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Abstract
In this paper, we present an active learning enabled robotic painting system, called ShadowPainter, which acquires artist-
specific painting information from the artwork creating process and achieves robotic reproduction of the artwork. The artist’s
painting process information, including interactive trajectories of paintbrushes with the environment and states of the canvas,
is collected by a novel Visual Measurement System (VMS). A Robotic Painting System (RPS), accompanied by the VSM,
is developed to reproduce human paintings by actively imitating the measured painting process. The critical factors that
influence the final painting performance of the robot are revealed. At the end of this paper, the reproduced artworks and
the painting ability of the RPS are evaluated by local and global criteria and metrics. The experimental results show that
our ShadowPainter can reproduce human-level brush strokes, painting techniques, and overall paintings. Compared with the
existing work, our system produces natural strokes and painting details that are closer to human artworks.
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1 Introduction

Technology and art have been intermingling and promoting
each other for a long history [1]. The combination of
intelligent technology and art has received increasing
attention in recent years. Researchers, engineers, and artists
are using robotic systems and AI technologies to create
art. In particular, robotic painting [2] and its supporting
technology, stroke-based rendering (SBR) [3, 4], have been
widely studied. The robotic painting explores machine
creativity, especially in realistic artworks. It also reveals
the mechanism of the human artistic creation process and
empowers humans’ creation through assisted painting.

Some pioneers began exploring robotic painting as early
as the last century, like Jean Tinguely, Harold Cohen, and
Holger Bär. They use mechanical devices to perform new
forms of artistic painting. Harold Cohen built a plotter, named
AARON [5], to create abstract drawings. It is considered
the most influential painting machine in contemporary art.
Until now, lots of artists utilize robots to expand the way
they create art. Among them, Dulcinea [6] produces quite
amazing paintings by reinterpreting various data not visible
to the naked eyes. In these systems, the robots are used as
actuators for painting and are not able to paint autonomously.
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With the development of intelligent technology,
autonomous robotic painting emerged. Early robotic
painting mainly focuses on sketch and calligraphy [7]. A
sketching robot named Paul was developed by Tresset et
al. to create portraits at live [8]. Similar to Paul, Sylvain
Calinon et al. developed a humanoid robot to implement
portrait drawings using a quill pen [9]. For these robots, the
painting process is simplified and relatively easy to control,
which means only simple sketches can be drawn.

At present, robotic systems can complete more complex
paintings with diverse contents and painting mediums.
A competition called ”RobotArt” [10] was held annually
between 2016 and 2018. Many robots that appear in the
competition achieve pleasing visual effects. Hod Lipson
developed a robot called PIX18 [11] to perform acrylic
painting based on brush strokes generated using a genetic
algorithm. It generates textures similar to humans but
lacks details. RobotArtist, described in [12], succeeds in
creating a gradual change in color using the overlay
technique. And Busker Robot produces watercolor painting
using a well-designed paint rendering algorithm [13, 14].
And ArtCybe, developed by Artur I. Karimov, created
monochrome paintings with special tone rendition with
the help of a novel color mixing device [15]. E-David,
developed by Thomas Lindemeier et al. [16, 17] from
the University of Konstanz, achieved a fascinating effect
on acrylic paintings based on visual feedback. And the
stroke generation is guided by semantic hints [18] and
hardware limitations [19, 20]. Machine learning algorithms
are applied in the stroke rendering for robotic painting
[21] in recent years. For example, Huang et al. [22] uses
Reinforcement Learning to solve the stroke arrangements.
And [23] uses content-masked loss to generate strokes for
robotic portrait painting with time-efficient stroke planning
based on [22]. These methods apply pre-defined brush
models and painting rules to generate stroke sequences by
minimizing the distance between the canvas and the target
image. Then the stroke sequences are executed by the robot
to complete the painting. However, the robotic painting
results can be easily distinguished from the human paintings
because of unnatural brush strokes, which have different
distributions from human strokes. We argue that this is
caused by the following problems.

Monotonous Brush Stroke Model Human painters use
varying stroke shapes and painting techniques depending
on the painting contents and regions [24]. In contrast, the
canvas is filled with regular strokes to approximate the
target image for simplicity in existing methods. For digital
rendering, if the pixel size of the brush tip is small enough,
the rendered results can be close to or even identical to the
given image at the pixel level. But for a robot, painting
granularity is limited by physical brushes. The stroke

sequences generated by these methods lead to monotonous
strokes painted by the robot. Zhu et al. use template images
of captured human strokes to generate better visual effects
of strokes [25, 26]. However, these methods are only limited
to image rendering and cannot be applied to robotic painting
[27, 28]. Human-like natural brush strokes are required for
the robot to improve the painting results.

Lack of Painting State Constraints and Skill Guidance Most
methods only take the target image as a reference rather than
actively using artist-specific painting techniques collected
from the artwork creating process. Instead of approximating
a target image using strokes directly, human painting
has abstraction and multi-stage objectives. The explicit
information from the target image is insufficient, lacking
the skill guidance of intermediate painting state and painting
techniques. It is difficult for the robot to find a human-like
painting sequence reversely through optimizing an objective
constrained by a reference image.

