
Vol.:(0123456789)1 3

https://doi.org/10.1007/s10846-022-01751-9

REGULAR PAPER

Online Aerial 2.5D Terrain Mapping and Active Aerial Vehicle
Exploration for Ground Robot Navigation

Anthony Wagner1 · John Peterson1 · James Donnelly1 · Shivam Chourey1 · Kevin Kochersberger1

Received: 2 August 2021 / Accepted: 3 October 2022
© The Author(s), under exclusive licence to Springer Nature B.V. 2022

Abstract
This paper discusses a collaborative air-ground team of autonomous vehicles for exploring and navigating outdoors within an
unknown environment. A custom multi-rotor equipped with onboard downward facing stereo cameras flies over an unknown
environment capturing imagery and reconstructing a height map of the ground surface online. Together with a simple terrain
classifier, this height map is used to detect obstacles and estimate navigation costs for a Clearpath Robotics Jackal. Given a
user defined goal, an online exploration algorithm automatically directs the aerial vehicle to expand the frontiers of the map
until a path for the ground vehicle from the current position to the goal is discovered. Simultaneously, this algorithm directs
the ground vehicle to execute partial paths to make progress towards the goal before a complete path has been discovered.
Aside from the trajectory execution and the state estimation for the unmanned ground vehicle and the graphical interface for
the operator, the online exploration algorithm and reconstruction all run onboard the UAV by taking advantage of the graphics
processing unit (GPU) computing capabilities of the Nvidia TX2 for both stereo calculations and map construction. This paper
presents the improvements made to an existing multi-robot system, the mapping and exploration algorithms. Finally, this
paper discusses both simulation and hardware experiments conducted to validate the behavior of the exploration algorithm.

Keywords Air–ground cooperation · Multi-robot coordination · Unmanned aerial vehicle · Unmanned ground vehicle

1 Introduction

A traditional ground robot has a variety of sensors for obsta-
cle detection and avoidance. A few common types of sensors
are cameras, lidar, and ultrasonic range finders. However,

large obstacles or tall grass in the environment can obstruct
the line of sight of these vehicle-mounted sensors. In many
scenarios it would be useful if the unmanned ground vehi-
cle (UGV) could have information beyond the field of view
(FOV) of the sensors. An aerial vehicle with its own sensors
can provide this additional information. UAVs can gather
information faster than a UGV for three primary reasons.
The first is that unmanned aerial vehicles (UAVs) typically
have a higher top speed than a UGV of similar size. The
second is the UAV is in the air and can fly above obstacles
and take a shorter route. The third is the UAV can see larger
areas from higher altitudes. These advantages are especially
useful in a post disaster environment such as the one shown
in Fig. 1. The large amount of scattered debris means a priori
information would possibly not be accurate and thus would
not provide a good route for a ground vehicle. In the same
time required for the UGV to slowly traverse the debris, a
UAV could explore a larger area and generate a better path
for the ground vehicle.

This paper presents the significant hardware and soft-
ware improvements made to an existing cooperative out-
door UAV/UGV system [20]. The previous system used a

This work was funded through the National Science Foundation
I/UCRC Center for Unmanned Aircraft Systems Phase II Site
Addition, Award No. 1650465. The Jackal ground robot was
graciously loaned by the Army Research Laboratory for these
experiments.

 * Anthony Wagner
 wagnera@vt.edu

 John Peterson
 jrpeter@vt.edu

 James Donnelly
 jd7@vt.edu

 Shivam Chourey
 shivam@vt.edu

 Kevin Kochersberger
 kbk@vt.edu

1 Virginia Tech, Blacksburg, VA, USA

/ Published online: 25 October 2022

Journal of Intelligent & Robotic Systems (2022) 106:58

http://orcid.org/0000-0002-0821-6557
http://crossmark.crossref.org/dialog/?doi=10.1007/s10846-022-01751-9&domain=pdf

1 3

monocular camera and color segmentation to detect obsta-
cles. The goal of the collaborative air-ground team is to
explore and navigate an unknown outdoor environment as
shown in Fig. 2. The objectives of the improvements out-
lined in this paper were to provide better obstacle detection
and to add the exploration capability the previous system
lacked.

There are several improvements presented in Section 2,
with the major improvements being the addition of a stereo
camera, a new mapping algorithm (Section 4), and a novel
exploration algorithm (Sections 5 & 6). The addition of a
stereo system adds the ability to detect obstacles based on
terrain height. The mapping algorithm uses the GPU on the
onboard computer to more quickly process the data from
the cameras. The exploration algorithms focus on how to
explore an unknown environment with a UAV to find a route

for a UGV. This includes the development and comparison
of two different UAV exploration methods and a method of
giving the UGV partial plans during exploration to maintain
operation tempo.

1.1 Related Work

The related work outlined here is organized based on
these five main relevant categories: mapping with UAVs,
stereo-cameras, exploration methods, frontier explora-
tion, and similar systems respectively. Aerial data has
been used in several systems for mapping as well as some
others that also used it for path planning for a UGV.
Kim [15] presented a UAV/UGV system that uses a ste-
reo vision system on the UAV to detect obstacles for
the UGV. This system also used markers on the UGV to
allow the UAV to localize in a GPS denied environment.
Miki presented a novel cooperative UAV/UGV system
that included mapping the environment for UGV path
planning [18]. This system used a monocular camera and
time of flight sensor to map an indoor environment. Kim
[16] presented a system where a UAV initially maps an
area so that a UGV equipped with a laser scanner can
construct a final, higher fidelity map. Schneider pre-
sented an online mapping system for a UAV using RTK
GPS and SLAM [23].

Warren noted the importance of alignment of long base-
line stereo cameras and how vibration and knocks can force
a re-calibration of a stereo-camera and presented an online
method to re-calibrate the camera [26]. Rovira-Más looked
at combinations of lens focal lengths and baselines for long-
baseline stereo cameras based upon the necessary range of
use [21]. Milella used a multi-baseline stereo camera to per-
form 3D scene reconstruction and segmentation with both
long and short range obstacles [19]. Haubeck used an off the
shelf stereo camera on a UAV for mapping archaeological
sites [10].

Juliá et al defined autonomous exploration as “The ability
of mobile robots to autonomously travel around an unknown
environment gathering the necessary information to produce
a useful map for navigation.” According to Juliá, the term
exploration contains path planning but also can be used to
describe techniques that would not fall under the umbrella
of path planning [13]. Exploration methods can focus on
minimizing exploration time or focus on developing better
maps. Cesare [4], Ferranti [8], and Kalra [14] did work on
leveraging the additional vehicles in multi-vehicle explora-
tion systems.

The frontier based exploration method was intro-
duced by Brian Yamauchi [27]. Frontiers are defined as
the “regions on the boundary between open space and
unexplored space.” Frontiers help address the issue of
where to go in an unknown environment to gain as much

Fig. 1 Severe damage caused by a tornado. A priori information about the
environment would be out of date due to the large amount of debris [7]

Fig. 2 Overview of the system shows a UAV and UGV collaborating
to route a UGV in an outdoor environment

Journal of Intelligent & Robotic Systems (2022) 106:5858 Page 2 of 18

1 3

information as possible. To detect frontiers Yamauchi
proposed using “a process similar to edge detection
and region extraction in computer vision” to find these
boundaries. To select the best frontier to visit, Yamauchi
proposed sending the robot to the nearest accessible and
unvisited frontier. Bachrach [1] proposed a method of
weighted frontiers which aimed to maximize the amount
of space explored while still localizing accurately with
simultaneous localization and mapping (SLAM). Accurate
localization requires keeping a certain number of recog-
nized landmarks within sight. Therefore, sending the robot
too far into unexplored space would harm localization and
mapping accuracy. Bachrach used a weighted method to
better select a frontier to visit from the identified fron-
tiers [1]. Burgard [3] used a weighted cost of reaching
a frontier with its expected benefit. Gonzáles-Baños
and Latombe used the same two criteria of distance and
benefit but combined them using an exponential func-
tion [9]. Umari presents a method using RRTs to explore
an unknown environment [25]. The frontier detection is
done by checking where the expanding tree crosses into
unknown space. Additionally, both a global and local tree
are used to find local and global frontiers. This is a similar
method to what we propose but differs in our exploration
is targeted towards a global goal and fast exploration time
while Umari’s method is targeted at exploring the entire
environment.

