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Abstract
In this paper we propose a learning-based restoration approach to learn the optimal parameters for enhancing the quality of
different types of underwater images and apply a set of intensity transformation techniques to process raw underwater images.
Themethodology comprises two steps. Firstly, a Convolutional Neural Network (CNN)Regressionmodel is employed to learn
enhancing parameters for each underwater image type. Trained on a diverse dataset, the CNN captures complex relationships,
enabling generalization to various underwater conditions. Secondly, we apply intensity transformation techniques to raw
underwater images. These transformations collectively compensate for visual information loss due to underwater degradation,
enhancing overall image quality. In order to evaluate the performance of our proposed approach, we conducted qualitative and
quantitative experiments using well-known underwater image datasets (U45 and UIEB), and using the proposed challenging
dataset composed by 276 underwater images from the Amazon region (AUID). The results demonstrate that our approach
achieves an impressive accuracy rate in different underwater image datasets. For U45 and UIEB datasets, regarding PSNR and
SSIM quality metrics, we achieved 26.967, 0.847, 27.299 and 0.793, respectively. Meanwhile, the best comparison techniques
achieved 26.879, 0.831, 27.157 and 0.788, respectively.

Keywords Underwater image restoration · Deep learning · Learning-based image enhancement · Intensity transformation
techniques

1 Introduction

Research work on underwater image restoration has been
increasing in recent years and are extremely important for
several applications in subaquatic robotics and scenarios. The
acquisition process of good quality subaquatic images is a
complex operation, representing a significant challenge for
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visual data capture and analysis, especially, due to the dif-
ferent underwater environments such as oceans, rivers and
lakes [1–3]. Distinct aspects contribute to the mentioned
challenging acquisition, including i) water turbidity, caused
by suspended particles; i i) presence of marine organisms,
that contribute to the degradation of image quality and water
scattering; and i i i) uneven lighting and optical distortion,
resulting in reduced visibility and loss of details [4].

A wide range of applications demand the understanding
and processing of underwater images, especially using sub-
aquatic robots. In an industrial context, different uses can
be found in underwater robotics, offshore engineering and
underwater exploration, which require restored images for
object detection and identification, navigation and situational
awareness [5]. In a surveillance and monitoring context, the
enhancement of underwater images, captured by subaquatic
cameras and other sensors, enables the use ofRemotelyOper-
ated Vehicle (ROV), assisting in wreck detection, threats and
unauthorized objects and activities [6]. Finally, in a marine
ecology and biology context, it is paramount to comprehend
and monitor underwater ecosystems, allowing the identifica-
tion of species and their behavior [7].
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Considering the underwater image acquisition complexity
as mentioned earlier, the underwater image quality enhance-
ment is a challenging problem, since there are many aspects
affecting the subaquatic image quality. Additionally, the
aforementioned real-world applications demonstrate the rel-
evance of the addressed problem.

In order to tackle this problem, advanced algorithms and
techniques have been proposed to compensate the adverse
effects of light scattering and absorption. By employing such
techniques, underwater images can be transformed to reveal
fine details, high contrast and precise color representation.
Several methods transforming the image intensities can be
employed such as color and gamma correction, histogram
and contrast adjustment and unsharp enhancement [4]. Fig-
ure 1 shows examples of raw underwater images, which were
acquired in the ocean and in a river and their respective
restored images.

In a previous work [8] we have proposed an approach to
underwater image quality enhancement, applying a fusion
of color adjustment and compensation techniques, reaching
a reasonable performance in terms of visibility quality and
image qualitymetrics scores. However, in that work, we have
used a simple strategy where the parameters were manually
adjusted.

In this paper we propose a Deep Learning-based approach
for underwater image restoration, enhancing the quality and
clarity of subaquatic images, improving the navigation capa-
bility of subaquatic robots. We use a Convolutional Neural
Network (CNN) regressionmodel to estimate the best param-
eters to reduce the image degradation. Next a sequence of

Fig. 1 Examples of raw and restored underwater images by ourmethod.
Figure 1a and b correspond to the raw and processed underwater images,
respectively, in an ocean environment. Figures 1c and d correspond
to the raw and processed underwater images, respectively, in a river
environment

intensity transformation techniques are applied using the
parameters found by the CNN, in order to improve the sub-
aquatic images quality. Experiments were carried out using
two well-known underwater image datasets. We have also
carried out a comparison of our results with other rele-
vant state-of-the-art algorithms, such as VRE [9], UDCP
[10], IBLA [11], CBF [12], GDCP [13], UWCNN (UCNN)
[14], WaterNet (WN) [15] and LI [16]. The obtained results
through qualitative and quantitative assessment metrics pro-
vide evidence supporting the effectiveness of the proposed
approach for underwater image restoration, showcasing
improved accuracy and significantly clearer underwater
images. In the experiments, regarding the U45 and the UIEB
datasets, seven state-of-the-art techniques were compared
with our approach. For PSNR and SSIM quality metrics,
in U45 dataset, the best results from comparison meth-
ods were 26.879 and 0.831, respectively. Meanwhile, our
results were 26.967 and 0.847, respectively. For PSNR and
SSIM quality metrics, in UIEB dataset, the best results from
comparison methods were 27.157 and 0.788, respectively.
Meanwhile, our results were 27.299 and 0.793, respectively.
It is important to highlight that for PSNR and SSIM, the
higher the value, the higher the restoration quality of under-
water images.

Our work offers two main contributions, which can be
summarized as follows:

– We propose a Deep Learning-based approach to learn
the best parameters in the process of restoring the quality
of underwater images. The proposed regression process
acquires knowledge from different water conditions (like
turbidity, low lighting, scattering and distortion inwater),
enabling the estimation of the better parameters for
different underwater images. The proposed restoration
approach presents high accuracy even regarding differ-
ent water conditions. Thereby, our approach can improve
the navigation capability of subaquatic robots in different
underwater environments;

– We propose a challenging dataset composed by 276
underwater images, acquired in the Urubu river, a black-
water tributary of theAmazon river. The proposed dataset
comprises subaquatic images with intense turbidity and
low lighting and scattering in the water. To the best of our
knowledge this is the first dataset of underwater images
from the Amazon region.

