
https://doi.org/10.1007/s10846-024-02051-0

REGULAR PAPER

Dynamic Via-points and Improved Spatial Generalization for Online
Trajectory Generation with Dynamic Movement Primitives

Antonis Sidiropoulos1 · Zoe Doulgeri1

Received: 21 July 2023 / Accepted: 31 December 2023
© The Author(s) 2024

Abstract
Dynamic Movement Primitives (DMP) have found remarkable applicability and success in various robotic tasks, which can
be mainly attributed to their generalization, modulation and robustness properties. However, the spatial generalization of
DMP can be problematic in some cases, leading to excessive overscaling and in turn large velocities and accelerations. While
other DMP variants have been proposed in the literature to tackle this issue, they can also exhibit excessive overscaling as
we show in this work. Moreover, incorporating intermediate points (via-points) for adjusting the DMP trajectory to account
for the geometry of objects related to the task, or to avoid or push aside objects that obstruct a specific task, is not addressed
by the current DMP literature. In this work we tackle these unresolved so far issues by proposing an improved online spatial
generalization, that remedies the shortcomings of the classical DMP generalization, and moreover allows the incorporation
of dynamic via-points. This is achieved by designing an online adaptation scheme for the DMP weights which is proved to
minimize the distance from the demonstrated acceleration profile to retain the shape of the demonstration, subject to dynamic
via-point and initial/final state constraints. Extensive comparative simulations with the classical and other DMP variants are
conducted, while experimental results validate the practical usefulness and efficiency of the proposed method.

Keywords Dynamic movement primitives · Via-points · Programming by demonstration · Trajectory generation

1 Introduction

Dynamic Movement Primitives (DMP) [1, 2] have emerged
as a promising method for encoding a desired trajectory and
generalizing it to new situations. It is particularly favoured
thanks to its ease of training, generalization, robustness and
on-line modulation properties and has been applied in a
plethora of practical robotic tasks and applications [3–8].
The trajectory to be encoded is typically provided through
PbD (Programming by Demonstration) [9], as an intuitive
and efficient means of teaching human-skills to robots.

In DMP, the objective of generalization is to generate a
trajectory from a new initial position to a new, possibly time-
varying, target position, while also preserving the shape of

B Antonis Sidiropoulos
antosidi646@gmail.com

Zoe Doulgeri
doulgeri@ece.auth.gr

1 Department of Electrical and Computer Engineering,
Aristotle University of Thessaloniki, Panepistimioupoli,
Thessaloniki 54124, Greece

the demonstrated trajectory. To this end, different DMP vari-
ations and/or spatial generalization mechanisms have been
proposed with the most well-known being the classical DMP
formulation from [1]. However, the classical DMP spatial
scaling has some important shortcomings, i.e. over-scaling
of the generalized trajectory when the demonstrated end-
points (initial and final position) are close, failure to generate
a motion when the new end-points during execution coincide
and mirroring of the trajectory when the sign of the differ-
ence between the new end-points is different from the sign of
the difference of demonstrated ones. To remedy these issues,
the bio-inspired DMP formulation is proposed in [10]. Nev-
ertheless, it exhibits poor generalization for targets that are
not close to the demonstration, as highlighted in [11], where
an improved version of the bio-inspired DMP is proposed to
enhance its spatial generalization. A novel generalization to
tackle the scaling issues of classical DMP is also proposed
in [12]. While [11, 12] resolve the classical DMP scaling
issues, they introduce over-scaling in trajectories with ampli-
tudes bigger than the distance between the initial and final
position, which is typical in many practical applications, like
in packing applications where lifting an object and placing it

0123456789().: V,-vol 123

/ Published online: 29 January 2024

Journal of Intelligent & Robotic Systems (2024) 110:24

http://crossmark.crossref.org/dialog/?doi=10.1007/s10846-024-02051-0&domain=pdf
http://orcid.org/0000-0002-6089-5980
http://orcid.org/0000-0003-2188-9358

down in a box is required. A different offline spatial general-
ization approach is proposed in [13] based on minimizing a
norm, that is learned from multiple demonstrations, solving
an iterative optimization problem.

FewDMPworks consider via points on-line in their spatial
generalization. Via-points can be particularly useful to adjust
a trajectory on-line, e.g. to avoid obstacles in a predictable
way by specifying through the via-points how the robot
should circumvent them [14] or to push aside other objects
that obstruct reaching pathways to a desired target [15].
Moreover, via-points offer a more flexible way of adjusting
online a DMP trajectory, in contrast to other approaches that
propose to join separate DMPs [16, 17]. In the latter case, the
trajectory segments need to be pre-specified, the complexity
increases since multiple DMPs have to be defined to connect
the via-points and also extra adjustments are required to tran-
sition smoothly from one DMP segment to the next without
halting the motion [6]. Via-points are considered off-line in a
DMP-like variant in [18] through offline optimization and in
[19], which can include via-point constraints. So far, online
incorporation of via-points is performed with probabilistic
DMP [20], by online adapting the DMP weights to the new
forcing term values, based on the provided via-points. Cal-
culating the new forcing term value at via-points requires
estimates of velocity and acceleration at the via-point, which
can result in significant noise that gets even more adverse the
sparser the via-points are arranged, as shown in [21]. Another
approach to include via-points is proposed in [22] by intro-
ducing a time-varying attractor that shifts smoothly from one
via-point to the next until the final target [22]. Nevertheless,
this does not ensure that the via-point will be reached and
the distortions in the trajectory shape that this time-varying
attractor incurs are not predictable.

Other movement primitives that can include via-points are
the Probabilistic Movement Primitives (ProMP) [23, 24] and
the Kernelized Movement Primitives (KMP) [25]. However,
multiple demonstrations are required for training such prim-
itives. Moreover, they cannot generalize well away from the
demonstrations and have higher computational complexity
with multiple DoFs. Of course, these primitives have other
advantages compared to DMP and vice versa; choosing the
most appropriate depends on the target application. In [14]
the Via-point Movement Primitives (VMP) are introduced,
that adopt ideas from DMP and ProMP, to achieve adapta-
tion to via-points, and are shown to have better extrapolation
capabilities compared to ProMP, being also able to be trained
from a single demonstration.

All aforementioned works are either off-line, or those that
are online, consider static via-points, and do not address the
case of via-points that may change dynamically. Dynamic
changes of via-points occur if via-points are defined with
respect to the position of the target or an obstacle, which is
perturbed during execution. For instance in a human-robot

collaborative packing scenario a via-point may be defined on
top of the target box whichmay be displaced by the human to
a more ergonomic position for him. The robot has to adjust
on-line to this change.

In this work we propose an online adaptation scheme for
the DMP weights based on minimizing the distance from
the learned acceleration profile, that allows incorporation of
dynamic via points in the DMP generated trajectory as com-
pared to VMP that consider only static ones [14] and spatial
generalization to new targets without the classical DMP scal-
ing problems and the over-scaling that may appear in the
variants [11, 12]. We achieve this by exploiting the novel
DMP formulation presented in our previouswork [26].More-
over, we show how the proposed novel generalization can
also be combined with our previous work [27] to impose
kinematic inequality constraints in order to generate feasible
trajectories in the presence of kinematic bounds related to the
robot and the task environment (obstacles and via points).

The rest of this paper is organized as follows: In Section 2
we provide the preliminaries for the novel DMP formula-
tion from [26]. Section 3 is devoted to the proposed novel
online generalization. Simulations that demonstrate how the
proposed method performs in comparison with the classical
and other SoA DMP variants are provided in Section 4. The
practical usefulness and efficacy of the proposed method is
further showcased in the experimental Section 5. Insights
and discussion on the results are provided in Section 6 and
finally conclusions are drawn in Section 7. The source code
for all conducted simulations and experiments can be found at
https://github.com/Slifer64/novel_dmp_generalization.git.

2 DMP Preliminaries

In this section we briefly present the DMP formulation intro-
duced in our previous work [26], which we exploit in this
work to derive an improved on-line spatial generalization that
can also incorporate dynamic via-points. As shown in [26],
this formulation is mathematically equivalent to the classi-
cal DMP formulation from [1], retaining all properties of the
latter.

Consider the state y ∈ R
n , which can be joint positions,

Cartesian position or Cartesian orientation expressed using
the quaternion logarithm (see Appendix A for preliminar-
ies on unit quaternions). The DMP consists of two sets of
differential equations, the transformation and the canonical
system. A DMP can encode a desired trajectory t j , yd, j

for j = 1...m where m is the total number of points and
T f ,d = tm − t1 the time duration of the demo, and through its
transformation system it can generalize this trajectory spa-
tially from an initial position y0 to a desired target position
g. Temporal scaling, i.e. execution of this trajectory with
a different time duration or speed, is achieved through the

123

24 Page 2 of 18 Journal of Intelligent & Robotic Systems (2024) 110:24

https://github.com/Slifer64/novel_dmp_generalization.git

canonical system, which provides the clock s (time sub-
stitute) for the transformation system, to avoid direct time
dependency. The transformation system is given by:

ÿ = ÿs − D(ẏ − ẏs) − K (y − ys) (1)

ys(s) = Ks(fp(s) − ŷd,0) + y0 (2)

fp(s) = WTφ(s) (3)

Ks = diag
(
(g − y0)./(ĝd − ŷd,0)

)
(4)

with K , D ∈ Sn++, with Sn++ denoting the set of symmet-
ric n × n positive definite matrices, ys is the scaled learned
trajectory whose derivatives can be calculated analytically in
closed form [26], the matrix Ks achieves the spatial scaling
from the new initial position y0 to a new target g, while ĝd �
fp(s(T f ,d)), ŷd,0 � fp(s(0)) are the learned initial and tar-
get demo positions. The demonstrated position trajectory is
encoded through the weighted sum of Gaussians in fp(s),
where the DMP weights W ∈ R

K×n can be determined
using Least Square, i.e. minW

∑m
j=1 || yd, j − WTφ j ||22, or

Locally Weighted Regression (LWR) [1]. The Gaussian ker-
nels are φ(s)T = [ψ1(s) · · · ψK (s)]/∑K

i=1 ψi (s), with
ψi (s) = exp(−hi (s − ci)2) with ci being the centers and hi
the inverse widths. A reasonable heuristic is to set the centers
ci equally spaced in [0, 1] and set hi = 1/(ah(ci+1 − ci))2

where ah controls the standard deviation of the Gaussian ker-
nels. Choosing ah ∈ [1.2, 1.5] produces empirically good
approximation results.

