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Abstract
Bionic fish have received widespread attention due to their high mobility, high concealment and high propulsion efficiency.
Trajectory tracking and tracking accuracy are the main challenges in controlling the motion of bionic fish. To realize the
trajectory tracking control of bionic fish, in this paper, nonlinear dynamics model of bionic fish is established by the Newton-
Euler equation and Denavit-Hartenberg (D-H) coordinate transformation, and it is reasonably simplified. Then, a model predic-
tive controller is established based on the dynamic model, and combined with a central pattern generator (CPG) network, a CPG-
based model predictive controller (MPC-CPG controller) is proposed. Finally, simulations and experiments are carried out on the
bionic fish, tracking the circular trajectory and straight trajectory. Experiments show that under the condition of initial error, the
MPC-CPG controller can quickly eliminate the position error and heading angle error of the bionic fish, and track to the reference
trajectory. For the tracking circular trajectory and straight trajectory, the position errors are kept at −6.9% ~ 14.9% and − 8.6%
~ 8.6% of the body length, respectively, and the heading angle errors are always kept at −4.76° ~ 4.73° and − 3.24° ~ 3.55°,
respectively. Experiments verify the effectiveness of the proposed MPC-CPG.
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1 Introduction

With the continuous deepening of human development in the
ocean, the diversity and complexity of underwater operations
have also increased, and the shortcomings of traditional au-
tonomous underwater vehicles in terms of manoeuvrability,
concealment and propulsion efficiency have become increas-
ingly obvious. After long-term genetic evolution and natural
selection, natural fish have evolved extremely well in terms of

their underwater sports abilities. Inspired by this, scholars
have imitated various fish and have developed bionic tuna
[1], bionic pike fish [2], bionic dolphins [3], bionic whale
sharks [4], etc. Compared with traditional underwater un-
manned vehicles (UUVs), bionic fish have the advantages of
low noise, good mobility, and harmlessness to underwater
creatures [5], so they are widely used in complex underwater
tasks [6, 7].

Although research on bionic fish has achieved remarkable
results, there is still a large gap in sports performance com-
pared with fish in nature [8]. At present, the methods com-
monly used to control the motion of bionic fish include the
fish body wave curve fitting method based on a rod structure,
the simple sinusoidal controller method and the motion con-
trol method based on a central pattern generator [9]. The fish
body wave curve fitting method based on a rod structure has
the advantage of simple modelling, but it has many shortcom-
ings in terms of manoeuvrability and flexibility [10]. The si-
nusoidal controller method is simple to control and can gen-
erate diversified swimming gaits online, but it cannot achieve
a smooth and natural transition when the frequency and am-
plitude change suddenly [11]. A central pattern generator is a
type of neuronal circuit widely found in invertebrates and
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vertebrates. It generates stable phase-locked periodic signals
through mutual inhibition between neurons and controls the
rhythmic movement of related parts of the body, such as
breathing, walking, and flying. [12]. The CPGmodel contains
highly nonlinear terms, which leads to many difficulties in
theoretical research and applications, but it still has incompa-
rable superiority compared with traditional motion control
methods [13]. A central pattern generator has the advantages
of good stability, strong robustness, smooth transition, and
easy adjustment. Therefore, central pattern generators have
received increasing attention and are widely used in the mo-
tion control of various robots. Knuesel Jeremie applied a CPG
network to a bionic salamander and realized five movement
modes and movement mode switching of the bionic salaman-
der in an amphibious environment [14]. Chen JY et al. used
central pattern generator-controlled bionic fish to achieve
tasks such as avoiding static obstacles, avoiding moving ob-
stacles, and tracking designated directions [15].

Although the introduction of a CPG to control robot motion
improves the coordination and smoothness of the motion, be-
cause a CPG is open-loop, to achieve more intelligent motion,
it is necessary to add feedback items or use upper-level algo-
rithms for adjustments. Cao Y et al. developed a bionic fish
that uses an improved phase oscillator as the basic unit of a
central pattern generator network. On this basis, a central pat-
tern generator fuzzy algorithm was developed to control the
bionic fish to perform stable three-dimensional motion and
complete bionic fish experiments on open-loop speed control,
depth and yaw closed-loop control [16]. Wang Gang et al.
proposed an adaptive gait control method based on a central
pattern generator and feedforward neural network. On this
basis, two reflection mechanisms were proposed to achieve
adaptive gait control on complex terrain, and waveform gait
generation and adaptive movement ability on uneven ground
were verified through experiments [17]. Aiming at the motion
characteristics of a snake-like robot, Bing ZS et al. proposed a
control method based on a lightweight central pattern genera-
tor for sliding gait conversion that effectively solved the prob-
lem of instability and abnormal torque generated by the robot-
ic snake when changing its speed, direction and body shape
[18].

