied to the problem 
addressed in this paper as they assume the positions of all 
nodes in the network are accurately known, and that the 
nodes can move to their planned destinations accurately.

2.3  Multi‑Target Search

The multi-target search literature deals with the problem 
of using a single or multiple autonomous agents, who have 
accurate localization capabilities, to search for multiple 
static or dynamic targets, whose positions are not accurately 
known [53–58]. Such formulations have not been, com-
monly, applied to swarm connectivity restoration. However, 
its similarities to the connectivity restoration problem sug-
gest that a review of the literature in this field is appropriate.

There are generally two approaches to the multi-target 
search problem. The first approach is to obtain an estimate 
of the potential locations of all targets, and to merge these 
estimates into an overall map that is used to guide the tra-
jectory of the agents. This approach is taken in [53], where 
the merged map of the potential locations of the targets is 
represented through a probability density function. A grid 
is then superimposed onto this function, where the value 
of each cell in this grid corresponds to the probability of 
detecting any of the targets. The authors propose two strat-
egies to allocating the cells to the agents: to maximize the 
expected probability of finding a target and to maximize 
the minimum probability of target detection. A similar 
approach was taken in [54], where multi-target detection 
in the context of post-earthquake search and rescue in an 
urban environment is addressed. A grid, superimposed 
onto a probability density function, is used as the map of 
the environment, and this map is explored by the (single) 
agent through a greedy search.

A more complex approach proposed in the literature is 
to use an estimate of the locations of individual targets to 
plan the search [55–58]. The work in [55] addresses the 
problem of retrieving drifting sensors that are used for 
ocean monitoring. They model the estimated position of a 
drifting sensor as a circular area, centered at its expected 
position, determined based on wind and current patterns of 
their operating environment. The developed search strategy 
includes a search pattern and a search schedule. The search 
pattern selects the trajectory that the (single) agent takes to 
explore the area of the sensor, for which a spiral pattern is 
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suggested. The search schedule, in turn, redirects the agent 
from searching for one sensor to another based on a regular 
time interval. This method was extended in [56] to model 
the estimated positions of the sensors using probability den-
sity functions, and to redirect the agents to the next nearest 
sensor once the cumulative probability of detection of the 
current sensor distribution exceeds a threshold.

The use of multiple agents for multi-target search was 
also addressed in [57]. The authors allocate the agents to 
the targets to minimize a cost function that is dependent 
on the distance between the agents and the targets, and 
the radius of the area that represents the potential location 
of each target. The radius of the area is obtained through 
an empirically derived function. This objective allows 
them to consider the additional effort required to search 
for targets whose positions are more uncertain than others. 
The problem of marine trash collection was addressed in 
[58]. In this work, it is proposed to cluster targets that are 
estimated to be close to each other, and to allocate agents 
to clusters rather than individual targets. Agent allocation 
is completed through a cost function that depends on the 
distance between the agent and the clusters, the size of 
the cluster, and the total number of targets in the cluster. 
The size of the cluster is obtained through an empirically 
derived function.

The difference between the multi-target search problem 
and swarm connectivity restoration is the onboard capa-
bilities of the retrieved targets. Namely, in the multi-target 
search problem, the targets do not have onboard sensors, 
in contrast to the retrieved disconnected robots in a swarm 
that are equipped with sensors that allow them to detect 
each other. In a swarm, thus, the retrieved disconnected 
robots can be used to help restore connectivity to the 
remaining robots. This difference calls for the develop-
ment of a restoration strategy that leverages the sensing 
capabilities of the retrieved agents.

2.4  Challenges and Contributions

This paper addresses the problem of connectivity res-
toration for swarms comprising robots that do not have 
accurate localization capabilities and are subject to ran-
dom errors in the execution of their motion. As noted in 
the Introduction, a connectivity-restoration strategy for 
such swarms must be developed to consider these two 
challenges.

The connectivity-restoration literature, typically, does not 
consider the abovementioned challenges. Namely, as noted 
in Sub-Sections 2.1.1–2.1.3, the pertinent literature [28–30, 
35–44] does not consider uncertainty in the estimated posi-
tions of the swarm, and/or requires the robots to execute 
the motion commands without cumulative random errors. 
Similarly, approaches to restoring connectivity in WSNs are 

limited for the same reason [45–52]. Thus, these cannot be 
adopted for the problem addressed in this paper.

Approaches developed for the multi-target search prob-
lem [53–58] can be applied to the problem at hand. Namely, 
such approaches consider the uncertainty in the estimated 
position of the targets to be retrieved by representing their 
positions through probability density functions [53, 54, 56] 
or through regions whose areas are empirically derived 
[55, 57, 58]. They, then, retrieve the targets using agents 
that have accurate onboard localization and motion control 
capabilities.

The connectivity-restoration strategy proposed herein 
follows a similar principle. Namely, once disconnected, the 
proposed strategy uses the leader robot who has accurate 
localization capabilities to retrieve the disconnected fol-
lower robots that remain stationary. The uncertain positions 
of the disconnected follower robots are represented through 
a probabilistic approach. As first introduced in our previ-
ous work on wilderness search and rescue [59–63], such 
approaches have been shown to allow for planning optimal 
paths for (lost) target detection. The proposed connectivity-
restoration strategy is, thus, novel in that it makes use of a 
probability-theory based approach to achieve efficient swarm 
connectivity restoration. By using a probabilistic approach, 
the proposed strategy can (i) bound the region to be explored 
by the leader robot and provide a probabilistic guarantee 
of restoring connectivity, and (ii) allow the leader robot to 
prioritize areas that have higher probabilities of detecting 
disconnected members.

The proposed strategy also leverages the sensing capabili-
ties of the retrieved follower robots by using them to detect 
the remaining robots that remain disconnected. Namely, 
once a follower robot is detected by the leader, it may be 
used to create a search team that collectively restores con-
nectivity to the remaining disconnected robots. The use of 
retrieved agents for expediting the restoration process has 
not been explored in the multi-target search literature.

3  Problem Definition

This paper addresses the connectivity-restoration prob-
lem for a robotic swarm that moves from an initial con-
figuration to a (next) desired configuration, all defined 
with respect to a global reference frame, GF , Fig. 1. It 
is assumed that intermittent swarm localization may be 
achieved via a leader robot (indicated by a black outline 
in Fig. 1) that has full localization capabilities with respect 
to GF , achieved through (i) GPS technology, (ii) complex 
onboard sensors (e.g., cameras) coupled with a map of 
the operating environment, or (iii) an environment that 
includes active markers (e.g., beacons). However, due to 
time-consuming real-time communication requirements, 
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especially, for large-sized swarms, member (follower) 
robots move to their next desired positions individually, 
without attempting to maintain communication with the 
leader robot during their travel. Namely, only upon arrival 
of all, the leader robot is tasked with localizing the swarm 
through inter-robot communication. Such localization, 
though, would require complete connectivity. Namely, 
upon reaching the desired configuration, all follower 
robots must be able to communicate with the leader robot, 
directly or indirectly. However, it is often likely that since 
follower robots are subject to cumulative motion errors, 
potential disconnectivities would need to be dealt with 
upon arrival at the desired swarm configuration. In such 
a scenario, a connectivity-restoration process must be 
invoked.