Given s(0) � s0, s(∞) � s f , and considering without
loss of generality s0 = 0 and s f = 1, the canonical system
is given by:

s̈ =
{
d1(ṡd − ṡ) , s < s f
−d2ṡ − k2(s − s f) , s ≥ s f

(5)

with d1, d2, k2 > 0, d2 ≥ 2
√
k2, s(0) = 0 and ṡ(0) =

ṡd = 1/T f , where T f is the desired motion duration. In the
general case ṡd can also be time-varying. Notice that Eq. 5
guarantees that the phase s convergences from s(0) = 0 to
s → 1, ṡ, s̈ → 0 as t → ∞.

As shown in [26], the novel DMP formulation Eqs. 1-4 is
mathematically equivalent to the classicalDMP. In particular,
Eqs. 1-4 can be mathematically manipulated to be written in
a form similar to the classical one:

ż = K (g − y) − Dz + (g − y0) fs(s) (6)

ẏ = z (7)

fs(s) = diag (1./(g − y0)) (ÿs + D ẏs − K (g − ys)) (8)

The system is globally asymptotically stable at g, since for
t → ∞, fs → 0, following from ṡ, s̈ → 0 implying
ẏs, ÿs → 0 and s → 1 ⇒ ys → g.

Spatial scaling is achieved through Ks from Eq. 4 and
temporal scaling by changing ṡd in Eq. 5. These are equiva-
lent to changing {g, y0} or the temporal scaling τ according
to τ̇ = d1(τd − τ) in the classical DMP [1], resulting in
the exact same trajectory with the same spatial and temporal
scaling [26].

Notice that to achieve temporal scaling, in contrast to the
classical DMP formulation, there is no need to pre-multiply
Eqs. 6 - 7 by τ , as this is handled by ṡ, s̈ which are included
in ẏs, ÿs in fs(s) (this can be better understood by the math-
ematical equivalence analysis in [26]).

For encoding Cartesian orientation, as shown in [28], the
correct way is to formulate the DMP in the tangent space of
S3 (unit quaternion manifold) and use the quaternion log-
arithm Eq. 18 to map points from S3 to its tangent space
and the quaternion exponential Eq. 19 for the inverse map-
ping. Therefore, for Cartesian orientation, we define the state
y = log(Q ∗ Q̄0), which maps the unit quaternion Q on the
tangent space ofS3 at Q0. Then, from the reference trajectory
y, ẏ, ÿ obtained from Eq. 1, we can retrieve the unit quater-
nion, rotational velocity and acceleration using the mappings
Eqs. 19, 20, and 24 from Appendix A.

3 Proposed Generalization

Here we present a novel spatial generalization scheme that
does not suffer from the drawbacks of the classical DMP
generalization, reported in [10] and further allows the on-line
incorporation of dynamic via-points1, while preserving the
shape of the demonstrated trajectory, ensuring a smooth tra-
jectory generation even for abrupt target or via-point changes.
To this end, we remove the classical DMP scaling Ks , and
redefine Eq. 2 as

ys = fp(s) (9)

and achieve spatial generalization by optimizing online the
DMP weights under the initial and final state constraints i.e.
start at t = 0 from y0 and reach the target g2 at t = T f with
zero velocity/acceleration. In order to generate a motion pro-
file similar to the demonstration we minimize the distance
from the learned (from the demonstration) acceleration pro-
file. This online optimization allows also the incorporation
of via-points in the spatial generalization. The above is trans-
lated to the following optimization problem, that optimizes

1 The term “point” can refer either to joint positions, Cartesian position,
Cartesian orientation or Cartesian pose.
2 We assume that g can change between 0 and T f and is constant
afterwards.

123

Page 3 of 18 24Journal of Intelligent & Robotic Systems (2024) 110:24

the DMP weights W and has to be solved at each time-step
i :

minW

m∑

j=1

∣∣
∣∣∣

∣∣
∣∣∣
∂2 ŷd, j

∂2s
− WT ∂2φ j

∂2s

∣∣
∣∣∣

∣∣
∣∣∣

2

2

(10a)

s.t. WT A(0) = Y0 (10b)

WT A(1) = Gi (10c)

WT�v,i = Yv,i (10d)

WTC j = Y j , j = 1...i (10e)

where the learned acceleration profile is3
∂2 ŷd, j

∂2s
=

WT
0

∂2φ j

∂2s
with W0 = argminW

∑m
j=1

∣∣∣∣yd, j − WTφ j

∣∣∣∣2
2
.

The matrices in the first two equality constraints, Eqs. 10b,
10c, with A(s) = [φ(s) φ̇(s) φ̈(s)], enforce the initial state
Y0 = [y0 0n×1 0n×1] and final state Gi = [gi 0n×1 0n×1]
conditions. Via-point constraints, which can be used to
locally modify the DMP trajectory, are defined in Eq. 10d,
where Yv,i = [yv,1 ... yv,Li] contains the via-points, with
Li their number at the current time-step i , and �v,i =
[φ(sv,1) ... φ(sv,Li)].4 The constraints in Eq. 10e with C j =
C(s j) = [φ(s j) φ̇(s j) φ̈(s j−1)] and Y j = [y j ẏ j ÿ j−1]
encode the current and all previous state constraints up to
timestep i . The default option is to set Y j = WT

i−1C j . An
alternative option is to set Y j to the actual robot’s state at step
j if it is also desirable to adapt online the DMP to changes of
the robot’s state induced by external signals, like measured
forces. Regardless of the choice of Y j , the current state con-
straint for j = i , ensures that a smooth trajectory is generated
by Eq. 1 even in the presence of abrupt target changes. The
previous state constraints Y1:i−1 guarantee that if the DMP
is run in reverse as in [26], using the final adapted weights
from the forward execution, the same trajectory (in reverse)
will be executed. This could be expedient for safely retract-
ing after the forward execution of a task, especially if the task
has geometric constraints (like an insertion) which will have
to be respected in the retraction phase.

3.1 Online DMPWeights Adaptation

Solving the problem in Eq. 10 on-line at each control cycle
would be too slow and hence prohibitive for real-time usage.
Instead we can employ the following recursive 2-step update

3 Notice from Eq. 5 that, for nominal execution, s̈ = 0 and hence the
acceleration, i.e. the 2nd time derivative of Eq. 2, is just ∂2 ŷd, j/∂s2

scaled by the constant 1/T 2
f .

4 If the phase sv,l , l = 1...Li , is not provided explicitly, a reasonable
heuristic is to calculate it as sv = argminsk || ys(sk) − yv ||, where sk
in uniformly sampled in (s, 1]. Empirically, taking approximately 80
samples is sufficient, as the minimization need not be exact.

at each time-step i > 0, which has computational complexity
O(K 2) and can be carried out in real-time:
step 1: Remove the effect of the previous target gi−1 and
via-points:

Ŵi = Wi−1 + K̂i (Ẑi − WT
i−1 Ĥi)

T (11a)

P̂i = Pi−1 − K̂i ĤT
i Pi−1 (11b)

K̂i = Pi−1 Ĥi (R̂i + ĤT
i Pi−1 Ĥi)

−1 (11c)

where

Ẑi = [Gi−1 Y
−
v,i], Ĥi = [A(1) �−

v,i],
R̂i = −ε I3+b−

i

(12)

with ε ≈ 0+ and Y−
v,i ∈ R

n×b−
i containing in columns the

via-points that exist in the columns of Yv,i−1 and not in Yv,i

(i.e. are present at time-step i − 1 and not at i)5 and �−
v,i =

[φ(sk)]k=1:b−
i
with sk being the phase corresponding to each

via-point in Y−
v,i .

step 2: Update to new target and via-points:

Wi = Ŵi + Ki (Zi − ŴT
i Hi)

T (13a)

Pi = P̂i − KiHT
i P̂i (13b)

Ki = P̂iHi (Ri + HT
i P̂iHi)

−1 (13c)

where

Zi = [Yi Gi Y
+
v,i], Hi = [Ci A(1) �+

v,i],
Ri = ε I6+b+

i

(14)

with Y+
v,i ∈ R

n×b+
i containing in columns the via-points

that are present at time-step i and not at i − 1 and �+
v,i =

[φ(sk)]k=1:b+
i
with sk being the phase corresponding to each

via-point in Y+
v,i .

For initialization at step i = 0 we set Z0 = [
Y0 G0

]
,

H0 = [
A(0) A(1)

]
, R0 = ε I6, Ŵ0 = W0 and P̂0 = P0

where

W0 = argminW

m∑

j=1

∣∣∣
∣∣∣ yd, j − WTφ j

∣∣∣
∣∣∣
2

2

P0 =
⎛

⎝
m∑

j=1

∂2φ j

∂2s

∂2φ j

∂2s

T
⎞

⎠

−1

Remark 1 At the beginning of each execution, the DMP
weights are initialized to the values that have been calculated

5 Such is the case for instance if they are defined relative to a varying
target or an object, whose position has changed or has been completely
removed.

