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Abstract
This paper discusses a collaborative air-ground team of autonomous vehicles for exploring and navigating outdoors within an 
unknown environment. A custom multi-rotor equipped with onboard downward facing stereo cameras flies over an unknown 
environment capturing imagery and reconstructing a height map of the ground surface online. Together with a simple terrain 
classifier, this height map is used to detect obstacles and estimate navigation costs for a Clearpath Robotics Jackal. Given a 
user defined goal, an online exploration algorithm automatically directs the aerial vehicle to expand the frontiers of the map 
until a path for the ground vehicle from the current position to the goal is discovered. Simultaneously, this algorithm directs 
the ground vehicle to execute partial paths to make progress towards the goal before a complete path has been discovered. 
Aside from the trajectory execution and the state estimation for the unmanned ground vehicle and the graphical interface for 
the operator, the online exploration algorithm and reconstruction all run onboard the UAV by taking advantage of the graphics 
processing unit (GPU) computing capabilities of the Nvidia TX2 for both stereo calculations and map construction. This paper 
presents the improvements made to an existing multi-robot system, the mapping and exploration algorithms. Finally, this 
paper discusses both simulation and hardware experiments conducted to validate the behavior of the exploration algorithm.

Keywords Air–ground cooperation · Multi-robot coordination · Unmanned aerial vehicle · Unmanned ground vehicle

1 Introduction

A traditional ground robot has a variety of sensors for obsta-
cle detection and avoidance. A few common types of sensors 
are cameras, lidar, and ultrasonic range finders. However, 

large obstacles or tall grass in the environment can obstruct 
the line of sight of these vehicle-mounted sensors. In many 
scenarios it would be useful if the unmanned ground vehi-
cle (UGV) could have information beyond the field of view 
(FOV) of the sensors. An aerial vehicle with its own sensors 
can provide this additional information. UAVs can gather 
information faster than a UGV for three primary reasons. 
The first is that unmanned aerial vehicles (UAVs) typically 
have a higher top speed than a UGV of similar size. The 
second is the UAV is in the air and can fly above obstacles 
and take a shorter route. The third is the UAV can see larger 
areas from higher altitudes. These advantages are especially 
useful in a post disaster environment such as the one shown 
in Fig. 1. The large amount of scattered debris means a priori 
information would possibly not be accurate and thus would 
not provide a good route for a ground vehicle. In the same 
time required for the UGV to slowly traverse the debris, a 
UAV could explore a larger area and generate a better path 
for the ground vehicle.

This paper presents the significant hardware and soft-
ware improvements made to an existing cooperative out-
door UAV/UGV system [20]. The previous system used a 
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monocular camera and color segmentation to detect obsta-
cles. The goal of the collaborative air-ground team is to 
explore and navigate an unknown outdoor environment as 
shown in Fig. 2. The objectives of the improvements out-
lined in this paper were to provide better obstacle detection 
and to add the exploration capability the previous system 
lacked.

There are several improvements presented in Section 2, 
with the major improvements being the addition of a stereo 
camera, a new mapping algorithm (Section 4), and a novel 
exploration algorithm (Sections 5 & 6). The addition of a 
stereo system adds the ability to detect obstacles based on 
terrain height. The mapping algorithm uses the GPU on the 
onboard computer to more quickly process the data from 
the cameras. The exploration algorithms focus on how to 
explore an unknown environment with a UAV to find a route 

for a UGV. This includes the development and comparison 
of two different UAV exploration methods and a method of 
giving the UGV partial plans during exploration to maintain 
operation tempo.

1.1  Related Work

The related work outlined here is organized based on 
these five main relevant categories: mapping with UAVs, 
stereo-cameras, exploration methods, frontier explora-
tion, and similar systems respectively. Aerial data has 
been used in several systems for mapping as well as some 
others that also used it for path planning for a UGV. 
Kim [15] presented a UAV/UGV system that uses a ste-
reo vision system on the UAV to detect obstacles for 
the UGV. This system also used markers on the UGV to 
allow the UAV to localize in a GPS denied environment. 
Miki presented a novel cooperative UAV/UGV system 
that included mapping the environment for UGV path 
planning [18]. This system used a monocular camera and 
time of flight sensor to map an indoor environment. Kim 
[16] presented a system where a UAV initially maps an 
area so that a UGV equipped with a laser scanner can 
construct a final, higher fidelity map. Schneider pre-
sented an online mapping system for a UAV using RTK 
GPS and SLAM [23].

Warren noted the importance of alignment of long base-
line stereo cameras and how vibration and knocks can force 
a re-calibration of a stereo-camera and presented an online 
method to re-calibrate the camera [26]. Rovira-Más looked 
at combinations of lens focal lengths and baselines for long-
baseline stereo cameras based upon the necessary range of 
use [21]. Milella used a multi-baseline stereo camera to per-
form 3D scene reconstruction and segmentation with both 
long and short range obstacles [19]. Haubeck used an off the 
shelf stereo camera on a UAV for mapping archaeological 
sites [10].

Juliá et al defined autonomous exploration as “The ability 
of mobile robots to autonomously travel around an unknown 
environment gathering the necessary information to produce 
a useful map for navigation.” According to Juliá, the term 
exploration contains path planning but also can be used to 
describe techniques that would not fall under the umbrella 
of path planning [13]. Exploration methods can focus on 
minimizing exploration time or focus on developing better 
maps. Cesare [4], Ferranti [8], and Kalra [14] did work on 
leveraging the additional vehicles in multi-vehicle explora-
tion systems.

