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Abstract
Currently, an unmanned aerial vehicle (UAV) utilizes global navigation satellite systems (GNSS) in conjunction with other
modalities for localization purposes. Nevertheless, this approach faces robustness issues when GNSS signals become unavail-
able or sensors malfunction. Clearly, the robustness of the system increases considerably when multiple UAV agents are
employed to perform collaborative positioning. In this work, an online distributed solution is proposed for relative localiza-
tion, which incorporates multiple UAVs together with Signals of Opportunity (SOPs) as well as inertial, visual, and optical
flow measurements. The proposed localization system includes relative self-localization of each UAV agent, as well as a reli-
able distributed relative positioning system (DRPS) for each UAV based on the relative positions from other UAV agents in its
vicinity. The latter positioning strategy is required in case the relative self-localization fails, mainly due to such problems as
inertial measurement unit (IMU) accumulated error drift, camera sensor errors, or SOP shortfalls due to multipath or antenna
obstruction. Extensive field experiments validate the proposed technique and demonstrate increased localization accuracy and
robustness when compared to the benchmark approach that does not include cooperation between UAVs.

Keywords Unmanned autonomous vehicles · Signals of opportunity · Cooperative agents

1 Introduction

Reliability and precision in location measurements are pri-
mary requirements in autonomous vehicle navigation [1]. To
date, numerous approaches have been devised to achieve reli-
able and precise localization, mainly by employing a fusion
of various sensor modalities such as visual, inertial, signal
processing techniques from satellites (i.e., GNSS) and sig-
nals of opportunity (SOPs) [1–5]. The individual localization
approaches vary fundamentally in the kinematic models uti-
lized and the filtering techniques employed to estimate the
autonomous vehicle’s position by compensating for the noise
associated with the measurements and reducing the uncer-
tainty in interpreting the sensor signals. The shortfalls of
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the various positioning techniques include degradation of the
data, signal loss because of multipath or antenna obstruction
effects, and signal unreliability, and have led to the investiga-
tion of localizationmethods that exhibit increased robustness
[6–13].

With significant advancements in software-defined radios
(SDRs), it was not long before SOP-based localization
approaches, such as the ones presented in [1, 2, 13, 14],
could produce accurate positioning results. The most impor-
tant benefit of SOP-based solutions is that localization can be
achieved when traditional GNSS signals are unavailable due
to obstruction from deep urban canyons [11] and due to wire-
less interference effects [3, 15]. SOPs (usually comprised of
TV, radio, and cellular signals) are employed predominantly
when the receiver’s reference position and the SOP transmit-
ter’s location are known a priori. In addition, a fusion of SOP
information with other modalities, such as inertial and visual
measurements, have been employed to enhance localization
[13, 16–18]. Combining various sensor information presents
several additional advantages compared to traditional GNSS,
including higher accuracy.

Moreover, in addition to sensor fusion onboard individ-
ual agents, other research works have looked at multi-agent
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fusion algorithms to address not only individual sensor faults
but also abnormal behavior at the system level. Evidently,
the advantages stemming from the distributed schema for
the exchange and processing of sensor information among
multiple UAVs provide significant gains, especially when
heterogeneous agents are considered that use different sen-
sors for self-localization. For instance, the works in [19–22]
investigate agent collaboration to address the challenging
problem of fusing information originating from many inde-
pendent and interdependent agents. In those works, it is
shown that data fusion can address noise and unreliability
of individual sensing modalities. Further, as indicated in [19,
23], it is shown that considering collaboration between mul-
tiple agents that provide independent measurement sets can
provide robustness in improved localization accuracy.

Overall, a broad body of literature exists on different
localization techniques (in terms of single- and multi-agent
localization); however, only relatively few have focused on
developing efficient online localization algorithms in GNSS-
deprived scenarios. This is precisely the focus of this work,
which introduces a novel framework for the use of SOPs
and other sensor modalities (such as visual and IMU) for
online distributed relative positioning between a number of
collaborating agents, and details the development and imple-
mentation aspects to achieve this in practice. Notably, this
work extends our previous single-agent framework detailed
in [24, 25] by considering a multi-agent distributed localiza-
tion framework to realize a robust online relative positioning
scheme. In addition to the new modeling framework, this
work details the implementation aspects of the proposed
approach and validates its feasibility with numerous field
experiments.

This work presents two main contributions. First, a novel
online multi-agent Distributed Relative Positioning System
(DRPS) is introduced, which is capable of localizing a target
UAV agent by fusing its relative position information (SOP
data, inertial measurements, and optical flow data) along
with vision measurements and relative position information
from other autonomous agents in the vicinity. Importantly,
the proposed system operates without the need for know-
ing the SOP transmitters’ locations or relying on any GNSS
signal information. Further, a prototype of the proposed
DRPS system is implemented in both hardware and soft-
ware. Extensive experimental evaluation is conducted in a
real-world outdoor environment to demonstrate the system’s
feasibility. The thorough experimental assessment confirms
that the proposed DRPS technique can be effectively applied
online, providing precise and accurate UAV relative localiza-
tion. In summary, the main contributions of this work are as
follows: (i) The development of an innovative online multi-
agent DRPS, enabling UAV localization through the fusion
of various sensor data and relative position information from
neighboring agents, all without reliance on SOP transmitter

locations or GNSS signals. (ii) The successful implementa-
tion of a prototype DRPS system, combining hardware and
software components, and subjected to comprehensive real-
world outdoor experiments to showcase its practical viability.
The experimental evaluations affirm the system’s capability
to achieve online and accurate UAV localization.

The proposed solution can be employed as an alternative
to GPS-assisted localization, and can be used to maintain
navigation perception in cases where the GNSS signals are
unavailable or the agent suffers from sensor malfunctions,
receiving erroneous data (e.g., inertial navigation system
(INS), SOP, visual, or optical flow (OF) data). In particular,
results over 70 outdoor experiments illustrate that robust rel-
ative positioning can be achieved by incorporating the fused
information from the system’s agents, achieving a 2-norm
error lower than 8 m at 90% of the time compared to single-
agent systems.

The rest of the paper is organized as follows. Section 2
outlines the state of the art concerning relative localiza-
tion, stating how the proposed distributed relative positioning
system differs from existing solutions. In Section 3, the
DRPS system model is described and the system’s archi-
tecture is delineated. Sections 4 and 5 describe the local
and global frame position estimate subsystems, including
the relative frame fusion methodology employed to achieve
distributed localization between the collaborating agents.
Section 6 presents the algorithmic implementation of the
initially-decoupled relative positioning system (RPS) sys-
tem, and the overall DRPS system that fuses all sensor
information collected by the collaborating agents to achieve
robust relative positioning. Section 7 includes an extensive
performance evaluation of the proposed system, while Sec-
tion 8 summarizes the key findings and documents avenues
of future research work.

