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Abstract

Computer vision, together with bayesian estimation algorithms, sensors, and actuators, are used in robotics to solve a
variety of critical tasks such as localization, obstacle avoidance, and navigation. Classical approaches in visual servoing
systems relied on extracting features from images to control robot movements. Now, state of the art computer vision systems
use deep neural networks in tasks such as object recognition, detection, segmentation, and tracking. These networks and
specialized controllers play a predominant role in the design and implementation of modern visual servoing systems due to
their accuracy, flexibility, and adaptability. Recent research in direct systems for visual servoing has created robotic systems
capable of relying only on the information contained in the whole image. Furthermore, end-to-end systems learn the control
laws during training, eliminating entirely the controller. This paper presents a comprehensive survey on the state of the art
in visual servoing systems, discussing the latest classical methods not included in other surveys but emphasizing the new

approaches based on deep neural networks and their applications in a broad variety of applications within robotics.

Keywords Computer vision - Deep neural networks - Visual servoing - Robotics

1 Introduction

Robotic systems have an increasingly important role in
areas such as manufacturing, inspection, surveillance, and
health care, among others. Autonomous robots perform a
given task interacting with a static or dynamic environment
using their sensors and actuators [15]. An example of the
earliest industrial robots is a robotic arm designed in the
1930s by Willard V. Pollard [144]. Later, in 1961, the first
programmable robot called Unimate [22] was created by
General Motors for the task of moving hot metal pieces and
placing them in cooling liquid.

Recent advances in sensors, actuators, control, operating
systems, and communications have given robots increased

X Zakariae Machkour
zma@et.aau.dk

Daniel Ortiz-Arroyo
doa@et.aau.dk

Petar Durdevic
pdl@et.aau.dk

' Niels Bohrs Vej 8, 6700, Esbjerg, Denmark

capabilities to interact with their surrounding environment.
This has been facilitated by the use of standard meta
operating systems such as the Robotic Operating System
(ROS) that enables the integration of sensors, actuators,
and a variety of algorithms for localization, path planning,
and navigation. ROS has a message-passing distributed
architecture that uses the publisher-subscriber paradigm and
several specialized communication protocols.

The sensors used in modern robotic systems include a
large variety of types, from video or infrared cameras to
Inertial Measurement Units (IMU), LiDARs, ultrasonic sen-
sors, global position systems (GPS), Real-time kinematic
(RTK) positioning, and radars, among others [24, 27, 30].
However, in spite of their wide use, these sensors have
limitations. For instance, GPS works for localization and
navigation in outdoor environments that do not require high
precision but cannot be used to navigate indoors, or on clut-
tered urban areas [102]. RTK is more accurate than GPS
but is more expensive and requires a special setup. Ultra-
sonic sensors have a limited range of operation. LiDARs
are ineffective in heavy rain or sun reflections but have
issues detecting narrow surfaces such as wind turbine blade
edges [57]. IMUs with sensor fusion provide accurate data
about the orientation and heading of a robot, but suffer from
drifting [23, 199].
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Video cameras provide rich information about the
environment and are one of the main sensors used in
robotics. Cameras with high resolution are also cheap!, have
small size, and consume little power. These characteristics
make them ideal for resource-constrained robots that work
on a relatively narrow indoor environment or in large open
spaces. However, video cameras have also limitations. For
instance, they do not work well in poor lighting conditions,
with motion blur, or with specular reflections that produce
noisy images [89, 104]. Due to these issues, cheap video
cameras are commonly used in robotics with other sensors,
in addition to Kalman filters and sensor fusion techniques
[70, 183].

Regarding the software and algorithmic aspects in
robotics, probabilistic and machine learning algorithms
are now used extensively, due to their ability to handle
uncertainty and adapt to unknown environments [66,
186]. In particular, deep learning has been one of the
most successful techniques. Deep learning comprises a
variety of neural network architectures designed to solve
problems in computer vision, speech recognition, and time
series prediction. Deep Neural Networks (DNNs) [66], an
extension to Shallow Neural Networks (SNN), are designed
with a hierarchical structure consisting of multiple layers
with thousands of connections and weights. DNNs’ design
and structure emulate how the human vision system is
organized [61].

The recent development of new DNN architectures,
together with specialized controllers, sensors, actuators and
a wide variety of algorithms available for localization, path
planning, obstacle avoidance, have facilitated the creation
of autonomous robots, capable of performing increasingly
complex tasks. One of the main applications of DNNs
in robotics is in designing its visual servoing system, a
mechanism that allows a robot to move and positioning
itself at a target location using the video information from
a camera. Previous surveys on visual servoing systems such
as ([32, 33, 103, 176]) described research work on the use
of classical computer vision techniques in single or dual
robotic manipulators [176]. More recently, other surveys on
unmanned aerial vehicles (UAV) [94] and computer vision
in general [8] have been published.

The aim of this paper is to fill the gap left by the
latest surveys on classical approaches to visual servoing
systems. This survey includes the most recent research work
on a variety of robotic platforms and application domains
but emphasizes the more recent DNN-based approaches to
visual servoing and its applications. Lastly, we extend the
taxonomy of classical visual servoing systems to include
the new approaches, specifically end-to-end systems, direct
visual servoing, and object tracking visual servoing, and

le.g. 5M High-Resolution Camera costs 65 dollars [1]
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describe how these systems are included in the general
definition of visual servoing systems.

The paper is organized as follows: Section 2 provides
a definition of visual servoing and describes classical
systems. Section 3 introduces an extension to the classical
systems taxonomy of visual servoing systems. Section 4
describes examples of recent systems that use classical
visual servoing techniques grouped by their type and robotic
platform, additionally to discussing some of the limitations
of the classical methods. Section 5 describes neural network
based visual servoing systems, including the use of DNNs
and Convolutional Neural Networks (CNN), and provides a
description of recent examples of the modern architectures
used in CNNs. Section 6 shows how DNNs are integrated
into visual servoing systems and provides examples of
both End-to-End and Direct visual servoing systems. Lastly,
Section 7 describes the state of the art in DNN-based visual
servoing grouped by system type and robotic platform,
and Section 8 presents a summary and discusses current
developments and issues in visual servoing systems.

2 Visual Servoing

The concept of visual servoing was firstly introduced to
control the movements of robotic arms [84]. Visual servoing
is also applied in other types of robotic systems that
use computer vision to guide robot’s movements, such as
ground robots, unmanned aerial and underwater vehicles. In
this section, we introduce the concept of visual servoing, its
definition and the main categories of systems.

2.1 Visual Servoing Definition

Visual servoing can be defined in terms of the solution to
an optimization problem (e.g., [19, 32]), where the goal is
to minimize an error function expressed by the following
equation:

7 =argmine(r, r*) (D
r

Where 7 is the pose of the camera reached at the end of
the optimization process, e denotes the error function that
measures the positioning error between the current pose r
of the camera and the desired pose r*, ideally at the end the
visual servoing system should make 7 = r* .