The frontier based exploration method was intro-
duced by Brian Yamauchi [27]. Frontiers are defined as 
the “regions on the boundary between open space and 
unexplored space.” Frontiers help address the issue of 
where to go in an unknown environment to gain as much 

Fig. 1  Severe damage caused by a tornado. A priori information about the 
environment would be out of date due to the large amount of debris [7]

Fig. 2  Overview of the system shows a UAV and UGV collaborating 
to route a UGV in an outdoor environment
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information as possible. To detect frontiers Yamauchi 
proposed using “a process similar to edge detection 
and region extraction in computer vision” to find these 
boundaries. To select the best frontier to visit, Yamauchi 
proposed sending the robot to the nearest accessible and 
unvisited frontier. Bachrach [1] proposed a method of 
weighted frontiers which aimed to maximize the amount 
of space explored while still localizing accurately with 
simultaneous localization and mapping (SLAM). Accurate 
localization requires keeping a certain number of recog-
nized landmarks within sight. Therefore, sending the robot 
too far into unexplored space would harm localization and 
mapping accuracy. Bachrach used a weighted method to 
better select a frontier to visit from the identified fron-
tiers [1]. Burgard [3] used a weighted cost of reaching 
a frontier with its expected benefit. Gonzáles-Baños 
and Latombe used the same two criteria of distance and 
benefit but combined them using an exponential func-
tion [9]. Umari presents a method using RRTs to explore 
an unknown environment [25]. The frontier detection is 
done by checking where the expanding tree crosses into 
unknown space. Additionally, both a global and local tree 
are used to find local and global frontiers. This is a similar 
method to what we propose but differs in our exploration 
is targeted towards a global goal and fast exploration time 
while Umari’s method is targeted at exploring the entire 
environment.

Shim [24] combined local obstacle map generation 
with an exploration algorithm based on model predictive 
control (MPC) to explore simulated urban environments. 
Their exploration was to find a path for a large UAV 
(Yamaha RMAX) through a dense unknown urban envi-
ronment. They used a cost function that minimized pen-
alties for tracking and obstacle avoidance. There has also 
been some work with collaborative UAV/UGV explora-
tion. Hood [11] presented a UAV that would follow a UGV 
in an indoor environment and aid in situational aware-
ness with its better vantage point. An augmented reality 
(AR) tag was used for the UAV tracking the UGV and 
SLAM was used to localize and map the environment for 
the exploration. Salas presents a UAV UGV collaboration 
tested in simulation where the UAV follows a predefined 
flight plan to map the environment and search for the goal 
target. Once the target is found by the UAV the UGV is 
sent sub-goals generated from a global planner on the map 
generated by the UAV [22].

Our work brings together some of the ideas presented 
in these other works into a large system that is used in 
a real-world outdoor scenario. It also provides a novel 
targeted frontier exploration method similar to Umari 
but with improvements towards decreasing exploration 
time and specializing it towards exploring a route for 
a UGV.

2  Hardware Improvements

The hardware for this system consists of four major subsys-
tems: the UAV, the UGV, an RTK GPS system, and the Opera-
tor Control Station (OCS). The UAV is a Tarot 960 hexacopter 
equipped with a Nvidia TX2, a Pixhawk Cube flight control-
ler running Arducopter, and a custom long-baseline stereo 
camera. Figure 3 shows the UAV used in the experiments and 
Fig. 5 is a close up of one of the cameras in the stereo pair. The 
UGV is a mostly stock Clearpath Jackal (Fig. 4). It is impor-
tant to note that there is a Hokoyu lidar and a webcam on the 
vehicle but they are not used for obstacle detection/mapping. 
For a base station a simple desktop is used for visualization 
and mission control since the computation happens on-board 
the UAV (Fig. 5).

Fig. 3  Tarot T960 hexacopter with custom stereo system and Nvidia 
TX2

Fig. 4  Clearpath Jackal used for these experiments
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2.1  Stereo Imaging

One of the major improvements to the system was switching 
from a monocular camera to a custom long-baseline stereo 
camera. The stereo camera allows for the terrain depth to 
be measured without using a more expensive sensor such 
as lidar. The first iteration of the stereo camera used USB3 
cameras which were found to produce a lot of broadband 
noise that increased the noise floor significantly on our GPS 
signal and resulted in poor GPS performance. Davuluri and 
Chen explored the root cause of this phenomena [5]. In order 
to get rid of that interference FLIR Blackfly S GigE cameras 
were selected for their Ethernet interface and existing ROS 
driver. These were mounted to a carbon fiber tube using a 
custom clamp and adjustment mechanism. The cameras were 
separated to form a 600 mm baseline which was selected 
based on a target mission altitude of 12-25 m.

The key processes for using a long baseline stereo cam-
era are alignment and calibration. We found that getting the 
optical center of each camera’s image within 1 − 2 pixels 
and getting minimal roll between the cameras was key to 
getting a good calibration and disparity image. Alignment 
was achieved by pointing the cameras at a distant object 
( ∼> 100 m) that would have a disparity of less than one 
pixel, as shown in Fig. 6. The disparity is the horizontal 
pixel distance between a corresponding pixel in the left and 
right image. A disparity of less than one pixel indicates that 
an object is sufficiently far enough away that it shows up 
in the same pixel location in both the left and right image. 
The camera adjustment screws were then adjusted until the 
red center markers overlaid on both images aligned with 

the same point on the distant object. To calibrate the stereo 
camera the ROS camera_calibration package was used. This 
package provided a convenient GUI to capture the calibra-
tion data and then generate the calibration.

One of the primary reasons for selecting the Nvidia 
TX2 as the computer on-board the UAV was for its GPU. 
We selected a GPU-based implementation of Semi-
Global matching algorithm made by researchers at Uni-
versitat Autonoma de Barcelona [12]. On our system with 
1024 × 768 images we saw frame rates of ∼ 5 − 7 frames per 
second. Figure 7 shows an example disparity image gener-
ated by the system.

2.2  RTK GPS

Both UAV and UGV used SwiftNav Piksi Multi RTK GPS 
sensors for precise localization. For the UAV, the RTK GPS 
feeds into the Pixhawk flight controller where it is com-
bined with measurements from an inertial measurement unit, 
gyro, and magnetometer. The resulting state estimate from 
the flight controller is then used by the ROS system. For the 
UGV, an extended kalman filter (EKF) combines the RTK 
GPS measurements with measurements from the built-in 
inertial measurement unit (IMU) and wheel encoders. Both 
vehicles operate in the same map frame and use their state 
estimates to localize themselves in this frame. The single 
band Piksi RTK GPS had been used in earlier versions of 
this system. It had reliability issues because of the use of 
serial radios to pass RTK corrections, and longer times to 
converge to an RTK fix. The new system uses the same dual-
band Ubiquiti WIFI radios used for primary communication 

Fig. 5  One of the FLIR/Point-
grey cameras mounted on the 
boom. Mount allows for adjust-
ment which is critical for proper 
calibration and use

Fig. 6  Example of how the 
UAV is positioned for calibra-
tion and example images show-
ing the alignment process
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between the vehicles for the corrections. While this has a 
reduced range, we observed better reliability and reduced 
latency in the corrections.