2 RelatedWork

2.1 SOP-based Techniques

In the literature, numerous approaches utilizeSOPs inGNSS-
challenged areas. For example, in [1], a ground vehicle
navigation approach was employed in areas where GNSS
signals were unreliable, that incorporated SOPs in a closed-
loop map-matching method. The proposed algorithm used
a particle filter to estimate the state of the ground vehicles,
assuming a priori knowledge related to the positions of SOP
transmitters, and the experimental results demonstrated a
root mean square error (RMSE) reduction compared to long-
term evolution (LTE)-only localization solution. Also, in [2],
SOPs from fixed stations, with known location information,
and frommobile GPS-equipped nodes were jointly exploited
to cooperatively localize a receiver node by employing a

123

87   Page 2 of 19



Journal of Intelligent & Robotic Systems (2023) 109:87

weighted least squares (WLS) estimator. Furthermore, in [6]
SOPs were used to reduce the IMU error variance in the
absence of GPS signals. A low complexity semi-definite
relaxation algorithm was examined, and simulation results
on the Cramér-Rao lower bound demonstrated convergence
under specific geometrical and noise limitations. Addition-
ally, the survey in [11] investigated UAV navigation using
SOPs in urban environments, discussing various SOP-based
positioning techniques that utilized angle of arrival (AoA),
time of arrival (ToA), received signal strength (RSS), and
time difference of arrival (TDOA). Moreover, in [15], the
use of RF signals (such as pseudolites and SOPs) was
described for navigation purposes, detailing the opportuni-
ties and challenges of navigationwhen SOPswere employed.
Also, in [13], a distributed inertial measurement and SOPs-
aided navigation framework was presented, studying vehicle
communication in an environmentwith an imperfect commu-
nication channel. Pseudorange observations from unknown
SOPs in the vicinity were fused with inertial measurements
to obtain navigation with intermittent communication. In a
similar vein, the work in [3] proposed an event-based com-
munication strategy for collaborative navigation with SOPs.
In that work, it was shown that a team of vehicles obtaining
pseudorange measurements from terrestrial SOPs could col-
laboratively estimate the state of the vehicles and the state of
the SOPs, while reducing the amount of data exchanged.

2.2 Sensor FusionMethods

Numerous techniques fuse optical flow, vision, or inertial
data to improve the relative positioning procedures. As an
example, the work in [5] integrated information extracted
by inertial sensors, GPS, and a camera system to compute
the altitude and position estimates of a UAV. As the inertial
sensors suffer over long-term localization horizons due to
drift, GNSS and vision data were coupled to obtain higher
accuracy. The proposed system could be used in urban areas,
providing position and altitude estimates, but with a lower
data rate compared to the inertial sensor measurements. Fur-
ther, a sensor data fusion ultra-wideband (UWB)-supported
inertial navigationmethod for indoor positioningwas consid-
ered in [16]. The IMU and UWBmodules were attached to a
moving person, while data was received by fixed infrastruc-
ture nodes. The TDOA technique was followed, along with
the IMU information to obtain accurate indoor localization.
Further, [17] presented an algorithm for avoiding collisions
with walls, that employed optical flow data obtained by a
camera mounted on autonomous micro air vehicles (MAVs).
Tomaneuver safely indoors and avoid collisionswithwalls, a
combination of data from IMU and optical flow was utilized
that minimized rotational effects. In a similar vein, [18] pro-
posed an extended Kalman filter (EKF)-based scheme that
combined optical flow and inertial measurements in order

to avoid navigation system drift and minimize positioning
errors in MAVs, thus improving the accuracy of position
estimate. Further, in [26], a simultaneous location and map-
ping (SLAM)methodology was developed onmobile robots,
using LiDAR and RGD-B camera information to achieve
reliable indoor localization. Finally, in [27], IMU and camera
information fusionwere employed to improve robustness and
localization accuracy. In order to realize greater localization
performance, a deep learning-based optical flow approach
was utilized and tested on real-world data obtained using
low-end computing equipment in a low-texture environment.

2.3 Collaborative Localization Techniques

Thework in [19] proposed a centralized collaborativemonoc-
ular architecture, where the data collected were processed at
a ground central server (performing map fusion) and fused
information was distributed back to the agents, as the agents
themselves did not have sufficient computing resources for
significant onboard processing. Subsequently, the distributed
data were incorporated into the agent’s SLAM online esti-
mate. In terms of localization, local map acquisition of the
agent’s surroundings and pose estimation extraction were
performed utilizing visual odometry. This method was lim-
ited by the computation capacities of the onboard units
and the architecture’s significant dependence on the visual
dataset, with the system performing better in environments
where the accumulated size of the information was manage-
able. Further, the work in [20] also presented a collaborative
pose estimation method between UAV agents that were
equipped with inertial sensors and a monocular camera. To
compute relative pose estimation, the UAVfields that overlap
were extracted by fusing vision-odometry data in an EKF.

Furthermore, the fusion ofUWB/LiDAR information for a
cooperative range-only SLAMmethodwas presented in [28],
within which a mobile robot was employed equipped with a
UWB node and a 2D LiDAR sensor and UWB beacons were
placed at unknown locations, forming a cooperative sensor
network that could extract node range information. Simul-
taneous localization of the agent was performed, fusing all
the UWB nodes and LiDAR mapping data, demonstrating
that the UWB range information could improve the LiDAR-
based SLAMmethod. A similar realization was described in
[21], where it was shown that the IMU could estimate the
changes in position over short-time periods, but in the long
term, it was prone to accumulated error. Thus, a UWB rang-
ing unit was applied to mitigate the IMU error (i.e., IMU
and UWB range information were fused to attain a coop-
erative position estimation); however, bearing information
was not available and the receiver’s location could not be
derived. Hence, a particle filter methodology was followed
to derive precise position estimates. In [29], UWB anchors
were applied on UAVs and along with real-time kinematic
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(RTK)-GPS information, precise localization was obtained,
while in [30] a UWB-based system was proposed for UAV
localization inGNSS-denied environments.However, in both
works the UWB range limitation (limiting the reach of the
information to a few meters) could lead to a degradation in
localization performance.