Shim [24] combined local obstacle map generation
with an exploration algorithm based on model predictive
control (MPC) to explore simulated urban environments.
Their exploration was to find a path for a large UAV
(Yamaha RMAX) through a dense unknown urban envi-
ronment. They used a cost function that minimized pen-
alties for tracking and obstacle avoidance. There has also
been some work with collaborative UAV/UGV explora-
tion. Hood [11] presented a UAV that would follow a UGV
in an indoor environment and aid in situational aware-
ness with its better vantage point. An augmented reality
(AR) tag was used for the UAV tracking the UGV and
SLAM was used to localize and map the environment for
the exploration. Salas presents a UAV UGV collaboration
tested in simulation where the UAV follows a predefined
flight plan to map the environment and search for the goal
target. Once the target is found by the UAV the UGV is
sent sub-goals generated from a global planner on the map
generated by the UAV [22].

Our work brings together some of the ideas presented
in these other works into a large system that is used in
a real-world outdoor scenario. It also provides a novel
targeted frontier exploration method similar to Umari
but with improvements towards decreasing exploration
time and specializing it towards exploring a route for
a UGV.

2 Hardware Improvements

The hardware for this system consists of four major subsys-
tems: the UAV, the UGV, an RTK GPS system, and the Opera-
tor Control Station (OCS). The UAV is a Tarot 960 hexacopter
equipped with a Nvidia TX2, a Pixhawk Cube flight control-
ler running Arducopter, and a custom long-baseline stereo
camera. Figure 3 shows the UAV used in the experiments and
Fig. 5 is a close up of one of the cameras in the stereo pair. The
UGV is a mostly stock Clearpath Jackal (Fig. 4). It is impor-
tant to note that there is a Hokoyu lidar and a webcam on the
vehicle but they are not used for obstacle detection/mapping.
For a base station a simple desktop is used for visualization
and mission control since the computation happens on-board
the UAV (Fig. 5).

Fig. 3 Tarot T960 hexacopter with custom stereo system and Nvidia
TX2

Fig. 4 Clearpath Jackal used for these experiments

Journal of Intelligent & Robotic Systems (2022) 106:58 Page 3 of 18 58

1 3

2.1 Stereo Imaging

One of the major improvements to the system was switching
from a monocular camera to a custom long-baseline stereo
camera. The stereo camera allows for the terrain depth to
be measured without using a more expensive sensor such
as lidar. The first iteration of the stereo camera used USB3
cameras which were found to produce a lot of broadband
noise that increased the noise floor significantly on our GPS
signal and resulted in poor GPS performance. Davuluri and
Chen explored the root cause of this phenomena [5]. In order
to get rid of that interference FLIR Blackfly S GigE cameras
were selected for their Ethernet interface and existing ROS
driver. These were mounted to a carbon fiber tube using a
custom clamp and adjustment mechanism. The cameras were
separated to form a 600 mm baseline which was selected
based on a target mission altitude of 12-25 m.

The key processes for using a long baseline stereo cam-
era are alignment and calibration. We found that getting the
optical center of each camera’s image within 1 − 2 pixels
and getting minimal roll between the cameras was key to
getting a good calibration and disparity image. Alignment
was achieved by pointing the cameras at a distant object
(∼> 100 m) that would have a disparity of less than one
pixel, as shown in Fig. 6. The disparity is the horizontal
pixel distance between a corresponding pixel in the left and
right image. A disparity of less than one pixel indicates that
an object is sufficiently far enough away that it shows up
in the same pixel location in both the left and right image.
The camera adjustment screws were then adjusted until the
red center markers overlaid on both images aligned with

the same point on the distant object. To calibrate the stereo
camera the ROS camera_calibration package was used. This
package provided a convenient GUI to capture the calibra-
tion data and then generate the calibration.

One of the primary reasons for selecting the Nvidia
TX2 as the computer on-board the UAV was for its GPU.
We selected a GPU-based implementation of Semi-
Global matching algorithm made by researchers at Uni-
versitat Autonoma de Barcelona [12]. On our system with
1024 × 768 images we saw frame rates of ∼ 5 − 7 frames per
second. Figure 7 shows an example disparity image gener-
ated by the system.

2.2 RTK GPS

Both UAV and UGV used SwiftNav Piksi Multi RTK GPS
sensors for precise localization. For the UAV, the RTK GPS
feeds into the Pixhawk flight controller where it is com-
bined with measurements from an inertial measurement unit,
gyro, and magnetometer. The resulting state estimate from
the flight controller is then used by the ROS system. For the
UGV, an extended kalman filter (EKF) combines the RTK
GPS measurements with measurements from the built-in
inertial measurement unit (IMU) and wheel encoders. Both
vehicles operate in the same map frame and use their state
estimates to localize themselves in this frame. The single
band Piksi RTK GPS had been used in earlier versions of
this system. It had reliability issues because of the use of
serial radios to pass RTK corrections, and longer times to
converge to an RTK fix. The new system uses the same dual-
band Ubiquiti WIFI radios used for primary communication

Fig. 5 One of the FLIR/Point-
grey cameras mounted on the
boom. Mount allows for adjust-
ment which is critical for proper
calibration and use

Fig. 6 Example of how the
UAV is positioned for calibra-
tion and example images show-
ing the alignment process

Journal of Intelligent & Robotic Systems (2022) 106:5858 Page 4 of 18

1 3

between the vehicles for the corrections. While this has a
reduced range, we observed better reliability and reduced
latency in the corrections.

3 Online Stereo Extrinsic Calibration

One key feature added to the stereo mapping system on the
UAV is the ability to calibrate the extrinsics of the stereo
camera online. The extrinsics calibration for the stereo cam-
era is the measurement of the position and orientation of
the stereo camera relative to the base frame of the UAV.
Previously this calibration had been manually measured/
estimated. However, small inaccuracies in the estimated
orientation resulted in large projection errors of obstacles
into the costmap. A costmap is a map of the environment
divided up into grid cells where each cell represents the cost
(difficulty) to traverse that cell. In multiple previous tests,
obstacles were shifted in the costmap by up to a few meters.

Coloring the top of the RTK base station antenna with
a recognizable color makes the antenna detectable in ste-
reo images. Orange was selected to contrast against a back-
ground of grass. Using the antenna is advantageous since
we know that this location is (0, 0, 0) in the map frame.
By moving the UAV through a suitable trajectory with the
antenna in view, we can build up a set of point correspond-
ences to estimate the relative position and orientation of the
camera to the UAV’s frame.

The antenna was detected using simple process with
OpenCV. First the image was thresholded in the HSV (Hue
Saturation Value) color space. Contours were extracted and
then the minimum enclosing circle was found for the largest
contour. The center of the minimum enclosing circle gives
us the antenna position in the image. The coordinates of
the antenna in the camera’s frame of reference can then be
estimated using the stereo parameters.