To tackle the problems illustrated above and achieve
human-level autonomous painting, it is necessary to collect
sufficient painting information from the artist’s painting
process for robotic active learning. Therefore, we focus
on a fine art painting reproduction task to verify
whether the robot has the potential to achieve human-level
paintings. In this paper, we explore human-level robotic
painting by measuring and imitating the human’s painting
process, rather than following manually defined painting
rules, as the existing work does. As far as we know, we
are the first to perform a human-level fine art painting
reproduction using robots. Compared with the literature,
our ShadowPainter achieves natural strokes, a variety of
painting techniques (blending, shading, etc.), and human-
level reproduction paintings benefiting from the active
imitation of the human painting process, as shown in
Fig. 1. The results demonstrate that the collected painting
information is sufficient for painting reproduction. Thus,
our system is also deployed to collect expert painting data
for training an autonomous agent to paint in future work.

Firstly, we formulate the artistic painting process as inter-
actions between the painting tools and the environment. We
develop a Visual Measurement System (VMS) to acquire
sufficient painting information for fine art reproductions,
including interactive trajectories and painting states. The
extracted painting information can be used for robotic paint-
ing skills learning in future work. This also allows the
digitization of artists’ artworks and painting knowledge for
perpetual reservations.

We further develop a Robotic Painting System (RPS)
to reproduce the human paintings based on the collected
painting information. At the same time, we reveal the
critical factors influencing the final results for robotic
painting. The original artwork accompanied by the digital
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Fig. 1 Reproduction paintings of our ShadowPainter compared with
other painting robots. (a) A painting process of the Still Life by our
ShadowPainter. (b) Some other painting results of our ShadowPainter.
(c) Highest voted paintings of the state of the art [23, 29, 30] in the
user study in terms of the frequency mistaken as human painting.
Compared with existing work, our ShadowPainter achieves natural
strokes, varying painting techniques, and human-level reproduction
paintings benefiting from the active imitation of the human painting
process

painting data and its reproductions can be licensed through
the blockchain, like NFT [31], to avoid impersonation.

Besides, there is no consensus on evaluation criteria and
metrics of robotic paintings. We propose to use IoU and
color difference in Lab space, which are widely used in
image detection tasks and color science separately, to evalu-
ate the reproduction of the strokes and painting techniques.
And we implement a Visual Turing Test covering diverse
painting types and participants with different knowledge
backgrounds to assess the overall paintings. Finally, we
conduct three-level reproduction experiments to verify the
effectiveness of our ShadowPainter. Experimental results
show that our ShadowPainter achieves natural strokes and
human-level overall painting effect on simple acrylic and
gouache paintings, which distinguishes it from existing
other painting robots.

The contributions of this paper are:

• We design a Visual Measurement System and algo-
rithms to acquire creative actions and painting states
as the representation of the creative painting process,
which is sufficient to reproduce the artworks created by
artists.

• We present a Robotic Painting System to reproduce
human-level paintings based on the collected painting
information and reveal the critical factors influencing
the final results for robotic painting.

• We propose local and global evaluation criteria and
metrics to assess the robotic painting. Experimental
results show that our ShadowPainter achieves natural
strokes and human-level overall painting effect on
simple acrylic and gouache paintings through active
measurement and imitation of the human painting
process. As far as we know, we are the first to perform a
human-level fine art painting reproduction using robots.

The rest of the paper is organized as follows. Section 2
demonstrates how we formulate the painting process to
make it recordable and reproducible. Besides, an implemen-
tation overview of the whole system is also described. Then,
the VMS and RPS are introduced in Section 3 and Section 4
respectively. In particular, we analyze several critical fac-
tors influencing the results of robotic painting reproduction.
In Section 5, we present the evaluation criteria and metrics
of the stroke reproduction, brush technique reproduction,
and overall painting reproduction. We conduct three-level
comparative experiments in Section 6 according to the eval-
uation criteria and present the results. Finally, Section 7
concludes the paper and reports the future work.

2 Task Formulation

In this section, we describe how we formulate the artistic
painting process to collect sufficient painting information
for further painting reproduction and introduce the overall
architecture of our ShadowPainter.

2.1 Formulation of the Artistic Painting Process

Artist’s painting knowledge is accumulated in painting pro-
cesses over a long time. A typical painting process includes
several phases: artwork conception, idea development, mak-
ing the artwork, finishing the artwork, and developing
knowledge [32]. The artwork conception and idea devel-
opment in a painting process are generally implicit and
unobservable. While making the artwork, the interactions
between the painting tools and painting medium and the
changes of the painting state are completely observable and
can be collected for a robot to imitate and learn. We refine
the original model to formulate the artistic painting process
for our task, as shown in Fig. 2. The refined artwork-making
process involves several steps: (1) Tools interact with the
environment while painting action trajectories are applied to
them. (2) Current brush strokes are produced on the canvas
through the interactions. (3) Brush strokes accumulate into
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Fig. 2 Formulation of the artistic painting process for our task. We combine the original creation model [32] with the refined artwork-making
process to derive our formulation of the painting process. Elements inside the dashed box are measured by our VMS for painting reproduction

painting areas on the canvas. (4) Painting areas accumulate
over time to produce the final painting.

According to the formulation of a painting process, the
painting reproduction can be formulated as a reproduc-
tion of the interactions between the tools and the envi-
ronment. The interactions between the soft brushes, the
viscous pigment medium, and the canvas are uncertain,
which makes the interactive results uneasy to control. But
if this uncertainty could be limited, the creative interac-
tions can be further simplified as relative pose transfor-
mations between the tools and the environment. To this
end, we extract the environmental state to control its uncer-
tainty and to provide references for the robotic visual
feedback.