123

24 Page 4 of 18 Journal of Intelligent & Robotic Systems (2024) 110:24

offline once during the DMP training from the demonstra-
tion. Alternatively, if at a previous execution the DMP was
modified, e.g. from via-points or the robot’s actual state,
resulting to somefinalweightsW f , and it is desirable to retain
this adjusted pattern at subsequent executions, one could set
W0 = W f .

Remark 2 When g is constant and dynamic changes are not
expected (for the target or via-points), it suffices to run the
initialization step (i = 0) from above to obtain W1 and then
keep the DMP weights constant, i.e. Wi = W1.

Remark 3 In practice, due to finite numerical precision, set-
ting ε in R̂i , Ri very close to zero can make the matrix
being inverted in Eqs. 11c and 13c ill-conditioned. We have
found that in practice choosing ε approximately in the range
(10−10, 10−6) does not create any numerical issues and the
constraints are satisfied within an error tolerance of the order
of 10−4 or even less depending on how small ε is.

Remark 4 Despite using the same value ε in the above anal-
ysis for simplicity, it is easy to verify that different values
of ε can be chosen for each type of constraint. The selected
ε value can facilitate finding a solution in the optimization
problem Eq. 10 in case constraints cannot be strictly satis-
fied (i.e. infinite accuracy). Then, the value of ε essentially
relaxes equality constraints, by penalizing the cost function
(see Theorem 3 from Appendix B). Choosing different val-
ues of ε for each type of constraint, allows to prioritize which
of these constraints should be satisfied with greater accuracy.
Moreover, when adapting to the actual robot’s state, which
may be perturbed by noisy external signals, higher values of
ε can be used to suppress that noise.

Remark 5 The proposed recursive algorithm for updating the
DMP weights to dynamically changing targets and/or via-
points while ensuring a smooth trajectory generation can
also be employed with other objective functions as well. For
instance, it can be easily verified that optimizing the position
(instead of the acceleration) results in the same equations

with P0 = (

m∑

j=1

φ jφ
T
j)

−1. More general objective functions

can also be specified, like the one from [13], which translates

to defining P0 =
m∑

j=1

(φ jMφT
j)

−1, where M is a metric matrix

that is learned from multiple demonstrations.

Remark 6 The proposed recursive algorithm to include
dynamic via-points can also be applied with the spatial scal-
ing from [1, 12] or [11]. In particular, one can use ys as
defined in Eq. 2 with the corresponding scaling matrix Ks ,
resulting from [1, 12] or [11], and employ the same recursive
updates Eqs. 11, 13 by replacing W with KsW and trans-
forming each position y (be it the current position, target,

via-point etc.) according to y := y − y0 + Ks ŷd,0. This can
also be combined with a different objective cost as explained
in Remark 5.

3.2 Derivation/Proof of theWeights Adaptation

In the following, we prove that Eqs. 11, 13 solve the initial
optimization problem given in Eq. 10. To this end, we will
utilize the theorems provided inAppendixB. ProblemEq. 10
can be written compactly as:

minW tr{(¨̂Yd − WT �̈)T (
¨̂Yd − WT �̈)} (15)

s.t. WT H̄i = Z̄i

where ¨̂Yd = [∂2 ŷd,1

∂2s
...

∂2 ŷd,m

∂2s
] ∈ R

n×m , �̈ = [∂2φ1
∂2s

...
∂2φm
∂2s

]
∈ R

K×m , Z̄i = [
Y0 Gi Y1:i Yv,i

] ∈ R
n×m1 and H̄i =[

A(0) A(1) C1:i �v,i
] ∈ R

K×m1 with m1 = 6 + 3i + Li .
Based on Theorem 4 problem Eq. 15 is equivalent to:

minW fi (W) � tr{(¨̂Yd − WT �̈)T (
¨̂Yd − WT �̈)}

+ tr{(Z̄i − WT H̄i)
T R̄−1

i (Z̄i − WT H̄i)}
(16)

for R̄i = ε Im1 , ε ≈ 0+. Given now the solution at timestep
i − 1 for problem Eq. 16 we want to find the solution for
timestep i , for which the cost function can be written as:

fi = f̂i−1 + tr{(Zi − WT Hi)
T R−1

i (Zi − WT Hi)}

where f̂i−1 = fi−1 − tr{(Ẑi −WT Ĥi)
T R̂−1

i (Ẑi −WT Ĥi)}.
Invoking Theorem 5 the solution to f̂i−1 is given by Eq. 11.
Given now Ŵi , P̂i for f̂i−1 and using Theorem 3 the solution
to fi is equivalent to the solution of tr{(W − Ŵi)

T P̂i (W −
Ŵi)} + tr{(Zi − WT Hi)

T R−1
i (Zi − WT Hi)}, which based

on Theorem 2 is given by Eq. 13.

4 Simulations

In the followingwe compare theDMPproducedwith the pro-
posed spatial generalization, henceforth referred as DMP++,
with the classical DMP, as well as other SoA variations that
have been proposed in the literature. We further demon-
strate and comment on the effects of adaptation to dynamic
via-points and also including kinematic limits (inequality
constraints) using the proposed generalization with [27]. In
the following simulations and experiments, the DMP param-
eters (Section 2) were set to the following values: for the
weighted sum of Gaussians in Eq. 3, the number of weights
per DoF in W is K = 25; for the canonical system in Eq. 5
d1 = 30 for tracking the desired speed of the trajectory evo-
lution, and d2 = 100, k2 = 1000 so that after the desired

123

Page 5 of 18 24Journal of Intelligent & Robotic Systems (2024) 110:24

time duration T f , fast convergence of the DMP to the target
g is ensured; for the DMP dynamical system Eq. 1, we set
for position K = 40, D = 10 and for orientation K = 2,
D = 0.6 to ensure compliance in the presence of external
forces. For all other DMP variants, against which we com-
pare, the same canonical system and DMP parameters where
used.

Regarding the proposed optimization, based on Remark 4
and in the spirit that higher priority should be placed on the
initial and final position constraints followed by the via-point
constraints and then the previous state constraints, we chose
ε = 10−9 for the initial and final position, 10−7 for the initial
and final velocity and acceleration constraints, 10−7 for via-
points and 10−6, 10−6, 10−4, for the previous state constraint.
Notice that violation of the previous state constraint generates
a discontinuous acceleration in the DMP Eq. 1, which will
be larger the bigger the error in the equality constraint is.
For via-points, the phase variable assigned at a via-point yv
is determined as sv = argminsk ||ys(sk) − yv||, where sk in
uniformly sampled in (s, 1] taking 80 points, where s is the
current value of the phase variable.

4.1 Comparison with Classical DMP

We start off by examining the three basic cases where the
classical DMP scaling is problematic [10]. For simplicity we
consider an 1 DoF demonstration starting at position zero.
Simulation results for each case are plotted in Fig. 1, where
the demo is plotted with green dashed line, the proposed
DMP++ with blue and the classical DMP with magenta dot-
ted line. In the first case (Fig. 1, top subplot) the demonstrated
target gd is quite close to the initial position y0,d = 0. In this
case, even a new target that is close to that of the demo,
results in over-scaling for the classical DMP. In the figure,
the resulting trajectory for the classical DMP is scaled by
400 for visualization purposes (the position actually con-
verges to g but in the plot due to the scaling by 400 it is
g/400 ≈ 0). In the second case (Fig. 1, middle subplot) the
demo initial and target positions are different but the new
target is the same with the initial position i.e. g = y0. In this
case, no motion is generated by the classical DMP. Finally,
in the third case (Fig. 1, bottom subplot), if the new target
is chosen below the initial position, or more generally when
sign(g−y0) = −sign(gd−y0,d), the classicalDMPproduces
amirrored trajectory. Unlike the classical DMP, the proposed
DMP++ retains the shape of the demonstrated trajectory in
all cases, without exhibiting any side-effects.

4.2 Comparison with other DMPVariants

Wefurther compare the proposedgeneralization against other
SoADMP variants that propose a different generalization. In
particular, we compare against [12] (wewill call it DMP-rot),

0 1 2 3

0
0.2
0.4
0.6
0.8

0 1 2 3

0

0.2

0.4

0 1 2 3

-0.4

-0.2

0

0.2

0.4

DMP/400

Fig. 1 Comparison with classical DMP generalization. Top: The demo
start and goal positions are close. Middle: New goal set at the start
position. Bottom: Mirroring

which proposes a different spatial scaling that remedies the 3
aforementioned drawbacks of classical DMP. We also com-
pare against the bio-inspired DMP variant from [11] (we will
call it DMP-bio+), which remedies the scaling problem of
the bio-inspired DMP [10] for new target positions that are
not close to the demo target position.

Notice that both [12], that assumes the classical DMP
formulation, and [11], that assumes the bio-inspired DMP
formulation, use for spatial generalization the scaling matrix
Ks = R ||g− y0||||gd− yd,0|| , where R ∈ SO(3) is such that g− y0||g− y0|| =
R gd− yd,0||gd− yd,0|| . It becomes obvious from such a Ks , and in par-

ticular from ||g− y0||||gd− yd,0|| , that displacement in one axis can

affect the scaling in all axes, which in turn can result in over-
amplification of the amplitude of an axis even if there is no
displacement there. This effect is more pronounced for tra-
jectories where in a specific axis the amplitude of the demo
(i.e. the distance between the min and max position) is big-
ger than the distance between the original and final position.
Such trajectories are typical in many real practical scenarios
like packing.