3  Online Stereo Extrinsic Calibration

One key feature added to the stereo mapping system on the 
UAV is the ability to calibrate the extrinsics of the stereo 
camera online. The extrinsics calibration for the stereo cam-
era is the measurement of the position and orientation of 
the stereo camera relative to the base frame of the UAV. 
Previously this calibration had been manually measured/
estimated. However, small inaccuracies in the estimated 
orientation resulted in large projection errors of obstacles 
into the costmap. A costmap is a map of the environment 
divided up into grid cells where each cell represents the cost 
(difficulty) to traverse that cell. In multiple previous tests, 
obstacles were shifted in the costmap by up to a few meters.

Coloring the top of the RTK base station antenna with 
a recognizable color makes the antenna detectable in ste-
reo images. Orange was selected to contrast against a back-
ground of grass. Using the antenna is advantageous since 
we know that this location is (0, 0, 0) in the map frame. 
By moving the UAV through a suitable trajectory with the 
antenna in view, we can build up a set of point correspond-
ences to estimate the relative position and orientation of the 
camera to the UAV’s frame.

The antenna was detected using simple process with 
OpenCV. First the image was thresholded in the HSV (Hue 
Saturation Value) color space. Contours were extracted and 
then the minimum enclosing circle was found for the largest 
contour. The center of the minimum enclosing circle gives 
us the antenna position in the image. The coordinates of 
the antenna in the camera’s frame of reference can then be 
estimated using the stereo parameters.

For each estimate of the antenna’s location in the cam-
era frame from the stereo camera, the projected location 
of the antenna in the camera’s frame based on the UAV’s 
state estimate is recorded. Each measurement creates a point 

correspondence between the antenna location estimated with 
the camera and the location based on the flight controller 
state estimate. These are stored as two separate point clouds. 
With these point correspondences we use the Point Cloud 
Library’s TransformEstimateionSVD to estimate the rigid 
body transform between the two point clouds which gives 
us an estimate of the transform between the flight controller 
and the stereo pair.

Calibration imagery was captured by manually ascend-
ing and descending the UAV above the antenna while yaw-
ing. This flight pattern was found to produce satisfactory 
calibrations.

To test the extrinsic calibration points easily identified 
in the costmap were surveyed using an RTK GPS. These 
points were a portable hand washing station (1), the front 
right tire of a tractor (2), the north corner of a barn (3), and 
the corner of a concrete pad (4) [see Fig. 8]. The position of 
each point was measured for one minute. The average posi-
tion of each point was projected onto the costmap for visual 
comparison. Due to the discontinuities in the map it would 
be difficult to quantify the error exactly but the image shows 
that the calibration has a projection error of less than 0.5 
meter. This is a huge improvement over what we observed 
before adding the extrinsics calibration which sometimes 

Fig. 7  Disparity image (left) 
captured using the stereo system 
at an altitude of ∼ 25 m. A large 
tractor and part of a building 
can be seen in the raw color 
image (right)

Fig. 8  Costmap with RTK surveyed points marked. Dark areas repre-
sent areas of high cost (obstacles)
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had a projection error of multiple meters. A 0.5 meter accu-
racy places a lower bound on the size of obstacles the system 
can successfully avoid of to around a meter.

4  Online Mapping

The mapping subsystem takes in disparity information and 
the raw color images to produce costmaps for the path plan-
ners. Figure 9 shows the overall flow of data through the 
mapping subsystem. Color imagery and disparity generated 
by the stereo camera combine to generate the different maps 
shown. Map dimensions and spatial resolution (m/pixel) are 
fixed at launch so operators must predefine the operating 
area and resolution. A height map was selected for efficiency 
with a top down aerial view of an outdoor environment. This 
representation is significantly more compact than a dense 
3D voxel representation, however it is unable to model over-
hangs. A GPU based implementation converts the computed 
disparities and color images into a colorized point cloud in 
map coordinates using the state estimate provided by the 
flight controller. The map frame the point cloud is projected 
into is a global frame based on the RTK GPS localization. 
The flight controller’s estimate of position is accurate due to 
the use of RTK GPS. However, we have observed inaccura-
cies in the constructed map due to poor estimates of roll and 
pitch. Donnelly has done work on using feature matching 
to improve the registration of the mapping in his Master’s 
thesis [6]. His thesis work was done with the same system 
but was not implemented at the time of this work.

First the points from the colorized point cloud in a one 
meter radius of the position of the UGV at the time the 
image was captured are filtered out to ensure the UGV does 
not show up in the map. The filtered points from the col-
orized point cloud are then accumulated in three separate 

dense grid maps. The first accumulates the weighted sum 
of z height of points falling into each grid cell. The second 
accumulates the weighted sum of RGB color values of points 
falling into each grid cell. The third accumulates the total 
point weight within each cell. Each point is assigned weight 
proportional to its inverse depth to reflect the loss of accu-
racy in z height and loss of detail in color for more distant 
points. From these grid maps we may distinguish between 
observed and unobserved space as well as compute the aver-
age height and average color of each observed cell.

These GPU data structures were converted into a cost-
map at the request of the exploration software. The cost-
map consists of two terms, an obstacle layer based on 
estimated surface angle and the second layer based on 
a terrain cost. To generate the obstacle layer, we begin 
by computing the weighted average height in each cell. 
The average height image is blurred by a Gaussian ker-
nel with a user set standard deviation. This blurring step 
removes spurious discontinuities in the height map at the 
edges of projected images due to errors in the estimate 
of the orientation of the UAV. This affects the size of 
obstacles the system is sensitive to since all obstacles are 
dilated by this step. After the blurring step, the resulting 
height image is eroded to account for the unobserved 
areas of the map.