The remainder of this paper is structured as follows. In
Section II, we present a discussion about the most related
works regarding underwater image processing and analy-
sis. An overview of the proposed approach is presented in
Section III, describing the main steps for the learning-based
underwater image restoration technique. Real experiments
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are discussed in Section IV. Finally, in Section V we draw
the conclusions and discuss paths for future investigation.

2 RelatedWork

Underwater image restoration has been the subject of intense
research in the scope of subaquatic robotics and computer
vision. This type of approach consists of enhancing the qual-
ity of subaquatic images to support real-world applications
in different scenarios [17–19].

Several proposed state-of-the-art methods were designed
to restore resolution of images to enhance visual perception
by learning strategy. Zhangkai and Peng et al. [20] proposed
a wavelet-based dual-stream network to solve color cast and
blurry details in underwater images, using discrete wavelet
transform added to frequency bands and two sub-networks:
color and detail enhancement trying to reach a model that
can effectively remove the color cast and improve the blurry
details. In the same line of work, a high-performance under-
water image enhancement model is proposed by Nianzu and
Dong et al [21]. This approach is based on a deep learning
network with multi-Scale and multi-dimensional feature to
turbidity, light absorption, and scattering problem by a con-
volutional and pooling structure.

Many researches employ wavelet based strategies, includ-
ing a two-step strategy based on color restoration and image
fusion with deep learning and conventional image enhance-
ment techniques [22]. This work uses an adaptive color
compensation method and color restoration. A multi-stage
deep Convolutional Neural Networks (CNN) framework
with feature reconstruction loss and mean Squared Error
is proposed by Sharma et al. [23], optimizing it using the
traditional pixel-wise and feature-based cost functions. Liu
et al. [24] proposed adaptive-learning techniques to remove
color casts and low illumination and restore information,
which proposed an adaptive learning attention network based
on supervised learning named LaNet and Wang et al. [25]
presented a reinforcement learning method with adaptive
underwater presentation characteristics to improve image
details.

The Retinex method is a technique widely used in the
underwater field to improve color balance and lighting of
images, increasing their visual quality. Zhenqi et al. [26]
used rank learning and multi-scale dense Generative Adver-
sarial Network (GAN) that leaded to a Retinex theory-based
method to try boosting accuracy and robustness. Zhuang et
al. [27]merged hyper-laplacian reflectance priors and retinex
variational model to image enhancing.

Convolutional neural networks are used to enhance under-
water images by removing fog and restoring color. Using
an end-to-end defogging module and a brightness equal-
ization module, Zheng et al. [28] proposes a CNN and an

encoder-decoder backbone to color restoration. Liu et al. [29]
work was also based on model image simulation, learning-
based image enhancement with CNN and encoder-decoder
backbone. However, some CNN approaches do not require
encoders to color, contrast or dehaze underwater images,
accomplishing improvement throughmultiscale densely con-
nected deep CNN-based model, underwater optical imaging
formulation and data-driven deep learning, as in Jiang et
al. [30] method, or methods that uses medium transmis-
sion maps to restore real-world underwater images involving
training aCNNusing aGAN frameworkwith dilated residual
blocks (DRBs) [31].

Computer vision image fusion techniques can be applied
in the underwater environment to combine and integrate
different image sources. Zhao et al. [32] combined adap-
tive color compensation, improved Laplacian sharpening
method, gamma correction, latent low-rank representation to
dual-image weighted fusion. For detail preservation, Dhan-
dapani et al. [33] worked on frequency domain model-free
method, homomorphic filtering, discrete wavelet transform
and fusion-based enhancement. MLLE (Minimal Color Loss
and Locally Adaptive Contrast Enhancement) [34] can
be performed in order to solve color correction, contrast
enhancement with color transfer image generation based on
minimum information loss principle and maximum attenua-
tion map-guided fusion strategy for detail enhancement.

In the underwater context, super-resolution (SR) can help
improve the visibility and clarity of the captured images.
Improving image resolution, SR techniques [35] are based
ondeep learningmodels,CNNandmulti-contextual formula,
while Bapu et al. [36] proposed a method called Underwater
Image Processing Scheme (UIPS), which utilizes Gradient
Profile logic and image super-resolution norms to enhance
the resolution and clarity of underwater images. FloodNet
[37] achieved global feature fusion by low-level feature
extraction and residual dense blocks, just as Li Wang et al.
[38] providing image super-resolution and enhancement via
progressive frequency-interleaved network, and U-Net [39]
for simultaneous enhancement and super-resolution.

Image restoration through fusion of different techniques
is a great way to achieve quality and detail gain in images,
each technique providing its own quantitative parameter to
process the capture.Wang et al. [40] joined parameter estima-
tion by a three-channel cascade convolutional neural network
(UTC-Net), while Shihao et al. [41] based research on deep
learning to establish a neural network using dilated convo-
lution and parameter correction. Turbid underwater image
enhancement trough parameter-tuned stochastic resonance
(PSR) can be good on effectively enhancing turbid under-
water images without requiring prior assumptions or a large
amount of data to be driven.

Our work proposes a new approach for the enhancement
of underwater images, using a combination of processing
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Fig. 2 Overview of the
proposed sequence of steps for
underwater image restoration

techniques and convolutional neural networks (CNNs). This
technique can be used in robotics vision applications such as
search and rescue, surveillance and monitoring, and marine
ecology and biology, improving the navigation in different
scenarios such as oceans, rivers and lakes. This strategy aims
to overcome the challenges when dealingwith the limitations
and distortions present in images captured in underwater
environments. It is possible to identify several approaches
that address the problem in a similar way to ours, includ-
ing fusion processing techniques [32, 33], widely used to
improve the quality and detail of images. It involves combin-
ingmultiple images of the same scene, processed by different
techniques, to produce a single high-quality image. As well
as techniques using CNNs, neural networks specialized in
image processing [23], capable of learning and extracting
relevant features automatically [24]. Widely used in various
computer vision tasks in the context of underwater image
enhancement, CNNs can be trained to learn specific patterns
of distortions and noise present in these images, with the goal
of restoring the original quality.