To improve the motion performance of bionic robots, some
scholars have also been dedicated to optimizing the parame-
ters of central pattern generator networks. For example, Yu
Junzhi and Wang Ming et al. used a dynamic model and
particle swarm optimization (PSO) algorithm to solve the op-
timal central pattern generator’s parameters, thereby improv-
ing the swimming speed and propulsion efficiency of bionic
fish [19, 20]. Wang Y et al. normalized the limit cycle of the
Matsuoka central pattern generator and input the normalized
central pattern generator signal and feedback information into
the neural network for learning. Thus, a control signal that
removed the shape information of the central pattern generator

network and retained only the time information was generat-
ed. Experiments have shown that this method can effectively
improve the adaptability of a robot to the environment [21].

To ensure that an underwater robot can efficiently and ac-
curately complete various special underwater tasks, it is nec-
essary to carry out further research on the space motion con-
trol technology of the robot [22]. Trajectory tracking is one of
the key technologies for autonomous robots to perform tasks.
It requires the actual state of the robot to meet the constraints
of the reference trajectory in time and space. At present, the
methods used for robot trajectory tracking control mainly in-
clude backstepping control, model predictive control, sliding
mode control, neural networks, and robust adaptive control
[23]. Yang et al. introduced a recurrent neural network
(RNN) into the terminal sliding mode control method to ef-
fectively realize the high-precision trajectory tracking control
of a robot under the influence of uncertain factors [24]. Sun
et al. proposed a cascaded dynamic trajectory tracking control
method based on model predictive control and sliding mode
control and solved the problems of modelling uncertainty and
external interference [25].

However, because bionic fish have a high degree of non-
linearity and under driving characteristics, trajectory tracking
control is challenging. At present, there are few studies on the
trajectory tracking control of bionic fish. Wang Ming et al.
used an iterative learning method to control the trajectory
tracking of bionic fish and conducted simulation verification
[26]. ZhengXWet al. established a dynamic model of a bionic
fish with a centre of gravity adjustment mechanism and a
multimovement fin drive mechanism. Based on the dynamic
model, trajectory tracking was carried out through model pre-
dictive control [27].

There are many constraints in the motion of bionic fish, and
model predictive control can explicitly incorporate the
multiconstraint problem into rolling optimization. At present,
MPCs have been widely used in the motion control of various
robots (unmanned aerial vehicles, unmanned ground vehicles,
unmanned underwater vehicles, etc.) and has achieved good
results [28]. Aiming at the trajectory tracking problem of bi-
onic fish, this paper uses a MPC as the upper trajectory track-
ing controller and CPG as the bottom motion controller. The
controller can not only consider the input constraints and state
constraints of the system and improve the ability of an under-
water robot to operate stably but also improve the coordina-
tion and smoothness of motion in the process of trajectory
tracking.

The main intellectual contributions of this paper are as
follows: First, we established a nonlinear dynamic model of
a bionic fish through the Newton-Euler equation and the D-H
coordinate transformation, and the dynamic model was rea-
sonably simplified. Then, based on the dynamic model, a
model predictive controller was established, and combined
with the CPG network, a CPG-based model predictive
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controller (MPC-CPG) was proposed. Finally, simulations
and prototype experiments were performed to verify the effec-
tiveness of the proposed MPC-CPG in the trajectory tracking
process.

The rest of the paper is organized as follows: Section 2
introduces the system design and dynamic modeling of the
bionic fish. Section 3 describes the problem formulation,
and an MPC-CPG is established for bionic fish trajectory
tracking. In Section 4, the effectiveness of the control method
proposed in Section 3 is verified by simulations and experi-
ments. Finally, Section 5 gives conclusions.

2 Bionic Fish Design and Modeling

2.1 Overview of the Bionic Fish

As shown in Fig. 1, according to the shape and movement
characteristics of a shark, a bionic shark was developed as a
controlled platform. Compared with the real shark, the bionic
shark only retains the tail fin and a pair of pectoral fins as the
motion actuators, which are driven by three servo motors. The
dorsal fin is equipped with a wireless communication module
fixed on the shell, and the other fins are ignored. The shell of
the bionic fish is made of a carbon fibre composite material.
The tail fin is fixed on a set of gear linkage mechanisms, and
only one motor is needed to drive the three joints. The core
controller consists of an NVIDIA development board

equipped with an ROS system and an STM32 microcontroller
unit, which collect signals from sensors such as depth sensors
and an IMU. Table 1 lists the detailed technical parameters of
the bionic fish.

2.2 Nonlinear Dynamic Model of the Bionic Fish

Because the interaction between the bionic fish and a fluid
when swimming is complex and highly nonlinear, especially
at high Reynolds numbers [29], there is no mature and unified
dynamic model. Current methods used to construct bionic fish
dynamics models mainly include computational fluid dynam-
ics (CFD) simulation evaluation [30] and a dynamic model
constructed with the Lagrange equation or Newton–Euler
equation combined with potential flow theory [2, 31, 32].
Compared with other modelling methods, the Newton–Euler
equation has the advantages of being simpler and more intu-
itive, but also, the established dynamic model is easy to write
in the form of CPG parameters, which is convenient for com-
bining with an MPC. Therefore, in this paper, the Newton–
Euler equation is used to model the dynamics of the bionic
fish, and through D–H coordinate transformation, a dynamic
model conforming to the caudal fin propulsion mechanism
proposed in this paper is constructed. A schematic diagram
of the bionic fish tail is shown in Fig. 2.