For each estimate of the antenna’s location in the cam-
era frame from the stereo camera, the projected location
of the antenna in the camera’s frame based on the UAV’s
state estimate is recorded. Each measurement creates a point

correspondence between the antenna location estimated with
the camera and the location based on the flight controller
state estimate. These are stored as two separate point clouds.
With these point correspondences we use the Point Cloud
Library’s TransformEstimateionSVD to estimate the rigid
body transform between the two point clouds which gives
us an estimate of the transform between the flight controller
and the stereo pair.

Calibration imagery was captured by manually ascend-
ing and descending the UAV above the antenna while yaw-
ing. This flight pattern was found to produce satisfactory
calibrations.

To test the extrinsic calibration points easily identified
in the costmap were surveyed using an RTK GPS. These
points were a portable hand washing station (1), the front
right tire of a tractor (2), the north corner of a barn (3), and
the corner of a concrete pad (4) [see Fig. 8]. The position of
each point was measured for one minute. The average posi-
tion of each point was projected onto the costmap for visual
comparison. Due to the discontinuities in the map it would
be difficult to quantify the error exactly but the image shows
that the calibration has a projection error of less than 0.5
meter. This is a huge improvement over what we observed
before adding the extrinsics calibration which sometimes

Fig. 7 Disparity image (left)
captured using the stereo system
at an altitude of ∼ 25 m. A large
tractor and part of a building
can be seen in the raw color
image (right)

Fig. 8 Costmap with RTK surveyed points marked. Dark areas repre-
sent areas of high cost (obstacles)

Journal of Intelligent & Robotic Systems (2022) 106:58 Page 5 of 18 58

1 3

had a projection error of multiple meters. A 0.5 meter accu-
racy places a lower bound on the size of obstacles the system
can successfully avoid of to around a meter.

4 Online Mapping

The mapping subsystem takes in disparity information and
the raw color images to produce costmaps for the path plan-
ners. Figure 9 shows the overall flow of data through the
mapping subsystem. Color imagery and disparity generated
by the stereo camera combine to generate the different maps
shown. Map dimensions and spatial resolution (m/pixel) are
fixed at launch so operators must predefine the operating
area and resolution. A height map was selected for efficiency
with a top down aerial view of an outdoor environment. This
representation is significantly more compact than a dense
3D voxel representation, however it is unable to model over-
hangs. A GPU based implementation converts the computed
disparities and color images into a colorized point cloud in
map coordinates using the state estimate provided by the
flight controller. The map frame the point cloud is projected
into is a global frame based on the RTK GPS localization.
The flight controller’s estimate of position is accurate due to
the use of RTK GPS. However, we have observed inaccura-
cies in the constructed map due to poor estimates of roll and
pitch. Donnelly has done work on using feature matching
to improve the registration of the mapping in his Master’s
thesis [6]. His thesis work was done with the same system
but was not implemented at the time of this work.

First the points from the colorized point cloud in a one
meter radius of the position of the UGV at the time the
image was captured are filtered out to ensure the UGV does
not show up in the map. The filtered points from the col-
orized point cloud are then accumulated in three separate

dense grid maps. The first accumulates the weighted sum
of z height of points falling into each grid cell. The second
accumulates the weighted sum of RGB color values of points
falling into each grid cell. The third accumulates the total
point weight within each cell. Each point is assigned weight
proportional to its inverse depth to reflect the loss of accu-
racy in z height and loss of detail in color for more distant
points. From these grid maps we may distinguish between
observed and unobserved space as well as compute the aver-
age height and average color of each observed cell.

These GPU data structures were converted into a cost-
map at the request of the exploration software. The cost-
map consists of two terms, an obstacle layer based on
estimated surface angle and the second layer based on
a terrain cost. To generate the obstacle layer, we begin
by computing the weighted average height in each cell.
The average height image is blurred by a Gaussian ker-
nel with a user set standard deviation. This blurring step
removes spurious discontinuities in the height map at the
edges of projected images due to errors in the estimate
of the orientation of the UAV. This affects the size of
obstacles the system is sensitive to since all obstacles are
dilated by this step. After the blurring step, the resulting
height image is eroded to account for the unobserved
areas of the map.

The Scharr gradients of the height are calculated in the
x and y directions. This magnitude of gradient is used to
compute a measure of the surface angle using (1). The result
of this step is shown in Fig. 9 as the gradient magnitude.

Where ‖∇(i, j)‖ is the magnitude of the gradient in cell i, j,
�(i, j) is the estimated surface angle and where resolution
is the resolution of the map in m/pixel. The factor of 2

(1)�(i, j) = atan2(‖∇(i, j)‖, 2 ∗ resolution),

Fig. 9 Data flow from stereo
imagery to final costmap

Journal of Intelligent & Robotic Systems (2022) 106:5858 Page 6 of 18

1 3

represents the distance between the centers of the cells in
the 3 × 3 kernel. Then this surface angle is converted into a
cost. We simply use a clamped quadratic function relating
angle to cost using (2).

Where C(i, j) denotes the computed cost, Clethal is the cost
value denoting a lethal obstacle (100.0), and where �lethal is
the user set maximum angle set to 60 degrees.

The terrain layer uses a simple 2-class, HSV terrain
classifier to compute a terrain cost. After computing the
average RGB color for each cell, then converting to the
HSV color space, cells with a saturation or value below
user set thresholds are classified as road, otherwise the
cell is classified as off-road. If a cell already has a valid
slope cost, a terrain class specific cost is added to com-
pute the total cost of the cell. Off-road is assigned a
cost of 27 while road is assigned a cost of 16 out of the
total 100. These costs were arbitrarily assigned based on
human perceived cost and the effect of different values
was not evaluated in this work. We avoid applying the
terrain cost for cells where the slope cost was not success-
fully computed to avoid underestimating the cost near the
edges of explored space. The total costmap provides both
information about the cost of traversal and describes what
areas of the environment have already been explored. This
map is then passed on to the navigation stack for explora-
tion and planning.

5 Online Exploration with UAV

One of the primary goals of this work was to develop
an online exploration algorithm for directing the UAV
to explore the environment for the UGV. This explora-
tion algorithm needed to run onboard the UAV, and it
needed to find a path for the UGV in a reasonable amount
of time. Two exploration algorithms were developed
and tested. The first method, called the Dijkstra Fron-
tier method, plans a path between the start and goal, and
moves the aerial vehicle to the frontier between observed
and unobserved space. The second method, called RRT
Exploration uses a bi-directional Rapidly-exploring ran-
dom tree (RRT) to identify multiple candidate goals for
the UAV to select between. Both methods use a targeted
approach to exploring the environment as compared to
an exhaustive search. More exhaustive methods such as
using a raster pattern would take longer when UAV time
is at a premium. Additionally, a simple pattern does not
leverage the information gained during exploration.

(2)C(i, j) = Clethal ∗ min

((
�(i, j)

�lethal

)2

, 1.0

)
,

5.1 Dijkstra Frontier Exploration

The first method explored was the Dijkstra Frontier method.
This method would be similar to using D* or re-planning
with Dijkstra/A* onboard the UGV without any UAV [17].
Traditional exploration with a UGV and D* or re-planning
would involve updating or re-planning every-time the costs
in the map update and would plan from the current location
of the UGV. The difference in this system is that the UGV is
not doing the exploring but rather the UAV. For this system
the UAV is operating at a predetermined altitude that opera-
tors have determined is free of obstacles. This means that
the UAV can explore anywhere in the environment without
concern of running into obstacles. Exploring with the aerial
vehicle presents several differences from exploring with a
UGV. First the UAV is not bound by the same constraints
of obstacles as a UGV. One example of this is a UAV can
sense an obstacle in front of it on the ground but it can go
over the obstacle without collision. Exploration can ben-
efit from going over obstacles and not trying to avoid them
but this can also lead to the UAV traveling past an obstacle
and exploring a region disconnected from the explored area
containing the UGV. This would prevent the system from
finding a valid path for the UGV. The aerial perspective of
a UAV allows for some different approaches to be taken.