Once the swarm enters a disconnected state, the follower 
robots are designated as either lost or connected, Fig. 2. Lost 
robots are those that are not connected to the leader robot, 
directly or indirectly. It is assumed that at this disconnected 
state, the leader robot would explore its surrounding envi-
ronment to detect/find the lost robots, who in turn would 
remain stationary until being detected by the leader robot.

It is expected that the leader robot would restore connec-
tivity by selectively searching for the lost robots. Although 
initially only the leader robot is designated as the searcher 
for the lost robots, once a lost robot is detected during the 
search, it may, in turn, also be recruited to help the leader 
robot in its search for the remaining lost robots.

The connectivity restoration problem at hand, thus, com-
prises four main subproblems: (i) examining the search space 
for identifying a discrete set of regions-of-interest (RoIs), as 
will be discussed below in Sub-Section 3.1, (ii) sequencing 
of the visitations of these RoIs by the leader robot (i.e., inter-
region search path planning), Sub-Section 3.2, (iii) searching 

for lost robots within the individual RoIs (i.e., intra-region 
search path planning), Sub-Section 3.3, and (iv) combination 
of the solutions to Sub-problems (i) to (iii) into an effective 
on-line search algorithm for efficient swarm-connectivity 
establishment, Sub-Section 3.4.

3.1  Examining the Search Space – Identifying 
Regions‑of‑Interest

The overall objective of the proposed strategy for swarm 
connectivity, addressed herein, is to address the problem in 
an effective and time-efficient manner. In this regard, fast 
connectivity restoration could be achieved by minimizing 
the search area. Such a goal, in turn, could be realized by 
designating a limited number of regions-of-interest (RoIs) 
to narrow the search for the lost robots.

One can use probability theory to identify RoIs by exam-
ining the motions of the robots in the swarm. For example, 
a RoI for an individual lost robot can be defined using a 
probabilistic model of the position of that robot. This model 
can be obtained based on the robot’s desired position in the 
swarm configuration where connectivity was lost, the motion 
commands executed in getting to this position, its motion 
model, and the map of the environment that details the posi-
tions of surrounding obstacles. It is assumed, herein, that 
such a map is readily available.

In the above context, one may even consider the group-
ing of lost robots in order to minimize search redundancy. 
Namely, if the RoIs of multiple lost robots intersect signifi-
cantly, then, their corresponding RoIs could be merged. The 
combined RoI would be a contiguous region where any of 
the corresponding lost robots can be detected. Such a pro-
cess would reduce the size of the set of RoIs.

Let G =
{
Gi

}nG

i=1
 represent the grouping of all the lost 

robots into nG groups (i.e., RoIs), where Gi represents the 

Fig. 1  Point-to-point motion of the swarm

Fig. 2  A disconnected swarm state
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lost robots in Group i. Figure 3 shows the RoIs for an exam-
ple grouping solution for the disconnected swarm considered 
in Fig. 2, where G1 =

{
R1,R2

}
 and G2 =

{
R3

}
.

Lost-robot grouping (i.e., identification and merging of 
the RoIs) must determine the optimal combination of the 
lost robots, G∗ (i.e., optimal set of RoIs), to minimize the 
total search area, AT (G) , that must be explored to restore the 
connectivity of the swarm:

3.2  Inter‑Region Search Path Planning – Solving 
the Travelling‑Salesperson Problem

The inter-region path planning stage of the proposed strat-
egy would deal with the problem of selecting the order 
in which the RoIs should be visited by the leader robot. 
In this regard, let P =

{
Pi

}np

i=1
 represent the inter-region 

path, where Pi is the ith RoI that is visited by the leader 
robot, and np is the number of RoI that must be visited. 
Figure 4 illustrates an example inter-region path/string for 
the example at hand, where the leader robot visits G1 first 
and, then, G2 , i.e., P1 = G1 , P2 = G2 , and P =

{
G1,G2

}
.

The inter-region path-planning problem is an instance 
of the classical travelling-salesperson problem. In the typi-
cal version of the traditional problem, the string of cities 
to be visited is selected to optimize the total distance trav-
elled (i.e., travel time). In our problem herein, the (leader) 
search robot is the ‘salesperson’, the RoIs represent the 
‘cities’ to be visited, and the time that must be spent at 

(1)minAT (G).

each city is equivalent to the search effort that must be 
expended to explore the RoI at hand.

It is, thus, proposed herein to select the optimal inter-
region path, P∗ , that minimizes an overall objective func-
tion that is a weighted combination of the search effort 
described above, and the distance that the leader robot 
would need to travel to move from one RoI to another 
along its inter-region path:

Above, D(P) and C(P) represent total travel distance 
and the total search effort, respectively. Both measures are 
normalized with respect to their maximum values, Dmax 
and Cmax , and are weighted according through � and � , 
where � + � = 1.

3.3  Intra‑Region Search Path Planning – Using 
Probability Theory for Finding Lost Robots

The intra-region path-planning stage of the proposed strat-
egy must address the determination of an efficient search 
path to explore a RoI at hand. An optimal search path would 
need to be planned for the leader robot. Since a RoI, as 
defined in Section 3.1, is formulated in terms of a probabilis-
tic model of the locations of the lost robots, the intra-region 
search can also be formulated via a probabilistic method.

A successful search would be one that results in connec-
tivity being restored between the leader robot and the lost 
robots in the RoI as fast as possible. As such, the probability 
of successfully searching a RoI associated with lost robot 

(2)minJ(P) = �
D(P)

Dmax

+ �
C(P)

Cmax

.

Fig. 3  Regions-of-interest (RoIs) Fig. 4  Inter-region path



Journal of Intelligent & Robotic Systems (2024) 110:90 Page 7 of 25 90

group Gj , POSGj
 , can be defined as the probability that con-

nectivity is successfully restored to all robots in the group:

where PORRi
 is the probability of connectivity being restored 

with lost Robot Ri , within the group/RoI being searched for, 
Gj.

PORRi
 can be defined as the product between the prob-

ability of that lost robot being in the detection area of the 
leader robot, POARi

 , and the probability of detecting that 
lost robot, PODRi

:

For any given leader robot detection area, AD , and lost 
Robot position, GxRi

 , the POARi
 can be defined as the prob-

ability of the position being inside the detection area:

Above, PODRi
 can also be defined in terms of GxRi

 and 
AD as well as the variable DRi

 which denotes if connectivity 
restoration with lost Robot Ri was successful:

This would, in turn, yield:

Since the overall objective is to minimize the time spent to 
restore connectivity, the search should be efficient in terms of 
maximizing the probability of success. This can be achieved 
by following a search path where the time spent searching an 
area is proportional to the density of the probabilistic model 
of the position of the lost robot in the group at hand. Namely, 
locations that have a higher likelihood of containing the lost 
robots should be searched proportionally longer periods of time. 
Percentiles can be used to guide such a search, where searching 
an increasing percentile of the lost robot distribution will ensure 
that higher density areas are searched proportionally more and 
serve to distribute the locations where the search is being con-
ducted. As such, the generated intra- region path should follow:

where p(t) is the percentile of the lost robot locations being 
searched at time t  and E(t) is a measure of the cumulative 
time and resources expended up to time t.