The error function can be defined as [21] :

e(r) = [s(r) —s™| @)

as the Euclidean norm of the distance between s a vector
of k visual features (e.g. the image coordinates of points of
interest or the image coordinates of the center of an object)
extracted from the image at pose r, and the set of the target
features s* extracted at pose r*.
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The vector s* is considered constant in case of a
motionless target, but if the target is moving the visual
servoing system is also tracking the object.

It can be also said that in visual servoing, the pose (i.e.
position and orientation) of a robotic platform, relative to
a target, is controlled by using the visual features extracted
from images [94].

Visual servoing systems differ in the way vector s
is designed and computed. In the classical approaches,
the features included in s are taken directly from the
image or from the 3D parameters calculated using image
measurements.

2.2 Classical Visual Servoing Systems

Classical visual servoing systems differ in the type of
control architecture, in the number of video cameras used
(mono, stereo, or multi-camera), and also in how they
are placed in the system. For instance, in eye-in-hand the
camera is rigidly mounted on the robotic manipulator, but in
eye-to-hand, the camera that observes the robot is mounted
on the workspace [59, 84].

The classical visual servoing approaches are classified,
depending on the definition of the error function adopted to
regulate the system (known as task function) [58, 166], into
the following categories:

1. Image-based Visual Servoing (IBVS). In IBVS, the
error is computed from a set of visual features extracted
from 2D image space and the vector s may be, for
example, point coordinates, a set of straight lines,
or the contours of an object. This method requires
camera intrinsic parameters that allow converting from
image measurements expressed in pixels to features and
accurate feature matching.

2. Position-Based Visual Servoing (PBVS). In PBVS, the
pose of the camera within a reference coordinate system
is used to compute s as a set of 3D parameters. The
method requires a 3D model of the scene and camera
intrinsic parameters to be known a prori. The error is
computed in the Cartesian task space from a set of 3D
parameters.

3. Hybrid systems. In Hybrid visual servoing, the error
function is a combination of Cartesian and image
measurements or features. This method is based on
the estimation of the camera displacement (the rotation
and the scaled translation of the camera) between the
current and desired views of an object. As an example of
the definition of the error function e, in [129] s contains
the coordinates of an image point, and the logarithm of
its depth.

Systems that belong to the classes described in the
previous taxonomy, have been the subject of various

tutorials in [32, 33, 84] and the surveys in [103] for single
arm manipulators, and [176] on dual arm manipulators.
The next section describes an extension to the classical
visual servoing taxonomy to include the new types of visual
servoing systems that have been proposed in recent years.

3 A Taxonomy for Visual Servoing Systems

New approaches in visual servoing systems have been
proposed in the literature in recent years. These include
approaches that rely only on the information contained in
images and systems that do not require a controller. Addi-
tionally, target tracking methods, in which the controller
aims at minimizing the tracking errors due to the target
motion, have received considerable attention. To include
these new type of systems in a unified taxonomy, we added
the following classes to the classical methods taxonomy:

1. Direct Visual Servoing. In direct visual servoing, the
full image information is used to solve a positioning
task. The method does not use geometrical features and
the control laws are obtained directly by measuring
the similarity between two images. Hence, this method
requires a robust similarity evaluation, together with
efficient optimization algorithms [18]. In this type of
VS system, the image is considered as a whole, hence
the vector s becomes the image itself [44]: s(r) = I(r).
We substitute the value of s in (2), the optimization
process then can be expressed as :

F =argmin|I(r) — I'*| 3)
r

where I (r) and I* are respectively the image captured
at the position r and the reference image.

2. End-to-End systems. Unlike classical visual servoing
systems, which may be described as having an explicit
controller module, this class includes systems that
do not have a controller. End-to-end systems may
use supervised or unsupervised machine learning
approaches based on DNNs to learn the control laws
at training time [101]. In end-to-end systems, the error
function may be the mean square error between the
current steering angle and the predicted one as is
described in [101].

3. Fixed and Moving Target Tracking Visual Servoing.
In the fixed target tracking case, it is assumed that
the camera is moving while tracking a fixed object. In
the second case, the dynamics of the target should be
estimated to keep track of the object. In this case, the
vector s* contains a dynamic set of features from the
target object.

4. Single and Multiple Target Tracking Visual Servoing.
In single target tracking there is only one moving target

@ Springer
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of a given class of target objects. Contrarily, in multiple
target tracking, a limited number of moving targets
that belong to the same class or that share the same
features are tracked. In this case the vector s* contains
a dynamic set of features from the target objects. The
error function may be the mean position of the tracked
objects with respect to the center of the image.

5. Explicit and Implicit Controller Visual Servoing. The
explicit controller class includes the classical and DNN
based visual servoing systems that have a feedback
control loop containing a controller module. Implicit
controller systems do not have a controller, but the
control laws are learned and embedded into the weights
and connections of the DNN.

Direct and end-to-end systems share some similarities
as they are both capable of learning control laws i.e.
they both may be classified as of the implicit controller
type. However, direct visual servoing systems use similarity
measures and particle filters or CNNs to learn the control
laws [18]. Moreover, direct servoing is mainly used
in manipulators. Contrarily, end-to-end systems rely on
training a DNN to learn the control laws using supervised or
unsupervised methods but are also used in a wide variety of
robotic systems. In some end-to-end systems, the controller
is not completely eliminated, but the control commands
to determine the position of a UAV are estimated by a
DNN from images taken by several cameras and sent to a
controller whose only purpose is to keep a constant speed as
is suggested in [169].

Distinctly, visual servoing systems may belong to one
or more of the previous categories. For instance, a visual
servoing system with an explicit or implicit controller may
be used to navigate or keep track of a single target object
that may be at a fixed position or moving.

Figure 1 shows the whole taxonomy of the different types
of visual servoing systems, categorized according to the
type of controller used, its purpose, and the type of target
object being tracked. Table 1 includes selected examples
of the types of visual servoing systems, according to its
controller type (explicit-Control or implicit-control, direct
or end-to-end), its system type (linear or non-linear), robotic

Fig.1 Taxonomy of Visual
Servoing systems, based on their
type and applications

systems type (arm, UAV, wheeled-robot or underwater
vehicle), and camera type (mono or stereo-camera).

Lastly, Table 2, contains examples of visual servoing
systems grouped according to the classes in the new
taxonomy, i.e. STTVS (Single-Target Tracking), MTTVS
(Multi-Target Tracking), FXTTVS (Fixed-Target Tracking),
and MBTTVS (Mobile-Target Tracking) visual servoing
systems.

4 Classical Visual Servoing Techniques

In this section, we describe each of the classical visual
servoing techniques. Then, these classical techniques are
grouped by the type of the robotic system where they are
applied and examples of most recent research work are
described. The section concludes by discussing some of the
issues and limitations of the classical techniques.