With the previous considerations taken into account the
Dijkstra Frontier method was developed. Plans are generated
from the current UGV location so that the frontiers found
will always be impeding the valid path. Doing this makes it
such that there is always an already explored path leading up
to the new frontier. To find where the frontier is located, we
generate a plan using an optimal planner (in this case A*)
and iterate through the plan generated until the first point in
unexplored space is reached. This point is then labeled as
the frontier. To maximize the size of the new area explored,
the UAV’s goal is offset by a fixed distance along the vector
between the UAV and the frontier. If the UAV went exactly
to the frontier point then half of the field of view (FOV)
of the stereo system would be in known space. This would
result in longer overall exploration times with approximately
twice as many exploration cycles as the UAV. After the UAV
reaches its goal, the UGV path planner is run with unknown
space represented as obstacle/impassable. If it returns a valid
plan exploration is done. If not, the cycle is repeated. A
visual of the algorithm in action is shown in Fig. 10.

5.2 RRT Exploration

The RRT Exploration method was developed due to some
of the observed issues of the Dijkstra Frontier method. The
main issue was that in certain environments the exploration
would oscillate between exploring two sides of an obsta-
cle and this made the UAV travel a longer than necessary

Journal of Intelligent & Robotic Systems (2022) 106:58 Page 7 of 18 58

1 3

distance. An example of this is shown in Fig. 18. The Dijk-
stra frontier method shows a lot of activity going between
the two sides of the first obstacle. This method attempts to
address the issue by using RRTs to generate multiple sub-
optimal paths so that the UAV can select frontiers closer to
the UAV.

The primary reason that a RRT was selected is that as a
sampling based path planning technique sub-optimal paths
can be generated. The problem with the Dijkstra frontier
method was that Dijkstra and similar methods provide an
optimal path and have no way of generating multiple sub-
optimal paths in the environment. The resulting paths can
change dramatically when a little bit more of the environ-
ment is explored. Generating multiple sub-optimal paths
allows the UAV to select closer frontiers even if the UGV
path is slightly longer.

To find the frontiers, a bi-directional RRT in the two-
dimensional costmap is used to search from the goal and
the UGV start point, where the RRTs are constrained to
unknown and known space respectively. The possible con-
nections of the two RRTs will correspond with the frontiers.
Since the known space will only expand, and assuming a
static environment, the RRT inside known space is expanded
on each cycle rather than being regenerated from scratch.
The RRT in unknown space is regenerated each cycle for
simplicity. For the size of environment explored in this
experiment there were no calculation time issues with just
regenerating the unknown RRT. Regenerating the unknown
RRT could be replaced by using a method to update the tree
to remove branches that now intersect with found obstacles
and known space.

The next section will detail the specifics of the RRT
exploration method as it is implemented. It follows similar
logic to the Dijkstra Frontier method as it goes to frontiers
until a valid path for the UGV goal is found. Figure 11 shows
how the RRT explore algorithm fits into the higher level
logic. The function call to generate a plan is provided with

the following information: the number of iterations for add-
ing nodes in the unknown tree, the number of iterations for
adding nodes to the known tree each cycle, the obstacle map,
the UGV goal, and the current UAV position.

5.2.1 Mask Generation

The first step in the RRT explore algorithm is to generate
some binary masks to help the algorithm later quickly iden-
tify certain regions. The three masks generated are known
space, unknown space, and obstacles. These are imple-
mented as OpenCV masks so that they can be used with
other OpenCV functions.

5.2.2 RRT Generation

The RRT generation follows a generic RRT implementa-
tion. To start, a point is selected as the root of the tree to
which all branches will eventually lead back to. A random
point is sampled inside the region of the obstacle map. The
nearest neighbor to this point is found using a simple search
since the number of points is relatively low. The RRT imple-
mented uses a fixed length branch. This means that each
branch added is a specified length in the direction of the
sampled point from the sampled point’s nearest neighbor.
This improves how well it can expand in tight spaces as
longer branches are more likely to not be added due to colli-
sions. Before the branch is added to the tree, it is collision-
checked with obstacles. This is done using the masks previ-
ously generated. Using the OpenCV line iterator the pixels
of the branch are iterated through and if any go outside the
mask a collision is detected. If no collision is detected the
branch is added to the tree. Each time a node is added its
distance to the root of the tree is stored for quick distance
checking later.

5.2.3 Unknown Area RRT Generation

The second step after the mask generation is to generate
the RRT in the unknown area. Since the unknown area is
shrinking the RRT cannot be regenerated without an algo-
rithm to collision check the existing tree with areas that were
updated. Thus, for simplicity’s sake the RRT in unknown
space is entirely regenerated. This has some impact on how
fast the algorithm runs but the tree is able to expand quickly
in the unknown space since there is more space for it to oper-
ate. The unknown tree is generated with the root of the tree
at the goal defined for the UGV and expands outwards. The
number of iterations used to add to the unknown tree ranged
between 500 − 2000 during the trials for this research. This
number can be selected for other trials based on the size of
the environment and performance considerations.

Fig. 10 Diagram of the Dijkstra frontier method visualized in RVIZ

Journal of Intelligent & Robotic Systems (2022) 106:5858 Page 8 of 18

1 3

5.2.4 Known Area RRT Expansion

The third step is to expand the known tree. This follows the
same basic RRT algorithm as the unknown tree, but is inside
the known space and is expanded instead of regenerated. The
known tree is able to be expanded since the cleared space
in the known area will not change since this is assumed to
be a static environment. Thus, all existing branches in the
tree will remain valid for the lifetime of the exploration.
Since the known space is smaller and will have obstacles
in the way, more iterations are required to find a valid path
between two points. Expanding with each cycle spreads the
computation over the life-cycle of the exploration. Figure 12
shows the environment after both trees have been generated.

5.2.5 KD‑Tree Generation

The fourth step in the process is to generate a two-dimen-
sional KD-tree for the points in the unknown RRT. A KD-
tree is a data structure that stores points in k-dimensional
space and allows for quick and efficient nearest neighbor
searches [2]. This will be used in the connection phase

of the algorithm as a large number of nearest neighbor
queries are going to be made. The nodes in the two-dimen-
sional KD-tree are the x and y coordinates of the nodes in
the unknown tree.

Fig. 11 Flowchart for how the
RRT explore algorithm fits in
the system and the specific steps
of the RRT explore algorithm

Fig. 12 RRT in unknown space (white area) expanding around the
known space (green area) and obstacles (dark red). Start is the orange
circle and the goal the is pink circle

Journal of Intelligent & Robotic Systems (2022) 106:58 Page 9 of 18 58

1 3

5.2.6 RRT Connection

The fifth step is connecting the two RRTs. Connecting the
two trees will find the possible paths in the environment. Due
to the large number of nodes in both trees there are a large
number of possible connections. To reduce this to a more
reasonable amount, a single “best” connection is generated
for each node in the known tree. For a node in the known
tree its nearest neighbors in the unknown tree are identi-
fied using the KD-tree. Nearest neighbors are determined
using a fixed neighborhood size. Once nearest neighbors
are determined, each connection to the neighbor is collision
checked and ones that result in a collision are removed. For
the remaining connections, a cost function is used to deter-
mine the ‘best” connection. The function is a weighted sum
of the distance through the tree from start to goal and the
distance between the two nodes. The distance between the
start and goal is calculated using the root distance element
in the two nodes that was saved during tree generation. The
weighting used in this implementation was a weight of 0.1
for the total distance and 1.0 for the distance between the
two nodes. This weighting scheme was determined to find
the balance between finding the shortest overall path while
also making sure it is a reasonably close connection. This
step of connecting is repeated for each node in the known
tree to find multiple paths.