3 Methodology

The proposed methodology is composed by two main steps:
i) Learning-based Parameters Estimation; and i i) Intensity
Transformation Fusion, as can be seen in Fig. 2, while further
details will be presented in the next subsections. The first
step consists of training a regression convolutional neural
network, using a collection of raw underwater (I ), to fig-
ure out the best parameters (P) for enhancing the quality
of subaquatic images, regarding several scenarios and water
conditions. The network analyzes the training image dataset
and estimates the most efficient parameters for enhancing
underwater images. Secondly, based on the identified opti-
mal parameters, obtained from the learning process, intensity

transformation functions are applied to restore the sub-
aquatic images, resulting in enhanced underwater images
(R).

3.1 Learning-based Parameters Estimation

For the Learning-based Parameters Estimation, first it was
needed to correlate the underwater images with the best
parameters for the intensity transformation functions. For
this, an empirical process was performed in order to find out
the best parameters to each raw underwater image. Finally,
the pairs, comprising training raw subaquatic images and the
best parameters found, are passed by the CNN regression
training process.

Convolutional neural networks are a class of deep neural
networks specially designed for processing structured data,
such as images, performing a great role in image processing
due to their ability to extract and automatically learn relevant
features directly from data.

In our proposed method, the network is designed to
estimate parameters of image processing techniques. This
process consists of applying aCNN to estimate intensity vari-
ables resulting from a two-layer based enhancement method
previously worked out [8]. Each proposed image processing
step generates a numerical value for: color correction inten-
sity (cci), gamma correction (γ ), contrast intensity (β) and
brightness intensity (α).

The network generalizes the relationship between image
features and parameters to obtain accurate estimates by being
trained to learn complex patterns and relationships between
input data and desired parameters. It learns tomap image pix-
els to the optimal values of each parameter, enabling accurate
estimation.

The proposedCNNmodel is composed by 3 convolutional
layers, as shown in Fig. 3. The first layer is defined with 64
filters, the second and third layers are defined with 128 fil-

Fig. 3 Proposed CNN
architecture for underwater
parameters estimation
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ters. The filters size of all convolutional layers are (3x3). The
ReLu activation function is used in all convolutional layers,
altogether the Max Pooling function, regarding a window
size of (2x2). After each convolution layer and after each
Max Poling funcion a batch normalization is applied. After
the convolutional layers, 2 fully-connected layers are pro-
posed. The sizes of the fully-connected layers are 128 and
64, respectively for each flatten layer. Between each fully-
connected layer are used Dropout layers with rate value of
0.5. The output dense layer of the model has 4 neurons cor-
responding to the 4 labels (cci , γ , α, β).

The goal is to adjust the weights of the neural network so
as to minimize the loss function (mse) between the model
predictions and the actual labels. In the training stage, the
Adam optimization algorithm is used, with learning rate
equal to 0.001. The training procedure was performed for
50 epochs and using a batch size of 128. The CNN regres-
sion model is used for underwater parameters estimation due
to good results achieved in similar scenarios [14, 28, 35].
The proposed CNN model is also used due to good feature
representation learning, depicting distinct and complemen-
tary features formodeling different underwater environments
and water conditions.

In feature extraction, the proposed model figure out rele-
vant features from the input images. This stage is performed
by a series of convolutional layers, batch normalization and
max-pooling layers. Mathematically, the feature extraction
stage can be described as follows:

3.1.1 Convolutional Layer

The input images are loaded and their labels are extracted
from their filename. This layer is responsible for predicting
the parameters, learning and identifying relevant visual pat-
terns in the data, related to the predicted attributes.

Y = f (W ∗ I + b) (1)

Equation 1 shows the convolutional operation, where I is
defined as an input 64x64x3 image, where Y corresponds
to the output feature map, W the convolutional weights, b
the bias term and f () corresponds to the activation function
ReLU, represented as f (x):

f (x) =
{
x, ifx > 0

0, otherwise.
(2)

Through the convolutional layers, a hierarchy of feature
detection occurs. Initial layers capture simple features such as
lines and edges, deeper layers learn to combine these features
into more complex textures and objects representations.

3.1.2 Batch Normalization

Regarding the prediction of our parameters, Batch Nor-
malization assists stabilizing the model training, allowing
subsequent layers to benefit from normalized and more stan-
dardized inputs, resulting inmore efficient and stable learning
of relevant features in the underwater images, contributing
to improved parameter predictions.

Let Ynormali zed be the normalized output, m the input
mean, var its variance, ε a small number to avoid divi-
sion by zero, β and γ the scaling and shifting parameters,
respectively. The composing normalization operation was
configured as below:

Ynormalized = Y − m√
var + ε

∗ γ + β. (3)

3.1.3 Max Pooling

The Max Pooling layer captures scale and location invari-
ant features in the underwater images. It makes the model
more robust to small variations in position and size of the
features present in the images. This layer contributes to bet-
ter parameter prediction, allowing the model to focus on the
relevant information and generalize better to different under-
water conditions.

Ypooled = Max Pooling(Ynormali zed), (4)

where Ynormali zed is the output from batch normalization and
Ypooled is the output feature map after pooling, both com-
pose the max pooling operation.

The mentioned operations are repeated for multiple con-
volutional layers,with each layer extracting different features
from the input image. The use of activation functions helps
to introduce non-linearity and capture complex patterns in
the data.

The goal of the feature learning stage is to further process
the extracted features and learn higher-level representations
that are relevant for the given task. In our method, this stage
is performed by adding fully connected (dense) layers with
dropout regularization.

3.1.4 Flattening

Flatten layer provides a linear representation of the features
extracted from the underwater images. This linear represen-
tation is then fed into the dense layers, which are responsible
for learning the relationship between these features andmak-
ing the final predictions.