4.1 Position Based Visual Servoing

PBVS systems require a priori knowledge of the camera
calibration and a geometric model of the target, to estimate
the target’s position with respect to the camera [129].
Examples of PVBS systems are discussed in [73, 74],
where an observer-scheme based visual servoing system
was introduced for application in manipulators. Another
example is discussed in [10] where a camera captures videos
and images with some noise, and an « — B — y filter
[174] is used to produce values closer to the true spatial
measurements of the robot and target.

Other PVBS systems like [35] use Extended Kalman
filters (EKF) for nonlinear state estimation to reduce errors
in the sensor’s measurements. The usage of extended
Kalman filtering techniques is also used to improve the
precision of the estimation for end-effectors as is described
in [120, 171, 197]. Some other examples using Unscented
Kalman Filter techniques to estimate the pose, velocity,
and acceleration of a target object are discussed in [87,
165]. Particle-based filtering methods are applied in pose
estimation, via a 3D model-based stereo-vision, in [113,
191].

Visual Servoing

|

Explicit Implicit .
Controller Controller Target Tracking
PBVS IBVS HYBRID End-to-End Direct Single ||Multiple|| Fixed || Moving
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Table 2 Visual Servoing Taxonomy based on Target Tacking scenarios

References STTVS MTTVS FXTTVS MBTTVS
[73, 74, 120, 133, 149, 194] v v

[14, 134, 141] v v

[17, 164, 205] v

STTVS: Single-Target Tracking Visual Servoing
MTTVS: Multi-Target Tracking Visual Servoing
FXTTVS: Fixed-Target Tracking Visual Servoing
MBTTVS: Mobile-Target Tracking Visual Servoing

Another approach in PVBS systems is to use stereo-
vision as is described in Anderson [13], Allen et al. [10],
Bukowski et al. [29], and Rizzi et al. [160]. In stereo vision,
the images from two cameras are analyzed to note their
differences and calculate depth using disparity. An example
of this approach is [71], where a PBVS system based on
stereo vision techniques is capable of estimating the 3D
coordinates of any point observed in two views of the same
scene applying a triangulation process.

PVBS systems should solve the problem of keeping the
object frame origin within the field of vision. One possible
solution for this is a method proposed in [187]. However,
to use this method, the depth cue of the object origin was
required to be known a priori, at both the initial and the
desired poses of the camera.

The majority of the PBVS systems shown previously
rely on the usage of different filters like Kalman, EKF,
Unscented Kalman, or particle filter in order to estimate the
pose of the target and to deal with the different noise sources
found in real environments.

4.2 Image Based Visual Servoing

Unlike PBVS, IBVS uses only 2D image features and does
not require a 3D pose estimation of the target object. As a
result, the calculations that provide the robot control signals
can be performed very quickly [176]. The IBVS method
has been widely used for positioning manipulators [83, 194,
195], Unmanned Aerial Vehicles (UAVs) [133], and the
formation control of mobile robots [193].

One of the problems of IBVS is that it requires the use of
visual marks on the observed object to identify its geometric
features. To avoid this problem, in [45], a motion-based
technique is used as an input to the control system, where
motion in the image can be estimated without any a priori
knowledge of the observed scene. Another issue of IBVS is
the estimation of the feature depth. To tackle this issue, an
extended 2D visual servoing scheme for depth estimation,
was developed in [48, 170].

@ Springer

A different approach to design IBVS systems is
discussed in [38], where a robot is moved from its
initial location to the goal location, using a path planning
algorithm. An optimal, collision-free path is chosen to
avoid obstacles and to maintain the safety of the robot,
using constraints such as visibility, workspace, and joint
constraints. At the same time, the cost function represented
by the trajectory length is minimized. In this regard, a recent
survey on 3D path planning algorithms that can be used for
this type of IBVS systems is presented in [202].

All previous IBVS systems were designed for a single
robotic arm, but IBVS for dual-arm manipulators have
been studied in [119, 206]. Dual-arm manipulators have the
additional problem of requiring algorithms for coordinating
their movements.

4.3 Hybrid Visual Servoing

The hybrid visual servoing approach, known also as 2D
1/2 visual servoing, was first introduced in [129]. This
approach consists of using information available directly at
the image level jointly with the information reconstructed
from two views of a rigid object (i.e., the displacement of
the camera), decoupling rotations and translations. In an
example of hybrid servoing, the work in [43] introduces
an approach where the servoing task is split into main
and secondary tasks. The main task maintains the image
centered to keep the features of interest within the field
of view. The secondary task scans other positions while
keeping the object centered in the image to bring the camera
to the desired pose. This technique needs a depth estimate
obtained from an offline procedure. The paper addresses
two examples by which depth estimates are extracted from
the robot’s odometry, assuming that all features are on a
plane. The secondary task uses the notion of parallax, where
the features that are tracked (typically points) are chosen by
an initialization procedure applied on the first frame.

The work in [123] presents another example of hybrid
visual servoing, where a method for station-keeping an
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underwater vehicle is described, using a single onboard
video camera. The proposed method takes into account the
restrictive controllability of the vehicle due to its thruster’s
configuration.

Using a hardware oriented approach, [5] describes how
to use an omnidirectional camera in a 2.5D visual servoing
scheme. This camera solves the problem of keeping the
target object within the field of view.

In [153], a hybrid visual servoing system estimates the
error function in the image space as in IBVS. This is
combined with the depth information of the image features
obtained from the point cloud using Kinect sensor and
given directly as input to the interaction matrix or image
Jacobian that relates image feature velocities with the
camera velocity. The method was implemented in a Gazebo
simulator with the 6 DOF URS mounted Kinect sensor at
the end-effector link.

Another recent example of a hybrid visual servoing
control in the medical field is described in [148], where
a robotic system called deTattoo consisting of a robotic
arm equipped with an RGB-D camera and a laser pointer
is used for tattoo removal. To perform this operation, a
hybrid visual control was defined. The combination of both
the 3D reconstruction of the selected tattoo image provided
by the RGB-D camera, along with the updated position of
each point representing the tattoo, was used in the proposed
hybrid visual servoing control.

4.4 Target Tracking Systems

The main idea behind target tracking systems is to keep
the target objects at a certain position or distance from the
camera and within its field of view.

In single target tracking, the camera pose is controlled
so that the estimated center of the object appears at the
center of the image. In the case of tracking fixed objects,
the camera is moved to keep it at a certain fixed distance
from the target object. In multi-target tracking systems,
the camera pose is controlled so that a limited number of
moving target objects is tracked. Some of the criteria used to
control the pose of the camera in multi tracking systems is
to keep the mean position of all tracked objects in the image
center the whole time or to keep all tracked objects within
the field of view of the camera.

In the rest of this section, we describe the different types
of target tracking visual servoing systems for a variety of
applications.

4.4.1 Single and Moving Target Tracking Systems
An example of a system that is both single target tracking

visual servoing systems (STTVS) and mobile target tracking
visual servoing (MBTTVS) system is [73], where a

6-DOF hand-eye configuration is guided using an IBVS
approach to follow a circular quasi-planar object which
moves in front of a homogeneous background. The authors
use an observer for estimating the object velocity making
the strong assumption that the acceleration of the target
object is zero, and propose a nonlinear controller with an
observer. Based on the object motion model, the observer
is formulated as a nonlinear adaptive identification problem
where unknown parameters such as direction, position,
center of circle, velocity are estimated.