Therefore, the information needed to complete human-
level painting reproductions includes (1) a series of creative
actions A = (a1, . . . , aid ), with a consisting of the
attributes of the tools and their relative pose trajectories
with the environment, (2) a series of painting states S =
(s1, . . . , sid ) produced by A, with s consisting of canvas
state scan and environmental state senv (auxiliary area like
palettes, etc.). id denotes the action step, which counts from
1 at the beginning of a painting process. A painting process
is then represented by P = (A,S).

We design a VMS to measure the painting information
P illustrated above and an RPS to reproduce the painting
process P . In future work, we will further simulate the
soft interaction characteristics to improve the reproduction
accuracy of the whole painting process.

2.2 Overview of the ShadowPainter

The overall architecture of our ShadowPainter is shown in
Fig. 3. The system consists of a VMS and an RPS, which

communicate through RPyC protocol and share painting
data on a database based on MongoDB and WebDAV.

The VMS is designed to extract sufficient painting
information for painting reproduction, including the creative
actions a, the canvas states scan and environmental states
senv . This vanilla painting data is distilled into painting
knowledge including stroke statistical features and painting
rules. The painting data is a permanent digital form of the
artwork, which is used for robotic reproduction painting. It
can also be used as training data to teach machines to create.

The RPS aims to reproduce the human-level paintings by
imitating the painting procedure and painting actions with
visual feedback on the painting state. The system could
also perform autonomous painting using stroke sequences
generated by SBR algorithms, which is beyond the scope of
this paper.

The VMS and RPS can operate asynchronously offline
or synchronously. They could also be deployed in different
places, which is convenient for artists and robots to
collaborate.

3 Visual Measurement of the Painting
Process

As formulated in Section 2.1, the painting process P is
represented by the painting actions A and painting states
S. We design the Visual Measurement System to acquire
A and S following two steps alternately. Step T collects
the creative interactive actions as relative pose trajectories
of the painting tools with respect to the environment. Step
S extracts the painting states based on the captured images
and action trajectories collected in Step T. The deployment
of the VMS is shown in Fig. 4.
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Fig. 3 The overall architecture
of our ShadowPainter
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3.1 Step T: Extracting the Creative Actions

Definition of the Tools and the Environment As illustrated
in Section 2.1, the interactions between the soft brushes,
the viscous pigment medium, and the canvas are uncertain
and unpredictable. We assume that a flexible brush produces
approximately the same interactive characteristics and
painting effects when the same relative trajectory is applied
to it. We ensure this assumption by keeping the external

variables (the material and humidity of the pigments, the
material and shape of the brush) consistent manually. Thus,
we consider all the tools and environmental entities involved
in the painting process as rigid bodies B and represent their
interactions by relative pose motions between them in 3D
space.

We set up two rigid bodies Bcan and Baux and the
corresponding coordinate systems as environmental entities.
Bcan denotes the rigid body of the canvas. Baux denotes

Fig. 4 The deployment of our
VMS and the measured entities
in it

Canvas areaPainting brushes Auxiliary area

paint container/palette/cleaner
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the rigid body of the auxiliary area, including pigment
container, palette, and brush cleaner. For a flexible brush,
we define the rigid bar of it as its rigid body Bi

brush and set
the tool coordinate system at the endpoint of the brush, as
shown in Fig. 5. The tool coordinate system overlaps with
the brush when it is stationary, and the origin of the tool
coordinate system is a virtual point in space when painting.
All the rigid bodies are calibrated before painting.

Calculating the Relative Poses To achieve non-contact
measurement of rigid body trajectories, we use a motion
capture camera system for good high-speed performance,
robustness, and spatial measurement range. An action
trajectory of a rigid body B is captured as a sequence
of poses � = (p1, . . . ,pt ) along the time frame t . p is
represented by a 6-DOF pose of B with respect to a specific
coordinate system:

p = (x, y, z, Rx, Ry, Rz), (1)

where (x, y, z) denotes the position of B, (Rx, Ry, Rz)

denotes the orientation of B. The Euler angles are defined in
the ZYX convention. And the 6-DOF pose of the calibrated
entities is acquired in real-time. Then, we calculate the
relative pose of the brush Bi

brush with respect to the canvas
Bcan and the auxiliary area Baux respectively using the
following coordinate transformation:

Ti,can = Tcan,w
−1Ti,w,

Ti,aux = Taux,w
−1Ti,w,

(2)

where Tcan,w, Taux,w, Ti,w denotes the homogeneous rep-
resentation of the pose of Bcan, Baux , Bi

brush in the world
coordinate system w separately. Matrix T is composed of a
rotation matrix R and a translation vector t, which could be
calculated from the Euler angles and the position in a 6-DOF
pose p. The painting action trajectory is then represented by
the sequences of poses pt

i,can and pt
i,aux .

Action Attribute Assignment There are many types of
creative actions that a person can take during paint-
ing. To identify the type of captured action aid , we
divide the canvas and the auxiliary area into several

spatial recognition zones. We assign one of the types
(canvas, palette, cleaner, waiting) to an action, denoted
as aid

type, according to where the action trajectory �id is
located. The action types will determine the operation
modes in the RPS.