To highlight these issues, we consider for the comparisons
such a trajectory, with a higher amplitude than the distance
between the initial and final demo position and examine the
spatial generalization for 4 different displacements of the new
target g from gd . The results are plotted in Fig. 2, where each
column depicts the results of a target displacement, with the

123

24 Page 6 of 18 Journal of Intelligent & Robotic Systems (2024) 110:24

Fig. 2 Spatial generalization comparison between the proposed
DMP++ and other DMP variants, for displacements of the new tar-
get g different from the demo target gd . In each column the top subplot
depicts the 3D paths and the two bottom subplots the corresponding

velocities and accelerations for an indicative axis. (a)/(b): Same z and
bigger/smaller displacement on the xy plane from y0. (c)/(d) Displace-
ment in all 3 axis, with lower/higher z

3D paths of each DMP variant on top and the corresponding
velocities and acceleration of an indicative axis at the bot-
tom. In the first case (Fig. 2-(a)),we can observe that although
both g and gd have the same z, the bigger displacement of g
from y0 on the xy plane results in a large scaling for DMP-
bio+ andDMP-rot. This behaviour in practical pick and place
tasks is arguably undesirable. For instance, when changing
the xy position of a box where an object is to be placed, but
the height of the box is the same, there is no good reason why
the height of the DMP trajectory should alter. Moreover, this
magnification of the amplitude generates much larger veloc-
ities and accelerations, as can be seen in the bottom subplots
of Fig. 2-(a)6. In contrast, DMP++ does not alter the ampli-
tude of the trajectory and exhibits a behaviour close to the
classical DMP. Notice also that the velocities and accelera-
tion of DMP++ and DMP coincide with the demo, as one
would expect given that the height of the target is unaltered.
Analogous conclusions can be drawn in Fig. 2-(b), where the
height of the target is the same, but this time the displacement
on the xy plane is smaller. Finally, in Fig. 2-(c),(d) the target
is displaced in all axes, with lower or higher z respectively
for g. Here, the scaling drawbacks of the classical DMP are
clearly manifested. Notice also, that although DMP-rot and

6 Note that DMP-bio+ produces a jerky acceleration which is owning
to the use of the mollifier kernel which have finite support (instead of
Gaussian kernels) [11].

DMP-bio+ do not generate large scalings and the resulting
path retains the demo shape, it is nevertheless rotated in such
a way that such a behaviour would not be very natural in
practical tasks (e.g. in a pick and place).

4.3 Generalization to Dynamic Via-Points

Here we test the spatial generalization in the presence of
dynamic via-points. We consider a single 2D demonstra-
tion for placing an object inside a box. During simulation
we consider a tighter box that is also higher than that of
the demonstration, hence via-points are used to ensure the
proper placement inside the box. A rectangular obstacle is
also present in the scene, with via-points specified relative to
it, so as to ensure its avoidance in a predictable manner. To
emulate dynamic changes in the scene, which typical occur
in real environments, the position of the box and the target
are displaced at different time instances.

We compare DMP++ with VMP [14]7. VMP are pre-
sented and tested in [14] only for static via-points. In order to
conduct a comparison with dynamic via-points, we extend

7 Other methods like [11, 29] are able to adapt only to a new continuous
trajectory segment and not via-points. Also, ProMP [24] and KMP [25]
require multiple demonstrations and do not address the case of dynamic
via-points.

123

Page 7 of 18 24Journal of Intelligent & Robotic Systems (2024) 110:24

VMP so as to account for dynamic via-points too. Specifi-
cally, a VMP is given by:

y(s) = fp(s) + ATφ2(s) (17)

where fp(s) is given by Eq. 3, A ∈ R
6×n contains in each

column the coefficients of a 5th order polynomial for each
DoF and φ2(s) = [1 s s2 s3 s4 s5]T . The weights W in fp
are fitted to the demo, while A is adapted according to the
via-points, with the initial and target position treated as the
first and final via-point. In particular, given the current phase
value s, and the previous and next via-points yv(s1), yv(s2)
with s1 ≤ s < s2, A is determined by solving the system of
equations:

⎡

⎣
φ2(s j)

T

φ̇2(s j)
T

φ̈2(s j)
T

⎤

⎦ A =
⎡

⎣
(yv(s j) − fp(s j))T

(ẏ(s j) − ḟp(s j))T

(ÿ(s j) − f̈p(s j))T

⎤

⎦ , j ∈ {1, 2}

Similar to [14], we set the velocity and acceleration at each
via-point equal to that of the demonstration. Since via-points
may alter on the fly, to ensure continuity we consider as the
first via-point the current VMP point, i.e. we set s1 = s
and yv(s1) = y(s) (except for the initial via-point, which
has position y0). If the via-points are static, this approach
generates the same trajectory as in [14], since once A is
adapted from a via-point yv(s1) to a next via-point yv(s2),
then continuously updating A between yv(s) = y(s) and
yv(s2), with s ∈ (s1, s2) obviously yields the same A.

The simulated scenario and the results with DMP++ are
depicted in Fig. 3. At the top subplot, the initial target and
obstacle are shown, with the predicted DMP trajectory (i.e.
the one that would be produced) without the via-points plot-
ted with dashed cyan line, and after the adaptation to the
via-points with light blue dashed line. At t = 1.8 sec, the
obstacle is abruptly displaced (Fig. 3, middle subplot), and
the previous predictedDMPpath and the newpredictedDMP
path, based on the updated via-points, are plotted again. The
DMP path that has been executed so far is also shown with
solid blue line. Finally, at t = 3 sec, the target is abruptly dis-
placed (Fig. 3, bottom subplot). In all simulation snapshots,
comparing the cyan with the light blue dashed line, it’s obvi-
ous that without updating the DMP to the new via-points,
either a collision with the obstacle would occur or failure to
reach the target due to bumping at the box’s boundaries.

We carried out the same simulationwith VMP and plot the
final results against the DMP++ in Fig. 4, where on the top
subplot the 2D paths are drawn and on the bottom subplots
the velocity and acceleration norms against the demonstrated
ones. It can be observed from the velocities and accelerations
that VMP generates more abrupt and higher velocities and
accelerations, that differ significantly compared to the demo.

Fig. 3 DMP++ simulation with dynamic via-points. 1st subplot: Initial
predicted DMP path (i.e. the one that would be produced) with and w/o
the via-points. 2nd subplot: The obstacle is displaced and the current
executed DMP path as well as the previous and updated predicted DMP
path w/o and with the new via-points is shown. 3rd subplot: The target
is displaced

This shortcoming is due to the fact that the VMP adaptation
essentially overrides the demo with the only criterion being
the satisfaction of the two currently active via-point con-
straints. In contrast, DMP++ performs a global optimization
(see Eq. 10) that considers all via-points and adapts in a way
as consistent as possible with the demo.

4.4 Adding Kinematic Inequality Constraints

Here we compare with the framework from [27] which
uses the DMP formulation [26] with the classical DMP
scaling to generate the generalized trajectory { yd , ẏd , ÿd}i
over a horizon of N future time-steps which is then opti-
mized to respect kinematic limits like position velocity and
acceleration bounds as well as passing from via-points. We
show that by modifying the framework from [27] accord-
ing to Fig. 5, where the DMP with the classical scaling is

123

24 Page 8 of 18 Journal of Intelligent & Robotic Systems (2024) 110:24

Fig. 4 DMP++ vs VMP. Top
plot: 2D paths. Bottom plots:
velocity and acceleration L2
norms

replaced by DMP++ we achieve more efficient generaliza-
tion that accounts also for via-points. Notice that via-points
are included both in DMP++ and in the optimization module
of [27] (Fig. 5 brown rectangle) via the respective equality
constraints so as to guarantee that the constrained within the
kinematic inequality limits trajectory will also pass from the
via-points.

Simulation results of a 1 DoF example with two via points
and position, velocity and acceleration limits are shown in
Fig. 6, where the method proposed in [27] is used to opti-
mize the velocity profile with all relevant parameters chosen
as in [27]. To endow the optimizer with greater flexibility in
finding feasible solutions we consider the kinematic limits
as hard limits (grey dashed lines) and introduce the lower
and upper soft limits (magenta dashed lines) within the hard

limits. We want to preferably operate within the soft limits
and only exceed them if feasibility would be inevitable oth-
erwise [27]. It can be observed that the DMP++ (blue line)
retains the shape of the demonstration (green dash dotted
line), even in the presence of kinematic limits and via-points
(red asterisks). On the other hand, the DMP with the clas-
sical scaling (mustard dotted line) can induce large scalings
that generate velocities and accelerations that violate con-
siderably the limits, leading to saturation (see the 2nd and
3rd subplots of Fig. 6) and consequently the distortion of
the demonstrated shape, as can be observed comparing the
mustard with the green trajectory in the first subplot. This
distortion would be even more adverse for cases in which the
scaling is problematic like those presented in Fig. 1, where a
feasible solution may even not be found.

Fig. 5 Combination of the
proposed spatial generalization
with [27] to further impose
kinematic inequality constraints.
The image is taken from [27],
where the differences/additions
are highlighted with magenta.
DMP++ replaces the DMP with
the classical spatial scaling.
Via-points are also considered
during the generation of the
generalized (unconstrained)
trajectory yd

123

Page 9 of 18 24Journal of Intelligent & Robotic Systems (2024) 110:24

Fig. 6 Comparison of the
classical DMP spatial
generalization against the
proposed DMP++ in
combination with [27] to
enforce kinematic inequality
constraints

0 1 2 3 4 5

0

0.2

0.4

0.6

0 1 2 3 4 5

-0.5

0

0.5

0 1 2 3 4 5

-1

-0.5

0

0.5

1

5 Experimental Validation

In this section, we further validate and demonstrate exper-
imentally the efficiency of DMP++ in practical pick and
place tasks involved in packing scenarios. In particular, we
showcase our method’s spatial generalization properties in
a dynamic environment and incorporation of dynamic via-
points.