Since the computational workload of the controller was
too large, it was not suitable for robots that have more
than three degrees-of-freedom. Later, Hashimoto et al. [74]
proposed a linearized version of the observer by neglecting
the nonlinear dynamics of the robot.

Another example of STTVS and MBTTS system with
eye-in-hand camera and a nonlinear observer approach was
designed in [194]. The goal was to lock the projection of
the moving target object in 3-D space, on the image plane to
a particular position (e.g., the center), by controlling robot
motion. The proposed nonlinear observer estimates the 3-D
motion of the object online, and it has been implemented
and tested on a 3-DOF robot manipulator.

A similar work reported in [120] presents an algorithm
for the visual motion estimation of the pose of a moving
object of known geometry. Based on the prediction capacity
of the Extended Kalman Filter (EKF), this adaptive
approach can automatically tune the statistics of the state
noise and the observation noise to realize a real-time
dynamic image feature selection of the moving objects that
is used for pose estimation.

Another example of a system that is both STTVS and
MBTTVS system is [133], where a nonlinear controller
that stabilizes UAVs in GPS-denied environments with
respect to visual targets is proposed. In this work, the
visual feedback information used for the control law was
expressed in the spherical coordinate system of only 4 points
that characterizes the target object. These spherical visual
features were used to estimate the translational velocity and
the autonomous positioning of the quadrotor, without the
use of an IMU. The system has also the capacity to track
moving targets whose speed can exceed 2 m/s.

Lastly, the work in [149] performs object tracking and
following. The system was applied on a flying robot capable
of following a variety of static and moving targets at
varying distances from 1-2 m to 10-15 m. The work uses a
C++ open source implementation of the OpenTLD tracker
(TLD for tracking-learning-detection [93]). This tracker
does not require any previous knowledge of the tracked
object, and it can robustly track objects on the drone’s video
stream by outputting a bounding box (location, height, and
width) around the tracked object along with a confidence
ratio.

@ Springer
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4.4.2 Single and Fixed Target Tracking Systems

The work in [14] is an example of a Single and
Fixed-Target Tracking Visual Servoing (STTVS-FXTTVS)
system. In this paper, the authors present two visual servoing
approaches for power line inspection with UAVs. In both
approaches, the UAV is kept within a close and safe distance
to the power lines while the inspection is performed. The
first approach combines IBVS with a Linear Quadratic
Servo (LQS) technique to improve the control design of
the UAV. The LQS approach takes into account the output
errors to add an integral action to the controller in order to
stabilize the quadrotor. While in the second approach, the
control problem was solved by implementing the 2-1/2-D
hybrid visual servoing.

Another example of the STTVS-FXTTVS system is
the work described in [134] where a vision-based feature
tracker was designed and implemented for an autonomous
helicopter. A visual control loop estimates both the position
and velocity of a set of features with respect to the
helicopter. In real-time, the helicopter is autonomously
guided to track these features in the fixed target (in this case,
windows in an urban environment). The system tracks only
4 points of the target, using a visual processing rate of 20
fps.

Lastly, a real-time pose tracking for Autonomous
Underwater Vehicle (AUV) is described in [141]. The
proposed PBVS method employs a 3D marker as a fixed
object to be tracked and used for the pose estimation of
the underwater vehicle equipped with a dual-eyes camera.
In this system, a 1-step Genetic Algorithm (GA) is used
to estimate in real-time the relative pose between the
designed 3D marker and the vehicle. To test the algorithm,
A Remotely Operated Vehicle (ROV) was used that can
recognize the target, estimate the relative pose of the vehicle
with respect to the fixed target and control the vehicle to be
adjusted in the desired pose.

4.4.3 Multi-Target Tracking Systems

The authors [205] controlled the pose of a camera based
on the color of the tracked objects as well as the mean
position of the targets. An IBVS scheme was used to
perform multiple target tracking and control, based on the
color of each target. The results show that the mean position
of targets was maintained in the image center during the
whole time of the UAV mission, and at the same time, two
tracked objects were maintained within the camera’s FOV
(Field Of View). Through the majority of the time, the mean
error was not greater than 10 pixels.

The work reported in [164] is another example of
an MTTVS system developed for real-time detection and
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tracking of multiple objects in uncontrolled environments.
The multi-object tracking model is designed with a
multithreading architecture, where every thread corresponds
to a detected motion area and integrates motion and
color tracking. For motion detection, the algorithm uses
techniques based on adaptive thresholds and on color
detection using hue segmentation (HSV color space) to
solve the problem of overlapping detected motion areas.

Another example of MTTVS system is described in
[17]. The work presents a method that is able to estimate
the 3-D position of a time-varying number of people
and simultaneously perform visual servoing. The visual
servoing module requires estimating an interaction matrix
that maps observed image features on to robot velocities,
which in turn requires 3-D information. This is done by
combining a calibrated camera pair mounted onto the robot
head with a person detector. The resulting estimation of the
motor velocities are then taken into account by the person
tracker, which is formulated as a variational Bayesian
filtering [16], that has the advantages of (i) handling a
varying number of persons over time, and (ii) efficiently
dealing with disappearing/reappearing persons.

4.5 Classical Visual Servoing Issues

One of the issues that classical PBVS and IBVS have
is that they may suffer from convergence and stability
problems, as reported in [31, 129]. Another limitation is
that PBVS requires geometric information about the target
object location and to keep the object’s features within the
field of view of the camera. Furthermore, in eye-in-hand
systems, in robots with 6 or more degrees of freedom, where
objects are placed at static positions, IBVS systems can get
trapped into local minima, which occurs due to the existence
of unrealizable image motions [37, 172]. Moreover, in IBVS
methods, the interaction matrix or image Jacobian, which
relates the time variation of the features to the camera
velocity, depends on a priori knowledge of the intrinsic
camera parameters [168].

Hybrid systems improve PBVS and IBVS systems by
not requiring camera calibration or a 3D target model.
Additionally, they have better stability properties [129].
However, they are susceptible to image noise and require a
minimum number of point correspondences (4 to 8 or more)
to estimate the projecting homography matrix.

In spite of the progress made in the last decades on
the classical approaches to visual servoing, the computer
vision methods used by these systems suffer from a lack
of adaptation to changes in the environment. Moreover,
they are unable to generalize the patterns or features that
are extracted from images to similar objects that may have
different textures and be placed in different conditions
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of illumination. DNNs solve these problems by being
capable of learning the patterns extracted from large training
datasets of labeled images and generalizing these patterns
by using efficient optimization methods and loss functions.
Lastly, DNNSs are also capable of learning the control laws,
opening the possibility for eliminating the controller in
a visual servoing system. In the following sections, we
discuss how visual servoing systems are applied to a variety
of robotic platforms, from ground robots to UAVs and
underwater vehicles.