Filtering of Painting Data During the human painting
process, the large linear velocity of the tool coupled with
the occasional occlusion of the motion capture markers
leads to outlier noises in the captured trajectories. Thus, the
trajectories are then filtered to exclude the outlier points
using a statistical outlier removal filter [33].

In conclusion, the Step T gets new action points pt to
form an action trajectory �id and identify its action type
aid
type. A creative action is finally represented by:

aid = (id,Bi
brush, �

id , aid
type). (3)

3.2 Step S: Extracting the Painting States

In addition to the creative actions, the painting state is
critical to provide reference during robotic painting. The
painting state refers to the set of the canvas states and
environmental states of the auxiliary area.

Environmental State The environmental state mainly
includes the status of the palette and pigment container. Dur-
ing robotic painting, the state of pigment has a great influ-
ence, which will be illustrated in detail in Section 4.3. The
environmental state senv is captured using RGB cameras.

To obtain positive views of the captured images and align
frame coordinates, we apply perspective warping with the
help of Aruco markers. By measuring the k coordinates of
Aruco markers X = [x1, . . . , xk], Y = [y1, . . . , yk] and
their k corresponding detected spots in the captured images
U = [u1, . . . , uk], V = [v1, . . . , vk], we can obtain the
warping matrix M3×3 by solving the linear least-square
problem in Eq. 4, which is applied to perspective warping
of the captured images during painting.

Fig. 5 Configurations of
brushes and their tool coordinate
system. (a) Brushes designed for
artists. (b) Brushes designed for
our robot

x

y

z

Round Bright Fan
x

y

z

x

y

z

x

y

z

Round Bright Fan

x

y

z

x

y

z

(a) (b)

61   Page 6 of 17 J Intell Robot Syst (2022) 105: 61



Fig. 6 Extraction of canvas state
at each stroke step. The canvas
sate is composed of painting
canvas, stroke trajectories,
stroke contour, and stroke color
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Color correction is also applied afterward. Firstly, we
balance illuminance in Lab color space with a pre-
determined illuminance map. Then, a pre-defined color
correction matrix (CCM) is applied for color correction in
RGB color space. The CCM A3×3 is obtained by filming a
standard color checker and solving:

Pm×3 = Om×3A3×3, (5)

where O and P are the filmed color array and standard
color array respectively. With the color correction, the mean
color difference in Lab space between the corrected images
and the true value is within 5, which is acceptable in our
application [34].

Canvas State The canvas state is extracted from the canvas
image Ican captured following the same process as above.

The canvas state consists of three-level information along
the painting timeline: stroke at each action step, painting
area, and the overall painting. And the attributes of a stroke
include the trajectory of the stroke, the contour of the stroke,
the color of the stroke, and the brush technique of the stroke.
The algorithm flow for extracting the stroke attributes is
shown in Fig. 6.

We get the stroke trajectory τ = [(u1, v1), . . . , (un, vn)]
on the warped image plane according to the [x, y] locations
in partial action poses pt

i,can, filtered with a depth constraint
pt

i,can[z] < 0.5mm to improve the accuracy and robustness
of the stroke extraction.

The stroke trajectory τ is dilated to form a location
constraint to eliminate the effect of environmental changes
in the stroke area extraction by applying a trajectory mask
to the differences between adjacent image frames. Then, a
clear stroke contour C is extracted from the stroke area. In
a painting process, the color of a stroke is usually uneven.
Thus extracting the color within the whole brush stroke area

Fig. 7 A demonstration of the
painting information extracted
by the VMS

Painting area One step stroke

Action trajectories Pigment state

Overall painting

Palette state
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is inaccurate. We further perform K-means clustering on the
pixels in the extracted stroke area and select the dominant
color c. The pixels far from the color in the stroke area
are excluded to optimize the stroke contour C in return.
The stroke extraction procedure described above can be
expressed as a StrokeExtractor:

sidstroke = StrokeExtractor(I id
can, I

id−1
can , �id

i,can), (6)

where sidstroke = (τ, C, c) denotes a stroke represented
by its trajectories, contour and colors. The input of the
StrokeExtractor are I t

can, I
t−1
can and �id

i,can. Finally, a painting
state is formulated as:

sid = (id, sidstroke, s
id
can, s

id
env). (7)

The extracted painting state is distilled further to get the
artist-specific painting knowledge. The distribution of the
strokes in different painting regions, which reflect an artist’s
painting style, is calculated using the stroke characteristics
(straightness, elongatedness, density, etc.) proposed by [24].
Some basic painting rules, like the layering order, are
also acquired by stacking a series of extracted strokes and
painting canvas images. Besides, the stroke information and
environmental state provide a reference for the feedback in
the robotic painting process.

3.3 Overall Procedure of the Visual Measurement

As stated in Section 2.1, a painting process P is represented
by the painting actions A and painting states S. During
the painting process, the actions and states are iteratively
obtained following the step T and the step S. The
overall procedure of the visual measurement is illustrated
in Algorithm 1, which applies the methods described in
Sections 3.1 and 3.2. In short, Step T gets new action
points pt to form an action trajectory �id and identify
its action type aid

type. Step S extracts the current strokes
according to the captured images and the action trajectories
collected in Step T after a canvas action takes place. If
the ShadowPainter is running in online mode, the process
is slightly different. In this situation, each action aid

is uploaded to MongoDB in real-time. And the Inverse
Kinematics of the robot is performed to check whether the
current action can be executed successfully by the robot.
The painting information extracted by the VMS following
the Algorithm 1 is demonstrated in Fig. 7.