5.1 Packing Scenario

The robot has to pick carton products and place them inside
boxes, where the size of the product and associated pack-
ing box can vary. A single demonstration is provided with a
small carton (5× 12× 5 cm) and a short box (10 cm height)
(Fig. 7a). This demonstration is encoded in a DMP. Then we
use this DMP to execute three scenarios: 1) packing the last
carton product used in the demo in a dynamically changed
box pose, 2) packing a larger carton product (12×12×20 cm)
to its associated box (28 cm height) and 3) the latter scenario

in the presence of dynamic obstacles. In all three scenarios,
depending on the height of the carton and box, via-points are
specified above the target pose to ensure a proper insertion of
the carton in the box. Moreover, in all cases the box’s target
pose is altered on the fly by a human, thus the associated tar-
get via-points change also dynamically. In the 3rd scenario,
via-points are specified w.r.t. the obstacle to avoid it in a pre-
dictable way. As the obstacle is introduced dynamically, the
associated via-points also change dynamically.

5.2 Technical Details

To carry out these experiments a velocity controlled ur5e
robot is used, with 2 ms control cycle, which takes as ref-
erence the velocity produced by the DMP transformation
system from Eq. 1, where y is either the Cartesian position
or for orientation y = log(Q ∗ Q̄0). The DMP weights are
updated online according to Eqs. 11, 13, while ε is set as in
the simulations. The current state constraint in the optimiza-
tion is set equal to the last state generated by DMP++. The

123

24 Page 10 of 18 Journal of Intelligent & Robotic Systems (2024) 110:24

Fig. 7 Demonstration and execution snapshots

code was implemented in c++ and run on a desktop pc with
an Intel® Core™ i7-9700 processor. In all cases, the opti-
mization at each control cycle was below 0.8 ms, which is
well within the 2ms control cycle of the robot. For the canon-
ical system from Eq. 5, we use ṡd = 1/T f , with T f = 10
sec.

The pose of all object’s that are employed in the exper-
iments are defined by apriltags which are tracked using a

realsense2 camera at 30 Hz. In general the target pose where
the carton should be placed in the box can be provided by
a perception system that determines the packing plan given
the current box packing/occupancy state. For simplicity, we
predefine the target placing pose relative to the box’s pose.
For the short box we employ 2 via-points placed every 5 cm
above the target pose and for the taller box 5 via-points placed
every 6 cm above the target. These via-points have the same
orientation as the target pose. For the obstacle a higher level
perception system could be employed for generating via-
points to circumvent the obstacle. Developing such a system
is beyond the scope of this work, therefore we consider for
simplicity two predefined via-points relative to the obstacle’s
center pose on the xy plane. The z position and orientation
at each via-point is set equal to the DMP++ reference at the
corresponding phase variable instance. To determinewhether
these via-points should be incorporated in the DMP, we con-
sider an augmented bounding box around the obstacle, equal
to the size of the obstacle + the half size of the carton. At
each control cycle, we sample the DMP reference trajectory
at 30 future points and check if any of these points are inside
the augmented box in order to use the obstacle’s via-points
in the DMP.

5.3 Results

For the first scenario (small carton, short box), snapshots
of the execution are shown in Fig. 7b, while the results are
plotted in Fig. 8. In particular, in Fig. 8a, the oriented path
executed by the robot is shown, where also the initial and
final box, target pose and associated via-points are visualized
(the initial ones with opaque colors and the final ones with
more vivid colors). The target change is also indicated by a
light red line and we further plot the demonstrated path (cyan
dotted line) for comparison. In Fig. 8b the translational and
rotational velocity norm profile for the execution (blue line)
and the demo (green line) are plotted, as well as the target
displacement dynamics (magenta line). The demo velocity
profile is scaled temporarily to the execution time duration,
bymultiplying the velocitywithT f ,d/T f ,whereT f ,d = 13.5
sec is the demo duration. Moreover, the distance between the
initial and target demo poses are

∣∣∣∣ pg,d − p0,d
∣
∣
∣
∣ = 0.39 m

for the position and
∣∣∣∣log(Qg,d ∗ Q0,d)

∣
∣
∣
∣ = 48 degrees for

the orientation,while during execution the corresponding ini-
tial displacements were larger with values

∣
∣
∣
∣ pg(0) − p0

∣
∣
∣
∣ =

0.45 m and
∣
∣
∣
∣log(Qg(0) ∗ Q0)

∣∣∣∣ = 67 degrees. These larger
displacements during execution cause the velocity profile to
scale up initially (for t ∈ [0 3] sec) compared to the demo.
As the target position is further displaced after t = 3 sec,
the velocity during execution further scales up compared to
the demo. Nevertheless, the scaled execution norm velocity
profile resembles the demonstrated one as expected. Some
discrepancies are expected due to the target change and the

123

Page 11 of 18 24Journal of Intelligent & Robotic Systems (2024) 110:24

Fig. 8 Experiment 1: Place small carton in short box. The box is dis-
placed online. (a): Robot oriented Cartesian path and visualization of
the carton, box and the associated target and via-points. (b): Velocity
and target change

continuity and via-point constraints. Observe also from the
demo orientation velocity profile (Fig. 8b bottom) that the
orientation settles before the final target position is reached.
This is also the case in the execution, where however, due to
the orientation displacement by a total of 37 degrees (from
t = 3 until t = 4.2 sec), the velocity profile is readjusted
to reach the new target pose. Notice also that despite the tar-
get displacement which is a bit noisy and updated at a lower
rate (33 ms compared to the 2 ms control cycle), the gen-
erated velocity profile is smooth owning to the current state
constraint in Eq. 10e.

For the second scenario (large carton, tall box), snapshots
of the execution are shown in Fig. 7c, while the results are
plotted in Fig. 9, with the Cartesian oriented path and the rel-
evant via-points in Fig. 9a and the translational and rotational
velocity profile aswell as the target change in Fig. 9b.Despite
the larger shape of the carton and the box, the via-points con-
tribute in the successful execution. Notice that without the
via-points, the execution would fail, as shown in the execu-
tion snapshots in Fig. 7d. Training a new DMP with a new

Fig. 9 Experiment 2: Place large carton in tall box. The box is displaced
online. (a):Robot orientedCartesianpath andvisualizationof the carton,
box and the associated target and via-points. (b): Velocity and target
change

demonstration for the larger boxes could solve this issue.
However this is time-consuming and impractical, as for every
different object shape, a different DMP would be required.
Instead, one can employ a single DMP, which already
encapsulates the general desired motion shape-pattern, and
adjust-scale it according to the manipulated object’s size
using via-points in the DMP spatial generalization. Notice
also that using two separate DMPs, one for reaching the box
from the top and the second for inserting the carton would
increase the system’s complexity with an additional DMP.
Moreover, as also discussed in the introduction, in more gen-
eral and dynamic scenarios, using via-points is more flexible
than keeping track of multiple DMPs to connect the via-
points and also making additional modifications to ensure a
smooth transition between the DMPs. In our case, passing
through the via-points and the continuity and smoothness of

123

24 Page 12 of 18 Journal of Intelligent & Robotic Systems (2024) 110:24

the motion is handled automatically through the constraints
in Eq. 10, which further makes no prior assumption regard-
ing the number of via-points, while also accommodating the
case where they change dynamically.

Finally, in the last scenario shown in Fig. 7e, we see yet
another case of incorporating dynamically via-points in the
DMP generalization, in the context of obstacle avoidance.
Via-points can prove useful in such scenarios to steer the
robot along a route that is more ergonomic and clutter-free.
This can also be combined with the use of artificial potential
functions for volumetric obstacle avoidance [30] to ensure
that no collisions occur. Since this is not the main focus in
this work and to keep things simple we define the via-points
at a distance from the obstacle, considering the dimensions of
the obstacle and the carton. The results are plotted in Fig. 10
where the final obstacle pose is plotted with magenta, along
with its augmented bounds, shown in light red. The obsta-
cle via-points, from which the robot passes to circumvent
the obstacle, are depicted with cyan asterisks. Notice that
the DMP trajectory can in general pass through the aug-
mented obstacle bounds. They are not a forbidden region.
Instead, they are used here as a rough estimate to detect
when to include the obstacle via-points, from which if the
DMP passes, it should avoid the obstacle.

A video with all the experimental scenarios along with
explanations and visualizations can be found at https://youtu.
be/1Nlzv_yjPwU

6 Discussion

The conducted simulations and experiments validate the
capability of the proposed method to incorporate dynamic
via-points in DMP and improve its spatial generalization. In
particular, the classical DMP [1] and subsequent variations to
improve its spatial generalization [11, 12] have been shown to
produce problematic spatial generalization. This is attributed
to the fact that these methods scale the demonstrated tra-
jectory based on the ratio g−y0

gd−yd,0
, i.e. the distance between

the new initial and target position, over the demonstrated
distance. This fact alone makes these methods sensitive to
the initial and final values of the demo and the new ones,
and therefore prone to overscaling. In contrast, the proposed
method does not suffer from such over-scaling, as it tries
to minimize the distance from the demonstrated accelera-
tion, which encapsulates the shape of the demo. Therefore,
the proposed method retains the shape of the demo while
ensuring scaling of the generated trajectory to the new tar-
get. Additionally, the proposed novel generalization as it was
shown, can be combined with our previous work [27] to
impose kinematic inequality constraints in order to gener-
ate feasible trajectories in the presence of kinematic bounds
related to the robot.