5.2.7 Frontier Extraction

The sixth step is to extract the frontiers from the connec-
tions. The point where the connection crosses from known
to unknown space is the frontier. To extract the frontier, we
iterate along the connection from the known tree until an
unknown pixel is reached. This transition point is that con-
nection’s frontier.

5.2.8 Frontier Selection

The seventh step is to select the best frontier for the UAV
to visit. A cost function is used to select the best frontier.
The cost function is the weighted sum of the straight-line
distance to the goal and the straight-line distance to the
UAV. These two parameters are used to balance between
finding the shortest path for the UGV and minimizing how
much the UAV has to travel. If the weight for the straight-
line distance to the goal (wg) is larger, the exploration will
favor exploring frontiers closest to the goal and if the weight
for the straight-line distance to the UAV (wu) is larger the
exploration will favor frontiers closer to the UAV. Using
static weights would work but would not account for how the
importance of the two variables change as the exploration
frontier gets closer to the goal. When closer to the goal, the
distance to the goal is more important than the distance to

UAV. When the exploration is near the beginning, reducing
UAV travel distance is more important. To handle this the
weights are determined based on how close the frontier is
to the goal. The selected weights, as a function of frontier
distance to goal, are shown in Fig. 13. For the weight func-
tions, a logarithm was chosen for the goal distance weight
as its larger near the goal and fades out as we get away from
the goal nonlinearly. A linear ramp that saturates was chosen
for the UAV distance weight as we want it to increase as we
get away from the goal but not increase exponentially once
we reach a certain point. Once in the saturated area the cost
will just increase linearly. There is no maximum distance
from the goal that it will not consider. The exact weights
and equation parameters were selected based on empirical
observations and tuned manually based on watching the
performance of the exploration in sample environments in
simulation. The performance of the weighting algorithm in
larger environments was not tested since the UAV endurance
would not permit exploring larger areas. These values were
observed to generally work well across the size environ-
ments tested in this work. If a UAV with longer endurance
was to be used in a larger environment, the main parameter
to look at for tuning is the distance from the goal at which
the UAV distance weight saturates. The equations for the
weights are below with the selected values used. wg is the
weight for the distance between UGV and goal and wu is the
weight for the distance between UAV and goal.

Using the weights from the formulas the frontier cost func-
tion is calculated as shown below.

(3)wg = −0.1 ∗ log(EuclDist(goal, ugv)) + 1,

(4)wu = min((0.027) ∗ EuclDist(goal, uav) + 0.2, 1.0),

(5)
costfrontier = EuclDist(goal, ugv) ∗ wg + EuclDist(goal, uav) ∗ wu,

Fig. 13 Weights for the frontier selection cost function

Journal of Intelligent & Robotic Systems (2022) 106:5858 Page 10 of 18

1 3

Once the cost for all of the frontiers is calculated the one
with the minimum cost is selected and the waypoint is sent
to the navigation handler. This then directs the UAV to the
selected frontier via a straight-line path.

6 Partial Plans for UGV

Allowing the UGV to move before a complete plan is found
allows the overall mission time to be reduced. If the UGV
waited at the starting location until the UAV was done
exploring it would be guaranteed to not need to backtrack
but would waste time that it could have been moving. Inter-
mediate plans can be given to the UGV but they risk leading
the UGV the wrong way and forcing it to backtrack. Thus,
a balance between directly following the UAV and waiting
at the start must be found. Figure 14 shows how the UGV
can be sent partway to the frontier. The method proposed
here uses a safe follow back distance along with looking for
“danger areas” along the current path to the frontier.

The first part of the intermediate plans for the UGV is to
generate a path to the frontier. Next, dangerous areas that
could lead to backtracking need to be identified. Danger
areas were defined as where obstacles abut with unknown
space. These regions have high uncertainty and thus could
lead to larger obstacles being uncovered. To quickly identify
these regions the existing unknown and known area masks
are used. The obstacle mask is inflated so it will overlap with

areas in the unknown mask and a bit-wise and operation is
done to quickly identify the danger regions.

Once the danger areas are identified and stored as a mask,
the danger along the path needs to be quantified. The cor-
ridor on either side of the path is examined for grid cells
marked as dangerous. The total danger at a point along the
path is accumulated along a line perpendicular to the path.
This is repeated for all points in the path to generate an
array of danger scores along the path. Figure 15 shows the
measured region on either side of the path.

To prevent the UGV from backtracking, it should be held
back a certain distance from danger areas. A fixed distance
from danger is defined as the follow back distance. Differ-
ent follow back distances were tested in the simulation Sec-
tion 7. These would be predetermined by operators based
on the environment complexity. A sliding window with
equivalent length of the follow back distance is applied to
the path danger array starting at the end nearest the frontier.
This window is slid back towards the start until the sum
of the path danger in the window is less than a predefined
threshold. The starting point of this window is then selected
as the end waypoint for the UGV. The generated path up to
this waypoint is sent to the UGV for execution.

7 Simulation Results

Having a simulation environment for the system is incredibly
important as testing in the field is difficult for a variety of
reasons. The software Gazebo handles the simulation of the
environment, virtual cameras, and the vehicle physics. The
UGV is simulated in Gazebo using the open source software
provided by Clearpath Robotics. The UAV simulation is run
using the Gazebo software in the loop (SITL) provided by
the PX4 firmware developers. The only significant difference
between the hardware and simulation environment is that the

Fig. 14 Diagram showing how the UGV is held back when an incom-
plete plan to the goal exists

Fig. 15 UGV Path with the region around the path measured for dan-
ger areas. Increased danger along the path shows up on a color scale
with the maximum being encoded as red

Journal of Intelligent & Robotic Systems (2022) 106:58 Page 11 of 18 58

1 3

simulation uses a depth camera to simulate the stereo system
on the real UAV.

7.1 Dijkstra Frontier vs RRT Explore Exploration
Distance Comparisons

To compare the two algorithms, each were run on a vari-
ety of environments. Each environment consists of a dif-
ferent configuration of obstacles designed to challenge the
algorithms. All environments used the same start and goal
points with just different obstacles. The obstacles are con-
strained within an area 40 meters long and 10 meters wide
with the start and goal on opposite ends of the 40m meter
side. The size environment was selected based on the lim-
ited endurance of the Tarot 960 drone used for real-world
testing. This size is about what the UAV can explore with
its 15 minute flight time. A total of nine environments were
created for evaluation but only three are presented in this
section as they provide the most insight into the perfor-
mance of the two algorithms. The environments not shown
were either for testing other algorithms such as the UGV
intermediate plan or ended up showing similar results to the
environments already presented. Diagrams of each environ-
ment are shown in Appendix 1. The total distance traveled
by the UAV finding a path for the UGV was recorded for 50

simulation runs for both the Dijkstra Frontier method and
the RRT explore method.