4 The Robotic Painting System

In this section, we introduce how we construct the robotic
system of ShadowPainter and how we reproduce the
painting actions and final painting results by actively
imitating the extracted painting information. We not only

Algorithm 1 Visual measurement of the painting process.

1: initialize Perspective Warping Matrix M using Eq. 4;
2: initialize Color Correction Matrix A using Eq. 5;
3: id = 1;
4: A = ∅;
5: S = ∅;
6: while painting process is not over do

Step T. Extracting the creative actions
7: get poses pt

can,w, p
t
aux,w and pt

i,w of Bcan, Baux , and

Bi
brush;

8: calculate relative poses pt
i,can and pt

i,aux using
Eq. 2;

9: accumulate the poses to an action trajectory �id ;
10: if at

type changes then
11: �id = outlier removal f ilter(�id);
12: assign an action type aid

type to �id ;

13: aid = (id,Bi
brush, �

id , aid
type);

14: accumulate the actions aid to A;
Step S. Extracting the painting states
15: if aid

type is canvas then
16: take pictures I id

can, I
id
env;

17: I id
env = perspective warping(M, I id

env);
18: sidenv = color correction(I id

env, A);
19: I id

can = perspective warping(M, I id
can);

20: I id
can = color correction(I id

can, A);
21: sidstroke =

StrokeExtractor(I id
can, I

id−1
can , �id

i,can);

22: sid = (id, sidstroke, s
id
can, s

id
env);

23: accumulate the actions sid to S;
24: end if
25: id = id + 1;
26: end if
27: end while
28: P = (A,S);
29: return P .

introduce the architecture and execution logic of the RPS
but also analyze the critical factors that affect the painting
results, from algorithm and engineering perspectives.

4.1 SystemOverview

The architecture of our RPS is shown in Fig. 8. The robot
is equipped with an electric gripper to hold and change
painting brushes. In order to reproduce the human painting
process, the RPS uses a similar tool configuration to the
VMS, including the brushes, pigments, and canvases, and
perform painting movements as close as possible to the
captured painter’s actionsA. Other non-creative movements
are flexibly performed using automatic devices. Similar
to the VMS, we use cameras to shoot the canvas and
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Fig. 8 The architecture of our
RPS. (a) The setup of the robot
and the auxiliary devices. (b) A
close up of robotic painting. (c)
A demo of asynchronous
simulation
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the palette respectively and perform image processing
operations during the robotic painting process.

4.2 Reproduction of Creative Actions

Creative actions are applied in the painting reproduction
process to obtain desired colors and draw desired shapes.
These actions require the robot to move as close to the
human movements as possible to preserve stroke effects
such as blending and textures. These effects are particularly
difficult to achieve for a robot on its own. Therefore, we
require the robot to plan and move along the captured action
trajectories by the VMS. The challenge lies in ensuring the
reproducibility of the trajectories.

Considering continuous long strokes are painted on
most occasions, there are several failure situations in
the robotic painting, including singular points, possible
collision, inconsistent posture, or points out of reach. To
tackle these problems, we make efforts in the following
aspects.

Painting Space The placement of the pigments and palette
are horizontal, as is done in the VMS, to prevent fluid
flow. A 6-DOF Denso VS060 robot manipulator is deployed
as our robotic platform, whose limit reach is 60/70cm
with/without a brush. We place the painting board at a
67◦ angle to vertical in a 35cm distance and transform the
painting trajectories to finish more actions in a sweet spot
of 25× 25cm2 square region. By this deployment, the robot
can perform most painting actions completely.

Simulation of Painting Actions Long trajectories are some-
times inexecutable due to inconsistent posture, although

every individual point on it is reachable. Therefore, it is
required to check if the painting data can be well operated
by the robot in advance. Because if there is a failure, there
is no going back. We perform painting action simulations
in the Denso WincapsIII software. And if the trajectories
or points are not executable, we modify the trajectories or
points by assigning close poses to them and re-evaluate the
completeness until converging.

Real-time Alarm Although we use a 6-DOF robot manip-
ulator to paint, its reach is still more constrained than the
human arm in the SO(3) space because of potential physical
collisions. Therefore, we provide real-time alarms to restrict
human movements during painting if necessary. According
to the D-H parameters of the Denso VS060 robot, as listed
in Table 1, we calculate the Inverse Kinematics (IK) with the
aid of ROS MoveIt motion planning library [35]. When an
IK solution fails, we alarm the painter to interrupt the cur-
rent stroke and make a compensating motion. In this way,
we obtain actions with better reproducibility.

4.3 Reproduction of Non-Creative Actions

As detailed in Section 3.1, the extracted painting infor-
mation only contains key action attributes and the corre-
sponding trajectories rather than every complete movement.
We design auxiliary automatic devices to execute the non-
creative actions depending on the action type aid[aid

type].