According to the gear transmission relationships, the rela-
tive rotation angle of each joint θi can be obtained as

θ2 ¼ i1θ1
θ3 ¼ i2θ1

ð1Þ

where i1 ¼ z1 z3
z2

z4−1, i2 ¼ z5 z8 z1ð z3
z2

z4−1Þ, and zi is the

number of teeth of gear i.
The hydrodynamic forces of the fish body and fish tail are

equivalent to the concentrated forces acting on each particle Ji
of the fish. The coordinate systems and forces of the estab-
lished bionic fish are shown in Fig. 3; among them, XOY and
xoy are the geodetic coordinate system and the body coordi-
nate system, respectively.Ffx and Ffy are the fluid resistances
when the bionic fish swims, and F1 ∼ F5 are the hydrody-
namic forces when the bionic fish swims.

The nonlinear dynamic model of the bionic fish is estab-
lished by the Newton-Euler equation as

Table 1 Technical
parameters of the bionic
fish prototype

Parameter Description

Size (m3) 1.74×0.75×0.62

Weight (kg) 42.7

Number of motors 3

Power supply (V) DC 24

Pectoral fin

Caudal fin

Bionic fish tailDorsal fin

Imaging sonar

Airtight cabin

(a)

(b)

(c)
Fig. 1 Model diagram and prototype of bionic fish
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m
::
x ¼ −F1x þ F2x þ F3x þ F4x þ F5x−Ffx

m
::
y ¼ F1y−F2y þ F3y þ F4y þ F5y−Ffy

I z
::
φ ¼ −F1l1−F2l2 þ F3l3 þ F4l4 þ F5l5

Ẋ ¼ ẋ

cosφ−ẏsinφẎ

¼ ẋsinφþ ẏcosφ

ð2Þ
where X, Y and x, y are the positions of the bionic fish in the
geodetic coordinate system and the body coordinate system,
respectively. li is the force arm from the hydrodynamic force
Fi to the rotation centre O1 of the bionic fish; φ is the heading
angle; and Iz is the moment of inertia around the z-axis.

To simplify the calculation process, the resistance formula
of a simple flat plate is used to calculate the hydrodynamic
force.

Fi ¼ Ciρv2JiSi=2 ð3Þ

where Ci is the drag coefficient of each part of the fish body,
C1 ∼ C5, Cx, Cy; vJi is the speed at the centre of mass of each

part of the fish body and tail, vJ1 ∼ vJ5; ẋ and ẏ are the
longitudinal speed and lateral speed of the bionic fish, respec-
tively; Si is the area of slapping water of each part of the fish,
S1 ∼ S5, Sfx, Sfy; and ρ is the density of the fluid.

Fig. 2 The schematic diagram of the caudal fin propulsion mechanism

Fig. 3 Coordinate systems and
forces of bionic fish
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Easy to know

vJ 1 ¼ φ̇ L8 þ vvJ 2 ¼ φ̇L9 þ v ð4Þ

where v ¼ ẋẏ0
h i

T is the actual speed of the bionic fish.

The coordinate systems of the caudal fin propulsion mech-
anism are shown in Fig. 4, and vJ3 ∼ vJ5 are calculated by
coordinate transformation.

The transformation matrices between the coordinate sys-
tems of the bionic fish tail are as follows:

i−1 T ¼ i−1 RPiO1�;i T Jiþ2¼ I3�3 PJiþ2

O 1

� �
i−1R ¼

cosθi −sinθi 0
sinθi cosθi 0
0 0 1

24 3524
where iRiþ1 is the rotation matrix, and i = 1, 2, 3, P1 = O3 ×

1, P2 = [L200]
T, P3 = [L300]

T, PJ3 = [L500]
T, PJ4 = [L600]

T,
PJ5 = [L700]

T, and I3 × 3 is the third-order unit matrix.
The velocities ivJi of the centroid Ji of each part of the tail in

the coordinate system XiOiYi are

1vJ3 ¼1 RJ3 0L5 θ̇10
h iT

2vJ4

¼2 RJ4 2v2 þ 0 L6 θ̇1 þ θ̇2
� �

0
h iT� �

3vJ5

¼3 RJ5 3v3 þ 0 L7 θ̇1 þ θ̇2 þ θ̇3
� �

0
h iT� �

ð5Þ

The velocities 0vJi of the centroid Ji of each part of the tail
in the base coordinate system X0O0Y0 are

0vJ3 ¼0 RJ31vJ30vJ4 ¼0 RJ42vJ40vJ5 ¼0 RJ53vJ5 ð6Þ

where 0R is

0R ¼
cos ∑

i−2

j¼1
θ j −sin ∑

i−2

j¼1
θ j 0

sin ∑
i−2

j¼1
θ j cos ∑

i−2

j¼1
θ j 0

0 0 1

266664
377775

where i = 3, 4, 5. The actual velocity on the centroid of each
part of the tail is

vJi ¼ 0vJi þ v ð7Þ

The nonlinear dynamic model of the bionic fish can be
obtained by Eq. (2) ~Eq. (7). To simplify the calculation,
the following assumptions are made:

(1) Because only the low-speed movement of the bion-
ic fish in a still water environment is considered,
the influence of lateral velocity and centripetal
force are ignored.