The Demo 2 environment (Fig. 23) is designed to simu-
late an environment where an obstacle creates one path that
is much better to explore than the other. This is done by
offset obstacles that make the shortest path right through
the center. The distances for this environment show that
the Dijkstra Frontier method out performs the RRT explore
method. This is expected as this was designed to be a worst
case scenario for the RRT explore method. Since the RRT
explore method is designed to reduce oscillations while
exploring it commits to one side more than the Dijkstra fron-
tier method which is always looking for the optimal path.
This can be seen in the heatmaps (Fig. 17) and is plotted in
Fig. 16. The heatmaps represents the frequency the UAV
visited each part of the environment during exploration. The
box plots show the summary statistics for all 50 simulations.
The bottom and top edges of the box indicate the 25th and
75th percentiles, respectively. The Dijkstra Frontier method
shows a pretty direct exploration through the center of the
environment and never goes to the long sides of the obsta-
cles. This is in stark contrast to the RRT explore method
which over the course of the 50 simulations explored pretty
much every path possible resulting in longer exploration
distances (Fig. 17).

Fig. 16 Box and whisker plots of the total exploration distance of the UAV in three environments

Fig. 17 Heatmap for Demo 2
environment, obstacles shown
in white

Journal of Intelligent & Robotic Systems (2022) 106:5858 Page 12 of 18

1 3

The Demo 7 environment (Fig. 24) was setup to really
test the advantage of the RRT explore method. The Dijkstra
Frontier method tends to oscillate between the sides of a large
obstacle, so two large obstacles were placed in between the
start and the goal. The results (Fig. 16) show very clearly that
the RRT explore method achieves shorter exploration dis-
tances with large obstacles in its way. The mean exploration
distance was approximately 90 m longer for the Dijkstra Fron-
tier method. This behavior can also be seen very clearly in the
heatmaps (Fig. 18). The Dijkstra Frontier method shows explo-
ration all over the environment while the RRT method shows
fairly direct exploration around the perimeter of the obstacles.

The Demo 8 environment (Fig. 25) is designed to simu-
late a dense environment with a lot of small buildings in
between the start and the goal. This was not designed to
favor one algorithm but to simulate a realistic environment
that the system could be asked to operate in. The results
(Fig. 16) show that the RRT out preformed the Dijkstra
Frontier method by around 40 m on average. Upon inspec-
tion of the heatmaps (Fig. 19) the main difference between
the two is a tendency for the Dijkstra Frontier method to
do more exploration around the obstacles similar as in the
Demo 7 environment.

Overall the RRT explore algorithm shows the best average
performance across a variety of environments. The Dijkstra
Frontier method would likely be the better option in very sim-
ple environments where operators do not expect the vehicles
to encounter many obstacles. In these simpler environments
the Dijkstra Frontier method will produce the most direct/

shorter route. For environments that the operators do not
know what to expect or is known to have more complicated
obstacles, the RRT explore method should be used.

7.2 UGV Intermediate Plan Method Results

The UGV intermediate plan method was tested in simulation
with the follow back distance varied from 0 to 10 meters. As
mentioned in section 6, the follow back distance is defined
as a fixed distance from danger areas along the UGV’s path.
Thirty simulations were run for each distance. This was
tested on an environment with (Fig. 25) and without a dead
end (Fig. 26). The results from only these two environments,
with and without a dead end, are presented as they represent
the two extremes of environments this algorithm can expect.
The dead end was around 15 vehicle lengths deep and 15
vehicle lengths wide. The results from both test environ-
ments are plotted in Fig. 20. Results for the no dead end
environment showed increased mission times as expected
and a slight decrease in UGV distance traveled. Results
for the dead-end environment showed a slight increase in
mission times but a significant decrease in UGV distance
traveled. Overall the proposed method for controlling the
UGV when the entire global plan is not yet known shows
that holding the UGV back can result in distance traveled
savings but not necessarily mission time savings. In envi-
ronments with no dead ends, holding the UGV back only
increases mission time. Only when there are possible dead
ends should the UGV hold back distance be used. It should

Fig. 18 Heatmap for Demo 7
environment, obstacles shown
in white

Fig. 19 Heatmap for Demo 8
environment, obstacles shown
in white

Journal of Intelligent & Robotic Systems (2022) 106:58 Page 13 of 18 58

1 3

be noted that mission time savings is also most likely a func-
tion of the UAV and UGV speed. If the UAV and UGV can
move similar speeds then there will be no time savings from
holding the UGV back. If the UGV is significantly slower
there should be a point when holding the UGV back will
result in time savings.

8 Field Demonstration

The system described here was tested at Virginia Tech’s
Experimental Aviation Systems Lab at Kentland Farms. The
selected area has a good combination of buildings, grass,
gravel, pavement, and vehicles that represent the type of
environment the system was intended to operate in.

The first stage of the demonstration mission is to setup
the vehicles, RTK GPS system, and operator control station.
Next, the appropriate software is started on each of the three
computers (UAV, UGV, OCS) and operation verified. The
UAV pilot in command will then takeoff the UAV and fly it
over to the RTK base station antenna for extrinsics calibra-
tion. The pilot then manually flies the UAV in the method
described in Section 3 until enough samples are collected to
calibrate the extrinsics of the stereo camera. Automating this
step would be a good improvement to the system.

With the calibration complete the system is ready for
the mission. The operator at the OCS will use either RVIZ
or Mapviz to command a goal for the UGV and sends it to
the UAV. The pilot will then switch the UAV into “Guided”
mode which allows the software to control the UAV. The UAV
will then begin running the RRT explore algorithm and start
exploring the environment. As enough of the environment
is explored the UGV will begin to follow behind using the
method described in Section 6. Once the UAV explores the

last part of the environment necessary for a complete plan for
the UGV it will stop moving and the UGV will traverse to the
goal. After the mission is complete, the operator can specify
more goals for the UGV to go to and the process will repeat.
The total distance/number of goals is mainly limited by the
flight time of the UAV. After the operator is done sending goals
to the UGV the pilot will take control of the UAV and land.

The demonstration at Kentland Farms consisted of one
goal approximately 50m from where the UGV started on
the other side of a barn. The environment, along with the
vehicle starting locations, ending locations, and paths taken
are shown in Fig. 21. Figure 22 shows the costmap generated
by the system with areas of importance annotated. The mis-
sion was finished in approximately 7 minutes with the UAV
traveling ∼ 100 meters from the UGV starting position and
the UGV traveling ∼ 70 meters.

The computational time for the RRT exploration was
recorded for both a desktop and the embedded TX2 on the
UAV (see Table 1). The desktop tested has an AMD 1800X
CPU, 32 GB of RAM, and a GTX 980Ti Graphics card.
These values are the average for running the software on the
recorded data from the field demonstration. The cycle time
for the RRT was around 300 ms on board the TX2 which
does not delay the UAV very much in flight.

The field demonstration was able to validate the improve-
ments made to this UGV/UAV system. The onboard stereo
mapping was shown to operate in real time and produce
good maps for the UAV and UGV to plan on. This is a great
improvement over the old system that only used a color-based
obstacle detection technique. The long baseline stereo camera
was able to produce good depth maps for obstacle detection.
The exploration algorithm was shown to successfully generate
a path for the UGV and provided a very direct route with the
quicker UAV doing the exploration.

Fig. 20 Mission time and UGV distance for an environment without a dead end (left) and with (right)

Journal of Intelligent & Robotic Systems (2022) 106:5858 Page 14 of 18

1 3

Based on the field testing we identified several improve-
ments for the system. The first is that the mission tempo
could be greatly improved with using a UGV with a higher
top speed. A large portion of the total mission cycle was the
UAV hovering over the end waiting for the UGV to arrive.
Another improvement would be to use the dynamic meshing
feature in the Ubiquiti WIFI radios used. Dynamic meshing

is the ability for the communication hardware to switch the
path the signal goes using multiple radios. At the time of the
experiment this was a beta feature and was not used. When the
UGV went around the corner of the barn there was a signifi-
cant drop in communication quality. Some other field testing
has shown that the barn was enough of an obstacle to com-
pletely block communication if the UGV was on the complete
opposite side. With the UAV hovering over the UGV on the
other side and with a clear line of sight to the base station the
mesh feature could reroute the communication to the UGV
through the UAV.