Figure 5 illustrates an example intra-region path for the 
example at hand.

(3)POSGj
=

∏

Ri∈Gj

PORRi
,

(4)PORRi
= POARi

× PODRi
.

(5)POARi
= P

(
G
xRi

∈ AD

)
.

(6)PODRi
= P

(
DRi

= success|GxRi
∈ AD

)
.

(7)PORRi
= P

(
DRi

= success, GxRi
∈ A

)
.

(8)p(t) ∝ E(t),

3.4  Search Execution

It is expected that execution of the planned overall search path 
would lead to the detection of lost robot(s) with some proba-
bilistic certainty. In an ideal scenario, the leader robot would 
detect the lost robots and may recruit them, temporarily, to 
help in searching for the remaining lost robots or guide them to 
their positions in the desired configuration through corrective 
motion commands. In practice, however, the executed search 
may not proceed as planned, in which case the RoIs and the 
leader robot’s inter-region path may need to be replanned. At 
least three such potential scenarios may need to be considered:

1. A detected (lost) robot may belong to multiple RoIs.
2. The leader robot may (unintentionally) detect a lost robot 

that does not belong to the group corresponding to the 
RoI currently explored.

3. The execution of the planned intra-region path may not 
restore connectivity to a lost robot in the group associ-
ated with this region.

4  Proposed Methodology

The proposed swarm connectivity-restoration strategy, 
invoked upon detection of loss of connectivity upon arrival 
at a swarm configuration, assumes the existence of a leader 
robot whose location is always known. Herein, it is assumed 
that this robot would ‘lead’ the efforts to search for the lost 
disconnected/lost robots, which must remain static until they 
are detected.

Fig. 5  An intra-region search path
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The proposed strategy comprises three main stages: 
(i) evaluating the search space to identify a set of optimal 
regions-of-interest (RoIs) to be explored, (ii) determining the 
optimal path of the searcher (leader) robot for its inter-region 
travel, and, (iii) determining the optimal path of the searcher 
robot during its intra-region exploration for the lost robots 
assumed to be present in the RoI at hand.

As the search progresses, when lost robots are detected, 
they (i) may simply be provided with corrective motion com-
mands to move expeditiously to their expected positions in 
the desired swarm configuration, or (ii) may be recruited, to 
join the leader robot and become part of a searcher group, to 
expedite the search for the remaining lost robots in the RoI at 
hand. Once the search of a RoI is complete, all newly detected 
robots and the searcher group robots would be guided to their 
respective positions in the desired swarm configuration, while 
the leader robot would move on to explore the next RoI on 
the inter-region path. This process, as is detailed in Sub-Sec-
tions 4.1–4.4, below, would be repeated until all RoIs have 
been explored, at which point the leader robot would also 
return to its desired position, and swarm connectivity would 
be re-checked. At this point, if connectivity restoration was 
still unsuccessful, the restoration process would be repeated.

The proposed connectivity restoration strategy is novel 
in its use of probability theory to plan the overall search 
path of the leader robot. Namely, herein, the use of iso-
probability curves is uniquely proposed both for identifying 
the RoIs that must be explored (i.e., grouping of the lost 
robots) and for planning the intra-region search paths used 
by the searcher (leader) robot to explore the identified RoIs. 
Such a probabilistic approach, as has been shown in our past 
work [59–66] for wilderness search and rescue, would yield 
efficient and effective swarm connectivity restoration. The 
proposed restoration strategy is also novel as it recruits the 
detected lost robots for exploring the planned RoIs. This 
formation of a searcher group would further expedite the 
connectivity-restoration process.

4.1  Examining the Search Space – Identifying 
Regions‑of‑Interest

As the first stage of swarm connectivity-restoration process, 
the task at hand is to identify the RoIs that must be explored 
to find the lost/disconnected robots. In our proposed strategy, 
RoIs are first determined for the individual lost robots using 
probability theory. These RoIs are subsequently examined 
for potential merger, by grouping the respective lost robots, 
if deemed beneficial. It is conjectured, herein, that group-
ing of robots, whose RoIs overlap significantly, may lead 
to tangible reduction in search redundancy and, thus, in 
connectivity-restoration time.

The description of the probabilistic representation of 
RoIs via iso-probability curves is discussed, first, in Sec-
tion 4.1.1. Then the criterion for grouping lost robots based 
on the overlap of their corresponding RoIs is formulatedin 
Section 4.1.2. Lastly, the overall lost-robot grouping tech-
nique is detailed in Section 4.1.3.

4.1.1  Iso‑Probability Curves for Representing 
Regions‑of‑Interest

The RoI of an individual (lost) robot can be defined using 
a probabilistic model of its position. Such an approach 
would be beneficial as it would allow the motion of the 
search (leader) robot to be planned by proportionally pri-
oritizing regions with a higher probability of detecting a 
lost robot.

Herein, it is proposed to use iso-probability curves to rep-
resent the probabilistic model of the position of a lost robot. 
Iso-probability curves, as first introduced in [59], provide 
an approach to establishing bounds on a lost robot’s loca-
tion using estimates of its deviation from its desired posi-
tion in the swarm configuration when connectivity was lost. 
The deviation of the robot from its desired position would 
be estimated based on the motion commands it executed in 
attempting to move to this position and its motion model 
subject to probabilistic uncertainties.

For a (single) lost robot, the corresponding (cumulative) 
iso-probability curves would be centered at its desired 
position. As an example, Fig.  6 illustrates the 99%, 
75%, 50%, and 25% (cumulative) iso-probability curves 
for the lost robots (a) R1 , (b) R2 , and (c) R3 , shown 
previously in Fig. 2, respectively. Namely, for example, 
it is expected that there exists 25% chance for the lost 
robot to be within the area bounded by the 25% iso-
probability curve, 50% chance for it to be within the 
area bounded by the 50% iso-probability curve, etc. 
The clouds of points represent the estimated probable 
deviations of each robot from its desired position.

In our connectivity-restoration strategy, a RoI is 
defined/bounded by the upper most iso-probability curve 
considered, denoted herein by the pu% , where pu is a user-
defined parameter. However, in the absence of a defined 
statistical model, the iso-probability curves need to be 
generated through a two-stage process of cloud genera-
tion and curve calculation. The former stage generates 
a cloud of points to obtain estimates of the deviations 
of the lost robot from its desired position by simulating 
the robot’s (noise-prone) motion. The latter stage, then, 
determines the set of iso-probability curves based on the 
cumulative distribution of the point cloud in all direc-
tions, as further detailed in Appendix A.
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4.1.2  Lost‑Robot Grouping Criterion

Herein, it is conjectured that search redundancy can be 
minimized by grouping lost robots, whose RoIs overlap 
sufficiently (i.e., merging their respective RoIs). In this 
regard, let ARi

 represent the area of the RoI of lost Robot 
Ri . Then, let ARiRj

 represent the overlapping area of the 
RoIs of the lost Robots Ri and Rj , respectively.