The flattening operation, as shown in Eq. 5, where the out-
put from the lastmax-pooling layer (Ypooled ) and theflattened
vector representation of the features (Y f lattened ) reshape a
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multidimensional input tensor into a one-dimensional vec-
tor.

Y f lattened = Flatten(Ypooled) (5)

3.1.5 Fully Conected Layers

The Fully Connected layer performs linear and non linear
transformations on the features extracted from the previous
layers. It learns the relationship between these features and
the parameters of interest, combining them in order to make
accurate predictions.This layer plays akey role in themodel’s
ability to learn complex, nonlinear patterns in the underwater
images, contributing to the prediction of their parameters.

Ydense = f (W ∗ Y f lattened + b), (6)

where Ydense is the output of the dense layer, W the dense
layer weights, b the bias term and f () corresponds to the
activation function.

3.1.6 Dropout Regularization

The dropout operation is composed by the output from the
dense layer (Ydense), output after dropout (Ydropout ) and
the rate at which the neurons are randomly set to 0 during
training (dropout_rate). This layer randomly disables a per-
centage of units during training, helping to avoid over fitting
and co adaptation. It promotes the learning of more robust
and independent features, improving the generalization of
the model and contributing to the prediction of its desired
parameters.

Ydropout = Dropout(Ydense, dropout_rate), (7)

where Ydense is the output of the dense layer, W the dense
layer weights, b the bias term and f () corresponds to the
activation function.

3.1.7 Final Output

Here, Output represents the final output of the model, a
Dense layer with 4 neurons to predict the desired parameters.
It performs a linear transformation of the input data, adjust-
ing the weights and biases to learn the relationship between
the extracted features and the correct parameter values. This
layer is important to predict the parameters by combining the
previously extracted features and apply an appropriate activa-
tion function to map the final results to the desired parameter
values.

Letting W be the output layer weights, Ydropout represent
the output after applying dropout, and b represent the bias

term, it is possible to finally show the final output of the
model as:

Output = W · Ydropout + b. (8)

The above operations are repeated for the specified num-
ber of epochs during training, optimized by the Grid Search,
technique that allows you to find the best hyperparameters
for a machine learning model by systematically combining
different predefined values, fine tuning as well the feature
extraction stage (convolutional layers, batch normalization,
and pooling) [42].

By combining the feature extraction with the abstract fea-
ture learning step (fully connected layers and dropout), the
model is able to learn and extract the color correction inten-
sity (cci), gamma correction (γ ), α and β values for the
solution enhancement formula presented previously.

Color correction, gamma, brightness, and contrast inten-
sities are indirectly influenced by the operations performed
on the various CNN layers during training, as the network
learns to represent and map image features to make increas-
ingly accurate predictions. These parameters are obtained by
previously application of intensity transformation techniques
to the raw underwater images, subsequently the image pro-
cessing steps can be performed from the CNN result.

3.2 Intensity Transformation Fusion

Theprocess of obtaining empirically the best parameters con-
sists of traversing the image and performing the processing
steps, from various values in the scope of each technique. At
each iteration the parameter values of color correction inten-
sity (cci), gamma correction (γ ), contrast intensity (β) and
brightness intensity (α) are defined, cycling through all possi-
ble combinations of parameter values. For each combination,
a main function applies the image processing steps, and then
the values of the qualitymetrics used for the image results are
calculated (See the Subsection 4.3.1 for more details about
the quality metrics).

LetC = (cci1, cci2, ...) be the set of color correction inten-
sity values, G = (γ1, γ2, ...) be the set of gamma correction
values, A = (α1, α2, ...) be the set of alpha values and B =
(β1, β2, ...) be the set of beta values:

M={
(ccii , γ j , αk, βl)

∣∣ ccii ∈C, γ j ∈G, αk ∈ A, βl ∈ B
}
,

(9)

where M is the set of combinations, ccii is a specific value
from the set C , γ j is a specific value from the set G, al f ak
is a specific value from the set A, and βl is a specific value
from the set B.

This equation represents the Cartesian product of the sets
C , G, A, and B, resulting in all possible combinations of
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parameter values for the image processing steps. Each com-
bination represents a unique configuration of the parameters
to be used in the processing.

If the quality metric values are desirable, the correspond-
ing parameter combination is selected and the combination
with the highest metric value is stored and prepared for label-
ing the images for the process of estimating these parameters
for the test images and also for any images.

Below, we provide an overview of the mentioned tech-
niques showcasing the step-by-step, from an input image
(Fig. 4) to the correspondent restored image, while further
in-depth information can be found in our previous paper
[8].

3.2.1 Color Correction

The first technique performed is a color correction algo-
rithm, presented by Fig. 5, that applies histogram stretching
in each color channel (R,G, B). The technique takes all
information from the linear curve minimum and maximum
values, generating a 256 value Look-up Table to apply the
histogram equalization. The image is scaled to [min,max]
range through a transformation of the pixel values by the
function f , as in the equation below:

f (v) = (v− I min)(max−min)/(Imax − Imin)+min, (10)

where v is the gray value to be transformed, Imin and Imax

correspond to the minimum and maximum gray values in the
underwater image, respectively. min and max correspond to
the new gray value range.

3.2.2 Gamma Correction

The second technique is the gamma correction of underwater
images, presented by Fig. 6. In this stage, the image pixel

Fig. 4 Raw Input Image

Fig. 5 Color Correction Step

intensities are scaled from the range [0, 255] to [0, 1.0], by
applying the equation:

IG = I (1/g), (11)

where I is the underwater image and g corresponds to the
gamma constant value. IG is the underwater image with cor-
rected gamma factor.

3.2.3 Unsharp Enhancement

Figure 7 shows the final operation in each layer, the unsharp
enhancement. For this step, the Unsharp Mask filter is used
to enhance edges in underwater images. In this sense, it sub-
tracts the smoothed version of the underwater image from
its original underwater image, to highlight edges through the
h function. The mentioned process is performed as in the
equation below:

h(v) = I (v) − Ismooth(v), (12)

Fig. 6 Gamma Correction Step
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Fig. 7 Image Sharpening Step

wherev is the grayvalue to be transformed, I is anunderwater
image and Ismooth corresponds to the smoothed underwater
image.