Automatic Brush Changing Artists usually use a variety of
painting tools during painting, and we deploy the same
brush configurations for the robot, as shown in Fig. 5(b).
The robot chooses and changes its brush automatically
according to the painting action aid[Bi

brush].
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Table 1 D-H parameters of the robot manipulator

Joint i θi di ai αi Joint Limits(degrees)

1 q1 d1 0 π/2 −160, 160

2 q2 0 a2 0 −120, 120

3 q3 0 a3 −π/2 20,160

4 q4 d4 0 π/2 −160, 160

5 q5 0 0 −π/2 −120, 120

6 q6 d6 0 0 −360, 360

where d1 = 0.125m, a2 = 0.21m, a3 = −0.075m, d4 = 0.21m and
d6 = 0.07m

Automatic Brush Cleaning and Drying Artists clean their
brushes by stirring in water and dry them up by wiping.
These movements are inefficient for robots, and we design
a cleaner and a dryer for the robot instead. In fact, these
devices guarantee both time efficiency and cleaning effect.

4.4 Critical Factors in the Painting Reproduction

Since our goal is to reproduce human painting techniques
rather than produce unique painting effects of robotic
style, it is much more difficult to implement the painting
than other painting robots. The influencing factors in the

painting reproduction are also critical for human-level
robotic painting.

Brush Calibration Although the robot’s brushes are mea-
sured in advance, it is difficult to guarantee that their
base position is aligned with the brushes used by humans.
Therefore, we calibrate the brushes before painting, i.e.,
determining the origin of the tool coordinate system. To this
end, we test the stroke width w with respect to the depth
below the canvas �z = pi,can[z], like other painting robots
do [13, 16]. The base depth of used brushes is selected
according to the w ∼ �z relation map so that the brush
paints a consistent width with human actions.

Characteristics of Pigments The condition of the pigments
has a huge impact on the painting result since varying
moisture of the pigments leads to huge differences in the
dipped amount and the adhesion when they are applied
to the canvas. Other robotic systems use diluted pigments
to simplify the interactions between the pigments, brush,
and canvas for controllable stroke textures. To achieve a
consistent painting effect as humans, the same pigment
configurations are used in our experiments. We ensure a
controllable pigment state by controlling the initial pigment
state and the overall painting time. The experiment proves

Fig. 9 Reproductions of brush
strokes. Our ShadowPainter
reproduces similar strokes to
humans with a mean IoU of 88%

Human ShadowPainter

(ours)

Shape difference Color difference

Line with

round brush

Stipple with

round brush

Tiny stroke with

round brush

Tiny stroke

with bright brush

Freestyle with

bright brush
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that this scheme is effective when the painting time is within
3 hours.

Movement Speed The trajectories are collected with times-
tamps, which can be used to schedule action speeds and
accelerates. However, the 6-DOF manipulator has a lim-
ited speed when moving along trajectories in high precision
odometer mode, and the robot moves dramatically slower
than human movements. This scene is common in the
back-and-forth movements which are mostly seen in color
mixing. The speed difference between robot movements and
human movements result in the difference of color inten-
sity for single strokes and also cause the pigment state to be
uncontrollable in long-term execution. This problem can be
mitigated by changing the robot configuration to increase
the moving speed of the end-effector, for example by using
a parallel robot.

5 Evaluation of the Robotic Painting

In this section, we describe the evaluation criteria and
metrics to evaluate whether our ShadowPainter can perform
painting techniques and produce complete paintings with
similar visual effects to humans.

Due to the diversity of the paintings and the subjectivity
of painting appreciation, there is no consensus on evaluation
criteria and metrics of robotic painting. Most of the existing
work uses subjective assessment indicators to evaluate
the painting results, for example, visual quality, creative,
aesthetically pleasing, etc. However, these criteria are too
vague resulting in widely varying evaluation results from
human evaluators and thus are not suitable for our painting
reproduction task.

Considering painting is composed of various brush
strokes while varying brush techniques are applied. Only if
these strokes and painting techniques could be reproduced
by the robot, the human-level painting is promising.
Therefore, we propose to evaluate the robotic painting at
three levels: single strokes, brush techniques, and finished
painting results, covering local and global painting features.

5.1 Evaluation of Single Strokes and Brush
Techniques

The visual effect of a painting area can be split into two
aspects, shape and texture, which is a common practice in
computer graphics [36]. For strokes, the shape determines
the final result decisively while the overall texture is
more important for brush techniques. We use IoU and
color difference in Lab space, which are widely used in
image detection tasks and color science respectively, to
evaluate the reproduction effect of the single strokes and the

brush techniques. IoU shows the shape difference between
two painting entities, while the �ELab tells how much
difference between painting colors.

We conduct the stroke reproduction experiments cover-
ing commonly used strokes and brushes: (1) line stroke,
stipple stroke, and tiny stroke with a round brush, and
(2) tiny stroke, freestyle stroke with a bright brush. And
nine brush techniques covering most painting situations are
tested, including wash, scumbling, drybrush, double load,
color mixing, wet in wet, overlay, and blending.