9 Conclusion

This work presents the improvements to an existing novel
cooperative unmanned aerial vehicle/unmanned ground
vehicle (UAV/UGV) system. The cooperative UAV/UGV
system aims to reduce risk for UGV exploration using the
UAV to explore. Mapping was improved from the previous
version of the system through adding a custom long-baseline
stereo camera. The use of a stereo camera over a sensor, such
as a lidar, greatly reduces the overall cost of such a system
and fits within one of the goals of the project to have reason-
able hardware requirements. The stereo computation was
done onboard using the GPU. Mapping was also performed
onboard with a new GPU based mapping implementation.
Mapping registration to the world was improved using an
online camera extrinsics calibration. Real-world projection
errors of less than 0.5 meter were shown with this approach.

The presented RRT exploration algorithm directed the
UAV to frontiers of interest allowing the UAV to explore
the environment in an efficient manner to generate a path for
the UGV to navigate to the specified goal. The RRT explora-
tion algorithm showed good performance in both simulation
and real-world environments. Furthermore, the algorithm
was also shown to be efficient enough to run onboard the
UAV on the NVIDA TX2 platform. The Dijkstra Frontier
method was also presented and showed good performance
in simple environments, but was outperformed in more
complex, unstructured environments. A method to give the
UGV partial plans before the environment was completely
explored was presented. This method of holding back the
UGV was shown to have potential distance traveled/energy
savings for the UGV. The system was tested in simulation
to verify its effectiveness and reliability. Finally, the system
was tested on the hardware system in an outdoor scenario to
demonstrate its capabilities. The outdoor scenario success-
fully demonstrated the effectiveness of the approach from
both a hardware and software standpoint.

Since this is still an early developmental system there is
plenty of opportunities for future research and development.
The area that could benefit the most from further development

Fig. 21 Annotated map showing the paths of both vehicles

Fig. 22 Annotated costmap showing the start and goal position along
with the barn and tractor seen during the mission

Table 1 RRT computational time per cycle

RRT explore Step Desktop (ms) NVIDIA
TX2 (ms)

Mask Generation 24 66
Unknown RRT Generation 75 130
Known RRT Expansion 12 16
KD-Tree Creation 30 66
Connection and Frontier Extraction 11 25

Journal of Intelligent & Robotic Systems (2022) 106:58 Page 15 of 18 58

1 3

is the mapping subsystem. The main deficiency was the poor
frame to frame registration between depth images projected
onto the costmap. Poor registration limits the size of objects
that can be successfully detected and can make traversable
gaps in the environment appear impassable. Since only one
outdoor scenario was tested, future work would also include
testing the system in a wider variety of scenarios with differ-
ent obstacle sets and degrees of difficulty. Other future work
could include adding sensing the the UGV to improve its abil-
ity to navigate small scale obstacles in its local environment.

Appendix A: Simulation Environment
Diagrams

Author Contributions KK, AW, JP, and JD conceived this research;
AW, JP, JD, and SC contributed software to this research; AW, JP, JD,
and SC performed experiments and analysis; AW, JP, and KK wrote
the paper and participated in the revisions of it.

Funding This work was funded through the National Science Foun-
dation I/UCRC Center for Unmanned Aircraft Systems Phase II Site
Addition, Award No. 1650465.

Data Availability Data collected and used in this publication is avail-
able upon written request to Kevin Kochersberger at Virginia Tech

Code Availability The software referenced in this publication is avail-
able upon written request to Kevin Kochersberger at Virginia Tech

Declarations

Conflicts of Interest The authors declare that they have no conflict of
interest.

Fig. 23 Demo 2 environment. This environment features long obsta-
cles with a much shorter path through the center. Designed to be a
worst case for the RRT explore algorithm

Fig. 24 Demo 7 environment. This environment features two C
shaped obstacles one facing the start and one facing the goal.

Fig. 25 Demo 8 environment. This environment features a large num-
ber of square obstacles to simulate an urban environment

Fig. 26 Demo 9 environment. This environment features a simple
dead end near the start that is approximately 8 meters deep

Journal of Intelligent & Robotic Systems (2022) 106:5858 Page 16 of 18

1 3

References

 1. Bachrach, A., He, R., Roy, N.: Autonomous flight in unknown
indoor environments. Int. J. Micro Air Vehicles 1(4), 217–228
(2009). https:// doi. org/ 10. 1260/ 17568 29097 90291 492

 2. Bentley, J.L.: Multidimensional binary search trees used for asso-
ciative searching. Communications of the ACM 18(9), 509–517
(1975)

 3. Burgard, W., Moors, M., Stachniss, C., Schneider, F.E.: Coor-
dinated multi-robot exploration. IEEE Trans. Robot. 21(3),
376–386 (2005). https:// doi. org/ 10. 1109/ TRO. 2004. 839232

 4. Cesare, K., Skeele, R., Hollinger, G.: Multi-uav exploration
with limited communication and battery. In: 2015 IEEE Inter-
national Conference on Robotics and Automation (ICRA), pp.
2230–2235 (2015). https:// doi. org/ 10. 1109/ ICRA. 2015. 71394
94

 5. Davuluri, P., Chen, C.H.: Radio frequency interference due to
usb3 connector radiation. In: 2013 IEEE International Sym-
posium on Electromagnetic Compatibility, pp. 632–635. IEEE
(2013)

 6. Donnelly, J.J.: Semi-dense stereo reconstruction from aerial
imagery for improved obstacle detection. Master’s thesis, Virginia
Tech (2019)

 7. (FEMA), B.B.: Debris field in oklahoma (2008). https:// commo
ns. wikim edia. org/ wiki/ File: FEMA_-_ 35225_-_ Debris_ field_ in_
Oklah oma. jpg. Accessed 3 Jul 2019

 8. Ferranti, E., Trigoni, N., Levene, M.: Brick mortar: an on-line
multi-agent exploration algorithm. In: Proceedings 2007 IEEE
International Conference on Robotics and Automation, pp. 761–
767 (2007). https:// doi. org/ 10. 1109/ ROBOT. 2007. 363078

 9. González-Baños, H.H., Latombe, J.C.: Navigation strategies for
exploring indoor environments. Int. J. Rob. Res. 21(10–11), 829–
848 (2002). https:// doi. org/ 10. 1177/ 02783 64902 02101 0834

 10. Haubeck, K., Prinz, T.: A uav-based low-cost stereo camera
system for archaeological surveys—experiences from doliche
(turkey). Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci pp.
195–200 (2013)

 11. Hood, S., Benson, K., Hamod, P., Madison, D., O’Kane, J.M.,
Rekleitis, I.: Bird’s eye view: Cooperative exploration by ugv and
uav. In: 2017 International Conference on Unmanned Aircraft
Systems (ICUAS), pp. 247–255 (2017). https:// doi. org/ 10. 1109/
ICUAS. 2017. 79915 13

 12. Juárez, D.H., Chacón, A., Espinosa, A., Vázquez, D., Moure, J.C.,
López, A.M.: Embedded real-time stereo estimation via semi-
global matching on the GPU. In: International Conference on
Computational Science 2016, ICCS 2016, 6-8 June 2016, San
Diego, California, USA, Procedia Computer Science, vol. 80, pp.
143–153 (2016). https:// doi. org/ 10. 1016/j. procs. 2016. 05. 305