Moreover, the authors in [23] demonstrated that autonomous
UAV agents could exchange information to extract a glob-
ally consistent map, employing a vision-based perception
(monocular-inertial odometry). The proposed method was
evaluated using UAV benchmark datasets, showing a 50%
improvement in terms of accuracy as compared to the
case where no information was exchanged. Nevertheless,
reported fluctuations due to difficult conditions, such as
low-texture scenes or bad illumination, emphasized the
need for system improvement. In another effort to achieve
collaborative localization, the authors in [22] considered
a distributed stereo-vision technique in a fleet of MAVs,
with sensor data collected from IMU, cameras, and sonar
devices incorporated in an EKF to estimate the positions
and orientations of all MAVs. This system controlled the
formation of the agents in order to maximize their over-
lapping fields of view. Experiments conducted in indoor
environments, with the proposed algorithm applied in a real-
time scenario, showed that the collaborative scheme could
produce promising results in terms of localization in GPS-
denied environments. However, the use of vision data could
be a shortfall for the collaborative algorithm in outdoor

environments, as the features extracted from each agent dif-
fered only marginally. Finally, in another research effort,
the work in [31] demonstrated a distributed algorithm for
joint localization, where a team of indoor mobile robots,
each equipped with heterogeneous sensors, shared informa-
tion to compute a combined estimate of the robot poses.
The proposed formulation employed a fusion of odometry,
IMU, and GPS data, and the pose estimates obtained could
be comparable to an EKF design; however, for long-term
linear approximations, efficient mechanisms for revising
linearizations of process and observation models must be
investigated.

In comparison to previous research approaches detailed
above, this work introduces a robust online distributed rel-
ative positioning technique to obtain the relative trajectory
of each agent (e.g., UAV) in a multi-agent system. This is
achieved through the employment of a fusion of informa-
tion obtained from a variety of sensor modalities, including
SOPs, IMU, optical flow, and vision data, provided by the
UAV agent and other agents in its vicinity that communi-
cate the relevant information to the agent under localization.
Such a distributed technique, that combines all these modal-
ities together, implemented in a prototype, and extensively
assessed in numerous outdoor field experiments has not been
previously presented in the literature.

Figure 1 illustrates a classification of the various more
widely-used positioning techniques, and how the proposed
technique fits within this classification.

Fig. 1 Taxonomy of positioning techniques
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Fig. 2 System model

3 SystemModel

The proposed system model, as shown in Fig. 2, assumes
a multi-agent scheme where a number of agents navi-
gate in a 3D space and employ different sensor modalities
to accomplish distributed relative positioning. Each agent
self-localizes without the use of GNSS information, as
software-defined radio (SDR) receivers are utilized to gather
SOPs, and at the same time, inertial, visual, and optical flow
measurements are collected using an onboard unit. Further,
each agent i employs communication circuitry (i.e., wireless
antenna modules available at each agent), so as to exchange
information with the rest of the agents in its vicinity (belong-
ing to set J ) at each time step n. Specifically, the kinematic
principle of any agent i follows a nonlinear model, and the
relative positions of all agents in J are fused and exchanged
in order to extract agent i’s location based on the information
collected from the rest of the agents, as a means to improve
accuracy and increase robustness.

Further, while the proposed system does not impose any
restrictions on the agents’movements, the following assump-
tions are made: (i) GNSS is unavailable, (ii) a synchronous
system is considered, (iii) agent i can detect and exchange
information with any other agent j ∈ J , (iv) the agents
are following a predefined path, and (v) the relative position
estimation of each agent can be unreliable (due to sensormal-
functions); thus, although a stable relative self-positioning
estimation is not assumed, each agent i can communicate
and exchange information with any other agent j ∈ J to
achieve accurate relative positioning in a distributed manner.

Specifically, in the proposed system model a number of
autonomous agents travel in an area where a number of SOP
transmitters (Tk, k ∈ K) are present and onboard each agent
there exists a camera, SDR, and IMU. Initially, the trans-

mitter locations pTk are unknown, but subsequently, each
agent collects RSS measurements and employs a non-linear
least squares (LSQ) method to estimate the transmitter posi-
tions (assuming that in the initialization procedure (i.e., the
take-off phase), the autonomous agents are able to secure a
GNSSfix).When the autonomous agents’GNSS information
becomes unreliable or is not available, the relative trajectory
of each agent is computed using the RPS methodology by
employing the locations of the SOP transmitters (pTk ) and
fusing various sensor measurement (e.g., IMU and camera
readings) [25, 32]. Specifically, each agent self-localizes by
employing a local relative frame F , i.e., assuming that an
agent i navigates in an urban area and estimates its loca-
tion using SOPs, IMU, and vision data modalities (the RPS
procedure), a local relative frame Fi is generated and main-
tained in a local reference system (utilizing the agent’s initial
takeoff position as the initial position). The same pattern is
followed for a group of agents in set J (i.e., in the vicinity of
agent i), leading to a number of local frames F j , j ∈ J . The
autonomous agents are capable of relative self-localization;
however, in cases where some of the sensors utilized for
RPS malfunction, and in order to avoid navigation errors
and increase robustness, the relative positions of all agents
j ∈ J in the vicinity of agent i are employed for distributed
relative localization of agent i (DRPS procedure).

Specifically, the local frame of an agent j , F j , along with
a range measurement dc (i.e., Euclidean distance between
agents i and j), computed using a detection and tracking
algorithm, are fused with agent i’s local frame Fi to provide
a global relative frame Fi j , creating a unified relative map
using the same reference position. Clearly, this global rela-
tive frame will be updated based on which agent j will be
closest to agent i at each time step. It should be noted that
all computational processes, such as the collection of SOPs,
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Fig. 3 DRPS system architecture overview

optical flow, vision detection, frame fusion, and distributed
relative position extraction are executed online on an embed-
ded onboard processing unit. The framework design of the
proposed DRPS technique is described in Fig. 3. Note that
this distributed design does not assume any a priori informa-
tion on the initial absolute position of the agents. Each agent
operates in its local relative position frame and has its current
starting position as the initial location.

In terms of information exchanged between the agents,
for every time-step n, all the relative position (RPS) and dis-
tance (vision) data, received since the last communication,
are disseminated to all agents (i.e., agent i and all agents in
J ), leading to the combination of distance/vision data that do
not belong to the same frame, in order to construct a global
relative frame and achieve distributed localization.

This communication is bidirectional, as each agent is able
to exchange relative position information with the rest of the
agents in its vicinity utilizing an onboard communications
module.

4 Local Frame Position Estimation

This section summarizes the RPS process employed by each
autonomous agent for self-localization when GNSS signals
are not available. For a detailed description of the RPS tech-
nique, the reader is referred to our previous work in [25, 32].
Subsequently, Section 5 details how enhancements in loca-
tion accuracy can be achieved through the use of information
from surrounding agents.

4.1 Modeling the SOPs

Fixed transmitters Tk, k ∈ K, with a state vector xTk and pla-

nar state pTk = [pTk (1) pTk (2)]T are following a discrete

model pn+1
Tk

= FpnTk + w and are used as sources of SOPs
(with F designating the system dynamics and w the process
noise). In the RPS framework, the locations of the Tk rel-
ative transmitters are used to compute the trajectory of the
autonomous agent by employing the RSS of the SOPs over
a number of transmission frequencies [25].