The Scharr gradients of the height are calculated in the 
x and y directions. This magnitude of gradient is used to 
compute a measure of the surface angle using (1). The result 
of this step is shown in Fig. 9 as the gradient magnitude.

Where ‖∇(i, j)‖ is the magnitude of the gradient in cell i, j, 
�(i, j) is the estimated surface angle and where resolution 
is the resolution of the map in m/pixel. The factor of 2 

(1)�(i, j) = atan2(‖∇(i, j)‖, 2 ∗ resolution),

Fig. 9  Data flow from stereo 
imagery to final costmap
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represents the distance between the centers of the cells in 
the 3 × 3 kernel. Then this surface angle is converted into a 
cost. We simply use a clamped quadratic function relating 
angle to cost using (2).

Where C(i, j) denotes the computed cost, Clethal is the cost 
value denoting a lethal obstacle (100.0), and where �lethal is 
the user set maximum angle set to 60 degrees.

The terrain layer uses a simple 2-class, HSV terrain 
classifier to compute a terrain cost. After computing the 
average RGB color for each cell, then converting to the 
HSV color space, cells with a saturation or value below 
user set thresholds are classified as road, otherwise the 
cell is classified as off-road. If a cell already has a valid 
slope cost, a terrain class specific cost is added to com-
pute the total cost of the cell. Off-road is assigned a 
cost of 27 while road is assigned a cost of 16 out of the 
total 100. These costs were arbitrarily assigned based on 
human perceived cost and the effect of different values 
was not evaluated in this work. We avoid applying the 
terrain cost for cells where the slope cost was not success-
fully computed to avoid underestimating the cost near the 
edges of explored space. The total costmap provides both 
information about the cost of traversal and describes what 
areas of the environment have already been explored. This 
map is then passed on to the navigation stack for explora-
tion and planning.

5  Online Exploration with UAV

One of the primary goals of this work was to develop 
an online exploration algorithm for directing the UAV 
to explore the environment for the UGV. This explora-
tion algorithm needed to run onboard the UAV, and it 
needed to find a path for the UGV in a reasonable amount 
of time. Two exploration algorithms were developed 
and tested. The first method, called the Dijkstra Fron-
tier method, plans a path between the start and goal, and 
moves the aerial vehicle to the frontier between observed 
and unobserved space. The second method, called RRT 
Exploration uses a bi-directional Rapidly-exploring ran-
dom tree (RRT) to identify multiple candidate goals for 
the UAV to select between. Both methods use a targeted 
approach to exploring the environment as compared to 
an exhaustive search. More exhaustive methods such as 
using a raster pattern would take longer when UAV time 
is at a premium. Additionally, a simple pattern does not 
leverage the information gained during exploration.

(2)C(i, j) = Clethal ∗ min

((
�(i, j)

�lethal

)2

, 1.0

)
,

5.1  Dijkstra Frontier Exploration

The first method explored was the Dijkstra Frontier method. 
This method would be similar to using D* or re-planning 
with Dijkstra/A* onboard the UGV without any UAV [17]. 
Traditional exploration with a UGV and D* or re-planning 
would involve updating or re-planning every-time the costs 
in the map update and would plan from the current location 
of the UGV. The difference in this system is that the UGV is 
not doing the exploring but rather the UAV. For this system 
the UAV is operating at a predetermined altitude that opera-
tors have determined is free of obstacles. This means that 
the UAV can explore anywhere in the environment without 
concern of running into obstacles. Exploring with the aerial 
vehicle presents several differences from exploring with a 
UGV. First the UAV is not bound by the same constraints 
of obstacles as a UGV. One example of this is a UAV can 
sense an obstacle in front of it on the ground but it can go 
over the obstacle without collision. Exploration can ben-
efit from going over obstacles and not trying to avoid them 
but this can also lead to the UAV traveling past an obstacle 
and exploring a region disconnected from the explored area 
containing the UGV. This would prevent the system from 
finding a valid path for the UGV. The aerial perspective of 
a UAV allows for some different approaches to be taken.

With the previous considerations taken into account the 
Dijkstra Frontier method was developed. Plans are generated 
from the current UGV location so that the frontiers found 
will always be impeding the valid path. Doing this makes it 
such that there is always an already explored path leading up 
to the new frontier. To find where the frontier is located, we 
generate a plan using an optimal planner (in this case A*) 
and iterate through the plan generated until the first point in 
unexplored space is reached. This point is then labeled as 
the frontier. To maximize the size of the new area explored, 
the UAV’s goal is offset by a fixed distance along the vector 
between the UAV and the frontier. If the UAV went exactly 
to the frontier point then half of the field of view (FOV) 
of the stereo system would be in known space. This would 
result in longer overall exploration times with approximately 
twice as many exploration cycles as the UAV. After the UAV 
reaches its goal, the UGV path planner is run with unknown 
space represented as obstacle/impassable. If it returns a valid 
plan exploration is done. If not, the cycle is repeated. A 
visual of the algorithm in action is shown in Fig. 10.

5.2  RRT Exploration

The RRT Exploration method was developed due to some 
of the observed issues of the Dijkstra Frontier method. The 
main issue was that in certain environments the exploration 
would oscillate between exploring two sides of an obsta-
cle and this made the UAV travel a longer than necessary 
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distance. An example of this is shown in Fig. 18. The Dijk-
stra frontier method shows a lot of activity going between 
the two sides of the first obstacle. This method attempts to 
address the issue by using RRTs to generate multiple sub-
optimal paths so that the UAV can select frontiers closer to 
the UAV.

The primary reason that a RRT was selected is that as a 
sampling based path planning technique sub-optimal paths 
can be generated. The problem with the Dijkstra frontier 
method was that Dijkstra and similar methods provide an 
optimal path and have no way of generating multiple sub-
optimal paths in the environment. The resulting paths can 
change dramatically when a little bit more of the environ-
ment is explored. Generating multiple sub-optimal paths 
allows the UAV to select closer frontiers even if the UGV 
path is slightly longer.