As shown in Fig. 7, for the example swarm disconnec-
tivity in Fig. 2, the RoIs of the lost Robots (represented 
by their 99% iso-probability curves, respectively) R1 and 
R2 sufficiently overlap and, thus, these two robots may 
be grouped, if deemed beneficial, and their respective 
RoIs merged.

It is proposed, herein, that two lost robots Ri and Rj 
may be grouped, if their overlapping area, with respect to 
the maximum area of their respective RoIs, MRiRj

 , exceeds 
a minimum threshold, Mmin:

Above, the threshold Mmin , 0 < Mmin ≤ 1 , is a user-
specified parameter.

4.1.3  RoI Merging

The possible RoI merging process starts by, first, calcu-
lating the overlap metric, MRiRj

 , for all pairs of lost robots 
in the swarm, and identifying the pairs of lost robots 
whose overlap metric exceeds the user-defined threshold, 
Mmin . Pairs of robots are grouped, if their MRiRj

 exceeds 
the set threshold. One must note, however, that this pro-
cess may result in groups with more than just two lost 

(9)MRiRj
=

ARiRj

max

(
ARi

,ARj

) . robots, as well as, potentially, a lost robot belonging to 
multiple groups.

When lost robots are grouped, their corresponding 
merged RoI would be determined for the combined cloud 
of all points (i.e., all possible considered probabilistic 
robot positions). The bounding iso-probability curve, pu% , 
would be centered at the Cartesian positional mean of all 
(cloud) points.

The scalability of the RoI merging step can be 
improved by only merging the lost robots that are 
expected to be neighbors: Namely, only calculating 
the overlapping region of lost robots that are neigh-
bors of each other, instead of calculating the over-
lapping region of all lost robot pairs. The expected 
neighbors of a lost robot can be determined based on 

(c)(b)(a)

Fig. 6  Iso-probability curves for (a) R
1
 , (b) R

2
 , and (c) R

3
 for the example shown in Fig. 2

Fig. 7  Overlapping of RoIs for the example shown in Fig. 2
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their positions in the desired swarm configuration and 
a user-defined range.

Furthermore, the computational requirements of inter-
region and intra-region path planning, detailed in Sec-
tions 4.2 and 4.3, respectively, depend on the number of 
regions that must be explored by the leader robot. The 
scalability of these two stages can, thus, be improved by 
selecting a lower minimum merging threshold, Mmin.

Figure 8 shows the merged RoI of the lost robot group 
G1 =

{
R1,R2

}
 , as well as that of G2 =

{
R3

}
.

4.2  Inter‑region Search Path Planning – Solving 
the Travelling‑Salesperson Problem

Inter-region path planning aims at selecting the optimal 
order in which the RoIs would be searched by the leader 
robot. The optimal inter-region path (i.e., represented by a 
string), P∗ , is determined herein by minimizing the objec-
tive function formulated above in Eq. (2), which considers 
the total distance that would need to be travelled by the 
searcher robot and the total search effort that would need 
to be expended to explore the RoI at hand:

Above, the total distance traveled by the searcher robot, 
D(P) , can be simply calculated as the sum of the Euclidean 
distances between the centroids of the RoIs on the inter-
region path:

(10)minJ(P) = �
D(P)

D
max

+ �
C(P)

C
max

.

where d
(
Pi

)
 is the distance between the ith RoI, Pi , and the 

(i − 1)th RoI, Pi−1.
The total search effort expended, on the other hand, can 

be calculated as the sum of the search efforts for all the RoIs 
on the inter-region path:

where c
(
Pi

)
 is the search effort expended to explore the ith 

RoI, Pi , calculated as the area of the RoI, AG

(
Pi

)
 , divided 

by the number of lost robots in the group associated with 
this region, nL

(
Pi

)
:

One must note, however, the dynamic nature of the 
inter-region search-path planning optimization problem, 
Eq. (10), where RoIs may need to be reformed according 
to the sequence of RoIs, P , examined. Namely, since 
some lost robots may belong to multiple groups, and 
that they would be detected during the exploration of the 
first/preceding group/RoI in the string that they belong 
to, they would not need to be considered again in a RoI 
to be examined down the line on the string, P . On occa-
sions, a RoI may even need to be removed completely 
from existence in a considered string, P.

The abovementioned ‘erasure’ of lost robots from 
(future) RoIs cannot be carried out during the original 
lost-robot grouping stage without knowing the order of 
visitations of their respective RoIs. Thus, when calculat-
ing the objective function for a candidate inter-region 
path solution, P , such scenarios must be taken into 
account. Furthermore, the optimal inter-region search 
path determined in this stage must pass down the opti-
mal string, P∗ , while removing robots that are duplicated 
in the groups.

In essence, the inter-region path planning is a combi-
natoric optimization problem with a maximum of nsolP 
solutions:

where nG is the number of RoIs, and perm is the per-
mutation operator. The search space can be explored 
through any combinatoric search engine, such as Genetic 
Algorithms [67].

(11)D(P) =
∑np

i=1
d
(
Pi

)
,

(12)C(P) =
∑np

i=1
c
(
Pi

)
,

(13)c
(
Pi

)
=

AG

(
Pi

)

nL
(
Pi

) .

(14)nsolP = perm
(
nG, nG

)
,

Fig. 8  RoIs of the lost-robot groups
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4.3  Intra‑region Search Path Planning – Using 
Probability Theory for Finding Lost Robots

Intra-region path planning comprises the generation of an 
optimal path for the searcher robot to explore a RoI. If newly 
detected robots, in this RoI, were to be recruited to help the 
leader robot in its search for the remaining lost robots in the 
group, the overall team of searchers would be expected to 
maintain their formation, following detections, as they con-
tinue to move along the planned intra-region path.

The intra-region path generation method, proposed 
herein, maximizes the probability of detecting/ finding 
lost robots in a RoI. Our prior work in the context of 
wilderness search and rescue have examined the use of 
iso-probability curves for conducting searches for miss-
ing people [59–66]. In particular, the equal-effort search 
method presented in [64] is of interest herein. It equates 
the time and resources spent searching an area to the 
likelihood that the target will be in that area, Eq. (8) 
above:

Herein, we propose a bi-directional variation of the equal-
effort search method. This search method would allow for 
spiral paths to be generated from outside of the RoI towards 
the center, as well as from the center outwards. Each gener-
ated path would cover a range of iso-probability curve per-
centiles defined by an upper and a lower percentile bound, 
pu and pl , respectively. One may choose pl sufficiently 
small, based on the search team’s detection range, for a near-
exhaustive search.

In our proposed strategy, thus, the intra-region search 
path begins from the accurately known current position of 
the leader robot, travels along the shortest path (i.e., ini-
tial path) toward the upper percentile bound of the next RoI 
in the string, P, and, then, spirals inward toward the lower 
percentile bound, and subsequently spirals back outward 
toward the upper percentile bound. If necessary, this spiral-
ling inward-outward pattern is repeated until the exploration 
of the RoI is completed. The intra-region search path genera-
tion is detailed in Appendix B.

Figure 9 illustrates an example intra-region search path 
planned for exploring the RoI of group G1 , where the leader 
robot spirals inward and outward only once for simplicity 
of illustration.