4.1.1 Frequency Band Selection

In SOP-based systems, relative positioning can be estab-
lished by processing only a subset of the wireless spectrum
frequency bands, in order to limit the computational require-
ments; thus amajor challenge in the use of SOPs is frequency
ranking and selection [33, 34].

As explained in [33, 35], optimal learning (OL) can be
applied to tackle the data gathering and computational load
shortcomings. This method relies on statistical parameters to
derive the true values of observations, employing the μn+1

as the posterior estimate mean with prior mean μ0, covari-
ance �0, and variance λ. The study in [34] describes the
knowledge gradient (KG) policy and how it can be utilized to
extract measurement decisions online, leading to significant
computational cost reductions. Further, our previous work
in [36], describes a KG-based frequency selection algorithm
(FSA) for the relative positioning system (RPS) that uses cor-
relations in the Bayesian prior beliefs of the frequency band
values to enable fast positioning.

4.2 Modeling the Agent’s Dynamics

The autonomous agent’s position (pRi ) and velocity are
based on a conventional dynamic model, with agent i hav-
ing a planar position pnRi = [pRi (1) pRi (2)]T at time n
and discrete dynamics at sampling time n + 1 given by
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pn+1
Ri

= f (pnRi , u
n
Ri

)+w, where unRi denotes the sensor read-
ings (such as its heading angle, velocity, acceleration) and w
the process noise.

4.3 Modeling the Signal Propagation

The signal propagation is modeled using the standard path-
loss model [37–39], evaluating the distance d(k, i) between
the estimated SOP transmitter’s (pTk ∈ R

2) location and the
unknown location of the moving SDR receiver (pRi ∈ R

2)
mounted on the autonomous agent.

The distance d(k, i) is computed by employing a cost-
efficient approach that does not require added hardware
components and uses as the only source the RSS measure-
ments. In this case, it is assumed that virtual transmitters
are the sources of the SOPs (e.g., TV, radio, cellular sig-
nals) that are transmitted with a fixed transmission power (in
dBm) as detailed in [40–42]. Finally, it should be noted, that
empirical models (e.g., COST-231 Hata [43], ECC-33) are
not considered, as there is no information concerning sev-
eral parameters of the virtual transmitters, such as the height
of their antennas and their base stations, etc., that must be
known to more accurately estimate d(k, i).

4.4 Multilateration & LSQTechniques

Distance d(k, i) ∀k ∈ K is the key piece of information
used for estimating the agent’s position. In particular, this is
achieved by implementing a range-based method (i.e., multi-
lateration) and employing the estimated transmitter locations
[44–46]. To estimate a moving agent’s location, at least
three transmitters are required. However, by incorporating
multilateration instead of trilateration (i.e., using more than
the minimum number of nodes), the measurement errors
are reduced [47]. Using multilateration, the distance mea-
surement is assumed to be the radius of a circle with the
transmitter at its center, and with the receiver located at the
point where all transmitter circles intersect [39, 46]. The

multilateration process subsequently results in an overdeter-
mined system that does not have a unique solution. To obtain
the best approximate location estimate using the SOPs, i.e.,
p∗, this system is linearized and the LSQ technique [48] is
applied, as detailed in [25].

4.5 EKF Localization

An extended Kalman filter (EKF) is then employed to
generate the position estimates (p̂), combining inertial mea-
surements with SOP data. Specifically, EKF predicts the
agent’s position at time n+1 and creates an estimated trajec-
tory, utilizing the information from the agent’s state at time
n [37, 48–50]. As illustrated in Fig. 4, at first the prediction
p̂n+1 (i.e., the predicted agent’s state at time n + 1 given the
system input at time n) and the error covariance ̂Pn+1 are
determined. Then, the measurement step is followed, where
the relative distance measurements are designated by dn+1,
and H, R, and Q denote the matrices for the measurements,
variances of the process noise vector, and covariance of the
observation noise, respectively. Finally, the update step takes
place, employing the Kalman gain (K) and the covariance
matrix error (̂Pn+1+ ) to derive the next state (p̂n+1+ ).

4.6 Optical Flow

Optical flow concerns the relative change in the position of
visual targets based on an observer and is projected in a 2D
space, as the observer’s captured images are a 2D projection
of a 3D environment [27].

The image intensity I is required in order to compute
the relative change δ of the object in consecutive frames,
using a downward-facing camera. The pixels’ intensity in
consecutive frames, from time-step n to time-step n + 1,
remains constant and is described as I(xpixel , ypixel , n) =
I(xpixel+δxpixel , ypixel+δypixel , n+δn). Thus, the optical
flow depicts how a visual point ppixels, with (xpixel , ypixel)
in a projected visual scene, will change over time.

Fig. 4 RPS architecture
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To extract the optical flow-based range dof and dis-
placement measurements [dxof , dyof ], a dense optical flow
algorithm is applied that utilizes each video frame captured
by the onboard camera. In particular, the Farneback OF
algorithm is employed [51] that can measure the next pixel
position between the two given frames in a pre-defined region
of interest (ROI), mainly due to its accuracy in online appli-
cations (using the OpenCV library [52]).

Specifically, within the proposed RPS framework, the
optical flow technique is employed as follows. At first, the
video frame information is gathered online and a grayscale
conversion is applied to each frame, which is subsequently
employed as input information to the Farneback OF algo-
rithm. This algorithm, at each time-step n, uses as a reference
point the initial video frame and compares it with the video
frames that follow.This is done for computing (xpixel , ypixel)
(i.e., the pixel displacement vectors), as well as the frame’s
pixels’ displacement mean value. In the next step, a meter
conversion is implemented employing the ground sample
distance (GSD), which expresses the distance between each
pixel’s center point following a reference ground point and
representing each sample on the 2D plane in real size (i.e.,
in meters) [53]. The agent’s altitude, the height, and width
of the camera, as well as the camera’s focal length and the
image’s (video stream) width and height are used as input
for the GSD computation (with some of these data avail-
able through the manufacturer’s specifications). Finally, the
range measurement dof (i.e., the average Euclidean distance
over consecutive frames), is computed utilizing the worst-
case GSD scenario, as follows:

GSDh = (Dof )(Bof )

(Aof )(Eof )
, GSDw = (Dof )(Cof )

(Aof )(Fof )
, (1)

GSD f inal = GSDworst

100
, (2)

dof =
√

(|xpixel |GSD f inal)2 + (|ypixel |GSD f inal)2, (3)

where Aof denotes the focal length, Bof and Cof the height
and width of the camera, respectively, Dof the height of the
drone, and Eof and Fof the height and width of the image,
respectively.