To find the frontiers, a bi-directional RRT in the two-
dimensional costmap is used to search from the goal and 
the UGV start point, where the RRTs are constrained to 
unknown and known space respectively. The possible con-
nections of the two RRTs will correspond with the frontiers. 
Since the known space will only expand, and assuming a 
static environment, the RRT inside known space is expanded 
on each cycle rather than being regenerated from scratch. 
The RRT in unknown space is regenerated each cycle for 
simplicity. For the size of environment explored in this 
experiment there were no calculation time issues with just 
regenerating the unknown RRT. Regenerating the unknown 
RRT could be replaced by using a method to update the tree 
to remove branches that now intersect with found obstacles 
and known space.

The next section will detail the specifics of the RRT 
exploration method as it is implemented. It follows similar 
logic to the Dijkstra Frontier method as it goes to frontiers 
until a valid path for the UGV goal is found. Figure 11 shows 
how the RRT explore algorithm fits into the higher level 
logic. The function call to generate a plan is provided with 

the following information: the number of iterations for add-
ing nodes in the unknown tree, the number of iterations for 
adding nodes to the known tree each cycle, the obstacle map, 
the UGV goal, and the current UAV position.

5.2.1  Mask Generation

The first step in the RRT explore algorithm is to generate 
some binary masks to help the algorithm later quickly iden-
tify certain regions. The three masks generated are known 
space, unknown space, and obstacles. These are imple-
mented as OpenCV masks so that they can be used with 
other OpenCV functions.

5.2.2  RRT Generation

The RRT generation follows a generic RRT implementa-
tion. To start, a point is selected as the root of the tree to 
which all branches will eventually lead back to. A random 
point is sampled inside the region of the obstacle map. The 
nearest neighbor to this point is found using a simple search 
since the number of points is relatively low. The RRT imple-
mented uses a fixed length branch. This means that each 
branch added is a specified length in the direction of the 
sampled point from the sampled point’s nearest neighbor. 
This improves how well it can expand in tight spaces as 
longer branches are more likely to not be added due to colli-
sions. Before the branch is added to the tree, it is collision-
checked with obstacles. This is done using the masks previ-
ously generated. Using the OpenCV line iterator the pixels 
of the branch are iterated through and if any go outside the 
mask a collision is detected. If no collision is detected the 
branch is added to the tree. Each time a node is added its 
distance to the root of the tree is stored for quick distance 
checking later.

5.2.3  Unknown Area RRT Generation

The second step after the mask generation is to generate 
the RRT in the unknown area. Since the unknown area is 
shrinking the RRT cannot be regenerated without an algo-
rithm to collision check the existing tree with areas that were 
updated. Thus, for simplicity’s sake the RRT in unknown 
space is entirely regenerated. This has some impact on how 
fast the algorithm runs but the tree is able to expand quickly 
in the unknown space since there is more space for it to oper-
ate. The unknown tree is generated with the root of the tree 
at the goal defined for the UGV and expands outwards. The 
number of iterations used to add to the unknown tree ranged 
between 500 − 2000 during the trials for this research. This 
number can be selected for other trials based on the size of 
the environment and performance considerations.

Fig. 10  Diagram of the Dijkstra frontier method visualized in RVIZ
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5.2.4  Known Area RRT Expansion

The third step is to expand the known tree. This follows the 
same basic RRT algorithm as the unknown tree, but is inside 
the known space and is expanded instead of regenerated. The 
known tree is able to be expanded since the cleared space 
in the known area will not change since this is assumed to 
be a static environment. Thus, all existing branches in the 
tree will remain valid for the lifetime of the exploration. 
Since the known space is smaller and will have obstacles 
in the way, more iterations are required to find a valid path 
between two points. Expanding with each cycle spreads the 
computation over the life-cycle of the exploration. Figure 12 
shows the environment after both trees have been generated.

5.2.5  KD‑Tree Generation

The fourth step in the process is to generate a two-dimen-
sional KD-tree for the points in the unknown RRT. A KD-
tree is a data structure that stores points in k-dimensional 
space and allows for quick and efficient nearest neighbor 
searches [2]. This will be used in the connection phase 

of the algorithm as a large number of nearest neighbor 
queries are going to be made. The nodes in the two-dimen-
sional KD-tree are the x and y coordinates of the nodes in 
the unknown tree.

Fig. 11  Flowchart for how the 
RRT explore algorithm fits in 
the system and the specific steps 
of the RRT explore algorithm

Fig. 12  RRT in unknown space (white area) expanding around the 
known space (green area) and obstacles (dark red). Start is the orange 
circle and the goal the is pink circle
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5.2.6  RRT Connection

The fifth step is connecting the two RRTs. Connecting the 
two trees will find the possible paths in the environment. Due 
to the large number of nodes in both trees there are a large 
number of possible connections. To reduce this to a more 
reasonable amount, a single “best” connection is generated 
for each node in the known tree. For a node in the known 
tree its nearest neighbors in the unknown tree are identi-
fied using the KD-tree. Nearest neighbors are determined 
using a fixed neighborhood size. Once nearest neighbors 
are determined, each connection to the neighbor is collision 
checked and ones that result in a collision are removed. For 
the remaining connections, a cost function is used to deter-
mine the ‘best” connection. The function is a weighted sum 
of the distance through the tree from start to goal and the 
distance between the two nodes. The distance between the 
start and goal is calculated using the root distance element 
in the two nodes that was saved during tree generation. The 
weighting used in this implementation was a weight of 0.1 
for the total distance and 1.0 for the distance between the 
two nodes. This weighting scheme was determined to find 
the balance between finding the shortest overall path while 
also making sure it is a reasonably close connection. This 
step of connecting is repeated for each node in the known 
tree to find multiple paths.

5.2.7  Frontier Extraction

The sixth step is to extract the frontiers from the connec-
tions. The point where the connection crosses from known 
to unknown space is the frontier. To extract the frontier, we 
iterate along the connection from the known tree until an 
unknown pixel is reached. This transition point is that con-
nection’s frontier.