Fig. 10 Experiment 3: Place large carton in tall box. The box is dis-
placed online and a dynamic obstacle is introduced. (a): Robot oriented
Cartesian path and visualization of the carton, box, obstacle and the
associated target and obstacle-avoidance via-points. (b): Velocity and
target change

Moreover, previous DMP methods were unable to incor-
porate via-points, let alone dynamic ones. Other DMP-like
methods, like VMP, have only considered static via-points.
With the incorporation of dynamic via-points, the proposed
method enriches the spatial generalization capabilities of
DMP, allowing them to account for the geometry/shape of
the involved objects, as in the packing scenario, presented in
Section 5.

Another example application that was presented, was the
use of via-points to dictate how the DMP should shape its
trajectory in the presence of other objects, like obstacles.
Via-points can prove useful in such scenarios to steer the
robot along a route that is more ergonomic and clutter-free.

123

Page 13 of 18 24Journal of Intelligent & Robotic Systems (2024) 110:24

https://youtu.be/1Nlzv_yjPwU
https://youtu.be/1Nlzv_yjPwU

This can also be combined with the use of artificial potential
functions for volumetric obstacle avoidance [30] to ensure
that no collisions occur. Another scenario, discussed in the
Introduction,where via-points could prove expedient is to use
them so as to push aside other objects that obstruct reaching
pathways to a desired target [15].

Finally, it should be noted that in this work, via-points
relative to each object were set in advance and tracked during
execution via apriltags. While this is a viable solution for
scenarios where the shape and type (e.g. obstacle or not) of
the objects that can be involved are known apriori, in more
general scenarios, a higher level perception system would
be required to classify the objects in the scene and extract
appropriate key-points (via-points) relative to each one.

7 Conclusions

In this work we presented an improved spatial generaliza-
tion for DMP that enables the incorporation of dynamic
via-points by proposing an on-line adaptation scheme for
the DMP weights that minimizes the distance from the
learned demonstrated acceleration profile. Thus, the demon-
stratedmotion pattern is retained and dynamic via-points and
initial/final state constraints are satisfied. Comparative sim-
ulations with other SoA methods showcase the advantages
of the proposed method. Further validation is carried out via
experimental packing scenarios in a dynamic environment
where the incorporation of via points enables the use of a sin-
gle demonstration for executing packing evenwhen obstacles
are introduced in the scene and objects and boxes of different
sizes are used, whose pose can even change dynamically.

Appendix A: Unit Quaternion Preliminaries

Given a rotation matrix R ∈ SO(3), an orientation can
be expressed in terms of the unit quaternion Q ∈ S

3 as
Q = [w vT]T = [cos(θ2) sin(θ2)kT]T , where k ∈ S

2,
θ2 = θ/2 with θ ∈ [−π, π) are the equivalent unit axis
- angle representation. The quaternion product between the
unit quaternions Q1, Q2 is denoted as Q1 ∗ Q2. The inverse
of a unit quaternion is equal to its conjugate which is Q−1 =
Q̄ = [w −vT]T . The logarithmic η = log(Q) and exponen-
tial Q = exp(η) mappings log : S

3 → R
3, exp : R

3 → S
3

respect the manifold’s geometry and are defined as follows:

log(Q) �
{
2 cos−1(w) v

||v|| , |w| �= 1
[0, 0, 0]T , otherwise

(18)

exp(η) �
{

[cos(||η/2||), sin(||η/2||) ηT

||η||]T , ||η|| �= 0
[1, 0, 0, 0]T , otherwise

(19)

It can be found analytically that the relations between the
rotational velocity and the derivative of the quaternion loga-
rithm are:

ω = Jηη̇ (20)

η̇ = J†η ω (21)

where

Jη � kkT + sin(θ2) cos(θ2)

θ2
(I3 − kkT) + sin2(θ2)

θ2
[k]×

(22)

J†η = kkT + θ2 cos(θ2)

sin(θ2)
(I3 − kkT) − θ2[k]× (23)

where [k]× denotes the skew-symmetric matric of k. For
θ = 0 it can be easily verified that taking the limit of Eqs.
22, 23 and using L’Hospital’s rule we get Jη = J†η = I3.

Differentiating Eqs. 20, 21 we can obtain the relations
between the quaternion logarithm second time derivative and
the rotational acceleration:

ω̇ = Jηη̈ + J̇ηη̇ (24)

η̈ = J†η ω̇ + J̇†η ω (25)

where

J̇η =
(
1 − sin(θ2) cos(θ2)

θ2

)
(k̇kT + kk̇T) + sin2(θ2)

θ2
[k̇]×

+
(
1 − 2 sin2(θ2)

θ2
− sin(θ2) cos(θ2)

θ22

)

θ̇2(I3 − kkT)

+
(
2 sin(θ2) cos(θ2)

θ2
− sin2(θ)

θ22

)

θ̇2[k]× (26)

J̇†η =
(
1 − θ2 cos(θ2)

sin(θ2)

)
(k̇kT + kk̇T) − θ̇2[k]× − θ2[k̇]×

+
(
sin(θ2) cos(θ2) − θ2

sin2(θ2)

)
θ̇2(I3 − kkT) (27)

with θ̇2 = 1
2 k

T η̇ and k̇ = 1
2

(
1−kkT

θ2
η̇
)
. Taking the limit of

Eqs. 26, 27 for θ = 0 we have that J̇η = J̇†η = 0.
Finally, the relations between the Cartesian torque τ and

its transformation in the quaternion logarithm space τ η is
given by:

τ η = JT
η τ (28)

τ = (J†η)T τ η (29)

These mappings follow readily from the preservation of
power, i.e. it should hold that ωT τ = η̇T τ η.

123

24 Page 14 of 18 Journal of Intelligent & Robotic Systems (2024) 110:24

Appendix B: Recursive Least Squares deriva-
tions

Here we provide some useful results in the form of theorems
which facilitate the proof of the update formulas Eqs. 11, 13
that solve Eq. 10. Results in Section 2 from [31] for vec-
tors are here extended for matrices in Theorems 1, 2, and 5.
Theorems 1, 2 are used in the proof of Theorems 3 - 5, and
Theorems 2 - 5 are employed in the proof for solving Eq. 10.

Theorem 1 The solution to the problem:

minW tr{(Y − WT�)T R−1(Y − WT�)} (30)

with Y ∈ R
n×m, W ∈ R

k×n, � ∈ R
k×m, rank(�) = k,

R ∈ Sn++ is given by:

W0 = P0�R−1Y T (31)

P0 = (�R−1�T)−1 (32)

where P0 > 0.

Proof Taking the derivative of f0 w.r.t. W and solving for
W , it is straightforward to verify that the solution is indeed
given by W0, where P > 0 since R > 0 and rank(�) = k.
�
Theorem 2 The solution to the problem:

minW f0(W) + tr{(Z − WT H)T R−1
1 (Z − WT H)} (33)

with f0(W) = tr{(Y − WT�)T R−1(Y − WT�)}, Y ∈
R
n×m,W ∈ R

k×n,� ∈ R
k×m, rank(�) = k, R, R1 ∈ Sn++,

Z ∈ R
n×l , H ∈ R

k×l , can be obtained from the solutionW0,
P0 of minW f0(W) as follows:

W1 = W0 + P0H(R1 + HT P0H)−1(Z − WT
0 H)T (34)

P1 = P0 − P0H(R1 + HT P0H)−1HT P0 (35)

P−1
1 = P0 + HR−1

1 HT (36)

where P1 > 0.

Proof We can rewritte the cost function in Eq. 33 as

tr{(Ȳ − WT �̄)T R̄−1(Ȳ − WT �̄)}

with

Ȳ = [Y T ZT]T , �̄ = [�T HT]T , R̄ = blkdiag(R, R1)

and apply the result of Theorem 1 to get:

W = P−1
1 �̄R̄−1Ȳ T = P−1

1 (�R−1Y T + HR−1
1 ZT) (37)

where P−1
1 = �̄R̄−1�̄

T = (P−1
0 +HR−1

1 HT)with P−1
0 =

�R−1�T . It follows that P−1
1 > 0, since P−1

0 > 0, due to
R > 0 and rank(�) = k, and HR−1

1 HT ≥ 0. Applying the
matrix inversion lemma it follows that P1 is indeed given by
Eq. 35 and substituting it in Eq. 37 we get:

W =W0 − P0H(R1 + HT P0H)−1(WT
0 H)T+

(P0 − P0H(R1 + HT P0H)−1HT P0)HR−1
1 ZT

(38)

where W0 = P0�R−1Y T , P0 = (�R−1�T)−1 is indeed
the solution of minW f0(W) based on Theorem 1. We can
further process the last term in Eq. 38, i.e.:

(P0 − P0H(R1 + HT P0H)−1HT P0)HR−1
1 ZT

= (P0H − P0H(R1 + HT P0H)−1HT P0H)R−1
1 ZT

= P0H(Ik−(R1+HT P0H)−1(±R1+HT P0H))R−1
1 ZT

= P0H(R1 + HT P0H)−1ZT (39)

and substituting it back to Eq. 38 we arrive at the solution
given by Eq. 34. �

Theorem 3 Problem Eq. 33 is equivalent to the problem

minW tr{(W − W0)P
−1
0 (W − W0)

T }+ (40)

tr{(Z − WT H)T R−1
1 (Z − WT H)} (41)

where W0, P0 are the solution to minW f0(W).

Proof Taking the gradient and solvingw.r.t.W wecan readily
obtain Eq. 37 after which the same analysis as in the proof
of Theorem 2 follows. �

Theorem 4 The optimization problem

minW f0(W) (42)

s.t . WT H = Z

with f0(W) = tr{(Y − WT�)T R−1(Y − WT�)}, Y ∈
R
n×m, W ∈ R

k×n, � ∈ R
k×m, rank(�) = k, R ∈ Sn++,

Z ∈ R
n×l , H ∈ R

k×l , rank(H) = l ≤ k , is equivalent to
the problem:

minW f0(W) + tr{(Z − WT H)T R−1
ε (Z − WT H)} (43)

for Rε → 0+.