3.2.4 CLAHE

In this stage, visually represented by Fig. 8, the algo-
rithm Contrast-Limited Adaptive Histogram Equalization
(CLAHE) [43] is applied. This method operates on small
regions of the image, called "tiles", in which the neigh-
borhood pixels are combined using bilinear interpolation
to remove the artificial boundaries. Thus, addressing and
enhancing the image contrast. This evens out gray val-
ues distribution, making hidden features more visible. The
expression ofmodified gray levelswithUniformDistribution
is given by the equation below:

Ihe = [Imax − Imin] ∗ P(I ) + Imax , (13)

where P is the cumulative probability distribution. Imin and
Imax correspond to the minimum and maximum gray values
in the underwater image, respectively. Ihe is the resulting
underwater image after the histogram equalization process.

Fig. 8 Contrast-Limited Adaptive Histogram Equalization Step

3.2.5 Fusion

Let I1 and I2 be the processed underwater images in each
layer of the proposed approach. I1 and I2 are combined using
the linear blending as image fusion technique, represented
by the k function. Thereby, the visual features in I1 and I2
are fused in order to improve the quality and visibility of
degraded underwater images. The linear blending operation
was applied as below:

k(v) = (1 − α)I1(v) + α I2(v), (14)

where v is the gray value to be transformed, α represents the
weight in the linear blending. I1 and I2 correspond to the
processed underwater images in the first and second layers,
respectively. Figure 9 provides a representation of the fusion
step.

3.2.6 Contrast and Brightness Adjustment

The generated fused underwater image undergoes brightness
and contrast adjustment, and finally yields the final output of
the proposed approach. To achieve brightness and contrast
adjustment transformations, each output pixel value depends
only on the corresponding input pixel value, by multiplica-
tion and addition with a constant. The parameters β > 0
and γ control the contrast and brightness, respectively. The
equation below presents the brightness and contrast transfor-
mation:

Io = β ∗ I + γ, (15)

where I is an underwater image,β corresponds to the contrast
factor and γ corresponds to the brightness factor. Io is the
output image in our approach for enhancement of underwater
images, as can be seen in Fig. 10.

Fig. 9 Fusion Step
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Fig. 10 Brightness and Contrast Adjustment Final Step

4 Experiments

This section evaluates the proposed approach, conducting
both qualitative and quantitative assessments. The experi-
mental evaluation involves the comparison of our approach
with traditional methods as well as recent state-of-the-art
techniques based on deep learning. These experiments allow
us to evaluate the effectiveness of our method in restoring
details, enhancing colors and improving the overall visual
clarity, related to the comparison approaches.

The experiments were conducted using a Lenovo laptop
with an Intel® CoreT M i7-10750H CPU@ 2.60GHz, 16 GB
DDR4-2133 main memory and NVIDIA® GeForce® RTX
3060 6 GB GDDR6. Furthermore, the OpenCV and Tensor-
flow frameworks were used to support the development of
the proposed approach for underwater image restoration.

4.1 Experimental Datasets

The experiments were performed using two well-stated
underwater image datasets, U45 and UIEB. These datasets
comprise a collection of underwater images from the ocean
and are commonly used in the literature [44, 45]. The U45
dataset consists of 45 images depicting natural underwa-
ter environments, while the UIEB dataset consists of 890
images capturing diverse natural underwater scenes. Both
present reference images, enabling the comparative analysis
and evaluation.

Figure 11 presents examples of underwater images, cap-
tured from the ocean, representing challenging subaquatic
scenarios in different acquisition conditions and with differ-
ent water aspects, affecting image quality and clarity. Figures
11a, b and c correspond to samples of underwater images
from the U45 dataset. Figures 11d, e and f correspond to
samples of underwater images from the UIEB dataset.

In this paper we introduce a collection of subaquatic
images, called Amazon Underwater Image Dataset (AUID).
The proposed AUID dataset consists of a challenging under-
water image dataset, composed by 276 images from the

Urubu river. The Urubu river is one of the tributaries of the
Amazon river and is a major river in the Amazon Basin. The
Urubu river plays a fundamental role in the overall hydrol-
ogy and ecosystem of the Amazon region. The underwater
images in the AUID dataset present high turbidity level, high
scattering and low lighting in water, besides a dark color.
Figure 12 presents examples of underwater images which
comprise the AUID dataset.

4.2 Qualitative Evaluation

In this experiment we intend to assess the effectiveness of our
proposed underwater image restoration technique in com-
parison to other existing techniques. In this evaluation, we
examine the visual quality and perceptual improvements
achieved by our approach in restoring underwater images
in all scenes provided from the datasets. By comparing the
results of our technique with those obtained from other com-
parison techniques,we aim at identifying differences in terms
of image clarity, visibility and overall visual appearance.
This qualitative evaluation provides valuable insights into
the strengths and limitations of the proposed technique.Addi-
tionally, this evaluation strategy can be used as a fundamental
step in validating the quality of the proposed approach for
underwater image restoration.

In order to qualitatively evaluate the proposed approach,
several existing techniques were implemented and used to
restore underwater images. The U45 dataset was evaluated
using the techniques: VRE [9], UDCP [10], IBLA [11], CBF
[12], GDCP [13], UWCNN (UCNN) [14], WaterNet (WN)
[15] and LI [16]. Figure 13 presents restored underwater
images by our proposed approach and the comparison tech-
niques, with respect to the U45 dataset, enabling the visual
assessment of the subaquatic images. The same techniques
listed earlier were used to evaluate the UIEB dataset. Fig-
ure 14 presents restored underwater images from the UIEB
dataset by our proposed approach and the comparison tech-
niques, enabling the visual assessment of the subaquatic
images.