As emphasized above, apart from the range measurement,
the displacement of the autonomous agent from the center
of the frame must be also computed in order to determine
the OF-based position estimate. This displacement can be
calculated as dis = Xof wRp

wRm

wF pwRp

2wRm
, with Xof denoting the

center of frame,wRm andwRp denoting the reference object’s
width, inmeters andpixels, respectively.Also, the parameters
wFm and wF p denote the video frame’s width in meters and
pixels, respectively, with wFm = wF pwRp

wRm
.

5 Global Frame Position Estimation

In this section, initially, a detailed description of the detection
and tracking modules is provided, followed by the fusion
of relative frames, for obtaining the global frame position
estimate.

5.1 Detection and Tracking

In an effort to derive vision-based range and X − Y coordi-
nates displacement measurements between agents, a drone
detection algorithm is utilized. For the detection, an onboard
unit is employed to capture video frames using the camera
of each agent, while a convolutional neural network, Tiny
Yolov4 [54], is used to detect the collaborating agent (the
choice ofTinyYolov4 is based on its established performance
and accuracy in online applications).

Footage from a UAV flying in close proximity to another
agent is acquired and applied as a trainingdataset that resulted
in approximately 10, 000 labeled images.

Moreover, a tracking algorithm is used to retain each
agent’s trajectory over time. In particular, tracking is accom-
plished using a conventional intersection-of-union scores
method and the Hungarian algorithm as described in [55].
When a detection bounding box is achieved, the coordinates
are normalized considering the size of the video stream.
Then, the detection box area is compared in successive
frames and a decision is taken concerning the position of
agent i (pursuer) in relation to agent j (target) (i.e., agent i’s
flight controller’s yaw and throttle signals are provided based
on the detected box position and the current posture of agent
i). Specifically, (i) when the area is larger than 10% of the
image, agent i falls back, as it is considered that it is in very
close proximity to agent j ; (ii) when the area is smaller than
6% of the image, then agent i moves closer to agent j , as it
is considered to be far from agent j . At the point where the
pursuer drone approaches the target at a certain distance, the
data-exchange procedure between the UAVs commences. In
this work, data-exchange starts when the detected bounding
box is within 7 − 10% of the captured image.

Note that the distance between the agents is computed
using the focal length of the camera, f = wRp dr

wRm
, acquired

at a reference distance dr . Specifically, the focal length is
used to compute the Euclidean distance as dc = wRm f

wRp
(the

assumption in this work is that all agents have similar dimen-
sions).

This detection-and-tracking procedure detects all agents
j ∈ J that are in range and can communicate with
autonomous agent i . Subsequently, it chooses agent j that
is the closest to agent i , by employing the Euclidean distance
extracted from the vision data, in order to fuse its information
with the information of agent i and obtain the global relative
frame.
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5.2 Fusion of Relative Frames

The fusion module utilizes the relative frames Fi and F j of
agents i and j , respectively. The distance between the two
relative frames is computed using the camera (vision data) as
previously discussed, and the global initial point is computed
in reference to the relative position of agent i . Thereafter, the
two relative frames are combined and a global relative frame
Fi j is derived. Note that a new global relative frame will
be computed at some point in the future (i.e., the previous
Fi j will be updated) due to the movement of the agents in
set J , that are employed to extract the distributed relative
position.

6 DRPS Algorithm

This section describes in detail the implementation of the
proposed DRPS algorithm (Algorithm 1), delineating, with-
out loss of generality, the procedure for two autonomous
agents. The distributed relative positioning is divided into
two phases, the propagation phase, where the information is
related to each agent’s relative self-localization (RPS), and
the update phase, where the relative position of agent j ∈ J
is employed to substitute agent’s i erroneous relative position
(e.g., caused due to erroneous sensor measurements).

At first, the relative self-localization of each agent is
computed using the various sensor modalities previously
explained, followed by the distributed relative positioning
process. For simplicity, hereafter, the relative position of
agent i ( j) using RPS is denoted as p̂n+1

RPSi (p̂n+1
RPSj ), the

cooperative relative position of agent i based on vision data
and RPS information from agent j is denoted as p̃n+1

RPSi , and
the relative position for agent i using DRPS is denoted as
p̃n+1
DRPSi .
The local relative positioning (RPS) of each agent starts

with the collection of a total of Xn frequency sweeps (for a
set of frequency bands M), and for each frequency band the
mean ψn

m is computed as:

ψn
m = 1

Ns

N
∑

n=1

Xn
m ∀m ∈ M, (4)

where Ns = 1, . . . , NF , and NF denotes the total number
of frequency sweeps conducted. Subsequently, ψn

m is used
in conjunction with the path-loss, multilateration, LSQ, and
discrete EKF (with sampling time Ts) models and techniques
as presented in [24] and summarized in Section 4, to extract
the relative coordinates and obtain p̂.

To compute each agent’s relative position the state dynam-
ics must be modeled, using a measurement and a motion
model, with state vector pn = [pR(1) pR(2)]T defined as
the planar agent position. Thus, the posterior location esti-

mate using the agent’s dynamic model is given by:

p̂n+1 = p̂n + Ts

[

cosϕn 0
0 sin ϕn

] ( [

unx
uny

]

+ wn
)

, (5)

where ϕn , ux /uy , and wn denote the agent’s heading angle,
velocity, and process noise, respectively, with wn modeled
by a normal distribution with a zero mean and covariance
Q = (0.1)I2x2. Further, the measurement model is defined
by:

d̂n+1 =
√

(xland − p̂R(1))2 + (yland − p̂R(2))2 + νn, (6)

where the landmarks (i.e., xland , yland ) are obtained via RPS
and νn represents the zero mean noise measurement with
constant covariance R = (0.01)I2x2.

For the calculation of p̂n+1 = f (p̂n,un) (i.e., the position
estimate for time-step n+1), the motion model is used with:

F = ∂ f

∂ p̂n+1 | p̂n , un , (7)

as well as the measurement model d̂n+1 = h(p̂n) with:

H = ∂h

∂ p̂n+1 | p̂n . (8)

Thus, the covariance for the system is given by:

̂Pn+1 = F̂PnF� + Q. (9)

In summary, during theEKFprediction step,ϕn andux /uy ,
measurements are used as input to the motion model that
generates the agent’s state at time-step n. Consequently, the
measurement model is used to compute the range between
the different route points.

Afterwards, at the correction step the relative trajectory is
generated, using the optical flow relative rangemeasurements
dn+1
of . Then, employing the Kalman gain K, calculated as

K = ̂Pn+1H�(ĤPn+1H� + R)−1, the relative coordinates
and the error covariance at time step n + 1 can be computed
as:

p̂n+1 = p̂n + K(dn+1
of − h(pn)), (10)

̂Pn+1 = (I − KH)̂Pn . (11)

In an attempt to achieve online relative positioning, as
discussed in Section 4.1.1, a frequency selection technique is
utilized to compute the useful frequency bands setA, and, as
a consequence, the positions p̂ are re-computed in an online
fashion [36].