5.2.8  Frontier Selection

The seventh step is to select the best frontier for the UAV 
to visit. A cost function is used to select the best frontier. 
The cost function is the weighted sum of the straight-line 
distance to the goal and the straight-line distance to the 
UAV. These two parameters are used to balance between 
finding the shortest path for the UGV and minimizing how 
much the UAV has to travel. If the weight for the straight-
line distance to the goal ( wg ) is larger, the exploration will 
favor exploring frontiers closest to the goal and if the weight 
for the straight-line distance to the UAV ( wu ) is larger the 
exploration will favor frontiers closer to the UAV. Using 
static weights would work but would not account for how the 
importance of the two variables change as the exploration 
frontier gets closer to the goal. When closer to the goal, the 
distance to the goal is more important than the distance to 

UAV. When the exploration is near the beginning, reducing 
UAV travel distance is more important. To handle this the 
weights are determined based on how close the frontier is 
to the goal. The selected weights, as a function of frontier 
distance to goal, are shown in Fig. 13. For the weight func-
tions, a logarithm was chosen for the goal distance weight 
as its larger near the goal and fades out as we get away from 
the goal nonlinearly. A linear ramp that saturates was chosen 
for the UAV distance weight as we want it to increase as we 
get away from the goal but not increase exponentially once 
we reach a certain point. Once in the saturated area the cost 
will just increase linearly. There is no maximum distance 
from the goal that it will not consider. The exact weights 
and equation parameters were selected based on empirical 
observations and tuned manually based on watching the 
performance of the exploration in sample environments in 
simulation. The performance of the weighting algorithm in 
larger environments was not tested since the UAV endurance 
would not permit exploring larger areas. These values were 
observed to generally work well across the size environ-
ments tested in this work. If a UAV with longer endurance 
was to be used in a larger environment, the main parameter 
to look at for tuning is the distance from the goal at which 
the UAV distance weight saturates. The equations for the 
weights are below with the selected values used. wg is the 
weight for the distance between UGV and goal and wu is the 
weight for the distance between UAV and goal.

Using the weights from the formulas the frontier cost func-
tion is calculated as shown below.

(3)wg = −0.1 ∗ log(EuclDist(goal, ugv)) + 1,

(4)wu = min((0.027) ∗ EuclDist(goal, uav) + 0.2, 1.0),

(5)
costfrontier = EuclDist(goal, ugv) ∗ wg + EuclDist(goal, uav) ∗ wu,

Fig. 13  Weights for the frontier selection cost function
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Once the cost for all of the frontiers is calculated the one 
with the minimum cost is selected and the waypoint is sent 
to the navigation handler. This then directs the UAV to the 
selected frontier via a straight-line path.

6  Partial Plans for UGV

Allowing the UGV to move before a complete plan is found 
allows the overall mission time to be reduced. If the UGV 
waited at the starting location until the UAV was done 
exploring it would be guaranteed to not need to backtrack 
but would waste time that it could have been moving. Inter-
mediate plans can be given to the UGV but they risk leading 
the UGV the wrong way and forcing it to backtrack. Thus, 
a balance between directly following the UAV and waiting 
at the start must be found. Figure 14 shows how the UGV 
can be sent partway to the frontier. The method proposed 
here uses a safe follow back distance along with looking for 
“danger areas” along the current path to the frontier.

The first part of the intermediate plans for the UGV is to 
generate a path to the frontier. Next, dangerous areas that 
could lead to backtracking need to be identified. Danger 
areas were defined as where obstacles abut with unknown 
space. These regions have high uncertainty and thus could 
lead to larger obstacles being uncovered. To quickly identify 
these regions the existing unknown and known area masks 
are used. The obstacle mask is inflated so it will overlap with 

areas in the unknown mask and a bit-wise and operation is 
done to quickly identify the danger regions.

Once the danger areas are identified and stored as a mask, 
the danger along the path needs to be quantified. The cor-
ridor on either side of the path is examined for grid cells 
marked as dangerous. The total danger at a point along the 
path is accumulated along a line perpendicular to the path. 
This is repeated for all points in the path to generate an 
array of danger scores along the path. Figure 15 shows the 
measured region on either side of the path.

To prevent the UGV from backtracking, it should be held 
back a certain distance from danger areas. A fixed distance 
from danger is defined as the follow back distance. Differ-
ent follow back distances were tested in the simulation Sec-
tion 7. These would be predetermined by operators based 
on the environment complexity. A sliding window with 
equivalent length of the follow back distance is applied to 
the path danger array starting at the end nearest the frontier. 
This window is slid back towards the start until the sum 
of the path danger in the window is less than a predefined 
threshold. The starting point of this window is then selected 
as the end waypoint for the UGV. The generated path up to 
this waypoint is sent to the UGV for execution.

7  Simulation Results

Having a simulation environment for the system is incredibly 
important as testing in the field is difficult for a variety of 
reasons. The software Gazebo handles the simulation of the 
environment, virtual cameras, and the vehicle physics. The 
UGV is simulated in Gazebo using the open source software 
provided by Clearpath Robotics. The UAV simulation is run 
using the Gazebo software in the loop (SITL) provided by 
the PX4 firmware developers. The only significant difference 
between the hardware and simulation environment is that the 

Fig. 14  Diagram showing how the UGV is held back when an incom-
plete plan to the goal exists

Fig. 15  UGV Path with the region around the path measured for dan-
ger areas. Increased danger along the path shows up on a color scale 
with the maximum being encoded as red
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simulation uses a depth camera to simulate the stereo system 
on the real UAV.

7.1  Dijkstra Frontier vs RRT Explore Exploration 
Distance Comparisons

To compare the two algorithms, each were run on a vari-
ety of environments. Each environment consists of a dif-
ferent configuration of obstacles designed to challenge the 
algorithms. All environments used the same start and goal 
points with just different obstacles. The obstacles are con-
strained within an area 40 meters long and 10 meters wide 
with the start and goal on opposite ends of the 40m meter 
side. The size environment was selected based on the lim-
ited endurance of the Tarot 960 drone used for real-world 
testing. This size is about what the UAV can explore with 
its  15 minute flight time. A total of nine environments were 
created for evaluation but only three are presented in this 
section as they provide the most insight into the perfor-
mance of the two algorithms. The environments not shown 
were either for testing other algorithms such as the UGV 
intermediate plan or ended up showing similar results to the 
environments already presented. Diagrams of each environ-
ment are shown in Appendix 1. The total distance traveled 
by the UAV finding a path for the UGV was recorded for 50 

simulation runs for both the Dijkstra Frontier method and 
the RRT explore method.