4.4  Search Execution

Herein, a detailed description of the proposed connectivity 
restoration strategy is summarized in algorithmic form, 
as further shown in Fig.  10. All computations for RoI 

(15)p(t) ∝ E(t). identification and inter/intra-region path planning are 
completed by the leader robot, thus, eliminating the need for 
global connectivity with an external base.

Once the swarm moves to its desired configuration, check 
connectivity:

 1. If swarm is connected, exit the process.
   Otherwise, continue.
 2. If robots that are connected to the leader exist, guide 

them to their respective locations in Cd.
   Otherwise, continue.
 3. Identify the RoIs by grouping the lost robots through 

the methodology detailed in Section 4.1.
 4. Determine the optimal inter-region search path through 

the methodology detailed in Section 4.2.
   Set iteration number i = 1 and start the inter-region 

search.
 5. Determine the optimal intra-region search path, for 

exploring the RoI of Pi , through the methodology 
detailed in Section 4.3.

 6. Execute the intra-region search path until a lost robot 
is detected. Once a lost robot is detected, continue.

   Note:

 (i) The intra-region search path is executed with-
out cumulative motion errors. Namely, it is 
assumed that continuous connectivity between 
the recruited detected lost robots and the leader 
robot is feasible, limited by nSmax (see notes for 
Step 7 for definition of nSmax).

Fig. 9  An intra-region search path planned for exploring G
1
 for the 

example disconnectivity in Fig. 2
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 (ii) A detected lost robot may or may not be part of 
the lost robot group belong to the RoI at hand, Pi

.
 (iii) The detection of a lost robot may lead to the 

detection of multiple other lost robots due 
to existing possible connectivity between 
them.

 7. Recruit a maximum of nSmax (detected) lost robots 
to help the leader in searching for the remaining lost 
robots in the RoI at hand.

   Note:

 (i) Due to the difficulty of continuous localiza-
tion with an increased number of robots, 
only the first nSmax detected robots join the 
leader robot in the search.  nSmax would be 
a user-defined value selected based on the 
communication capabilities of the member 
robots.

 (ii) Recruited  robots maintain their formation 
at the point of detection for the remainder of the 
search.

 8. Guide the detected lost robot(s) that have not been 
recruited for search to their respective locations in the 
desired swarm configuration, Cd.

 9. If execution of the intra-region path for lost robots in the 
region at hand, Pi , is not completed, return to Step 6.

   Note: The intra-region path is considered completed 
only if:

 (i) All lost robots in the group have been detected, 
or

 (ii) The planned intra-region path is executed fully, 
though there still remain lost robots in the group 
corresponding to the region at hand that have 
not been detected. In this case, the lost robots 
that were not detected, for example due to fail-
ure of onboard communication, sensing, or 
locomotion, are considered as permanently dis-
connected. These robots are removed from the 
swarm.

   The user may address the issue of perma-
nently disconnected robots by, for example, 
reconfiguring the swarm (i.e., selecting a new 
desired configuration without the permanently 
disconnected robot), after all remaining lost 
robots have been detected.

   Otherwise, continue.
 10. Guide the detected lost robots that were recruited for 

search to their respective locations in the desired con-
figuration, Cd.

Fig. 10  Proposed connectivity 
restoration strategy flowchart
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 11. If all lost robots in the swarm have been detected, guide 
the leader robot to its respective position in the desired 
configuration, Cd , and return to Step 1.

   Otherwise, continue.
 12. If search replanning is necessary, return to Step 3 to 

re-identify the RoI and re-plan the inter-region path.
   Otherwise, set i = i + 1 , and return to Step 5.
   Note: The search must be replanned if the execution 

of the intra-region path led to the unintentional detec-
tion of lost that were not in the group corresponding to 
the RoI at hand.

   Note: If the proposed strategy returns to Step 3 for 
replanning, a simplified approach to inter-region path 
planning can be adopted to reduce the computational 
demands of the proposed strategy, as will be discussed 
below.

Simplified Inter‑Region Search Path Planning The proposed 
connectivity-restoration strategy may require the inter-
region search path to be replanned during the search due 
to the unintentional detection of lost robots that were not in 
the group corresponding to the RoI being explored. In such a 
case, a simplified approach to inter-region search path plan-
ning can be adopted.

The unintentional detection of a lost robot would result 
in re-identification of the RoIs (i.e., grouping of the lost 
robots). Re-grouping would, however, not form groups 
additional to those that were formed in the previous invo-
cation of the lost-robot grouping methodology. Namely, 
when a lost robot is unintentionally detected, it would 
be removed from all lost robot groups it is a part of, and 
potentially result in the elimination of entire lost-robot 
groups/RoIs. In this situation, it is proposed just to con-
tinue the original (optimal) inter-region path at hand by 
simply eliminating these regions.

5  Simulated Experiments

A series of simulated experiments were conducted to vali-
date the effectiveness of the proposed connectivity res-
toration strategy. One of these experiments is detailed in 
Section 5.1. Subsequently, Section 5.2 provides a numeri-
cal comparison of our method to the competing baseline 
random-walk method.

5.1  An Illustrative Example

A numerical example of the proposed connectivity-resto-
ration strategy is presented for a swarm of thirteen (twelve 

followers plus a leader) robots moving from an initial con-
figuration to a desired one, Fig. 11. The connectivity of the 
swarm is (only) checked once the swarm reaches the desired 
configuration.

In this example, due to motion errors, connectivity is 
assumed to be lost once the swarm arrives at its desired con-
figuration, Fig. 12. The proposed connectivity-restoration 
strategy is, thus, invoked to move the robots to positions that 
re-establish the desired connectivity.

Fig. 11  Desired swarm motion

Fig. 12  Swarm configuration upon reaching its desired destination – 
in a disconnected state
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As the first step of the restoration process, the connected 
robot, R5 , is guided to its respective location in the desired 
configuration. This initial motion is carried out in paral-
lel to the execution of the intra-region path for exploring 
the first RoI on the planned inter-region search path, Sec-
tion 5.1.4 below. This is achieved by localizing it based on 
the (accurate) position of the leader robot and inter-robot 
proximity measurements obtained using onboard hardware. 
Such measurements describe the relative distance and bear-
ing between two neighboring robots.

Once R5 reaches its destination it may be disconnected 
from the leader robot. However, we still consider R5 as a 
connected robot that was sent to its destination and, thus, 
do not check for swarm connectivity until all lost robots are 
found and sent to their respective positions on the desired 
swarm configuration, as detailed above in Section 4.4.

5.1.1  Examining the Search Space – Identifying 
Regions‑of‑Interest

In this paper, the RoIs of the individual lost robots were rep-
resented through their respective pu = 99% iso-probability 
curves. Some were, subsequently, merged using a threshold 
of Mmin = 0.5 , Eq. (9) in Section 4.1, resulting in the follow-
ing nG = 7 lost-robot groups:

(16)

G1 =
{
R1

}
,

G2 =
{
R6

}
,

G3 =
{
R7

}
,

G4 =
{
R2,R3

}
,

G5 =
{
R3,R4

}
,

G6 =
{
R8,R9

}
, and

G7 =
{
R10,R11,R12

}
.

Above, the lost Robot R3 belongs to two groups: G4 and 
G5.