4.6 Classical Visual Servoing by Robotic System Type

The classical visual servoing techniques can be grouped by
the type of robotic system where they have been applied,
regardless of its classification type. In this section, we
discuss the application of classical visual servoing systems
in a variety of robotic systems.

4.6.1 Ground Robots

The work in [188] is an example of the application of
visual servoing and navigation systems in ground mobile
robots. The paper describes a method based on the use
of an omnidirectional vision sensor to stabilize a tractor
capable of navigating autonomously to a target position by
measuring the deviations between the vehicle’s current view
and a target view of landmarks within a workspace.

Another example is [132] that presents an IBVS
strategy that employs the epipolar geometry defined by the
current and desired camera views to drive a nonholonomic
mobile robot toward a desired configuration, without any
knowledge of the 3-D scene geometry.

Using a different approach, [117] proposed an adaptive
image-based visual servoing approach to visually guide
wheeled mobile robots with a ceiling-mounted camera. This
configuration does not require that the image plane of the
camera be parallel to the motion plane of the mobile robot.
In a similar type of application, the work in [152] presents a
visual servo tracking scheme that exploits the homography-
based algorithms designed for wheeled mobile robots to
track a given trajectory defined by a sequence of images
previously recorded.

In a more control-centered approach, in [96] an IBVS
strategy is combined with model predictive control (MPC).
This is used to stabilize a physically constrained mobile
robot where the system’s kinematics are transformed into
a symmetric form using linear control theory. Then,
an explicit exponential decaying term is used to avoid
uncontrollability, and the MPC strategy is transformed
iteratively into a constrained quadratic programming (QP)
problem that is solved using a primal-dual neural network.

4.6.2 UAVs

UAVs have multiple applications in domains such as fire
fighting, traffic surveillance, or communications [50, 185].
Another recent application of UAVs is in inspection tasks.
For instance, UAVs are used in the inspection of wind
turbines in [178]. This system estimates the relative position
and distance between the UAV and the wind turbine, as
well as the position of its blades. Then the Hough transform
algorithm is used for detection of the wind turbine tower,
hub, and blades, and a Kalman filter is used to keep the
target within UAV’s field of vision.

The work cited in [149] presents a visual-based object
tracking and following system. The system was applied on
a flying robot capable of following a variety of static and
moving targets at varying distances from 1-2 m to 10-15 m.

In a very different type of system, a bird-inspired IBVS
scheme was proposed in [184], for micro aerial vehicles
capable of performing high-speed aerial grasping tasks.

In [210], a quadrotor that has an on-board monocular
camera and an inertial measurement unit sensor is used
to propose a new IBVS control law. Image rotations and
translations dynamics are used together with quadrotor
dynamics to derive a non-linear controller for the UAV.

4.7 Underwater Vehicles

In [95] a position-based visual servo control for an
Autonomous Underwater Vehicle (AUV) is presented. The
pose of the AUV with respect to the target position is
obtained using a laser system consisting of two lasers that
project its beams in the image plane, while computer vision
algorithms keep track of the target position.

Visual servoing is also used in [11] to implement
an underwater pipeline following AUV. AUV’s servoing
system uses binormalized Pliicker coordinates of the
pipeline borders that are detected in the image plane, as
feedback information. The control scheme proposed in
this paper included the full system dynamics to improve
stability.

5 Neural Network Based Visual Servoing
Systems

This section discusses the use of neural networks and in
particular of DNNSs in visual servoing systems.

In classical computer vision systems, feature descriptor
methods were often combined with other traditional
machine learning algorithms [138] like Support Vector
Machines, and K-Nearest Neighbors for the problem of
object recognition and detection [112]. Other classical
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methods like Adaboost and a cascade of classifiers have also
been used to select a critical set of features in the problem
of face detection [192] with high success. Histograms were
used for human detection in [47] and Shallow Neural
Networks (SNN) in [189] for face localization.

SNN trained with the backpropagation algorithm [110]
have been previously used in visual servoing as described in
[150] and [151]. In these applications, SNNs were trained
to solve the problem of road following with an autonomous
land vehicle. The SNNs consisted of three layers, an input
layer of size 30 x 32 containing the pixels of a road image
and an 8 x 32 range finder image connected to one hidden
layer of 29 units. This layer was fully connected to a 45
neurons output layer to indicate the 45 directions that the
autonomous vehicle can take. In a subsequent work, the
architecture of the SNN [151] was changed to contain only
5 neurons in the hidden layer, 30 neurons in the output layer,
and used images of 30 x 32 as input.

SNNs were successfully used in the task of real-time road
detection. However, when more complex image features
should be detected, SNNs do not work well. To address this
problem, recent approaches in computer vision use deep
neural networks (DNN) [12]. Contrary to SNNs, DNNs
consist of a deep stack of multiple neuron layers, where
each layer is capable of learning a partial representation
of the features of an object. Applied in a visual servoing
system, DNNs can, for example, learn the complex implicit
relationship between the pose displacements of a robot and
the observed variations in the global descriptors of the
image, such as points, lines, or geometric moments [196].

DNNs include a wide variety of networks such as
Convolutional Neural Networks (CNNs) for computer
vision, Long Short Term Memory (LSTM) networks
for applications in speech recognition, Recurrent Neural
Networks (RNN) or Gated Recurrent Units (GRU) [12]
for time series forecasting, among others. CNNs [179] are
DNNs that were originally designed to process images.
LetNet [111], the first implementation of a CNN, was
designed for handwritten and machine-printed character
recognition, and now CNNs are used in the following
computer vision tasks:

1. Image classification: The goal is to classify or predict
the class of an object in an input image [42, 105].

2. Object detection and localization: The input is an
image, and the output are bounding boxes surrounding
the detected object(s) [181].

3. Object segmentation: The goal is to group pixels in
a digital image into multiple regions or segments and
assign each group to a specific class [66].

4. Target tracking: The goal is to estimate the state of a
target object present in the scene from its previous state
information [149, 152].
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Several surveys have been published describing the
recent advances in DNN’s architectures and its applications
in computer vision tasks in [12, 98, 116, 137, 179, 207]. In
the rest of this section, we present a brief overview of CNNs.
Lastly, we describe some examples of the most recent work
on CNNs for computer vision tasks.

5.1 General Architecture of CNNs

The main purpose of this section is to introduce CNNs and
their use, a more detailed description of DNNs and CNNs
can be found in [66].

CNN:ss are first trained with a dataset of images and then
used to perform inferences on images that have not been
seen before by the network. The CNNs learn to extract
object’s features with a deep pipeline of layers. Figure 2
shows the architecture and layers of a generic CNN for
object classification or detection.

Some of the most common layers found in modern CNN
architectures are:

1. Convolution: The convolution layer applies the con-
volution operation to the input image, represented as
a vector, using filters (kernels). The use of kernels
helps to keep the 2D spatial information. The image
is scanned with these kernels producing as output, a
feature or activation map.