5.2 Evaluation of the Overall Paintings

To quantitatively measure our ShadowPainter’s ability to
reproduce the paintings, we should choose a metric to
measure the similarity between the robotic painting result

Wash

Scumbling

Drybrush

Double

Color mixing

Wet in wet

Overlay

Blending

Human Shadow Painter

(ours)

Shape difference Color difference

Fig. 10 Reproductions of brush techniques. Our ShadowPainter can
reproduce similar effects of brush techniques to humans
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Ir and the human result Ih. A painting is an accumulation
of strokes using a variety of painting techniques. Even
human painters cannot reproduce the same painting.
Therefore, the evaluation of the similarity between paintings
should consider perceptual features instead of pixel-wise
differences and should be insensitive to scale and location.
Zhang et al. [37] have shown that activations of deep
neural networks trained for high-level tasks correspond to
human perceptual judgments better than the commonly used
metrics like SSIM [38]. We evaluate the similarity between
Ih and Ir using an improved perceptual difference [37, 39]:

Dpcpt =
∑

l

1

HlWl

∑
h,w

∥∥∥wl �
(
ŷl
hw − ŷl

rhw

)∥∥∥2
2
, (8)

Human ShadowPainter

(ours)

Fig. 11 Sketch paintings using the demonstrated brush techniques.
The benefit of handling diverse painting techniques is that our
ShadowPainter can produce naturalistic visual effects in paintings as
humans do

where ŷl
hw, ŷl

rhw ∈ R

Hl×Wl×Cl for layer l denote the
activations in a pre-trained network by passing image
patches of Ih and Ir separately. The activations are scaled
channelwise by vector wl ∈ R

Cl before calculating �2
distance. We further compare the reproduction ability of
our ShadowPainter with professional human painters using
Dpcpt to demonstrate the painting ability of our system.

Besides, we perform a Visual Turing Test covering
diverse participants with different knowledge backgrounds.
The participants are asked to vote whether a painting is
painted by a human or a robot.

6 Experimental Results and Analysis

In this section, we conduct painting reproduction experi-
ments at three levels, according to the evaluation criteria

Fig. 12 Guess which one is painted by humans and which one is
painted by our ShadowPainter in each pair? The answer is given in
Table 2.
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Table 2 The answer of the overall painting results in Fig. 12

Human ShadowPainter

ShadowPainter Human

ShadowPainter Human

Human ShadowPainter

and metrics introduced in Section 5. We compare our
painting results with humans and other painting robots to
demonstrate the effectiveness and advantages of our Shad-
owPainter.

6.1 Experimental Setup

In the experiments, we test diverse painting styles (still
life paintings, portrait paintings, and landscape paintings)
and commonly used brushes (round liner, bright brush, and
fan brush) on acrylic paintings and gouache paintings to
verify the effectiveness of our ShadowPainter. Note that
the original human paintings in our experiments are not
painted by experts and our purpose is to imitate the painting
techniques and paintings instead of achieving excellent
overall visual effects. If the painting data is collected from
experts, the painting results will be better. The operating
speed and acceleration of the robot are limited to 65%
and 60% of the maximum for safety. And the trajectory
execution density of the robot is set to 1 mm.

6.2 Reproduction of Brush Strokes

The reproductions of single strokes are evaluated using
IoU and �ELab. As shown in Fig. 9, our ShadowPainter
reproduces the strokes with a mean IoU of 88% relative
to the artists’ strokes. The results demonstrate that our
system can reproduce almost the same results in terms of
strokes, the lowest unit in a painting. This also proves that
the uncertainty of the interactions between the soft brushes
and environment is limited using the methods proposed in
this paper. It is worth emphasizing that the experiments
were done using the same configurations as in daily human
painting. If we use diluted pigments, as many other painting
robots do, the quantitative indicators will be better due to
the reduced randomness of pigment interactions.

Table 3 Reproduction paintings parameters

Artwork Number of strokes Brushes Number of pigments Painting time Used brush techniques

Still life 482 Round, Bright, Fan 12 3.5h Wash, Drybrush, Overlay, Double

Portrait 421 Round, Bright, Fan 12 2.7h Wash, Drybrush, Overlay, Wet in Wet

Landscape 280 Round, Bright, Fan 12 2h Wash, Drybrush, Overlay, Scumbling, Blending

Wheat field 532 Round, Bright 11 1.7h Wash, Drybrush, Overlay, Color mixing

6.3 Reproduction of Brush Techniques

In terms of brush techniques, texture is more important than
shape. This is because the brush technique is reflected as
an area effect. As shown in Fig. 10, our ShadowPainter can
reproduce similar effects of brush techniques to humans,
while the other painting robots can only implement wash
and overlay techniques. And sketch paintings using the
described brush techniques are demonstrated in Fig. 11. The
benefit of handling diverse painting techniques is that our
ShadowPainter can produce more naturalistic visual effects
in paintings as humans do.

6.4 Reproduction of Overall Paintings

The reproductions of overall paintings are shown in Fig. 12.
Guess which one is painted by humans and which one is
painted by our ShadowPainter in each pair (Table 2)?

Qualitative Comparison The reproduction paintings are
similar to human paintings in terms of overall visual effect,
including the overall tone and portrayal of entities. In close
observation, many strokes do not have the same texture as
human paintings. For example, the robot produces a brighter
sky area in the Wheat Field. The difference does not affect
the feel of the scene or the shaping of the content. Even an
artist would not paint two identical paintings.

The reproduction paintings parameters are listed in
Table 3. Our ShadowPainter uses fewer strokes and less
painting time than other painting robots but produces
better visual effects. Besides, we achieve more painting
techniques, which results in human-level painting effects.
These findings indicate the advantage of imitating the
human painting process other than using existing robotic
tailored SBR methods.