5.1.2  Inter‑region Search Path Planning – Solving 
the Travelling‑Salesperson Problem

The inter-region search path planning step determines the 
optimal order in which the RoIs should be visited, Sec-
tion 4.2. Herein, for Eq. (10) the weights were chosen as 
� = � = 0.5 , which yielded the following (optimal) inter-
region search path:

5.1.3  Intra‑region Search Path Planning – Using Probability 
Theory for Finding Lost Robots

As noted above, the inter-region search path, P∗ , execution 
begins by exploring the RoI of the lost-Robot R7 , in Group 
G3 through a planned intra-region path, Section 4.3. Upper 
and lower bounds of pu = 99% and pl = 10% iso-probability 
curves were used to plan this path.

Figure 13(a) shows the intra-region path planned for the 
RoI of G3 . Figure 13(b) further shows the 10%, 25%, 50%, 
75% and 99% iso-probability curves as a zoomed-in illus-
tration. Only a few example iso-probability curves and one 
inward spiral are shown for simplicity.

5.1.4  Search Execution

Below, the entire search simulation is discussed in detail.

(17)P
∗ =

{
G3,G6,G7,G2,G5,G4,G1

}
.

Fig. 13  (a) Intra-region path for 
exploring the RoI of G

3
 , (b) five 

example iso-probability curves

(a) (b)
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(a) Search for the lost robots in G3 =
{
R7

}

As the first step of the search, the detection of Robot R7 
by the leader robot is shown in Fig. 14(a), and a zoomed-in 
illustration of the executed path is shown in Fig. 14(b). The 
execution of the intra-region search for G3 was considered 
complete once Robot R7 was detected. Subsequently, R7 
was labeled as a connected robot and guided to its respec-
tive position in the desired swarm configuration. The leader 
robot, then, proceeded to explore the remaining RoIs on its 
optimal inter-region path, Eq. (17).

(b) Search for the lost robots in G6 =
{
R8,R9

}

As the next search step, Eq. (17), the intra-region path 
planned to search for the robots in Group G6 is shown 
in Fig.  15(a). The execution of this path led to the 

simultaneous detection of lost Robots R8 , R9 , R10 and R11 , 
Fig. 15(b). Namely, Robot R8 was first detected directly by 
the leader robot, and the other lost robots, R9 , R10 , and R11 , 
were detected indirectly due to existing, however, a priori 
unknown, connectivity between them and R8 . All newly 
detected/found lost Robots, R8 − R11 were designated as 
connected and guided to their respective positions in the 
desired swarm configuration.

(c) Replanning

As noted above, the execution of the intra-region path for 
the RoI of G6 led to the unintentional detection of R10 and 
R11 , which were not part of G6 and as such, the connectiv-
ity-restoration process had to be replanned. As detailed in 
Section 4.4, replanning removed R10 and R11 from G7 and 
yielded the following new optimal inter-region path:

Fig. 14  Intra-region path for the 
detection of lost robots in G

3

(a) (b)

Fig. 15  (a) Planned and (b) 
executed intra-region path for 
the detection of lost robots in G

6

(a) (b)
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where,

(d) Search for the lost robots in new G7 =
{
R12

}

The restoration process continued via the exploration 
of the RoI of Group G7 , whose planned intra-region path 
is shown in Fig. 16(a). The execution of this path led to 

(18)P
∗ =

{
G7,G2,G5,G4,G1

}
,

(19)

G1 =
{
R1

}
,

G2 =
{
R6

}
,

G4 =
{
R2

}
,

G5 =
{
R3,R4

}
, and

G7 =
{
R12

}
.

the detection of Robot R12 , Fig. 16(b). Subsequently, 
R12 was labeled as a connected robot and guided to its 
respective position in the desired swarm configura-
tion, Section 4.4. The leader robot, then, proceeded to 
explore the remaining RoIs on its optimal inter-region 
path, Eq. (18).

(e) Search for the lost robots in G2 =
{
R6

}

As the next search step, Eq. (18), the restoration pro-
cess continued by the exploration of the RoI of Group G2 , 
for Robot R6 , whose planned intra-region path is shown in 
Fig. 17(a). The execution of this path, however, first led to 
the detection of lost Robots R2,R3 , and R4 , which are mem-
bers of Groups G4 and G5 , respectively. Namely, these were 

Fig. 16  (a) Planned and (b) 
executed intra-region path for 
the detection of lost robots in G

7

(a) (b)

Fig. 17  (a) Planned and (b) 
executed intra-region path for 
the detection of lost robots in G

2

(a) (b)
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found unintentionally. Robot R4 was detected directly by 
the leader robot, and the two other lost robots, R2 and R3 , 
were detected indirectly due to existing, however, a priori 
unknown, connectivity between them and R4 , Fig. 17(b).

All newly detected robots were, subsequently, recruited to 
help the leader robot with its search for the actual intended 
target in G2 , the lost Robot R6 , executing the originally 
planned intra-region path. This recruitment was allowed 

as the intended target, R6 , was yet to be detected. The 
newly formed search team eventually detected Robot R6 , 
Fig. 18, which completed the intra-region search at hand. 
All detected robots, R2,R3,R4

 , and R6 , were, then, labelled 
as connected and guided to their respective positions in the 
desired swarm configuration.

(f) Replanning

The lost Robots R2,R3 , and R4 , that were detected in the 
previous step did not belong to the RoI/group at hand, G2 . 
Thus, the restoration process had to be replanned, as detailed 
in Section 4.4, yielding the following new (final) optimal 
inter-region path:

where

(g) Search for the lost robots in new G1 =
{
R1

}

The new planned intra-region path, Eq. (20), for explor-
ing the new RoI of G1 is shown in Fig. 19(a). The execution 
of this path detected the final lost Robot R1 , Fig. 19(b), who 
was labeled as connected and guided to its position in the 
desired swarm configuration.

(h) Guiding the leader robot to its desired position

Once all lost robots were detected/found, the leader robot 
also returned to its position in the desired swarm configu-
ration and swarm connectivity was rechecked. Figure 20 

(20)P
∗ =

{
G1

}
,

(21)G1 =
{
R1

}
.

Fig. 18  Phase two of intra-region path execution for the detection of 
lost robots in G

2

Fig. 19  (a) Planned and (b) 
executed intra-region path for 
the detection of lost robots in G

1

(a) (b)



 Journal of Intelligent & Robotic Systems (2024) 110:9090 Page 18 of 25

illustrates the positions of all swarm robots once the leader 
reaches its destination. In this example, the connectivity of 
the swarm was successfully restored. If connectivity were not 
to be established, the restoration process would need to be 
repeated from this point.

5.2  Comparison to Random‑Walk Search Method

The proposed connectivity restoration strategy is com-
pared to a competing random-walk search strategy, via 

the example presented in Section 5.1, for the disconnected 
swarm shown in Fig. 12 above. The random-walk strategy 
is first detailed in Section 5.2.1, and its performance com-
pared to the proposed connectivity restoration strategy in 
Section 5.2.2.