2. Pooling: The pooling layer is usually placed after the
convolution layers. Its goal is to perform dimensionality
reduction on the number of weights. This is done to
reduce the model’s complexity and avoid overfitting.
Some of the common pooling operations are average
and maximum.

3. Fully Connected: The Fully Connected Layer (FC) is
also called Dense Layer because it connects all the
neuron’s outputs of a layer to the inputs of the next
layer).

The convolutional layers in a CNN extract object’s
features in a hierarchical way, from the simple ones like
lines in the first layers to more complex features like forms
in later layers. The final layer in object classification applies
a softmax function to produce as output the probability that
an object belongs to one of the training categories.

CNNs designed for object detection add other layers
that produce feature maps and apply convolution filters
to detect objects with bounding boxes. The feature maps
are associated with a set of predefined bounding boxes
of different dimensions and aspect ratios. The network
generates a large number of boxes that are pruned using
a technique called non-maximum suppression that retains
only the most likely ones. The output of the network is a
bounding box containing a detected object and an associated
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confidence value about the detection, as is shown at the
bottom of Fig. 2.

5.2 Training and Inference in DNNs

The goal of training a DNN is to find the optimal set of
weights and biases that minimize a cost function. Training
is done using the backpropagation algorithm [162] and an
optimization method, such as stochastic gradient descent
or the Adam’s algorithm [124]. Training requires a large
labeled dataset and is usually performed on one or more
GPUs. During training, data is passed through the neurons
in a DNN that contain nonlinear activation functions,
producing outputs that are feed to the next layer. In modern
DNN, the rectified linear unit (ReLU) or one of its variants
[64, 88, 142], is commonly used as the activation function.
To reduce simultaneously the number of images required
for training and training time, transfer learning techniques
are commonly used in DNNSs. In transfer learning, a model
trained for a specific task is modified to make predictions
for a different task [66]. To implement transfer learning, the
pretrained convolution and pooling layers that are part of the
first layers of a CNN are retrained with images belonging

CNN

to a new task but at a very low learning rate. At the same
time, the last layers of a CNN are substituted and trained at
a faster rate [125]. The goal is to avoid that the first layers
forget the simple features learned on the original training
dataset since they are also used in the new task.

After training, the DNN model attached to a camera
performs inferences on images that the DNN has not seen
before. During inferencing, pixels from an image are fed
to the CNN and processed by the neurons of each layer,
producing a bounding box prediction around a detected
object and its associated confidence value. Modern CNN
architectures are optimized for real-time execution and/or to
achieve maximum accuracy.

DNN’s have also hyperparameters such as learning
rate, batch size, and momentum that affect the model’s
performance [66]. These hyperparameters are tuned to
enhance the model’s ability to perform correct inferences.
Lastly, in visual servoing applications that require real-time
response, the feedback signal from the DNN should have
ideally low latency. A wide variety of DNN architectures
have been proposed in the literature to address these
issues. The next section discusses examples of these new
architectures.

@ Springer



11 Page 12 of 27

JIntell Robot Syst (2022) 104: 11

5.3 Modern CNNs

AlexNet [105] was the first CNN that won, by a large
margin, the Image Classification Challenge (ILSVRC)
in 2012 [105]. Other popular CNNs used in object
classification are VGG16 [175] and GoogleNet [180]. These
networks were designed to achieve the highest accuracy in
object classification, without regard to real time execution
or the computing power needed to perform inferences.

After the success of AlexNet, the next breakthrough
work in DNNs was ResNet [75]. ResNet solved the
vanishing gradient problem by allowing the data generated
during training to skip one or more layers without
compromising the accuracy achieved in object recognition
and detection. This feature allowed training networks
composed of hundreds of layers without sacrificing
performance. However, one of the issues with RestNet is
that it requires long training times.

Some of the expected features of CNNs designed for
computer vision systems in robotics are that they should
perform inferences in real-time with high accuracy, but at
the same time, they should have a small size to fit into
resource constrained devices. Examples of CNNs that were
designed with these goals are Yolo [157], SqueezeNet [85]
and MobileNets [80, 81, 167] but also ShuffleNet [208] and
SSD [121].

Yolo [157], a popular CNN for object detection, is
capable of performing inferences in real time. Yolo achieved
real-time performance but at the cost of sacrificing accuracy.
More recent versions of Yolo like Yolov3 [159] or a
similar network called Single Shot Detector (SSD) [121]
have improved the original architecture to achieve higher
accuracy without sacrificing real-time performance.

SqueezeNet [85] was one of the first small-sized models
that performed well on the ImageNet dataset. Compared to
AlexNet, SqueezeNet has similar accuracy but uses 50 times
fewer parameters. While AlexNet uses five convolution
layers with large kernels, followed by two fully-connected
layers, SqueezeNet has only small convolutional layers with
Ix1 and 3 x3 kernels.

More recently, other networks such as Squeeze and
Excitation Networks (SENets) introduced in [82] include
a computational unit called Squeeze-and-Excitation (SE)
block that can be integrated into other architectures such
as ResNet. SE-blocks allow weighting each channel of a
convolutional block adaptively to indicate how relevant a
feature map is. The use of SE-blocks has been shown to
improve training time and accuracy. Given the success of
this idea, SE-blocks have been introduced in the latest
architectures such as ShuffleNet [208]. However, authors
in [208] report that when SE blocks are integrated into
ShuffleNet, the network is significantly slower than raw
ShuffleNet on mobile devices.
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MobileNet is another example of an optimized network
that can be used for mobile and embedded applications.
MobileNetV1 [81] replaces expensive convolution layers
by a cheaper depthwise separable convolution 3x3 layer
followed by a 1x1 convolutional layer. The main result
of this combination is reducing the parameters, while to
reduce latency, MobileNet reduces the number of layers
to 28. MobileNetV2 [167] uses depthwise convolutions
but rearranges them in a block called Bottleneck Residual
block that consists of three convolutional layers. The first
layer, called the expansion layer, is a 1x1 convolution that
expands the number of channels in the data before going
into the depthwise convolution. The last two layers are a
depthwise convolution that filters the inputs, followed by a
1x1 pointwise convolution layer. However, the pointwise
convolution in V1 either kept the number of channels
the same or doubled them, while in V2, it does the
opposite, making the number of channels smaller. The name
projection layer comes from the idea of projecting data with
a large number of dimensions into a structure with a lower
number of dimensions.

The architecture of MobileNet version 3 [80] was
partially obtained via a technique called automated neural
architecture search (NAS). The network uses MnasNet-A1l
[182] as an initial point and then applies the NetAdapt
algorithm [203] on top of it, which works on optimizing
and shrinking the pre-trained MnasNet-A1l until it reaches
a given latency while maintaining accuracy high. One of
the novel ideas in MobileNetV3 is the incorporation of the
squeeze-and-excitation modules (SE) described previously.
Another novelty is the optimization of the architecture by
redesigning some of the expensive layers. For example,
MobileNetV2 begins with a 3x3 convolution layer that has
32 filters, but experimentation with the network showed
that this is a relatively slow layer since only 16 filters
are sufficient. In comparison with the previous versions
of MobileNet that used ReLU6 as the activation function,
v3 uses a version of Swish [154] called hard swish (k-
swish(x) = xwx which is computationally less
expensive.