(2) In the swimming process of the bionic fish, the swing
angle of the tail fluctuates, so the thrust generated by the
tail swing also changes over time. For the convenience of
calculation, the thrust generated by the tail is equivalent
to a constant force through the principle of equal work in
one cycle.

The work done by each part of the fish tail in the X direc-
tion and that in the Y direction in a tail swing cycle are as
follows:

Fig. 4 The coordinate systems of
the caudal fin propulsion
mechanism
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Wxi ¼ ∫T0 FxivJidt ¼ vJi∫
T
0 FisinΘidt

Wyi ¼ ∫T0 FyivJidt ¼ vJi∫
T
0 FicosΘidt

ð8Þ

where Θi is the angle of each part of the tail. F is the force
generated by the tail swinging, and T is the period of the tail
swinging.

Let Eq. (8) satisfy Eq. (9):

vJi∫
T
0 FisinΘidt ¼ vJi∫

T
0 Fikxi dt

vJi∫
T
0 FicosΘidt ¼ vJi∫

T
0 Fik

y
i dt

ð9Þ

The equivalent parameters kxi and k
y
i can be obtained by Eq.

(3), Eq. (7) and Eq. (9). Finally, the simplified nonlinear dy-
namic model of the bionic fish is

m
::
y ¼ − a1cHkx1k

y
1 þ a2cHkxλ4

þ a3cHkxλ1

� �
kyλ1

þ a4cHkxλ2
kyλ2

h i
ẋω

m
::
x ¼ − a1cH kx1

� 	2 þ a2cHkxλ4
þ a3cHkxλ1

� �
kxλ1

þ a4cH kxλ2

� �2
� �

ẋω

I z
::
φ ¼ −a5 ẋ φ̇−a1cH L1−0:5L1b2 þ L5

� 	
ẋωb

− a2cHλ4 þ a3cHλ1ð Þ L1 þ L2 þ L6− 0:5L1λ2
1 þ 0:5L2i21

� 	
b2


 �
ẋωb

−a4cHλ2 L1 þ L2 þ L3 þ L7− 0:5L1λ2
2 þ 0:5L2λ2

3 þ 0:5L3i22
� 	

b2

 �

ẋωb

Ẏ ¼ ẋsinφþ ẏcosφ

Ẋ ¼ ẋcosφ−ẏsinφ

ð10Þ

whereH is the rotation amplitude of the first joint of the caudal
fin propulsion mechanism. c is a constant in the derivation
process, with c = 2/π.a1~ a5 and λ1~ λ4 are all constants,a1
= C3S3L5ρ,a2 = C4S4L2ρ/2,a3 = C4S4L6λ1ρ/2, a4 = C5S5(L2
+ λ1L3 + λ2L7)ρ/2, and a5 ¼ C1ð S1L28 þ C2 S2L29Þ ρ=2.λ1
= 1 + i1, λ2 = 1 + i1 + i2, λ3 = i1 + i2, and λ4 = 1 + 2i1. i1
and i2 are the transmission ratios of each gear of the caudal
propulsion mechanism.

3 Problem Formulation

3.1 CPG Model of the Bionic Fish

A central pattern generator (CPG) is a biological neural
network that is widely found in vertebrates and inverte-
brates and can generate rhythm signals without sensory
feedback [32]. Inspired by this, scholars have developed
various CPG oscillator models, which are currently com-
monly used, including recursive neural oscillators, phase
oscillators and Hopf oscillators [33–35]. This paper uses
the Hopf oscillator as the basic unit of the CPG to con-
struct the underlying motion control network. The math-
ematical model of the CPG network is

ẋi ¼ −ωi βi−bið Þ þ kαi H2
i −α

2
i − βi−bið Þ2

� �
þ hi αi−1cosϕi þ βi−1−bi−1ð Þsinϕi;i−1

� 	
ẏi

¼ ωiαi þ k βi−bið Þ H2
i −α

2
i − βi−bið Þ2

� �
þ hiþ1 αiþ1sinϕiþ1 þ βiþ1−biþ1ð Þcosϕi;iþ1

� 	 ð11Þ

where αi and βi are state variables of the i-th oscillator. ωi

and Hi represent the oscillation frequency and amplitude
of the i-th oscillator, respectively. hi and ϕi represent the
coupling factor and phase difference of the i-th oscillator,
respectively, and bi represents the offset of state variable
βi in the i-th oscillator, with i = 1, 2, 3.

The CPG network constructed by coupling terms is shown
in Fig. 5. The output signals of the CPG network are transmit-
ted to the left pectoral fin, right pectoral fin and caudal fin of
the bionic fish. The upper controller adjusts the frequency and
offset of the CPG network in real time, and then, by changing
the frequency and offset of the pectoral fin and caudal fin, the
swimming speed and angular velocity are controlled, finally,
the tracking control objective of the bionic fish is realized, that
is, the actual state of the bionic fish satisfies the constraints of
the reference trajectory in time and space, so as to ensure the
smooth progress of the underwater operation task.