Our approach was also qualitatively evaluated using the
proposed AUID dataset. For this, were considered the tech-
niques: Histogram Equalization (HE) [46], UDCP [10],
IBLA [11] and WN [15]. Figure 15 presents restored under-
water images by our proposed approach and the comparison
techniques, regarding the AUID dataset, enabling the visual
assessment of the subaquatic images.

4.2.1 Qualitative Analysis: Results Discussion

From the raw and the restored underwater images, obtained
using the proposed approach and the comparison techniques,
it is possible to evaluate the quality of the enhancement pro-
cess. In Fig. 13,we canverify visual aspects regarding visibil-
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Fig. 11 Samples representing
subaquatic environments
acquired from ocean,
corresponding to U45 and UIEB
datasets. Figure 11a, b and c
represent scenes from U45
dataset. Figure 11d, e and f
represent scenes from UIEB
dataset

ity, clarity and colors, concerning theU45 dataset. Observing
Fig. 13 we can see that some comparison techniques present
quality results, like WN and LI. Nevertheless, aspects like
high saturation, low turbidity reduction and excessive green
and blue channel compensation affect the resulting underwa-
ter images. The IBLAmethod yields restored imkages highly
saturated. The UCDP, IBLA, WN and LI methods does not
reduce the turbidity properly in restored underwater images.
Finally, theUCDP, IBLA andGDCPmethods result in exces-
sive green and blue channels compensation. Additionally, we
can see that our approach presents significant results in the
underwater scenes comprised in the U45 dataset.

In Fig. 14, we also can evaluate the quality of the restora-
tion algorithms, comparing the visual and appearance aspects
in raw and restored underwater images, in the UIEB dataset.
From Fig. 14 it is possible to observe good visual results
obtained using the comparison techniques VRE and LI.
However, in some scenarios, degraded restored images are
generated, like in UCDP, IBLA, GDCP, UCNN and WN
methods, with an excessive green and blue channels com-
pensation. The GDCP, CBF, LI and UCNN methods, do
not reduce the turbidity in restoring process satisfactorily.
Finally, the VRE, LI and CBF methods result in restored

images with high saturation. Furthermore, we can verify the
considerable performance of the proposed approach in the
different underwater scenarios in the UIEB dataset.

Finally, in Fig. 15, it is possible to validate the perfor-
mance of different underwater image restoration methods in
a challenging subaquatic environment, with dark water, high
turbidity and low visibility. From the visual analysis of the
obtained results we can observe that, the comparison tech-
niques presented unsatisfactory results, for theAUIDdataset.
The HE, UCDP and IBLA methods does not reduced sig-
nificantly turbidity in restored images. The UCDP and WN
methods yield images with low contrast, while the UCDP
method generated underwater dark images. Our approach,
regarding the proposed AUID dataset, achieved visually
relevant results, especially due to the dataset difficulty,
demonstrating the effectiveness of the proposed methodol-
ogy, even in different subaquatic scenarios.

4.3 Quantitative Evaluation

In this experiment we intend to quantify the accuracy of
the proposed approach for underwater image restoration. For
this evaluation we have used measurements and metrics to

Fig. 12 Samples representing
subaquatic environments
acquired from Urubu river,
corresponding to AUID dataset.
Figure 12a, b and c represent
different scenes with intense
turbidity and scaterring, also
presenting low lighting aspect
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Fig. 13 Qualitative comparison of restored underwater images on U45 dataset. From left to right are presented the raw underwater images and the
results of VRE, UDCP, IBLA, CBF, GDCP, UCNN, WN, LI and our method

quantitatively assess and compare the obtained results. From
the numeric results it is possible to demonstrate the perfor-
mance of our technique and the comparison algorithms. The
employed metrics in this evaluation measure the quality, col-
orfulness, sharpness, contrast, entropy and the noise ratio
from the restoredunderwater images, regardingdifferent sub-
aquatic datasets.

4.3.1 Evaluation Metrics

An image evaluation metric plays a fundamental role in
assessing the quality and performance of image restoration
techniques. Several metrics are commonly used, and in this

experimentwehave employed theUIQM(Underwater Image
QualityMeasure) [47], UISM (Underwater Image Sharpness
Measure), UICONM (Underwater Image Colorfulness Mea-
sure),UICM(Underwater ImageContrastMeasure), Entropy
[48], PSNR (Peak Signal-to-Noise Ratio) [49], and SSIM
(Structural Similarity Index) [50]. Each metric can esti-
mate a different quality aspect in image, allowing a reliable
comparison between several underwater image restoration
techniques.

The UIQM is a non-reference image quality metric that
combines multiple quality factors, including colorfulness
(c1), sharpness (c2) and contrast (c3), to provide an overall
assessment of image quality. It takes into account both local

Fig. 14 Qualitative comparison of restored underwater images on UIEB dataset. From left to right are presented the raw underwater images and
the results of VRE, UDCP, IBLA, CBF, GDCP, UCNN, WN, LI and our method
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Fig. 15 Qualitative comparison of restored underwater images on the proposed AUID dataset. From left to right are presented the raw underwater
images and the results of HE, UDCP, IBLA, WN and our method

and global image features to measure the quality of underwa-
ter images. Every factor assess one aspect of the underwater
image degradation and are linearly combined, as in:

U I QM = c1∗U ICM+c2∗U I SM+c3∗U ICONM, (16)

where the used weights in the experiments are: c1 = 0.468,
c2 = 0.274, and c3 = 0.257. In UIQM quality metric, the
greater the result values mean, better the results.

The UISM, a non-reference image quality metric, focuses
specifically on evaluating the sharpness of underwater
images. The mentioned metric measures the local sharpness
of edges and fine details, which are often degraded in under-
water conditions. UISM is commonly used for assessing the
restoration of important visual information, particularly the
preservation and enhancement of fine details and edges.

In UICONM, a non-reference image quality metric, the
colorfulness of underwater images is quantified. For this pur-
pose, the method assesses the vibrancy and richness of color
information, providing insights into the restoration of color
in underwater scenes. UICONM is meaningful for evaluat-
ing the effectiveness of techniques in restoring and enhancing
color fidelity, which is crucial for visual perception and inter-
pretation.