The CNNs described above were used as a baseline for
other networks that have a different number of parameters,
operations, and accuracy (see Table 3). In the table, “MACs”
means multiply-accumulate operations. It measures how
many calculations are required to perform inference on a
single RGB image.

An interesting application of CNNs is to create Gen-
erative Adversarial Networks (GANs) [67]. GANs are
a modeling approach for learning deep representations
that does not require an extensively annotated training
data set. GANs can be used in semi-supervised, unsuper-
vised, and reinforcement learning tasks. The main idea of
GAN:Ss relies on training a pair of networks (Generator and
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Table 3 Complexity and

accuracy of known Model # Parameters (Millions) # MACs (Millions) Top-5 (%)

convolutional neural networks

(CNNs) AlexNet 1.2 860 83
VGG16 4,24 569 89.9
GoogleNet 60 650 83
ResNet-101 55 5650 94.2
ResNet-152 65 6850 94.2
ResNet-200 100 10500 95.5
SqueezeNet 29 66 87.7
SENet-154 138 7800 89,6
ShuffleNet 5.3 260 90
MobileNet-v1 5 750 93.3
MobileNet-v2 54 217 92.2
MobileNet-v3 (small) 3,47 300 91
MobileNet-v3 (large) 40 3800 93.3

Discriminator) in competition with each other. The gen-
erator is trained to produce new examples, while the dis-
criminator is trained to classify these examples as either
fake (generated) or real (from the domain). The networks
are placed to play a zero-sum game where the generator
tries to fool the discriminator into classifying fake data as
real. As a result, GANs can generate dynamic pictures from
static ones, predicting several seconds of a movie, in data
augmentation, and to generate text that describes images.

6 DNN-based Visual Servoing Systems

State-of-the-art visual servoing systems employ DNNs in
their feedback control loop. DNNSs achieve high accuracy in
object detection, recognition, and segmentation by adapting
to changes in the environment, i.e., they are invariant
to changes in scale, position, illumination, occlusion,
background, and intraclass variations. This is due, in large
part, to the usage of large training datasets, effective
optimization methods, overfitting avoidance techniques,
and by fine-tuning its performance with hyperparameters
[66]. Furthermore, with the use of new DNN-based
techniques in end-to-end and direct servoing systems, the
controller could be eliminated.

DNNs for supervised learning have also some disad-
vantages, for instance, they require large training labeled
datasets and long training times. DNNs are also generally
large in size and require high processing power. Addition-
ally, they produce delays in the feedback loop of a visual
servoing system that may cause instability. Lastly, DNNs
may suffer from adversarial attacks. In these attacks, a
group of pixels in an image is changed to confuse the net-
work, making it classify images incorrectly [201]. However,
in the last years, a new generation of networks has been

specifically designed to tackle some of these problems. The
architecture of DNNs has been optimized without degrad-
ing its accuracy and increasing latency [81, 85, 208]. New
hardware, such as Google Coral, Intel Movidius NCS, or
Nvidia Jetson Nano, has been designed to improve DNN’s
inference time. Furthermore, the use of transfer learning
techniques reduces the amount of images needed for train-
ing and protection mechanisms in the networks have been
proposed to make them resist potential adversarial attacks
[201].

In this section, we describe how DNNs are integrated
in the feedback control loop of a visual servoing system.
We conclude the section describing End-to-End and Direct
Visual Servoing systems.

6.1 Visual Servoing Feedback Loop

Figure 3 shows a simplified block diagram of the feedback
control loop of a DNN-based visual servoing system. The
camera takes images of the surrounding space and feeds
them to a DNN as an input matrix /(z). The DNN will
extract features from the image and produce inferences to
recognize, detect, or track objects. For instance, in the case
of a DNN designed for object detection, the output of the
DNN will be a vector s(¢) containing the location on the
image of the bounding box where the object of interest
has been detected, together with a probability representing
the confidence about the detection. An error signal e(t) is
then calculated as the difference between the location of
the target position s*(f) and the current position and given
as input to the controller. The controller will produce a
command vector u(z) of signals that is feed to the plant,
representing the robot’s actuators. These commands will be
processed by the plant to move the robot to a target position

y(@).

@ Springer



11 Page 14 of 27

JIntell Robot Syst (2022) 104: 11

Fig.3 Block diagram of the d
feedback control loop of a
DNN-based visual servoing n
system
s"(t e(t u(t y(1) y(1)
Q»OL» Controller © > Plant —>
A _
s(7)
. Semsor __
-
| Feature 1) |
i Extraction |« Camera <
| (DNN) |
___________ _

Like most physical systems, the plant is perturbed
with disturbances d such as aerodynamic forces, affect
the closed-loop system’s performance but can be handled
actively. The noise in the measurements n, produces a new
system output defined as the signal 3 ().

6.2 End to End Systems

End-to-end visual servoing systems learn the control laws
directly during training. Hence, there is no real controller
module, but the control laws are implicitly embedded into
the weights and connections of a deep neural network. The
idea of these systems is to view the entire problem of
mapping input images to a set of control commands as a
single indivisible task to be learned from end-to-end. For
instance, in [101] a DNN for a self-driving car is trained
by feeding images of a road and the steering commands
performed by a human while driving the car. Another
example is described in [140], where a CNN takes stereo
images as inputs and produces possible steering angles for
an off-road obstacle avoidance vehicle.

Other examples in self-driving cars are introduced in [26,
36] where an end-to-end learning system is applied to obtain
the proper steering angle to keep the car on the lane.

In a different type of application, an end-to-end approach
is presented in [169], where the visuomotor representations
(i.e., where sensor data is directly transformed into motor
actions) of an outdoor UAV have been learned by a CNN
that computes the desired pose of a drone given a set of
images. Similarly, in [25] a CNN is trained in an end-to-
end fashion to predict the heading angle of an aircraft by
using image inputs. The visual servoing system is used for
autonomous landing of the UAV in case of sensor failure.

James et al. [86] trained an end-to-end CNN and Long
Short Term Memory (LSTM) networks to execute a multi-
step task for picking up a cube and dropping it to a basket on
a table. The network architecture consists of 8 convolutional
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layers, each with a kernel size of 3x3, except the last one
with a size of 2x2. Dimensionality reduction is conducted at
each convolutional layer by using a stride of 2. The output
of the convolutional layers is concatenated with the joint
angles and then fed into an LSTM module. Finally, the
data passes through a fully connected layer of 128 neurons
before heading to the output layer. The network generates 6
motor velocities, 3 gripper actions, and 2 auxiliary that are
cube position and the gripper position.