3.2 Design of the Model Predictive Controller

The motion control of the bionic fish is a kind of nonlinear
problem with multiple constraints, and it needs to switch the
swimming gait frequently during the trajectory tracking pro-
cess to ensure tracking accuracy. Therefore, this paper uses the
CPG network as the underlying motion controller to ensure
smoothness in the motion control process. At the same time,
model predictive control is introduced as the upper controller.
The MPC and CPG are combined through the dynamic model
of the bionic fish, and the MPC-CPG is developed. The pa-
rameters of the CPG network are adjusted in real time through
the model predictive controller to complete the trajectory
tracking task.

3.2.1 Error Model

Eq. (10) shows that the system can be regarded as a control
system with a control quantity u(ω, b) and a state quantity

χ ẏ; ẋ;φ; φ̇; Y ;X
� �

. Its general form is

χ̇ ¼ f χ;uð Þ ð12Þ

Each point on the given reference trajectory satisfies the
above equation, the subscript r is used to represent the refer-
ence quantity, and Eq. (12) becomes
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χ̇r ¼ f χr; urð Þ ð13Þ

where χr ¼ ẏr
h

ẋr φr φ̇r Y r X r� T and ur = [ωrbr]
T.

Expansion of Eq. (12) using a Taylor series at the reference
trajectory point and ignoring higher-order terms yields

χ̇ ¼ f χr; urð Þ þ ∂ f χ; uð Þ
∂χ

����χ ¼ χr
u ¼ ur

χ−χrð Þ

þ ∂ f χ; uð Þ
∂u

����χ ¼ χr
u ¼ ur

u−urð Þ ð14Þ

Subtracting (13) from (14), a linear error model can be
obtained:

ėχ ¼ χ̇−χ̇r ¼ A tð Þ ėχþ B tð Þėu ð15Þ

To apply this model to the design of model predictive con-
trollers, Eq. (15) is discretized to obtain a discrete linear error
model:

eχ k þ 1ð Þ ¼ Ak;teχ kð Þ þ Bk;teu kð Þ ð16Þ
where Ak, t = I + TA(t), Bk, t = TB(t), and T is the sampling
time.

3.2.2 Cost Function

Referring to the method used in the literature [36], the MPC
formulation for the bionic fish controller can be established as
follows:

J kð Þ ¼ ∑
i¼1

Np

η
�
k þ ijt

�
−ηr

�
k þ ijt

�


 


2
Q

þ ∑
Nc−1

i¼1
ΔU

�
k þ ijt

�


 


2
R

ð17Þ

where Np is the prediction horizon and Nc is the control
horizon.

Fig. 5 Bionic fish CPG network

Fig. 6 Control block diagram of MPC-CPG controller
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Eq. (16) is converted as follows:

ξ kjtð Þ ¼ eχ kjtð Þeu k−1jtð Þ

" #
ð18Þ

A new state space expression is obtained as follows:

ξ k þ 1jtð Þ ¼ eAk;tξ kjtð Þ þ eBk;tΔU kjtð Þ
η kjtð Þ ¼ eCk;tξ kjtð Þ

ð19Þ

where eAk;t ¼ Ak;t Bk;t

0m�n Im

� �
, eBk;t ¼ Bk;t

Im

� �
, n is the dimen-

sion of the state quantity, andm is the dimension of the control
quantity.

After derivation, the predicted output expression of the
system is obtained:

Y tð Þ ¼ Ψ tξ tjtð Þ þΘtΔU tð Þ ð20Þ
where

Y tð Þ ¼
Δu tjtð Þ

Δu t þ 1jtð Þ
…

Δu t þ Ncjtð Þ

2664
3775Ψ t ¼

eCt;teAt;teCt;teA2

t;t
⋯eCt;teANc

t;t
⋯eCt;teANp

t;t

2666666664

3777777775

Θt ¼

eCt;teBt;t 0 0 0eCt;teAt;teBt;t eCt;teBt;t 0 0
⋮ ⋮ ⋱ ⋮eCt;teANc−1

t;t
eBt;t eCt;teANc−2

t;t
eBt;t ⋯ eCt;teBt;teCt;teANc

t;t
eBt;t eCt;teANc−1

t;t
eBt;t ⋯ eCt;teAt;teBt;t

⋮ ⋮ ⋱ ⋮eCt;teANp−1

t;t
eBt;t eCt;teANp−2

t;t
eBt;t ⋯ eCt;teANp−Nc−1

t;t
eBt;t

2666666666664

3777777777775

;ΔU tð Þ ¼
Δu tjtð Þ

Δu t þ 1jtð Þ
…

Δu t þ Ncjtð Þ

2664
3775

Substituting Eq. (20) into Eq. (17), the cost function in its
complete form can be obtained.