The update phase can occur when the sensors of agent
i fail and the RPS-computed coordinates cannot meet the
mean range threshold requirement, d̄, pre-set at the beginning
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of the multi-agent operation, leading to the initiation of the
distributed relative positioningmethodology, so as to achieve
a robust and precise relative positioning. In essence, as the
drone moves it continuously obtains range measurements;
if these measurements diverge (i.e., they are greater than the
mean rangemeasurement d̄) this is an indication that a sensor
malfunction probably occurred, thus initiating the distributed
multi-agent localization procedure.

The first time the mean range requirement is not satisfied,
the two autonomous agents exchange information regard-
ing their position estimates in order to update them. In this
case, agent i obtains a cooperative relative position estima-
tion using vision data to compute the distance to (target) agent
j in its vicinity, with respect to relative frame Fi j , and RPS
information from agent j :

p̃n+1
RPSi = p̂n+1

RPSj
− dc ∀ j ∈ J . (12)

This measurement is utilized to update the relative posi-
tion estimate of agent i in the distributed system and the
covariance of this estimate is given as:

F̃ =
[

Fi i 0
0 F j j

]

∀ j ∈ J , (13)

P̃ =
[

̂Pi i ̂Pi j
̂P j i ̂P j j

]

∀ j ∈ J , (14)

where,

P̃n
ii = Fi îPi iFi i + Qi , (15)

P̃n
i j = ̂Pn

iiS
−1
i i

̂Pn
j j + Qi ∀ j ∈ J , (16)

with,

Si i = ĤPn+1H� + R. (17)

Also, the Kalman gain equation changes as:

K̃i j = ̂Pn
i jH

�
i j (Hi ĵPn

i jH
�
i j + Ri )

−1 ∀ j ∈ J , (18)

where,

H̃ =
[

Hi i Hi j

H j i H j j

]

∀ j ∈ J , (19)

with matrices Hi i and H j j computed in the self-localization
scheme andHi j orH j i derived using the following equation:

d̃n+1
DRPS =

√

( p̃RPSi (1) − p̃RPSj (1))2 + ( p̃RPSi (2) − p̃RPSj (2))2

+νni ∀ j ∈ J .

(20)

For example, Hi j can be obtained using d̃n+1
DRPS =

h(p̃nRPS) with:

Hi j = ∂h

∂ p̃n+1
RPS

| p̃nRPS ∀ j ∈ J . (21)

The final distributed relative position for agent i using
DRPS is calculated as follows:

p̃n+1
DRPSi = p̃nRPSi + Ki j (d̄ − h(p̃nRPS)) ∀ j ∈ J . (22)

In brief, an approximate distributed agent location is esti-
mated using the RPSmodule of each agent, as well as various
sensormodalities, in conjunctionwith an FSA to speed up the
process. The relative coordinates for the autonomous agent
i are computed by employing the shared information from
target agents j ∈ J that are subsequently fused to achieve
the DRPS-based trajectory estimation. The overall system’s
architecture block diagram is illustrated in Fig. 5.

Algorithm 1 DRPS Algorithm
Input: Relative RSS set of data obtained at each point in the route

(Xn)
1: Scan the frequency spectrum at agent’s current position for each

transmitter Tk , k ∈ K
2: procedure RPS
3: Analyze Xn and extract distribution moments ψn

m
4: ψn

m is used to calculate the relative distances using the path-loss
model

5: Apply multilateration
6: Perform LSQ
7: Concurrently, video stream acquisition from downward-facing

camera at agent’s current position
8: xpixel , ypixel computation
9: GSD utilized for meters-to-pixel conversion
10: Calc. avg. Euclidean distance dof over consecutive frames.
11: Estimation of relative position p̂n using EKF and best approxi-

mated solution, p∗.
12: When d̄ requirement not met, information exchange starts
13: end procedure
14: procedure Distributed relative positioning
15: The relative position estimate p̃n+1

RPSi is computedusing thedetec-
tion and tracking methodology Eq. 12

16: Detection and tracking of the target agents(s)
17: Calculation of depth distance and focal length
18: Computation of horizontal distance
19: Derivation of average of distances (for depth/horizontal, respec-

tively) since the last RPS measurement
20: Compute distance between agent i and all agents j ∈ J (d̃n+1

DRPS)
Eq. 20

21: Use distributed EKF methodology to compute p̃n+1
DRPSi Eq. 22

22: end procedure
23: Output: DRPS relative trajectory
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Fig. 5 DRPS architecture

7 Performance Evaluation

7.1 Hardware and Software Set-up

A 4G dongle is applied on each UAV agent of the system to
allow the transmission and reception of both data and com-
mands, while an SDR (the HackRF One, with specifications
as detailed in https://greatscottgadgets.com/hackrf/one/) is used
to scan the frequency spectrum and dynamically (online)
receive the SOPs data. Note that the HackRF One is cho-
sen for the implementation, as it has low cost, it requires a
Linux operating system (Ubuntu in this implementation), and
is programmable (utilizing a graphical block diagram inter-
face, i.e., GNU Radio Companion or Python i.e., HackRF
sweep) [56]. The proposed communication architecture, as

depicted in Fig. 6, is based on a virtual private network (VPN)
server, enabling bidirectional communication between UAV
agents via a client-to-client protocol. In this work, Open-
VPN is employed due to its compatibility with the embedded
Linux operating system. Figure 7 depicts the proposed sys-
tem’s current hardware/software implementation. In terms of
hardware (Fig. 7 (top)), the NVIDIA Jetson Nano Developer
Kit is employed as the processing unit onboard the agent that
runs all algorithms and processes the collected data online.

Concerning the software implementation (Fig. 7 (bot-
tom)), the Robot Operating System (ROS) [57] is used as
middleware to enable interaction. Further, the ROS frame-
work is utilized for the exchange of data between the agents,
and the communication module runs on a fixed frequency to
ensure online response onboard the agent.

Fig. 6 Communication architecture
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Fig. 7 (Top) Hardware implementation of the system; (Bottom) Software implementation of the system

Also, the performance of the communication framework
is investigated (with additional outdoor experiments con-
ducted). Figure 8 exhibits that the communication of the
proposedmulti-agent systemcan be continuouslymaintained
online even at an altitude of 500 m and Euclidean distance
from the remote controller of 2 km.

7.2 DRPS Experimentation

This section presents the DRPS experimental results by com-
paring the relativemeasurements for the agents employed, for
each trajectory waypoint, with the ground truth (i.e., mea-
surements acquired via GPS+IMU). In these experiments,

Fig. 8 DRPS bandwidth in a real-outdoor environment
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the number of SOP transmitters utilized is |Tk | = 13, the
value of the path loss exponent is nPL = 2.8, and the fre-
quency range is 0−3500MHz, based on the analysis carried
out in [24], which showed that for this frequency range, the
system is able to converge to the relative coordinates over a
short time period.