Proof To find the solution of Eq. 42 we introduce the Lan-
guage multipliers V ∈ R

n×l and form the Lagrangian

123

Page 15 of 18 24Journal of Intelligent & Robotic Systems (2024) 110:24

L(W , V) = f0(W) + 2tr{V T (WT H − Z)}. The KKT con-
ditions are:

∂L

∂W
= −�(Y − WT�)T + HV = 0 (44)

∂L

∂V
= HTW − ZT = 0 (45)

Solving Eq. 44 for W we get:

W = W0 − P0HV (46)

where W0 = P0�Y T , P0 = (�R−1�T)−1 which is indeed
invertible since rank(�) = k. Since P0 is invertible and
rank(H) = l, i.e. has full column rank, we can substitute Eq.
46 in Eq. 45 to solve for V :

V = −(HT P0H)−1(Z − WT
0 H)T

Substituting the last equation in Eq. 46, we obtain the solu-
tion:

W1 = W0 + P0H(HT P0H)−1(Z − WT
0 H)T (47)

Turning our attention to problem Eq. 43 we can apply the
result of Theorem 2 and notice that for R1 = Rε → 0+ we
get indeed the same solution as in Eq. 47. �
Theorem 5 Given the solution W1, P1 of the problem

minW f0(W) + tr{(Z − WT H)T R−1
1 (Z − WT H)} (48)

with f0(W) = tr{(Y − WT�)T R−1(Y − WT�)}, Y ∈
R
n×m,W ∈ R

k×n,� ∈ R
k×m, rank(�) = k, R, R1 ∈ Sn++,

Z ∈ R
n×l , H ∈ R

k×l , the solution to the problem:

minW f0(W) (49)

can be calculated as:

Ŵ0 = W1 + P1H(−R1 + HT P1H)−1(Z − WT
1 H)T

(50)

P̂0 = P1 − P1H(−R1 + HT P1H)−1HT P1 (51)

P̂−1
0 = P−1

1 − HR−1
1 HT (52)

where P̂0 > 0.

Proof Denoting

f1(W) = f0(W) + tr{(Z − WT H)T R−1
1 (Z − WT H)}

it follows that

f0(W) = f1(W) − tr{(Z − WT H)T R−1
1 (Z − WT H)}

We can rewrite f1(W) as:

f1(W) = tr{(Ȳ − WT �̄)T R̄−1(Ȳ − WT �̄)}

with

Ȳ = [Y T ZT]T , �̄ = [�T HT]T , R̄ = blkdiag(R, R1)

Minimizing f0(W) we have:

∂ f0
∂W

=
∂

(
f1(W)−tr{(Z−WT H)T R−1

1 (Z−WT H)}
)

∂W
=0

(P−1
1 − HR−1

1 HT)W = (�̄R̄−1Ȳ T − HR−1
1 ZT) (53)

where P−1
1 = �̄R̄−1�̄

T = P−1
0 + HR−1

1 HT and P−1
0 =

�R−1�T . Since R > 0 and rank(�) = k it follows that
P−1
0 > 0 which also entails that P−1

1 > 0 as R1 > 0 and
HR−1

1 HT ≥ 0. Notice also that (P−1
1 −HR−1

1 HT) = P−1
0

hence we can invert it in Eq. 53 to get:

W = (P−1
1 − HR−1

1 HT)−1(�̄R̄−1Ȳ T + H(−R−1
1)ZT)

Applying the matrix inversion lemma we have:

W = W1 − P1H(−R1 + HT P1H)−1(WT
1 H)T+

(P1 − P1H(−R1 + HT P1H)−1HT P1)H(−R−1
1)ZT

(54)

where W1 = P1�̄R̄−1Ȳ T , P1 = (�̄R̄−1�̄
T
)−1 is indeed

the solution of minW f1(W) based on Theorem 1. Notice
that −R1 + HT P1H is in fact negative definite, hence it is
invertible. To prove so, consider the following matrix:

M =
[
P−1
1 H
HT R1

]

Since P−1
1 > 0 and the Schur complement of M w.r.t. the

upper left block matrix is P−1
1 − HR−1

1 HT = P−1
0 > 0 it

follows that M > 0 [32]. Therefore, as R1 > 0 and M > 0
it should also hold that the Schur complement of M w.r.t. the
lower right block matrix should be positive definite, i.e.:

R−1
1 − HT P1H > 0 ⇒ −R−1

1 + HT P1H < 0

We can further process the last term in Eq. 54 similar to the
analysis in Eq. 39 to find that:

(P1 − P1H(−R1 + HT P1H)−1HT P1)H(−R−1
1)ZT =

P1H(−R1 + HT P1H)−1ZT

123

24 Page 16 of 18 Journal of Intelligent & Robotic Systems (2024) 110:24

and substituting the last in Eq. 54 we obtain the result given
by Eq. 50. Finally, having already established that P1 > 0
and −R−1

1 + HT P1H < 0 it follows that −P1H(−R1 +
HT P1H)−1HT P1 ≥ 0 hence P̂0 > 0. �

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s10846-024-02051-
0.

Acknowledgements Not applicable.

Author Contributions Antonis Sidiropoulos: conceptualization, formal
analysis, software development, conduction of simulations and exper-
iments, results analysis and presentation, writing up. Zoe Doulgeri:
supervision, writing up, editing.

Funding Open access funding provided by HEAL-Link Greece. No
funding was received for this work.

Code Availability The source code for the presented framework is pub-
licly available at github.com/Slifer64/novel_dmp_generalization.git.

Declarations

Conflict of Interests The authors declare that there isn’t any kind of
conflict of interest.

Ethics Approval Not applicable.

Consent to Participate Not applicable.

Consent for Publication Not applicable.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Ijspeert, A.J., Nakanishi, J., Hoffmann, H., Pastor, P., Schaal, S.:
Dynamical movement primitives: Learning attractor models for
motor behaviors. Neural Comput. 25(2), 328–373 (2013)

2. Pastor, P., Kalakrishnan, M., Meier, F., Stulp, F., Buchli, J.,
Theodorou, E., Schaal, S.: From dynamic movement primitives
to associative skill memories. Rob. Auton. Syst. 61(4), 351–361
(2013). https://doi.org/10.1016/j.robot.2012.09.017. Models and
Technologies for Multi-modal Skill Training

3. Pastor, P., Righetti, L., Kalakrishnan, M., Schaal, S.: Online move-
ment adaptation based on previous sensor experiences. In: 2011
IEEE/RSJ International Conference on Intelligent Robots and

Systems, pp. 365–371 (2011). https://doi.org/10.1109/IROS.2011.
6095059

4. Ude, A., Gams, A., Asfour, T., Morimoto, J.: Task-specific gener-
alization of discrete and periodic dynamic movement primitives.
IEEE Trans. Robot. 26(5), 800–815 (2010). https://doi.org/10.
1109/TRO.2010.2065430

5. Umlauft, J., Sieber, D., Hirche, S.: Dynamic movement primi-
tives for cooperative manipulation and synchronized motions. In:
2014 IEEE International Conference on Robotics and Automation
(ICRA), pp. 766–771 (2014). https://doi.org/10.1109/ICRA.2014.
6906941

6. Mülling, K., Kober, J., Kroemer, O., Peters, J.: Learning to
select and generalize striking movements in robot table tennis.
Int. J. Rob. Res. 32, 263–279 (2013). https://doi.org/10.1177/
0278364912472380

7. Gams, A., Petric, T., Nemec, B., Ude, A.: Learning and adaptation
of periodic motion primitives based on force feedback and human
coaching interaction. In: 2014 IEEE–RAS International Confer-
ence on Humanoid Robots, pp. 166–171 (2014). https://doi.org/
10.1109/HUMANOIDS.2014.7041354

8. Luo, L., Foo, M.J., Ramanathan, M., Er, J.K., Chiam, C.H., Li, L.,
Yau, W.Y., Ang, W.T.: Trajectory generation and control of a lower
limb exoskeleton for gait assistance. J. Intell. Robot. Syst. 106(3),
64 (2022). https://doi.org/10.1007/s10846-022-01763-5

9. Billard, A., Calinon, S., Dillmann, R., Schaal, S.: In: Siciliano,
B., Khatib, O. (eds.) Robot Programming by Demonstration, pp.
1371–1394. Springer, Berlin, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-30301-5_60

10. Hoffmann,H., Pastor, P., Park, D., Schaal, S.: Biologically-inspired
dynamical systems for movement generation: Automatic real–time
goal adaptation and obstacle avoidance. In: 2009 IEEE Interna-
tional Conference on Robotics and Automation, pp. 2587–2592
(2009)

11. Ginesi, M., Sansonetto, N., Fiorini, P.: Overcoming some draw-
backs of dynamic movement primitives. Rob. Auton. Syst. 144,
103844 (2021). https://doi.org/10.1016/j.robot.2021.103844

12. Koutras, L., Doulgeri, Z.: A novel dmp formulation for global and
frame independent spatial scaling in the task space. In: 2020 29th
IEEE International Conference on Robot and Human Interactive
Communication (RO-MAN), pp. 727–732 (2020). https://doi.org/
10.1109/RO-MAN47096.2020.9223500

13. Dragan, A.D., Muelling, K., Andrew Bagnell, J., Srinivasa, S.S.:
Movement primitives via optimization. In: 2015 IEEE International
Conference on Robotics and Automation (ICRA), pp. 2339–2346
(2015). https://doi.org/10.1109/ICRA.2015.7139510