The expression form of the control quantity constraint and
the control increment constraint during the movement of the
bionic fish are as follows:

umin t þ kð Þ⩽u t þ kð Þ⩽umax t þ kð Þ
Δumin t þ kð Þ⩽Δu t þ kð Þ⩽Δumax t þ kð Þ ; k

¼ 0; 1;⋯;Nc−1 ð21Þ

The constraints are combined into matrix form as

Umin⩽KΔU t þ U t⩽Umax ð22Þ
where Umin and Umax are the minimum and maximum values
of the control variable in the control horizon, respectively.
U t ¼ 1Nc⊗u k−1ð Þ, 1Nc is the column vector with Nc rows,
and ⊗ is the Kronecker product.

K ¼
1 0 ⋯ 0
1 1 0 0
⋮ ⋮ ⋱ ⋮
1 1 ⋯ 1

2664
3775
Nc�Nc

⊗Im ð23Þ

3.2.3 Stability Proof

In this paper, Lyapunov’s second method is used to prove the
stability, and the optimal cost function at time k is selected as
the Lyapunov function, that is,minJ(k) = J∗(k) = V∗(k). If the
Lyapunov function satisfies V∗(k + 1) ≤ V∗(k) at time k + 1,
the system is stable.

V* kð Þ ¼ min ∑
i¼1

Np

η kð Þ−ηr kð Þk k2Q þ ∑
Nc−1

i¼0
Δu kð Þk k2R

( )
ð24Þ

Obviously, the selected Lyapunov function in Eq. (24) is
V∗(k) = 0 when k = 0 and V∗(k) > 0 when k ≠ 0. The optimal
control quantity eu k þ 1þ ijk þ 1ð Þ and the optimal control
increment Δeu k þ 1þ ijk þ 1ð Þ of the system are as follows:

eu k þ 1þ ijk þ 1ð Þ ¼ eu k þ 1jk þ 1ð Þ;eu k þ 2jk þ 1ð Þ;…;eu k þ Ncjk þ 1ð Þ
h i

¼ eu* k þ 1jkð Þ;eu* k þ 2jkð Þ;…;eu* k þ Ncjkð Þ
� �

Δeu k þ 1þ ijk þ 1ð Þ ¼ Δeu k þ 1jk þ 1ð Þ;Δeu k þ 2jk þ 1ð Þ…;Δeu k þ Ncjk þ 1ð Þ
h i

¼ Δeu* k þ 1jkð Þ;Δeu* k þ 2jkð Þ;…;Δeu* k þ Ncjkð Þ
� �

ð25Þ

According to Eq. (25), J(k + 1) and V∗(k) have the follow-
ing relationship:

Table 2 Initial conditions and
reference values of bionic fish Reference trajectory(xr,yr,θr) Initial error (xe,ye,θe) Reference velocity (ur,ωr)

Circular (5cost,5sint,t) (−2,0,π/3) (0.25,0.5)

Straight (t,2,0) (0,1,0) (0.25,0)

Table 3 Parameter setting

Parameter Numerical value

MPC Prediction step Np 5

Control step Nc 3

Sampling time T 0.5

CPG Amplitude Hi 10

Phase difference ϕi π

Coupling factor hi 0.5

Convergence factor k 15
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Fig. 7 Simulation results of
circular trajectory tracking
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Fig. 8 Output signals of CPG
network of circular trajectory
tracking

Fig. 9 Simulation results of
straight trajectory tracking
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J k þ 1ð Þ ¼ ∑
i¼1

Np

η k þ 1þ ijk þ 1ð Þ−ηr k þ 1þ ijk þ 1ð Þk k2Q

þ ∑
Nc−1

i¼0
Δu k þ 1þ ijk þ 1ð Þk k2R

¼ ∑
i¼1

Np

η* k þ 1þ ijkð Þ−ηr k þ ijkð Þ

 

2
Q þ ∑

Nc−1

i¼1
Δu* k þ ijkð Þ

 

2

R

¼ ∑
i¼1

Np

η* k þ 1þ ijkð Þ−ηr k þ ijkð Þ

 

2
Q þ ∑

Nc−1

i¼1
Δu* k þ ijkð Þ

 

2

R

− η kjkð Þ−ηr kjkð Þk k2Q− Δu* kjkð Þ

 

2
R

¼ V* kð Þ− η kjkð Þ−ηr kjkð Þk k2Q− Δu kjkð Þk k2R
ð26Þ

In addition, because V∗(k + 1) is the optimal solution to the
cost function, V∗(k + 1) ≤ J(k + 1). According to Eq. (26),
we obtain

V* k þ 1ð Þ≤ J k þ 1ð Þ≤V* kð Þ− η* kð Þ−ηr kð Þ

 

2
Q− Δu* kð Þ

 

2

R

ð27Þ

Because η* kð Þ−ηr kð Þk k 2
Q and Δu* kð Þk k 2

R are not nega-

tive, the following can be obtained

V* k þ 1ð Þ≤V* kð Þ ð28Þ

Thus, the stability of the system is proven.