It should be noted that the outdoor experiments are con-
ducted employing a limited number of autonomous UAV
agents in the prototype implementation, due to the lack
of additional SDR equipment and UAVs at our laboratory.
Nevertheless, it is extremely important to implement the
proposed system even for a small number of agents in
both hardware and software, rather than performing only
simulations as many of the approaches currently described
in the literature, in order to demonstrate its feasibility
with real-world experiments. Further, the outdoor experi-
ments took place in an area that introduced challenges to
commercial GNSS receivers, leading to GNSS positioning
performance degradation due to the limited satellite visibility,
multipath effect, interference, and other undesired obsta-
cle obstructions (non-line-of-sight signals) [58, 59]. Thus,
to counter these issues, the proposed multi-agent system
is utilized, which demonstrates reliable and robust location
estimation.

First, a performance analysis concerning the detection and
trackingmodules is presented, with Fig. 9 demonstrating that
the DRPS agents are able to detect-and-track a drone up to
a Euclidean distance of 93 m. In addition, it is demonstrated

that the vision+OF data can provide a 94% drone detection
rate (contrary to the vision-only approach that demonstrated
a 70% detection rate).

Specifically, a neural network is trained,with performance
metrics related to training, validation, and testing as depicted
in Fig. 10. The neural network is then employed to detect a
rogue drone in images in conjunction with the computation
and projection of the visual target’s position relative change
in a 2D space (based on an observer).

Further, the relative paths computed for different UAV
agents using various positioning techniques for a specific
path comprised of three straight lines are presented in Fig. 11.
For this path, Table 1 tabulates the real and relative tra-
jectories obtained online when using the RPS and DRPS
techniques. These results demonstrate that theRPS technique
encounters sensor shortfalls in the outdoor experiments,
which leads to a decreased relative positioning performance
when compared to DRPS. As shown, the DRPS technique
that uses SOPs, in conjunction with IMU, optical flow,
and vision data, can estimate the agent’s route in a reli-
able and accurate manner, generating a relative trajectory
with distances that are analogous to the ground truth (i.e.,
the GPS+IMU trajectory). Thus, by employing a distributed
localization technique, robust online localization in GNSS-
challenged areas can be obtained.

Specifically, 70 outdoor experiments have been conducted
in order to compute the detector performance, as well as
the distributed relative localization performance. It must be

Fig. 9 Tracking performance over distance (in meters)
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Fig. 10 Detector performance metrics

noted that Fig. 11 presents the relative trajectories computed
using the RPS and DRPS in comparison to the GPS+IMU
(GT). The letter tags in Fig. 11 denote the trajectory segments
that are also tabulated in Table 1, illustrating the relative
localization performance of RPS and DRPS compared to the
GT value (GPS+IMU) by calculating the Euclidean distance
betweenpointsA-D (with the formula deployed for the differ-
ence computation on Table 1 given by: (GT value - estimated
value)100/ GT value). Further, as shown in Table 1, for RPS
the error accumulates as the UAVmoves from one trajectory
point to another; on the contrary, for DRPS the accumula-
tion error is reduced due to the sensor data fusion of multiple
agents (vision, optical flow, SOP, and IMUdata frommultiple
agents are employed to achieve improved relative localiza-
tion performance).

Apart from the relative trajectories associated with each
agent, the route variations between real and relative trajecto-
ries obtained by the RPS and DRPS techniques, are shown
in Fig. 12. The increase in accuracy and reliability of DRPS
compared to RPS is evident in Fig. 12(a), as the minimum

Fig. 11 DRPS and RPS relative trajectories compared to GPS+IMU

square error (MSE) of DRPS is lower compared to RPS.
Clearly, for the relative positioning of agent i , when there are
insufficient sample data, or the sensor information deterio-
rates, distributed positioning is a necessity, as the utilization
of the RPS data from agents j ∈ J in its vicinity can com-
pensate for the lack of self-localization information. This is
also demonstrated in Fig. 12(b), that utilizes a cumulative
distribution function (CDF) plot to show that the localiza-
tion error (Euclidean distance) of DRPS is 75% of the time
less than 6 m as compared to GPS+IMU. On the contrary,
the RPS error reaches a value greater than 10 m.

Even though EKF is defined as a powerful state estima-
tor, the noise covariances need to be computed based on
the sensor outputs [60]. However, process and measurement
noise covariances may not be accurately computed due to
partially known parameters (such as the environmental con-
ditions), thus affecting the system’s performance in practical
scenarios [61]. In this work, the process and measurement
noise covariances are determined/tuned based on the sen-
sor outputs and by computing the mean deviation between

Table 1 Online Experiment - Trajectory Distances

Trajectory Segments A-B(m)/
Dif.(%)

B-C(m)/
Dif.(%)

C-D(m)/
Dif.(%)

GPS+IMU 107/0 110/0 83/0

GNSS distance 105/1.87 107.5/2.27 81/2.4

Relative distance (RPS) 105/1.87 104/5.45 75/9.6

Relative distance (DRPS) 106/1 107/2.72 81.5/1.8

123

87   Page 14 of 19



Journal of Intelligent & Robotic Systems (2023) 109:87

Fig. 12 (a) MSE (in meters) of RPS and DRPS vs. GPS+IMU (b)
Position estimation error CDF for RPS and DRPS

the motion and measurement models from the ground truth
(in real outdoor experiments). Specifically, for the proposed
system, the process and measurement covariance matrices
are set as Q = (0.1)I2x2 and R = (0.01)I2x2 (with process
noise w = 0.316 and measurement noise ν = 0.1), respec-
tively. Figure 13 depicts the performance of DRPS with the
use of different covariance matrices, illustrating that those
parameters can impact the system’s localization performance
(2-norm error). Further, it validates the choice of parameters
utilized in this work.

Additionally, a statistical analysis is also carried out to
further examine the DRPS performance in comparison to
both the RPS approach [24] and the ground truth (fused
GPS+IMU). Figure 14 illustrates the 2-norm (m) deviation
from theGPS+IMUdataset of the relative trajectories derived
by implementing DRPS and RPS. As demonstrated, DRPS
delivers reliable and higher accuracy localization compared
to RPS, as the Euclidean error (2-norm) of the relative path
computed is significantly smaller (i.e., the maximum error
for DRPS is up to 8 m, compared to RPS with a maximum
error reaching 11 m).

Fig. 13 Position estimation errorCDF, using different process andmea-
surement noise covariance parameters

Fig. 14 Euclidean distance comparison of DRPS, and RPS using
GPS+IMU as the ground truth

Moreover, Fig. 15 illustrates the boxplots of the various
positioning systems (i.e., the median, maximum, and mini-
mum values), demonstrating that the DRPS median is close
to the ground-truth (GPS+IMU dataset).