The UICM, a non-reference image quality metric, eval-
uates the contrast in underwater images. It measures the
difference in luminance between image regions, indicating
the restoration of contrast and dynamic range. UICM helps
to assess the effectiveness of techniques in enhancing visibil-

ity and revealing details that may be obscured in underwater
conditions.

Entropy is a full reference image quality metric, that
quantifies the amount of information or randomness present
in an image. It measures the complexity and richness of
image details and textures. Entropy is useful for evaluating
the preservation of important visual information during the
restoration process, as higher entropy values indicate better
preservation of details.

The PSNR is a widely used full reference image quality
metric, that calculates the ratio of the maximum possible
signal power to the noise power. It quantifies the fidelity
of the restored image compared to the original, with higher
PSNR values indicating a closer resemblance. For this, in
PSNR, from two images, an underwater image (I ) and a
reference underwater image (R), the Mean Squared Error
(MSE) estimates the magnitude of the error, as in equation
below:

MSE(I , R) = 1

N

N∑
i=1

(Ii − Ri )
2, (17)

where N is the amount of pixels in the underwater image (I )
and i corresponds to every pixel in I .

Thereby, the PSNR measure is given by:

PSN R(I , R) = 10 ∗ log10
L2

MSE(I , R)
, (18)
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where L is the reference image maximum pixel intensity
value. The higher thePSNRcompared to the reference image,
the better the quality of the compressed, or reconstructed
image.

SSIM, a full reference image qualitymetric, is a perceptual
metric that measures the similarity between the restored and
original images based on structural information. It takes into
account factors such as luminance, contrast and structure.
SSIM is advantageous because it considers human visual
perception and provides a more holistic assessment of image
quality. The aforementioned metrics enable us to objectively
measure the quality, fidelity and accuracy of the restored
underwater images. Providing reliable comparison strategy
to quantify the performance and precision of the restoration
methods.

4.3.2 Quantitative Analysis: Results Discussion

In order to evaluate our approach and the comparison tech-
niques we quantified the restored underwater image quality,
using the image quality metrics described above. For bet-
ter comprehension and visualization, the obtained results are
divided into non-reference and full reference analysis. In the
non-reference analysis the image quality metrics used are
UIQM, UISM, UICONM and UICM. Meanwhile, in the full
reference analysis the imagequalitymetrics used areEntropy,
PSNR and SSIM.

In the first quantitative analysis, regarding the U45
dataset, presented in the Table 1, we compare the pro-
posed approach and the algorithmsVRE,UDCP, IBLA,CBF,
GDCP, UWCNN,WNand LI, using the non-reference image
quality metrics. From the results in the Table 1, it was pos-
sible to verify that for the UIQM and UICONM metrics the
WN and LI restoration techniques presented the best results
among the comparison techniques. For the UISM metric the
LI and IBLA restoration techniques presented the best results
among the comparison techniques. For the UICMmetric the
WN, LI and IBLA restoration techniques presented the best
results among the comparison techniques. It is important to
highlight that the proposed approach overcome all the com-
parison techniques, in all image quality metrics, obtaining
better results in the different aspects assessed by the image
quality metrics.

In the full reference analysis, still regarding the U45
dataset, presented in the Table 2, it was possible to verify that
for the Entropy metric the WN and LI restoration techniques
presented the best results among the comparison techniques.
For the PSNR metric the WN, LI and UWCNN restoration
techniques presented the best results among the compar-
ison techniques. For the SSIM metric the LI restoration
technique presented the best result among the comparison
techniques. As observed in the non-reference analysis, for
the same dataset, the proposed approach for underwater

Table 1 Non-reference image quality assessment regarding UIQM,
UISM, UICONM and UICM on U45 dataset images

Method UIQM ↑ UISM ↑ UICONM ↑ UICM ↑
Raw 2.388 5.063 0.235 5.228

VRE 3.212 4.769 0.206 4.714

UDCP 3.934 3.272 0.239 5.418

IBLA 3.438 4.799 0.293 9.311

CBF 2.886 4.774 0.221 4.614

GDCP 2.704 3.503 0.302 4.06

UWCNN 3.725 3.976 0.296 9.252

WN 4.414 4.521 0.38 9.589

LI 4.636 5.283 0.399 9.649

Ours 4.998 5.891 0.4 10.735

image restoration also overcome the comparison techniques
in full reference analysis, demonstrating the accuracy of our
methodology.

In the second quantitative analysis, regarding the UIEB
dataset, presented in the Table 3, we compare the proposed
approach and the same algorithmsused forU45dataset, using
the non-reference image quality metrics. From the results in
the Table 3, it was possible to verify that for the UIQM met-
ric the LI and VRE restoration techniques presented the best
results among the comparison techniques. For theUISMmet-
ric the WN restoration technique presented the best result
among the comparison techniques. For the UICONM and
UICM metrics the LI restoration technique presented the
best result among the comparison techniques. It is important
to highlight that our approach overcome all the comparison
techniques, even in a more challenging dataset, comprising
more underwater degradation in images.

In the full reference analysis, still regarding the UIEB
dataset, presented in the Table 4, it was possible to verify that
for the Entropymetric the LI andVRE restoration techniques

Table 2 Full reference image quality assessment regarding Entropy,
PSNR and SSIM on U45 dataset images

Method Entropy ↑ PSNR ↑ SSIM ↑
Raw 6.144 17.215 0.538

VRE 6.597 22.405 0.786

UDCP 5.513 21.838 0.684

IBLA 6.963 25.674 0.567

CBF 5.458 22.424 0.794

GDCP 6.165 23.601 0.758

UWCNN 6.032 26.879 0.585

WN 7.278 26.386 0.554

LI 7.924 26.714 0.831

Ours 7.936 26.967 0.847
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Table 3 Non-reference image quality assessment regarding UIQM,
UISM, UICONM and UICM on UIEB dataset images

Method UIQM ↑ UISM ↑ UICONM ↑ UICM ↑
Raw 2.195 3.971 0.242 5.499

VRE 4.028 4.200 0.228 8.718

UDCP 3.735 5.065 0.204 7.073

IBLA 2.842 3.983 0.143 7.245

CBF 3.914 4.101 0.223 4.982

GDCP 3.476 4.503 0.284 4.351

UWCNN 3.725 5.484 0.287 6.222

WN 3.748 6.591 0.207 4.535

LI 4.089 5.542 0.309 9.367

Ours 4.690 6.757 0.318 11.489

presented the best results among the comparison techniques.
For the PSNR metric the LI restoration technique presented
the best result among the comparison techniques. For the
SSIM metric the WN and GDCP restoration techniques pre-
sented the best results among the comparison techniques. As
in the previous non-reference analysis, for the UIEB dataset,
our approach for underwater image restoration also achieve
high accuracy, overcoming the comparison techniques in full
reference analysis.