14. Zhou, Y., Gao, J., Asfour, T.: Learning via-point movement
primitives with inter- and extrapolation capabilities. In: 2019
IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 4301–4308 (2019). https://doi.org/10.1109/
IROS40897.2019.8968586

15. Mghames, S., Hanheide, M., Ghalamzan E., A.: Interactive move-
ment primitives: Planning to push occluding pieces for fruit
picking. In: 2020 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), pp. 2616–2623 (2020). https://
doi.org/10.1109/IROS45743.2020.9341728

16. Nemec, B., Ude, A.: Action sequencing using dynamic move-
ment primitives. Robotica 30(5), 837–846 (2012). https://doi.org/
10.1017/S0263574711001056

17. Kulvicius, T., Ning, K., Tamosiunaite, M., Worgötter, F.: Join-
ing movement sequences: Modified dynamic movement primitives
for robotics applications exemplified on handwriting. IEEE Trans.
Robot. 28(1), 145–157 (2012). https://doi.org/10.1109/TRO.2011.
2163863

18. Cardoso, C., Jamone, L., Bernardino, A.: A novel approach to
dynamic movement imitation based on quadratic programming.
In: 2015 IEEE International Conference on Robotics and Automa-

123

Page 17 of 18 24Journal of Intelligent & Robotic Systems (2024) 110:24

https://doi.org/10.1007/s10846-024-02051-0
https://doi.org/10.1007/s10846-024-02051-0
github.com/Slifer64/novel_dmp_generalization.git
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.robot.2012.09.017
https://doi.org/10.1109/IROS.2011.6095059
https://doi.org/10.1109/IROS.2011.6095059
https://doi.org/10.1109/TRO.2010.2065430
https://doi.org/10.1109/TRO.2010.2065430
https://doi.org/10.1109/ICRA.2014.6906941
https://doi.org/10.1109/ICRA.2014.6906941
https://doi.org/10.1177/0278364912472380
https://doi.org/10.1177/0278364912472380
https://doi.org/10.1109/HUMANOIDS.2014.7041354
https://doi.org/10.1109/HUMANOIDS.2014.7041354
https://doi.org/10.1007/s10846-022-01763-5
https://doi.org/10.1007/978-3-540-30301-5_60
https://doi.org/10.1007/978-3-540-30301-5_60
https://doi.org/10.1016/j.robot.2021.103844
https://doi.org/10.1109/RO-MAN47096.2020.9223500
https://doi.org/10.1109/RO-MAN47096.2020.9223500
https://doi.org/10.1109/ICRA.2015.7139510
https://doi.org/10.1109/IROS40897.2019.8968586
https://doi.org/10.1109/IROS40897.2019.8968586
https://doi.org/10.1109/IROS45743.2020.9341728
https://doi.org/10.1109/IROS45743.2020.9341728
https://doi.org/10.1017/S0263574711001056
https://doi.org/10.1017/S0263574711001056
https://doi.org/10.1109/TRO.2011.2163863
https://doi.org/10.1109/TRO.2011.2163863

tion (ICRA), pp. 906– 911 (2015). https://doi.org/10.1109/ICRA.
2015.7139285

19. Kim, J.-J., Park, S.-Y., Lee, J.-J.: Adaptability improvement of
learning from demonstration with sequential quadratic program-
ming for motion planning. In: 2015 IEEE International Conference
on Advanced Intelligent Mechatronics (AIM), pp. 1032–1037
(2015). https://doi.org/10.1109/AIM.2015.7222675

20. Maeda, G., Ewerton, M., Lioutikov, R., Amor, H.B., Peters, J.,
Neumann, G.: Learning interaction for collaborative tasks with
probabilistic movement primitives. In: 2014 IEEE-RAS Interna-
tional Conference on Humanoid Robots, pp. 527–534 (2014)

21. Maeda, G.J., Neumann, G., Ewerton, M., Lioutikov, R., Kroemer,
O., Peters, J.: Probabilistic movement primitives for coordination
of multiple human-robot collaborative tasks. Auton. Robots 41(3),
593–612 (2017). https://doi.org/10.1007/s10514-016-9556-2

22. Weitschat, R., Aschemann, H.: Safe and efficient human-robot col-
laborationpart ii:Optimal generalizedhuman-in-the-loop real-time
motion generation. IEEE Robot. Autom. Lett. 3(4), 3781–3788
(2018). https://doi.org/10.1109/LRA.2018.2856531

23. Paraschos, A., Daniel, C., Peters, J., Neumann, G.: Probabilistic
movement primitives. In: Proceedings of the 26th International
Conference on Neural Information Processing Systems - Volume
2. NIPS’13, pp. 2616–2624. Curran Associates Inc., Red Hook,
NY, USA (2013)

24. Paraschos, A., Daniel, C., Peters, J., Neumann, G.: Using prob-
abilistic movement primitives in robotics. Auton. Robots 42(3),
529–551 (2018). https://doi.org/10.1007/s10514-017-9648-7

25. Huang, Y., Rozo, L., Silvério, J., Caldwell, D.G.: Kernelizedmove-
ment primitives. Int. J. Rob. Res. 38(7), 833–852 (2019). https://
doi.org/10.1177/0278364919846363

26. Sidiropoulos, A., Doulgeri, Z.: A reversible dynamic movement
primitive formulation. In: 2021 IEEE International Conference on
Robotics and Automation (ICRA), pp. 3147–3153 (2021). https://
doi.org/10.1109/ICRA48506.2021.9562059

27. Sidiropoulos, A., Papageorgiou, D., Doulgeri, Z.: A novel frame-
work for generalizing dynamic movement primitives under kine-
matic constraints. Auton. Robots (2022). https://doi.org/10.1007/
s10514-022-10067-4

28. Koutras, L., Doulgeri, Z.: A correct formulation for the orientation
dynamic movement primitives for robot control in the cartesian
space. In: Proceedings of The 3rd Conference on Robot Learning
(2019)

29. Wang,R.,Wu,Y., Chan,W.L., Tee,K.P.:Dynamicmovement prim-
itives plus: For enhanced reproduction quality and efficient

trajectory modification using truncated kernels and local biases.
In: 2016 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 3765– 3771 (2016). https://doi.org/10.
1109/IROS.2016.7759554

30. Ginesi, M., Meli, D., Roberti, A., Sansonetto, N., Fiorini, P.:
Dynamic movement primitives: Volumetric obstacle avoidance
using dynamic potential functions. J. Intell. Robot. Syst. 101(4),
79 (2021). https://doi.org/10.1007/s10846-021-01344-y

31. Kailath, T., Sayed, A.H., Hassibi, B.: Linear Estimation. Prentice-
Hall information and system sciences series. Prentice Hall, Upper
Saddle River, NJ (2000)

32. Strang, G.: Linear Algebra and Its Applications. Thomson,
Brooks/Cole, Belmont, CA (2006)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Antonis Sidiropoulos obtained his diploma (MSc equivalent) from the
Department of Electrical and Computer Engineering (ECE) at Aristo-
tle University of Thessaloniki (AUTH) in 2016. He earned his Ph.D.
from the Automation & Robotics Lab at AUTH in 2023. His research
interests encompass physical human-robot interaction, robot learning
from demonstrations, online motion planning with dynamical systems,
and optimal estimation and control.

Zoe Doulgeri (IEEE senior member) is a Professor of Robotics and
Control of Manufacturing Systems and the director of the Automa-
tion and Robotics Lab of the Department of Electrical and Computer
Engineering of the Aristotle University of Thessaloniki (AUTH). She
received the diploma of Electrical Engineering from AUTH and an
M.Sc. (DIC) in Control Systems, an M.Sc.(DIC) in Social and Eco-
nomic Aspects of Science and Technology in Industry and a Ph.D in
Mechanical Engineering, from the Imperial College, London, UK. Her
current research interests include the topics of physical human robot
interaction, robot teaching and learning by demonstration, bimanual
mobile robots, object grasping and manipulation with analytical and
data based learning methods and the control of uncertain robotic sys-
tems. She is currently an evaluator of Horizon Europe research and
innovation projects.

123

24 Page 18 of 18 Journal of Intelligent & Robotic Systems (2024) 110:24

https://doi.org/10.1109/ICRA.2015.7139285
https://doi.org/10.1109/ICRA.2015.7139285
https://doi.org/10.1109/AIM.2015.7222675
https://doi.org/10.1007/s10514-016-9556-2
https://doi.org/10.1109/LRA.2018.2856531
https://doi.org/10.1007/s10514-017-9648-7
https://doi.org/10.1177/0278364919846363
https://doi.org/10.1177/0278364919846363
https://doi.org/10.1109/ICRA48506.2021.9562059
https://doi.org/10.1109/ICRA48506.2021.9562059
https://doi.org/10.1007/s10514-022-10067-4
https://doi.org/10.1007/s10514-022-10067-4
https://doi.org/10.1109/IROS.2016.7759554
https://doi.org/10.1109/IROS.2016.7759554
https://doi.org/10.1007/s10846-021-01344-y

	Dynamic Via-points and Improved Spatial Generalization for Online Trajectory Generation with Dynamic Movement Primitives
	Abstract
	1 Introduction
	2 DMP Preliminaries
	3 Proposed Generalization
	3.1 Online DMP Weights Adaptation
	3.2 Derivation/Proof of the Weights Adaptation

	4 Simulations
	4.1 Comparison with Classical DMP
	4.2 Comparison with other DMP Variants
	4.3 Generalization to Dynamic Via-Points
	4.4 Adding Kinematic Inequality Constraints

	5 Experimental Validation
	5.1 Packing Scenario
	5.2 Technical Details
	5.3 Results

	6 Discussion
	7 Conclusions
	Appendix A: Unit Quaternion Preliminaries
	Appendix B: Recursive Least Squares derivations
	Acknowledgements
	References