4 Simulation and Experiment

A block diagram of the MPC-CPG controller is shown in
Fig. 6. The model predictive controller calculates the control
quantity at the next moment according to the error between the
reference trajectory and the actual trajectory at the current
time. The control quantity is input to the CPG network in
the form of a CPG parameter for adjustment, and then, the
CPG outputs the control signals for the pectoral fins and cau-
dal fin of the bionic fish. This process is continuously loop,
and finally, the trajectory tracking task is completed.

To verify the effectiveness of the designed controller, in
this paper, simulations and experiments are carried out on
tracking the circular trajectory and straight trajectory of the
bionic fish. The initial conditions and reference values are
shown in Table 2. The parameter settings of the MPC and
CPG are shown in Table 3.

In the simulation process, the control quantity constraint
and control increment constraint of the model predictive con-
troller are as follows

Fig. 10 Output signals of CPG
network of straight trajectory
tracking

Fig. 11 Experimental platform
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−4π
−5

� �
≤ ω

b

� �
≤ 4π

5

� �
−0:1π
−0:5

� �
≤ Δω

Δb

� �
≤ 0:1π

0:5

� � ð29Þ

The simulation results of the circular trajectory tracking
task are shown in Fig. 7. Figure 7(a) it shows that the model
predictive controller quickly eliminated the position error and
the heading angle error of the bionic fish and smoothly tracked
the reference trajectory in 2 s, and the tracking effect is good.
Figure 7(b) shows that the position error is always kept at
−0.27 m ~ 0.27 m (−15.5% ~ 15.5% of the body length),
and the heading angle error converges to 0 after 2 s.
Figure 7(c) shows that when the bionic fish starts to move,
to track the reference trajectory as soon as possible, the veloc-
ity and angular velocity are relatively large. As the tracking
error decreases, the velocity and angular acceleration also de-
crease and finally stabilize at the reference value.
Correspondingly, the outputs of the CPG network during the
trajectory tracking process are shown in Fig. 8. The figure
shows that the oscillation frequency of the CPG network is

relatively large in the beginning, which makes the caudal fin
of the bionic fish swing at a relatively large frequency, thus
quickly approaching the reference trajectory and eliminating
the tracking error. The offset of the CPG is gradually reduced
from −5° to 0° and then is gradually increased. After tracking
the reference trajectory, the frequency of the CPG stabilizes at
0.5π, and the offset stabilizes at 3°.

The simulation results of straight trajectory tracking are
shown in Fig. 9. The figure shows that the position error and
heading angle error of the bionic fish are quickly eliminated
by the model predictive controller. After 10 s, the reference
trajectory is tracked, and the position error and the heading
angle error both converge to 0. Correspondingly, the output of
the CPG network in the trajectory tracking process is shown in
Fig. 10. Similar to tracking the circular trajectory, the oscilla-
tion frequency of the CPG network is relatively large in the
beginning so that the bionic fish quickly approaches the ref-
erence trajectory and tracking errors are eliminated. The offset
of the CPG gradually decreases from −5°, the offset stabilizes
at 0° after tracking the reference trajectory, and the frequency
of the CPG is stable at 0.5π.

Fig. 12 Circular trajectory tracking experiment
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The simulation results show that with the adjustment of the
MPC-CPG, the system can quickly eliminate the position and
heading angle errors so that the system can quickly reach a
stable state, and the system has good dynamic characteristics
in the process of reaching the steady state.

Compared with the method in reference [37], the control
method proposed in this paper has obvious advantages based
on three aspects: tracking accuracy, motion performance and
handling of constraints. First, reference [37] used a type 1 servo
control (T1SC) with an LQR optimal state feedback technique
in the trajectory tracking control of bionic fish, and the tracking
accuracy of the simulation experiment (−32% ~ 32% of the
body length) was lower than that of the method presented in

this paper. Second, reference [37] sent the joint rotation angle
value calculated by dynamics directly to the drive motor.
Compared with the CPG control method, this method has
shortcomings in the smoothness and coordination of motion
control. In addition, reference [37] only considered the varia-
tion in the offset of the fish tail swing, while this paper also
considers the variation in the offset and frequency of the fish
tail swing, achieving better flexibility. Finally, although refer-
ence [37] used LQR to obtain optimal control, it did not incor-
porate many of the constraints of the motion control of bionic
fish into the control process, and the problem of driver oversat-
uration is prone to occur. TheMPC used in this paper can solve
this kind of problem well.

Fig. 13 Experimental results of circular trajectory tracking
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To further verify the effectiveness of the MPC-CPG, ex-
perimental verification is carried out based on the simulation.
As shown in Fig. 11, the experimental platform mainly in-
cludes a pool with a length of 10 m, a width of 8 m, and a
depth of 1 m, a top camera, a user computer, and a communi-
cation module. Under static water conditions, experiments
were carried out on, tracking the circular trajectory and
straight trajectory of the bionic fish. In the experiment, a mark-
ing point was set on the back of the bionic fish. During the
swimming process, the computer recorded the actual swim-
ming trajectory of the bionic fish through the top camera.