Finally, in the third quantitative analysis, regarding the
AUID dataset, presented in the Table 5, we compare the pro-
posed approach and the algorithms HE, UDCP, IBLA and
WN, using the non-reference image quality metrics. From
the results in the Table 5, it was possible to verify that for
the UIQM metrics the WN and IBLA restoration techniques
presented the best results among the comparison techniques.
For theUISMmetric theWN restoration technique presented
the best result among the comparison techniques and our
approach. For the UICONM and UICM metrics the WN
restoration technique presented the best result among the

Table 4 Full reference image quality assessment regarding Entropy,
PSNR and SSIM on UIEB dataset images

Method Entropy ↑ PSNR ↑ SSIM ↑
Raw 6.939 19.856 0.633

VRE 7.627 21.277 0.654

UDCP 7.109 23.673 0.675

IBLA 7.348 20.142 0.653

CBF 7.423 26.785 0.740

GDCP 7.343 25.254 0.788

UWCNN 6.592 23.458 0.677

WN 7.166 25.157 0.785

LI 7.718 27.157 0.756

Ours 7.784 27.299 0.793

Table 5 Non-reference image quality assessment regarding UIQM,
UISM, UICONM and UICM on AUID dataset images

Method UIQM ↑ UISM ↑ UICONM ↑ UICM ↑
Raw 3.125 3.434 0.209 3.125

HE 4.476 5.852 0.220 6.011

UDCP 3.636 5.672 0.204 4.331

IBLA 6.877 4.457 0.193 5.814

WN 6.754 6.877 0.272 9.879

Ours 7.700 6.826 0.396 12.344

comparison techniques. It is important to highlight that our
approach overcome almost all the comparison techniques,
even in a very challenging dataset, with high turbidity and
low visibility.

In the full reference analysis, still regarding the AUID
dataset, presented in the Table 6, it was possible to verify that
for the Entropy, PSNR and SSIMmetrics theWN restoration
technique presented the best results among the compari-
son techniques. However, the proposed approach achieved
higher accuracy in all scenarios, in a full reference analy-
sis. Thereby, we can validate the robustness and accuracy of
our approach in different scenarios, like ocean and river, and
different underwater degradation aspects and intensities.

5 Conclusion and FutureWork

This paper presented an approach to underwater image
quality enhancement using deep learning and intensity trans-
formation techniques for subaquatic robotics. A CNN was
used for learning the best parameters needed for the image
transformation functions, such as contrast adjustment, his-
togram equalization and gamma correction. By combining
these transformations using the parameters found by the
CNN, our approach achieved robust results as presented by
the experiments.

The proposed approach comprises two main steps: (1)
from a set of raw underwater images is carried out a training

Table 6 Full reference image quality assessment regarding Entropy,
PSNR and SSIM on AUID dataset images

Method Entropy ↑ PSNR ↑ SSIM ↑
Raw 4.037 17.522 0.300

HE 4.422 26.048 0.586

UDCP 4.787 25.897 0.411

IBLA 6.475 26.085 0.621

WN 7.100 27.087 0.662

Ours 7.1975 27.553 0.667
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process in order to learn the best parameters to restore quality
subaquatic images, regarding different scenarios and water
conditions. For this, a regression convolutional neural net-
work receives the training image set and estimates the best
parameters for the underwater image enhancement. (2) From
the best parameters, found through the learning process, the
intensity transformation functions are applied to restore the
subaquatic images.

We have carried out experiments in order to perform
a qualitative and quantitative evaluation of the proposed
approach. We have also performed a comparison to other
eight existing techniques, namely VRE, UDCP, IBLA, CBF,
GDCP, UWCNN, WN and LI. Several metrics were used
such as UIQM,UISM, PSNR, SSIM, among others. Through
the experiments it was possible verify that underwater images
are strongly affected by high turbidity, low visibility, scater-
ring and contrast, turning the underwater image restoration
process a challenging task, specially regarding different sub-
aquatic scenarios like ocean and river.

The results have shown that restoring underwater images
in any subaquatic environment andwater condition it is a non-
trivial operation. The best comparison techniques obtained
satisfactory quantitative results, however presented unsatis-
factory restored underwater images in qualitative analysis.
However, the proposed approach achieved high accuracy and
visual quality underwater images, demonstrating consistency
in the restoration process.

In this work we have created a new underwater image
dataset, namelyAmazonUnderwater ImageDataset (AUID).
The AUID dataset is composed by 276 images from the
Urubu river, which is a blackwater tributary of the Amazon
river. This dataset shows the potential for the acquisition and
use of underwater images from the Amazon region, particu-
larly the blackwater rivers.

There are two main contributions: (1) an effective deep
learning-based approach for underwater image quality enha-
ncement to be used by subaquatic robots and (2) a newunder-
water image dataset from a blackwater river in the Amazon
region.

As future directions of this work we intend to investigate
different approaches for underwater image restoration, like
usingHighDynamicRange (HDR).We also intend to expand
the sets of underwater images in experimental process, in
order to propose an invariant to water condition underwater
image restoration technique, addressing the most of the sub-
aquatic scenarios.Wealso intend to improve and significantly
increase the number of images in our underwater dataset.
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