Figure 16 presents the average covariance and mean
statistics of the localization states, again demonstrating the
enhanced performance of DRPS compared to RPS.

Furthermore, to evaluate the performance of DRPS when
SOP disturbances and IMU drift are present, outdoor exper-
iments (in a deep urban area) with the same configuration
parameters are conducted. Figure 17 illustrates that without
the use of the proposed DRPS framework, agent i is not able
to counteract the IMU data drift caused by the presence of
SOP disturbances and the prolonged period of location esti-
mation. The SOPs’ erroneous information leads to significant
deviation from the GT (GPS+IMU).

To present the difference in terms of localizationwhen dif-
ferent methodologies (odometry and visual odometry (INS,
INS+OF techniques)) are in use, the mean absolute error
(MAE) for 70 outdoor experiments within the same envi-
ronment is tabulated in Table 2, again showing that the
DRPS-based relative positioning and navigation are more
accurate. Also, the DRPS produced more accurate results
compared to SLAM-based techniques, where the localiza-
tion error after 30 seconds of GPS unavailability led to an
error up to 50 m, due to INS drift during prolonged periods
[23, 62].

In addition to the tabulated positioning techniques, the
DRPS can be compared with anchor-based localization tech-
niques. As described in Section 2, UWB tags can be used
as anchors whose positions are already known in advance

Fig. 15 Statistical comparison of GPS, DRPS, and RPS. Range mea-
surements are defined as the UAV distances covered from one waypoint
to another
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Fig. 16 Banana-shaped covariance ellipsoids showing the final pose
and uncertainty related to RPS, DRPS, and GPS+IMU

to achieve accurate positioning [63]. However, the UWB
anchors in outdoor environments are not easily employed,
as the distance between Tx and Rx is up to 50 m and very
large errors are unavoidable in non-line-of-sight conditions
[64–66]. Further, as shown in [67], for the TDOA method,
a technique that requires the locations of anchor points, the
time that the signals are received and the traveling speed of
those signals can be employed for accurate location estima-
tion. However, even though the TDOA method can achieve
high accuracy levels in terms of root mean square error
(RMSE), employing various scenarios (Monte-Carlo simu-
lations) using multiple drones, the results for this technique
presented cases where the error exceeded 50 m (contrary
to DRPS where the error does not exceed 8 m). In [3], to
investigate collaborative localizationwhen event-based com-
munication and SOPs are in use, two UAVs were deployed in
outdoor experiments along with pseudorange methodology
to obtain a root mean square error (RMSE) of 11 m, while
DRPS performance analysis shows a RMSE in the range
of 5 m (for 70 outdoor experiments). Also, the DRPS pro-
ducesmore accurate results when compared to an SOP-based
positioning method, as described in [2], that employed asyn-
chronous radio transmissions from fixed stations and mobile
GPS-equipped nodes to cooperatively localize a blind node,
with the DRPS achieving localization performance with 2-

Fig. 17 Relative localization performance evaluation with the presence
of (a) IMU drift and (b) SOP disturbances compared with DRPS

Table 2 Mean absolute error of GNSS, INS, OF, RPS, and DRPS tech-
niques

# GNSS INS OF RPS DRPS MAE (meters)

1 x 4.5

2 x 21

3 x x 16

4 x 9.7

5 x 5.5

norm error lower than 8 m, as compared to [2] where the
2-norm position error was in the range of 30 m. In addi-
tion, the DRPS is compared with cooperative tracking by
multi-agent systems using SOPs. Specifically, the authors in
[68], proposed a cooperative framework that investigated the
performance bounds of cooperative tracking using SOPs by
multiple asynchronous agents equipped with antenna arrays
and it is demonstrated that DRPS outperforms the proposed
system with RMSE in the range of 5 m compared to a RMSE
of 10 m for the system in [68]. Further, the work in [69]
demonstrated a 2-norm error in the range of 10 m using
collaborative bathymetry-based localization, while DRPS
illustrates lower 2-norm error (in the range of 8 m).

It should be noted that the outdoor experiments are con-
ducted employing two autonomous UAV agents in the proto-
type implementation, due to the limited number of available
SDR equipment and UAV agents. However, as it is important
to validate the scalability of the proposed system, additional
UAV agents are simulated employing the DJI drone simula-
tor (due to computing hardware requirements, two, four, and
six agents are simulated; however, this scheme can poten-
tially scale to much larger swarms, with the only limitation
being the utilization of appropriate hardware/software on
each agent to support the multi-agent system). Performance
results obtained demonstrate that the proposed system’s rel-
ative localization performance improves as the number of
agents increases (Fig. 18).

To further evaluate the performance of DRPS, more flight
routes are also considered, and it is demonstrated that the
proposed system is still able to estimate the UAV agent’s
position under erroneous sensor measurement cases, in non-
complex as well as more complex routes (see Fig. 19).

Fig. 18 MAE of DRPS vs. GPS+IMU using different number of agents
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Fig. 19 UAV agent’s position under erroneous sensor measurement
cases for various flight routes

Finally, the RPS and DRPS techniques are compared in
terms of reliability over numerous outdoor experiments. The
proposed system reproduces distributed relative positioning
under specifically defined conditions in 70 outdoor experi-
ments, indicating a 95% accurate location fix (as compared
to 70% for RPS). In this work, an accurate location fix is
defined as the ability to accurately estimate the UAV agent’s
position (i.e., having a localization error of less than 10 m
and a complete UAV waypoint path).

8 Conclusions

Thiswork proposes a novel online distributed navigation sys-
tem (DRPS). The UAV agents are able to exploit the SOPs
(without the need for the transmitter locations), along with
information fromvarious other sensormodalities (i.e., visual,
optical flow, and IMU), independently for self-localization.
Further, when GNSS signals are not available or in case
of sensor faults, each agent in the system employs the
knowledge from other agents in its vicinity in order to
achieve robust relative positioning. Such a system, that
entails communicating and fusing information exchanged
between multiple agents can be adopted in case of jamming
or spoofing attacks, in order to achieve efficient and reliable
navigation incorporating a relative trajectory. An extensive
assessment of the system in real outdoor scenarios showcased
its ability to cope with GNSS signal shortfalls, demonstrat-
ing that the DRPS technique can obtain robust online relative
localization and can be used as a positioning alternative, with

results comparable to the state-of-the-art fused GPS+IMU
performance.

Future work will address the issues of localization preci-
sionwith the fusion of 5G information (with variousmethods
such as ToA and AoA). Further, ongoing research includes
deep learning and TDOA information fusion techniques to
mitigate the accumulated error from the various sensors in
long-term operations, achieving more precise navigation.
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