The experimental process of circular trajectory tracking is
shown in Fig. 12. The yellow dotted line represents the refer-
ence trajectory, which is a circular trajectory with a diameter
of 6.5 m, and the red line represents the actual trajectory of the
moving bionic fish. At 2 s, the bionic fish starts to swim under
the condition of initial error, and then, under the control of the
MPC-CPG controller, the error with the reference trajectory is
continuously reduced. At 23 s, it tracks the reference trajectory
and continues to swim along the reference trajectory. Finally,
the tracking of the entire circular trajectory is completed after
154 s. During the entire tracking process, the bionic fish
smoothly approaches and tracks the reference trajectory.

The experimental results of circular trajectory tracking are
shown in Fig. 13. The figure shows that the initial position
errors in the X and Y directions are 0.94 m and 0.64 m, re-
spectively. The position errors in the X and Y directions grad-
ually decrease as the bionic fish swims. At 23 s, the bionic fish

tracks the reference trajectory, and then, it continues to swim
along the reference trajectory, finally completing the trajectory
tracking task. The position error in the X and Y directions is
always kept at −0.12 m ~ 0.26 m; that is, the position error is
always kept at −6.9% ~ 14.9% of the body length. Due to the
unique movement mode of the bionic fish, its head is always
in a state of swinging during swimming. Therefore, the actual
heading angle of the bionic fish when swimming always fluc-
tuates around the reference heading angle, and the fluctuation
range is −48° ~ 45°. The error between the filtered heading
angle and the reference heading angle is kept at −4.76° ~
4.73°, so the bionic fish has good heading angle tracking
performance in the trajectory tracking process.

The experimental process of straight trajectory tracking is
shown in Fig. 14. The figure shows that the bionic fish tracked
the reference trajectory at 33 s and continued to swim along
the reference trajectory. Finally, tracking of the entire straight
trajectory is completed after 63 s. During the whole tracking
process, the bionic fish can smoothly approach and track the
reference trajectory.

The experimental results of straight trajectory tracking
are shown in Fig. 15. The figure shows that the initial
position errors in the X and Y directions are 0 m and
4 m, respectively. The position errors in the X and Y
directions gradually decrease as the bionic fish swims.
At 33 s, the bionic fish tracks the reference trajectory,
and then, the position error in the X and Y directions is
always kept at −0.15 m ~ 0.15 m; that is, the position

Fig. 14 Straight trajectory tracking experiment
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error is always kept at −8.6% ~ 8.6% of the body length.
The error between the filtered heading angle and the ref-
erence heading angle is maintained at −3.24° ~ 3.55°, so
the bionic fish has a good heading angle tracking perfor-
mance in the trajectory tracking process.

Compared with the simulation results, during the ex-
periment, the error between the actual motion trajectory
and the reference trajectory always fluctuates within a
small range. On the one hand, when the bionic fish
swims, its head sways due to the swing of its tail, which
causes the mark on its head to fluctuate near the reference
trajectory and results in errors. This error can be improved
by reducing the amplitude of head shaking, but it cannot
be eliminated. On the other hand, because the pool is not
completely static, the bionic fish is subjected to some
external disturbances during swimming.

Compared with the method in reference [38], the control
method proposed in this paper has obvious advantages from
three aspects: tracking accuracy, smoothness of drive control
and handling of constraints. First, reference [38] used a meth-
od based on optical flow target detection and a PID for track-
ing control of bionic fish, and the tracking accuracy of the
prototype experiment (−28.7% ~ 28.7% of the body length)
was lower than that of the method in this paper. Second, ref-
erence [38] used the method of multilink fitting fish body
waves to control the swing of fish tails. Compared with the
CPG control method adopted in this paper, it has shortcom-
ings in terms of mobility and flexibility. Finally, similar to
reference [37], reference [38] used a PID as the tracking con-
troller, which cannot incorporate many constraints of the mo-
tion control of the bionic fish into the control process, and the
problem of driver oversaturation is also prone to occur.

Fig. 15 Experimental results of straight trajectory tracking
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Therefore, the experiment shows that the bionic fish shows
good tracking trajectory performance, which further verifies
the effectiveness of the MPC-CPG proposed in this paper.

5 Conclusions

Based on the nonlinear dynamics model of bionic fish,
this paper establishes a model predictive controller and
then combines the model predictive controller with a
CPG to propose an MPC-CPG for bionic fish trajectory
tracking control. The nonlinear dynamic model of the bi-
onic fish is established by Newton-Euler equations and D-
H coordinate transformation. The MPC-CPG is composed
of an upper MPC and a lower CPG network. The model
predictive controller directly adjusts the parameters of the
CPG network according to the error of the actual trajec-
tory and the reference trajectory and then adjusts the mo-
tion mode through the CPG network to realize the trajec-
tory tracking of the bionic fish. The entire control struc-
ture provides stable, adaptable and smooth gait transitions
according to environmental changes. Finally, experiments
are conducted to verify the tracking performance of the
MPC-CPG on the circular trajectory and straight trajecto-
ry. The experiment shows that under the condition of ini-
tial error, the bionic fish can quickly eliminate position
error and heading angle error and track the reference tra-
jectory. The effectiveness of the proposed MPC-CPG for
tracking control of the bionic fish trajectory is verified.
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