The Demo 2 environment (Fig. 23) is designed to simu-
late an environment where an obstacle creates one path that 
is much better to explore than the other. This is done by 
offset obstacles that make the shortest path right through 
the center. The distances for this environment show that 
the Dijkstra Frontier method out performs the RRT explore 
method. This is expected as this was designed to be a worst 
case scenario for the RRT explore method. Since the RRT 
explore method is designed to reduce oscillations while 
exploring it commits to one side more than the Dijkstra fron-
tier method which is always looking for the optimal path. 
This can be seen in the heatmaps (Fig. 17) and is plotted in 
Fig. 16. The heatmaps represents the frequency the UAV 
visited each part of the environment during exploration. The 
box plots show the summary statistics for all 50 simulations. 
The bottom and top edges of the box indicate the 25th and 
75th percentiles, respectively. The Dijkstra Frontier method 
shows a pretty direct exploration through the center of the 
environment and never goes to the long sides of the obsta-
cles. This is in stark contrast to the RRT explore method 
which over the course of the 50 simulations explored pretty 
much every path possible resulting in longer exploration 
distances (Fig. 17).

Fig. 16  Box and whisker plots of the total exploration distance of the UAV in three environments

Fig. 17  Heatmap for Demo 2 
environment, obstacles shown 
in white
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The Demo 7 environment (Fig. 24) was setup to really 
test the advantage of the RRT explore method. The Dijkstra 
Frontier method tends to oscillate between the sides of a large 
obstacle, so two large obstacles were placed in between the 
start and the goal. The results (Fig. 16) show very clearly that 
the RRT explore method achieves shorter exploration dis-
tances with large obstacles in its way. The mean exploration 
distance was approximately 90 m longer for the Dijkstra Fron-
tier method. This behavior can also be seen very clearly in the 
heatmaps (Fig. 18). The Dijkstra Frontier method shows explo-
ration all over the environment while the RRT method shows 
fairly direct exploration around the perimeter of the obstacles.

The Demo 8 environment (Fig. 25) is designed to simu-
late a dense environment with a lot of small buildings in 
between the start and the goal. This was not designed to 
favor one algorithm but to simulate a realistic environment 
that the system could be asked to operate in. The results 
(Fig. 16) show that the RRT out preformed the Dijkstra 
Frontier method by around 40 m on average. Upon inspec-
tion of the heatmaps (Fig. 19) the main difference between 
the two is a tendency for the Dijkstra Frontier method to 
do more exploration around the obstacles similar as in the 
Demo 7 environment.

Overall the RRT explore algorithm shows the best average 
performance across a variety of environments. The Dijkstra 
Frontier method would likely be the better option in very sim-
ple environments where operators do not expect the vehicles 
to encounter many obstacles. In these simpler environments 
the Dijkstra Frontier method will produce the most direct/

shorter route. For environments that the operators do not 
know what to expect or is known to have more complicated 
obstacles, the RRT explore method should be used.

7.2  UGV Intermediate Plan Method Results

The UGV intermediate plan method was tested in simulation 
with the follow back distance varied from 0 to 10 meters. As 
mentioned in section 6, the follow back distance is defined 
as a fixed distance from danger areas along the UGV’s path. 
Thirty simulations were run for each distance. This was 
tested on an environment with (Fig. 25) and without a dead 
end (Fig. 26). The results from only these two environments, 
with and without a dead end, are presented as they represent 
the two extremes of environments this algorithm can expect. 
The dead end was around 15 vehicle lengths deep and 15 
vehicle lengths wide. The results from both test environ-
ments are plotted in Fig. 20. Results for the no dead end 
environment showed increased mission times as expected 
and a slight decrease in UGV distance traveled. Results 
for the dead-end environment showed a slight increase in 
mission times but a significant decrease in UGV distance 
traveled. Overall the proposed method for controlling the 
UGV when the entire global plan is not yet known shows 
that holding the UGV back can result in distance traveled 
savings but not necessarily mission time savings. In envi-
ronments with no dead ends, holding the UGV back only 
increases mission time. Only when there are possible dead 
ends should the UGV hold back distance be used. It should 

Fig. 18  Heatmap for Demo 7 
environment, obstacles shown 
in white

Fig. 19  Heatmap for Demo 8 
environment, obstacles shown 
in white
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be noted that mission time savings is also most likely a func-
tion of the UAV and UGV speed. If the UAV and UGV can 
move similar speeds then there will be no time savings from 
holding the UGV back. If the UGV is significantly slower 
there should be a point when holding the UGV back will 
result in time savings.

8  Field Demonstration

The system described here was tested at Virginia Tech’s 
Experimental Aviation Systems Lab at Kentland Farms. The 
selected area has a good combination of buildings, grass, 
gravel, pavement, and vehicles that represent the type of 
environment the system was intended to operate in.

The first stage of the demonstration mission is to setup 
the vehicles, RTK GPS system, and operator control station. 
Next, the appropriate software is started on each of the three 
computers (UAV, UGV, OCS) and operation verified. The 
UAV pilot in command will then takeoff the UAV and fly it 
over to the RTK base station antenna for extrinsics calibra-
tion. The pilot then manually flies the UAV in the method 
described in Section 3 until enough samples are collected to 
calibrate the extrinsics of the stereo camera. Automating this 
step would be a good improvement to the system.