A random-walk strategy was selected for comparison 
as it is the only method in the swarm connectivity-restora-
tion literature that is applicable to the problem at hand. As 
detailed in Section 2, existing strategies, typically, require 
the position of the lost robots to be known with certainty, 
and/or require the lost robots to navigate their environ-
ment without the accumulation of random errors. Neither 
of these conditions can be met in the problem considered 
in this paper. Behavior-based methods can be applied to the 
leader robot while the lost followers remain stationary. Of 
these methods, backtracking to the last position where the 
swarm was connected [42, 43] and random walk [44] were 
considered. The former strategy was, however, disregarded 
as it would not allow the leader robot to explore the RoIs 
in their entirety.

5.2.1  Random‑Walk Search Strategy

In the random-walk search strategy, the leader robot explores 
its surrounding by executing a random-walk within a bound-
ing region-of-interest. Herein, this bounding region is 
selected as an ellipse, centered at the centroid of the (poten-
tial) positions of the lost robots in the desired swarm con-
figuration, Fig. 21. The selected RoI encircles 99% of the 
points in the cloud that represents the estimated deviations 
of all lost robots from their desired positions.

The random-walk search strategy is detailed below and 
illustrated in Fig. 22:

Fig. 20  Restored swarm connectivity

Fig. 21  (a) Disconnected 
swarm, and (b) corresponding 
RoI for the random-walk search 
strategy

(a) (b)
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1. If swarm is connected, exit the process.
  Otherwise, continue.
2. If robots that are connected to the leader exist, guide 

them to their respective locations in Cd.
  Otherwise, continue.
3. Identify the bounding RoI based on the approach 

detailed above.
4. If leader robot is outside bounding RoI, take the shortest 

path to reach this RoI.
  Otherwise, continue.
5. Choose a random-walk direction, �r , based on a uniform 

distribution (i.e., �r ∼ U(0, 2�)).
6. Travel along a randomly selected direction, �r , for a dis-

tance of dr or until a lost robot is detected.
  Note: The distance dr is a user-defined parameter.
7. If a lost robot is not detected, return to Step 5.
  Otherwise, continue.
8. Guide the detected lost robots to their respective loca-

tions in the desired configuration, Cd.
9. If all lost robots in the swarm have been detected, guide 

the leader robot to its respective position in the desired 
configuration, Cd , and return to Step 1.

  Otherwise, return to Step 3, to identify a new bound-
ing RoI for the remaining lost robots.

5.2.2  Numerical Comparison

Due to the random nature of the random-walk search strat-
egy, its performance in restoring swarm connectivity must 
be evaluated over multiple repeated simulations. Further-
more, one must also specifically note the impact of the value 
of the walk distance, dr , on the strategy’s performance. In 

this regard, numerous sets of simulations were conducted, 
first, to evaluate the impact of dr , in the range 0.1 to 0.9 
m. The results clearly showed that there indeed exists an 
optimal value for the walk distance, d∗

r
 , 0.5 m in our case, 

for the disconnectivity scenario examined. During all the 
simulations, the direction of the walk was selected using a 
uniform distribution, in the range 0 to 2 � radians.

The example shown in Fig. 23 illustrates an example 
path taken by the leader robot while using the random-walk 
search strategy with dr = 0.5m . The solution is dynamic in 
nature. Namely, the RoI at hand is recalculated, if needed, 
every time a lost robot is found – its size is reduced by 
removing the points that belong to the newly found robot 
from the ‘cloud’ at hand.

Fig. 22  Random-walk search 
strategy flowchart

Fig. 23  Random-walk search strategy
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The performances of the two competing search methods 
are presented in Table 1. For the random-walk strategy, 
two walk distances are included: 0.1 m and 0.5 m, the latter 
being the optimal value for the example considered. For each 
value, 100 (random) simulations were implemented. Search 
performance was evaluated based on the total distance trav-
elled by the leader robot, dS , from its initial position once 
the swarm entered a disconnected state, until all lost robots 
were found.

Figure 24(a), below, illustrates the distribution of the 
results for the 100 instances of the random-walk search 
strategy with d∗

r
= 0.5 m. The performance of the proposed 

probabilistic connectivity restoration strategy is also shown 
as a vertical red line. For this example, the proposed proba-
bilistic connectivity-restoration strategy outperformed the 
random-walk strategy in approximately 85% of instances, 
indicating the tangible efficacy of our strategy. Furthermore, 
however, it would be infeasible to conduct an optimization 
to determine d∗

r
 . Thus, for a randomly chosen dr metric, for 

example 0.1 m in Table 1, the value of our proposed method 
over the random-walk method could be even significantly 
better, Fig. 24(b).

It must be noted that the time taken to restore connectivity 
may need to consider issues beyond robot travel time, includ-
ing (1) inter-robot communication and (2) search replanning. 
Namely, due to latency and bandwidth limitations, there may 
be a delay in the inter-robot communication necessary for 
detecting lost robots, recruiting them, and/or guiding them 
to their destinations. Such limitations would depend on the 
communication capabilities of the member robots. Further-
more, search replanning may be a time-consuming process 

due to the limited onboard computational capabilities of the 
leader robot. Such metrics were, however, not considered in 
this work for the purpose of simplifying the discussion and 
remaining platform independent.

6  Conclusions

This paper presents a connectivity-restoration strategy for 
robotic swarms that lose connectivity due to random errors 
in the execution of their motion commands. Connectivity 
restoration is particularly challenging in such a scenario as 
motion-execution errors must be considered in the restora-
tion strategy, and the position of the disconnected robots 
must be probabilistically modelled.

The proposed connectivity-restoration strategy addresses 
the former challenge by maintaining the disconnected lost 
robots stationary until they are detected by the leader robot 
that is equipped with enhanced localization capabilities. The 
leader explores its surroundings by dividing the environ-
ment into multiple regions of interest (RoI), determining 
the optimal order of RoI visitations, and exploring each RoI 
based on a probabilistic model of the potential positions of 
the robots. Herein, iso-probability curves are used for this 
probabilistic representation, which allow the leader robot to 
prioritize exploring areas with a higher probability of lost-
robot detection, consequently leading to reduced connectiv-
ity restoration time.

The strategy is novel as it uses probability theory to 
plan the overall search path of the leader robot. It is also 
novel as it may recruit lost robots that are detected during 

Table 1  Connectivity 
restoration performance

Method Proposed Method Random-walk, d∗
r
= 0.5 

m
Random-walk, 
d
r
= 0.1 m

Total distance travelled,d
S

4.9 m Min Max Min Max
3.3 m 59.1 m 7.2 m 123.3 m

Fig. 24  Performance of the 
random-walk search strategy 
for (a) d∗

r
= 0.5 m, and (b) for 

d
r
= 0.1 m 

(a) (b)
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the search to form a search team for collectively exploring 
the environment for the remaining lost robots. This allows 
it to expedite the restoration time by increasing the area 
that can be detected at any one time. The efficacy of the 
proposed strategy was illustrated through a detailed simu-
lated experiment for a swarm of thirteen robots engaged in 
a motion control task. The performance of the strategy was 
also compared to a competing random-walk search strategy 
through extensive simulations, showing its efficiency in 
restoring swarm connectivity.