 13. Juliá, M., Gil, A., Reinoso, O.: A comparison of path planning
strategies for autonomous exploration and mapping of unknown
environments. Auton. Robot. 33(4), 427–444 (2012). https:// doi.
org/ 10. 1007/ s10514- 012- 9298-8

 14. Kalra, N., Ferguson, D., Stentz, A.: Hoplites: A market-based
framework for planned tight coordination in multirobot teams.
In: Proceedings of the 2005 IEEE International Conference on
Robotics and Automation, pp. 1170–1177 (2005). https:// doi. org/
10. 1109/ ROBOT. 2005. 15702 74

 15. Kim, J.H., Kwon, J.W., Seo, J.: Multi-uav-based stereo vision
system without gps for ground obstacle mapping to assist path
planning of ugv. Electron. Lett. 50(20), 1431–1432 (2014)

 16. Kim, P., Price, L.C., Park, J., Cho, Y.K.: Uav-ugv cooperative 3d
environmental mapping. In: ASCE International Conference on
Computing in Civil Engineering 2019American Society of Civil
Engineers (2019)

 17. LaValle, S.M.: Planning Algorithms. Cambridge University Press,
New York, NY, USA (2006)

 18. Miki, T., Khrapchenkov, P., Hori, K.: Uav/ugv autonomous
cooperation: Uav assists ugv to climb a cliff by attaching a tether.
In: 2019 International Conference on Robotics and Automation
(ICRA), pp. 8041–8047. IEEE (2019)

 19. Milella, A., Reina, G., Foglia, M.M.: A multi-baseline stereo
system for scene segmentation in natural environments. In: 2013
IEEE Conference on Technologies for Practical Robot Applica-
tions (TePRA), pp. 1–6. IEEE (2013)

 20. Peterson, J., Chaudhry, H., Abdelatty, K., Bird, J., Kochersberger,
K.: Online aerial terrain mapping for ground robot navigation.
Sensors 18(2), 630 (2018)

 21. Rovira-Más, F., Wang, Q., Zhang, Q.: Design parameters for
adjusting the visual field of binocular stereo cameras. Biosyst.
Eng. 105(1), 59–70 (2010)

 22. Salas, W.L., Valentín-Coronado, L.M., Becerra, I., Ramírez-
Pedraza, A.: Collaborative object search using heterogeneous
mobile robots. In: 2021 IEEE International Autumn Meeting
on Power, Electronics and Computing (ROPEC), vol. 5, pp. 1–6
(2021). https:// doi. org/ 10. 1109/ ROPEC 53248. 2021. 96681 48

 23. Schneider, J., Eling, C., Klingbeil, L., Kuhlmann, H., Förstner,
W., Stachniss, C.: Fast and effective online pose estimation and
mapping for uavs. In: 2016 IEEE International Conference on
Robotics and Automation (ICRA), pp. 4784–4791. IEEE (2016)

 24. Shim, D., Chung, H., Kim, H.J., Sastry, S.: Autonomous explora-
tion in unknown urban environments for unmanned aerial vehi-
cles. IEEE Robotics & Automation Magazine 13 (2005). https://
doi. org/ 10. 2514/6. 2005- 6478

 25. Umari, H., Mukhopadhyay, S.: Autonomous robotic exploration
based on multiple rapidly-exploring randomized trees. In: 2017
IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 1396–1402 (2017). https:// doi. org/ 10. 1109/
IROS. 2017. 82023 19

 26. Warren, M., McKinnon, D., Upcroft, B.: Online calibration of
stereo rigs for long-term autonomy. In: 2013 IEEE International
Conference on Robotics and Automation, pp. 3692–3698. IEEE
(2013)

 27. Yamauchi, B.: A frontier-based approach for autonomous explo-
ration. In: In Proceedings of the IEEE International Symposium
on Computational Intelligence, Robotics and Automation, pp.
146–151 (1997)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author
self-archiving of the accepted manuscript version of this article is solely
governed by the terms of such publishing agreement and applicable law.

Journal of Intelligent & Robotic Systems (2022) 106:58 Page 17 of 18 58

https://doi.org/10.1260/175682909790291492
https://doi.org/10.1109/TRO.2004.839232
https://doi.org/10.1109/ICRA.2015.7139494
https://doi.org/10.1109/ICRA.2015.7139494
https://commons.wikimedia.org/wiki/File:FEMA_-_35225_-_Debris_field_in_Oklahoma.jpg
https://commons.wikimedia.org/wiki/File:FEMA_-_35225_-_Debris_field_in_Oklahoma.jpg
https://commons.wikimedia.org/wiki/File:FEMA_-_35225_-_Debris_field_in_Oklahoma.jpg
https://doi.org/10.1109/ROBOT.2007.363078
https://doi.org/10.1177/0278364902021010834
https://doi.org/10.1109/ICUAS.2017.7991513
https://doi.org/10.1109/ICUAS.2017.7991513
https://doi.org/10.1016/j.procs.2016.05.305
https://doi.org/10.1007/s10514-012-9298-8
https://doi.org/10.1007/s10514-012-9298-8
https://doi.org/10.1109/ROBOT.2005.1570274
https://doi.org/10.1109/ROBOT.2005.1570274
https://doi.org/10.1109/ROPEC53248.2021.9668148
https://doi.org/10.2514/6.2005-6478
https://doi.org/10.2514/6.2005-6478
https://doi.org/10.1109/IROS.2017.8202319
https://doi.org/10.1109/IROS.2017.8202319

1 3

Anthony Wagner received his Master’s degree in mechanical engineer-
ing from Virginia Tech, Blacksburg, Virginia in 2019. His research
interests are autonomous aerial systems, path planning, and collabora-
tive systems.

John Peterson received his Ph.D. in mechanical engineering from
Virginia Tech, Blacksburg, Virginia in 2020. His research interests are
autonomous aerial systems, unmanned ground vehicles, and radiation
mapping.

James Donnelly received his Master’s degree in mechanical engineer-
ing from Virginia Tech, Blacksburg, Virginia in 2019. His research
interests are autonomous aerial systems, stereo vision, and 3D scene
reconstruction & mapping.

Shivam Chourey received his Master’s degree in computer engineer-
ing from Virginia Tech, Blacksburg, Virginia in 2020. His research
interests are autonomous aerial systems, path planning, and human-
robot cooperation.

Kevin Kochersberger received his Ph.D. in mechanical engineering
from Virginia Tech, Blacksburg, Virginia in 1994. He is currently an
Associate Professor at Virginia Tech. His research interests are autono-
mous aerial systems, dynamics and control, and applied aerodynamics.

Journal of Intelligent & Robotic Systems (2022) 106:5858 Page 18 of 18

	Online Aerial 2.5D Terrain Mapping and Active Aerial Vehicle Exploration for Ground Robot Navigation
	Abstract
	1 Introduction
	1.1 Related Work

	2 Hardware Improvements
	2.1 Stereo Imaging
	2.2 RTK GPS

	3 Online Stereo Extrinsic Calibration
	4 Online Mapping
	5 Online Exploration with UAV
	5.1 Dijkstra Frontier Exploration
	5.2 RRT Exploration
	5.2.1 Mask Generation
	5.2.2 RRT Generation
	5.2.3 Unknown Area RRT Generation
	5.2.4 Known Area RRT Expansion
	5.2.5 KD-Tree Generation
	5.2.6 RRT Connection
	5.2.7 Frontier Extraction
	5.2.8 Frontier Selection

	6 Partial Plans for UGV
	7 Simulation Results
	7.1 Dijkstra Frontier vs RRT Explore Exploration Distance Comparisons
	7.2 UGV Intermediate Plan Method Results

	8 Field Demonstration
	9 Conclusion
	References