Quantitative Comparison The perceptual difference Dpcpt

of reproduction paintings is shown in Table 4. To provide
a comparison baseline, we get reproduction painting pairs
from [40], which are painted by professional painters to
imitate famous paintings. And we also get different painting
pairs with the same painting style and similar contents as
another baseline. There are samples of these two baselines
in Fig. 13. The perceptual difference of our reproduction
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Table 4 Perceptual differenceDpcpt between the original painting and
the reproduction. Smaller values mean closer to original paintings

Dpcpt Mean Dpcpt Stddev

ShadowPainter - Simple sketch paintings 0.312 0.052

ShadowPainter - Overall paintings 0.504 0.025

Professional painter - Reproductions 0.434 0.047

Professional painter - Different paintings 0.758 0.075

pairs is close to the professional painters, showing good
painting reproductions of our ShadowPainter.

Failure Cases There are failure flaws in some areas that
degrade the visual effect. The left side of the plate in Still
Life has a large area of underpainting omission. The tree
trunk in the Landscape is thicker and less coordinated. The
former is caused by the unreachable trajectory points while
executed by the robot. The latter occurs due to the difference
in the shape of the fan brush, resulting in the oversized
underpainting. These problems will be further improved in
future work.

6.5 Visual Turing Test

We conduct a visual Turing test on the mixed set of
our reproductions, original human paintings, and robotic
paintings from the state of the art to make a comparison.

There are 24 paintings in total, including 6 paintings cre-
ated by humans, 9 paintings created by our ShadowPainter,
and 9 paintings created by other painting robots from the
state of the art [8, 12, 13, 15, 23, 29, 30]. And we got 202 test

(a) (b)

(c) (d)

Fig. 13 Samples of baseline painting pairs in the quantitative
comparison ofDpcpt .Dpcpt of the different painting pair (a) and (b) is
0.7.Dpcpt of the reproduction painting pair from professional painters
(c) and (d) is 0.41. Images credits: (a), (b) are from [41]. (c), (d) are
from [40]

Table 5 Frequency voted as human paintings by Visual Turing Test
participants. H, SP, OR refer to paintings created by humans, our
ShadowPainter, and other painting robots respectively

Average Stddev

H 0.59 0.14

SP(ours) 0.68 0.08

OR 0.41 0.10

results, among which there are 75 participants with profes-
sional painting training, 24 participants with robotic system
development experience, and 103 participants with no rela-
tive backgrounds. In the test, participants are asked to vote
whether a painting is created by a human or robot. And if the
participants have relative backgrounds, Q2 will be asked.

Q1: Is this painting created by a robot or human? (only
one choice allowed from ”human” and ”robot”)

Q2: Which is the biggest difference between robot-
created paintings and human-created paintings helping you
tell them apart? (Whether the strokes are monotonous,
Whether the elements are rich, The overall feel, Unusual
flaws, Whether there are enough details)

Results The statistical frequency implying a sample is voted
as human-created is shown in Table 5. Our ShadowPainter
achieves the highest frequency (> 50%) that paintings are
voted as human-created. We conduct a two-tailed t-test to
check if there are significant differences between the three
test groups. The result shows that there is no statistically
significant difference between our reproductions and human
paintings with p > 0.2, while the painting results of other
robots are significantly different from both ours and humans
with p < 0.001 and p < 0.05 respectively.

To look into details, we demonstrate the distribution
of the three groups in Fig. 14. And we wonder what

Fig. 14 Distribution of the Visual Turing Test results
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Fig. 15 The top 2 samples that
are considered as human
paintings and robotic paintings
from each painting groups
(human, our ShadowPainter,
other robots [8, 12, 13, 15, 23,
29, 30])

Human

Voted as

human’s painting

Voted as

robot’s painting

Top 1 Top 2 Top 1 Top 2 Top 1 Top 2

Other painting robotsShadowPainter (ours)

factors influence whether a painting is considered human-
created or robot-created. Thus, we picked the top 2 samples
that are considered as human paintings and the top 2
samples that are considered as robotic paintings from each
group, as shown in Fig. 15. We found that people tend to
separate human artworks from robotic artworks based on
the diversity and naturalness of the painting strokes. This is
consistent with the results of Q2 in the user study.

7 Conclusion and FutureWork

In this paper, we focus on a new task: fine art painting
reproduction. Firstly, we design a VMS to acquire sufficient
painting information that can be used for robotic active
learning to reproduce the painting results. Then an RPS is
developed to achieve human-level reproduction paintings.
At the same time, we reveal the critical factors influencing
robotic painting. Finally, we propose local and global
evaluation criteria and metrics to assess the reproductions
of individual brush strokes, brush techniques, and overall
paintings.

The experimental results imply that our ShadowPainter
can reproduce similar brush strokes, painting techniques,
and overall painting results to human artists. Compared with
the existing work, we achieve human-level robotic painting
with natural strokes, which makes it indistinguishable from
human paintings. Professional painting data can be collected
by our ShadowPainter for robotic skill learning. In addition,
our system can also be deployed to capture and imitate other
complex human manual skills, which is helpful to replace
manual labor and serve as a teaching template for education.

This paper explores the feasibility of human-level robotic
painting reproduction, which will be the starting point
for human-level autonomous robotic painting and human-
robot collaborative creation, as discussed in [42]. The
artists and machines will benefit each other in the painting
process [43]. Robot learns painting skills from human
demonstrations and provides painting assistance in return.
In future work, we will further improve the fidelity of our

system and train an agent to paint autonomously using the
collected painting data.
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