Connectivity restoration is guaranteed, in our work, if 
(1) the leader explores all parts of the determined RoIs, 
and (2) the lost robots are located within these regions. 
Condition (1) is met by the proposed strategy through the 
intra-path planning stage, where a spiral path that cov-
ers all parts of the region at hand is planned. Condition 
(2), however, may not be met if the lost robots were to be 
located outside of the upper-bound iso-probability curves 
that define the RoIs. It is, thus, recommended to select a 
high value for the upper-bound iso-probability curve (i.e., 
to increase the size of the RoI) to increase the probability 
of restoring connectivity.

While the proposed strategy was developed for a single-
leader, multiple-follower swarm architecture, it could also be 
applicable to a distributed case where the swarm comprises 
multiple groups, each with its own leader robot, respectively. 
In this scenario, each leader robot would be responsible for 
restoring connectivity to the followers in its group. Further-
more, each leader would have to be assigned the set of fol-
lowers that it is responsible for through an offline or online 
optimization process.

Appendix A. Determining Iso‑Probability 
Curves

Iso-probability curves have been used in several robotic 
wilderness search and rescue (WiSAR) works to model 
the estimated location of a lost person [59–66]. Each iso-
probability curve is associated with a percentile p and in 
the WiSAR context it describes how far in a given direction 
the pth slowest percentile of the missing person would have 
moved at a given point in time. As p varies from 0 to 100%, 
the iso-probability curves provide a complete description of 
the missing person’s possible locations. In a more general 
sense, each iso-probability curve describes how far, from the 
center of the (closed-loop) curve, one would need to travel 
to have a p percent chance that the target be between that 
location and the center. In this a way, set of iso-probability 
curves provides a probabilistic description of the possible 
locations of a search target in a way that can conveniently 
describe the area where the target might be and how to cover 
that area with different curves.

Mathematical Formulation

The formulation for iso-probability curves presented in 
[65] provides a more rigorous mathematical description. 
It defines an iso-probability curve for a time varying prob-
ability density function in polar coordinates, ρp(r, θ, t) , as 
follows:

where F−1 is the inverse cumulative probability density in 
a given direction � at time t  . When evaluated for a given 
quantile p , at all values of � , this yields all points along the 
pth iso-probability curve. To compute the desired inverse 
cumulative density function F−1 , both the cumulative density 
function F and the probability density function f  are com-
puted from the polar density function as follows:

Estimation from Point Clouds

In this work, the estimation of robot position is to be esti-
mated through a cloud of points, generated based on the 
robot’s motion model and its last known position. This point 
cloud estimation of the lost-robot position must be converted 
to a probability density estimate for use with the iso-proba-
bility curve formulation above. The approach shown in [66] 
uses a polar grid that is equally spaced in the angular and 
radial components to construct a histogram-based density 
estimate. Each point in the point cloud is binned to the clos-
est point in the grid and divided by the total number in that 
direction, providing an estimate of the probability density 
in each direction, f  . Thereafter, the values at each point 
are summed in the radial direction providing an estimate of 
the cumulative density in each direction, F . Interpolation 
can, then, be used to provide the values of F−1 needed to 
construct each iso-probability curve.

Appendix B. Intra‑Region Search‑Path 
Planning

An intra-region search path is generated in this work over 
three steps. Firstly, the percentile (i.e., iso-probability curve) 
that should be searched is determined. Next, the polar-coor-
dinate position of the search path on that curve is calculated. 

(22)
(
F−1(p|θ, t), θ

)
∀θ ∈ [0, 2π],

(23)F(r|θ, t) = ∫
r

0

f (s|θ, t)ds, and

(24)f (r|θ, t) =
ρp(r, θ, t)

∫ ∞

0
ρp(s, θ, t)ds

.
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Finally, the polar-coordinate position of the path is converted 
into Cartesian coordinates to determine the intra-region 
path. Figure 25 shows the key information that is extracted 
from the Region-of-Interest (RoI) for use in determining the 
search path.

Step 1: Percentile Selection

The search method used in this work generates spiral 
search paths by relating the percentile of the polar distribution 
that is being searched at a point on the path to the cumulative 
time and resources that have been used searching up to that 
point on the path. In this case, the cumulative angular distance 
that the path has traveled is used as a measure of the time and 
resources used while searching. Namely, as the spiral path 
progresses around the center of a RoI, it will follow lower or 
higher percentile iso-probability curves in a manner that is 
proportional to the number of turns the spiral has made.

Formally, let us consider the cumulative angular dis-
tance that has been traveled, � ∈

[
0, θmax

]
 . This cumulative 

distance can be measured in radians and would increase 
from 0, at the start point of the spiral search, to some max-
imum value, �max , that corresponds to the number of turns 
in the desired spiral path. For example, the first spiral path 
inwards, while making two complete turns, would have a 
cumulative angle ranging from 0 to 4π and the starting 
point where the cumulative angle is zero would be where 
the initial search path meets the iso-probability curve for 
the upper bound of the RoI. This cumulative angle is, then, 
converted into the percentile p being searched at that point 
on the path using a linear relationship:

where ps is starting percentile for the search, and C is a 
constant progression rate controlling how quickly the path 
moves across different iso-probability curves. The spiral 
paths are defined between a starting percentile and a final 
percentile. For paths that spiral outwards, the starting per-
centile is the lower bound (i.e., ps = pl ), the final percentile 
is the upper bound, and the progression rate is strictly posi-
tive (i.e., C > 0 ). Conversely, for inwards spirals, the start-
ing percentile is the upper bound (i.e., ps = pu ), the final 
percentile is the lower bound, and the progression rate is 
strictly negative (i.e., C < 0 ). The percentile bounds can 
also be used to calculate the maximum cumulative angular 
distance using:

Step 2: Polar-coordinates Path

Given the cumulative angle, � , the starting angle of 
the path, �s , the percentile being searched at that point, 
p(�), and the radial position of the pth iso-probability 
curve at a given angle, rp(�)

(
� + �s

)
 , one can define the 

complete search path. This can be achieved by evaluat-
ing rp(�)

(
� + �s

)
 , the radial position of the iso-probability 

curve for the percentile determined by Eq. (B1) at � , for 
values of � along the path, resulting in a path in polar coor-
dinates in the frame centered on the RoI being searched.

Step 3: Cartesian-coordinates Path

The polar-coordinates path would need to be con-
verted into Cartesian coordinates in the global frame to 
determine the intra-region search path. This is achieved 
using the standard transformation between polar and 
Cartesian coordinates and the translation of the refer-
ence frame. Using the center point of the RoI being 
searched, 

(
xRoI , yRoI

)
 , the following transformation is 

obtained:

The above transformation can be applied to arbitrary 
points along the path yielding the desired intra- region 
search path, S , as a collection of points in Cartesian-coordi-
nates in the global frame that can be followed by the search 
team.

(25)p(�) = ps + C�,

(26)θmax =
pu − pl

abs(C)
.

(27)x = xRoI + rp(θ)
(
θ + θs

)
cos

(
θ + θs

)
, and

(28)y = yRoI + rp(θ)
(
θ + θs

)
sin

(
θ + θs

)
.

Fig. 25  Variables and measurements used for the determination of the 
intra-region path
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