With the calibration complete the system is ready for 
the mission. The operator at the OCS will use either RVIZ 
or Mapviz to command a goal for the UGV and sends it to 
the UAV. The pilot will then switch the UAV into “Guided” 
mode which allows the software to control the UAV. The UAV 
will then begin running the RRT explore algorithm and start 
exploring the environment. As enough of the environment 
is explored the UGV will begin to follow behind using the 
method described in Section 6. Once the UAV explores the 

last part of the environment necessary for a complete plan for 
the UGV it will stop moving and the UGV will traverse to the 
goal. After the mission is complete, the operator can specify 
more goals for the UGV to go to and the process will repeat. 
The total distance/number of goals is mainly limited by the 
flight time of the UAV. After the operator is done sending goals 
to the UGV the pilot will take control of the UAV and land.

The demonstration at Kentland Farms consisted of one 
goal approximately 50m from where the UGV started on 
the other side of a barn. The environment, along with the 
vehicle starting locations, ending locations, and paths taken 
are shown in Fig. 21. Figure 22 shows the costmap generated 
by the system with areas of importance annotated. The mis-
sion was finished in approximately 7 minutes with the UAV 
traveling ∼ 100 meters from the UGV starting position and 
the UGV traveling ∼ 70 meters.

The computational time for the RRT exploration was 
recorded for both a desktop and the embedded TX2 on the 
UAV (see Table 1). The desktop tested has an AMD 1800X 
CPU, 32 GB of RAM, and a GTX 980Ti Graphics card. 
These values are the average for running the software on the 
recorded data from the field demonstration. The cycle time 
for the RRT was around 300 ms on board the TX2 which 
does not delay the UAV very much in flight.

The field demonstration was able to validate the improve-
ments made to this UGV/UAV system. The onboard stereo 
mapping was shown to operate in real time and produce 
good maps for the UAV and UGV to plan on. This is a great 
improvement over the old system that only used a color-based 
obstacle detection technique. The long baseline stereo camera 
was able to produce good depth maps for obstacle detection. 
The exploration algorithm was shown to successfully generate 
a path for the UGV and provided a very direct route with the 
quicker UAV doing the exploration.

Fig. 20  Mission time and UGV distance for an environment without a dead end (left) and with (right)
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Based on the field testing we identified several improve-
ments for the system. The first is that the mission tempo 
could be greatly improved with using a UGV with a higher 
top speed. A large portion of the total mission cycle was the 
UAV hovering over the end waiting for the UGV to arrive. 
Another improvement would be to use the dynamic meshing 
feature in the Ubiquiti WIFI radios used. Dynamic meshing 

is the ability for the communication hardware to switch the 
path the signal goes using multiple radios. At the time of the 
experiment this was a beta feature and was not used. When the 
UGV went around the corner of the barn there was a signifi-
cant drop in communication quality. Some other field testing 
has shown that the barn was enough of an obstacle to com-
pletely block communication if the UGV was on the complete 
opposite side. With the UAV hovering over the UGV on the 
other side and with a clear line of sight to the base station the 
mesh feature could reroute the communication to the UGV 
through the UAV.

9  Conclusion

This work presents the improvements to an existing novel 
cooperative unmanned aerial vehicle/unmanned ground 
vehicle (UAV/UGV) system. The cooperative UAV/UGV 
system aims to reduce risk for UGV exploration using the 
UAV to explore. Mapping was improved from the previous 
version of the system through adding a custom long-baseline 
stereo camera. The use of a stereo camera over a sensor, such 
as a lidar, greatly reduces the overall cost of such a system 
and fits within one of the goals of the project to have reason-
able hardware requirements. The stereo computation was 
done onboard using the GPU. Mapping was also performed 
onboard with a new GPU based mapping implementation. 
Mapping registration to the world was improved using an 
online camera extrinsics calibration. Real-world projection 
errors of less than 0.5 meter were shown with this approach.

The presented RRT exploration algorithm directed the 
UAV to frontiers of interest allowing the UAV to explore 
the environment in an efficient manner to generate a path for 
the UGV to navigate to the specified goal. The RRT explora-
tion algorithm showed good performance in both simulation 
and real-world environments. Furthermore, the algorithm 
was also shown to be efficient enough to run onboard the 
UAV on the NVIDA TX2 platform. The Dijkstra Frontier 
method was also presented and showed good performance 
in simple environments, but was outperformed in more 
complex, unstructured environments. A method to give the 
UGV partial plans before the environment was completely 
explored was presented. This method of holding back the 
UGV was shown to have potential distance traveled/energy 
savings for the UGV. The system was tested in simulation 
to verify its effectiveness and reliability. Finally, the system 
was tested on the hardware system in an outdoor scenario to 
demonstrate its capabilities. The outdoor scenario success-
fully demonstrated the effectiveness of the approach from 
both a hardware and software standpoint.

Since this is still an early developmental system there is 
plenty of opportunities for future research and development. 
The area that could benefit the most from further development 

Fig. 21  Annotated map showing the paths of both vehicles

Fig. 22  Annotated costmap showing the start and goal position along 
with the barn and tractor seen during the mission

Table 1  RRT computational time per cycle

RRT explore Step Desktop (ms) NVIDIA 
TX2 (ms)

Mask Generation 24 66
Unknown RRT Generation 75 130
Known RRT Expansion 12 16
KD-Tree Creation 30 66
Connection and Frontier Extraction 11 25
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is the mapping subsystem. The main deficiency was the poor 
frame to frame registration between depth images projected 
onto the costmap. Poor registration limits the size of objects 
that can be successfully detected and can make traversable 
gaps in the environment appear impassable. Since only one 
outdoor scenario was tested, future work would also include 
testing the system in a wider variety of scenarios with differ-
ent obstacle sets and degrees of difficulty. Other future work 
could include adding sensing the the UGV to improve its abil-
ity to navigate small scale obstacles in its local environment.

Appendix A: Simulation Environment 
Diagrams
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Fig. 23  Demo 2 environment. This environment features long obsta-
cles with a much shorter path through the center. Designed to be a 
worst case for the RRT explore algorithm

Fig. 24  Demo 7 environment. This environment features two C 
shaped obstacles one facing the start and one facing the goal.

Fig. 25  Demo 8 environment. This environment features a large num-
ber of square obstacles to simulate an urban environment

Fig. 26  Demo 9 environment. This environment features a simple 
dead end near the start that is approximately 8 meters deep
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