Other end-to-end systems employ reinforcement learning
instead of supervised learning. In reinforcement learning,
the network is self-trained by a process of trial and error, and
a reward signal is generated when an action is performed
correctly. An example is [155] where a Deep Q-learning
network is used in conjunction with a Deep Actor-Critic
Network to process rewards and generate discrete and
continuous actions to control the movement of a ground
robot.

Another example of the use of reinforcement learning in
end-to-end systems is described in [108] where a robotic
arm with an eye-in-hand camera is designed to solving the
reaching and grasping tasks where uncertainty is involved.
The system is trained by trial and error and does not
require any previous information. The system uses two
cameras, splitting the problem into long range and short
range tasks, where each task is handled by a different
controller.

In [163] arobot trained in simulation using reinforcement
learning is capable of finding target objects in real cluttered
environments by learning collision-free goal reaching
policies and semantic labeling using two fully convolutional
neural networks.

6.3 Direct Visual Servoing Systems

Direct servoing is a technique that relies on the use of
similarity measures to compare the images taken at a current
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pose of the robot with the target image. Direct servoing aim
is to replace classical visual servoing techniques, avoiding
the use of any geometrical information about a scene.

Different approaches to creating direct visual servoing
systems are described in [18]. For instance, in [18] the
author proposed to use histograms calculated from images
as similarity functions. Particle filters are then used, where
the particles have virtual camera images associated, and the
best particle that minimizes the error function is selected.
A CNN is trained to learn the control laws that are used to
calculate the optimal pose of a robotic arm with 6-degrees
of freedom.

Direct servoing may be also implemented without using
DNNSs, as is described in [130]. In this method, two
control laws are derived based on a principal analysis
decomposition of the main components of the image.
Another example is described in [91], where a quadcopter
included an indoor navigation method based on an optical
flow sensor for obstacle-dense environments. To navigate
through a sequence of obstacles, images from a stereo
camera were processed and a center point—-matching
calculated to find the depth information that allowed the
drone to pass through the center of multiple gates.

In an earliest work, a photometric visual servoing method
(e.g., [44]) was proposed, where only pure photometric
information (i.e., image intensity) was used in the control
law to minimizing the error between the current and desired
images. One of the main drawbacks of this approach is
that it is sensitive to occlusions and illumination variations,
which can lead to less precise positioning results [19].

To solve this problem, in [49], the desired image is
adapted to the illumination conditions of the current image
taken by the camera. The authors then calculate the Sum of
Conditional Variance (SCV) between the reference and the
adapted current image to achieve direct visual servoing.

In [145] a vector of visual features is used as a metric.
The work proposed using the coefficients of the wavelet
transform as the control signal inputs. A wavelet transform
is a representation of a signal by an orthonormal series of
functions called wavelets [68]. The proposed controller uses
the multiple resolution coefficients representing the wavelet
transform of an image in the spatial domain.

Lastly, Marchand in [131] proposed a new direct visual
servoing technique which does not consider the image itself
as a whole in the spatial domain but its transformation in the
frequency domain. The Discrete Cosine Transform (DCT)
[7] is used to represent the image in the frequency domain
as a sum of cosine functions at different frequencies. As a
result, the coefficients of the DCT are used as the visual
features in the visual servoing control law.

7 State of the Art in DNN-based Visual
Servoing Systems

In this section, we present a comprehensive review of recent
research work on the application of DNN based visual
servoing systems, classified by platform type, i.e., UAVs,
ground robots, manipulators, and underwater and surface
vehicles.

7.1 UAVs

A UAV designed for wind turbine inspection is reported in
[54]. The work describes the implementation of a stereo
camera system with 2 DNNs attached that detects wind
turbines in images. Stereo triangulation is used to estimate
the distance from a wind turbine to the drone. The DNN
Yolov2 [158] (with ResNet50 in the feature extraction
layers) was used to localize the wind turbine’s position
in the 3D world coordinate system, using epipolar-plane
image analysis. To navigate towards the center of the
windmill, the bounding box parameters of the detected
windmill generated from Yolo were used to calculate the
center of the bounding box. This was used to control
drone’s navigation. Camera calibration was performed to
compute its extrinsic and intrinsic parameters. The extrinsic
parameters were used to detect the camera location relative
to the world reference frame. Then the intrinsic parameters
were used to transform the camera frame coordinates to
pixel coordinates. However, the experiments in [54] showed
that the network was not able to detect a wind turbine at
a relatively long distance. This is due in part to the noise
and low image resolution (224 x224) used for training. As
a potential solution to this problem, GANs could be used
to improve small object detection through narrowing the
representation difference of small objects from the large
ones, as described in [115].

Other applications of DNNs in wind turbine inspection
are also discussed in [56] and [55]. In [56], WindMillNet, a
DNN created by using transfer learning from AlexNet, takes
an image from the camera and outputs the probability that
a wind turbine appears in the image. When this probability
reaches a threshold, the state of the controller in the drone
changes from the “scanning state” while searching for a
wind turbine to a “found state” where the drone navigates
autonomously forward towards the wind turbine and it stops
when it reaches a safe distance. WindMillNet architecture
consisted of 22 layers including ConvNets, pooling, RelUs,
dropout, and fully connected layers. In this work, the last
3 layers of AlexNet were repurposed to perform the wind
turbine classification task.
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In a later work [55], a DNN called WindTurbineNet was
created using the same structure as WindMillNet, but the
final layers were changed to allow the DNN recognizing
four classes of objects [curtain; net; wall; wind turbine],
which were part of the lab’s experimental setup. Contrarily
to [56], the images coming from the drone’s camera were
split into four equally sized segments, where each segment
was attached to a DNN that calculated the probability that
it contained a wind turbine. A servoing system made the
drone navigate left or right according to the probability
value obtained by the upper two probabilities calculated by
the DNNs. The forward velocity of the drone was made
proportional to the sum of the 4 probabilities corresponding
to the 4 image segments, based on the hypothesis that the
closer the drone is to the object the higher is the sum of these
4 probabilities. Additionally, the steering angle was made
proportional to the difference value between the probability
of the left and right segments.

Another example of an outdoor application of UAVs was
discussed in [63] for the problem of visual perception of
forest trails. The DNN used takes a 101x101 monocular
image as an input and produces three values, which are
the probabilities of three classes of movements [Turn left
(TL), Go straight (GS), Turn right (TR)]. The DNN was
trained using a dataset that was collected via three head-
mounted cameras. Data augmentation, particularly right/left
mirroring, and mild affine distortion were applied to the
images to produce more data. To test the network, a reactive
controller was implemented to translate the network outputs
to control signals, where the forward speed is proportional
to the probability of GS P(GS), while the yaw or steering
angle is proportional to the value P(TR) - P(TL), in case
it is positive the robot is steered to the right, and if it is
negative the robot is steered to the left. The network did not
generalize well on images with lower quality compared to
the GoPro images.

A similar work, but for indoor corridor environments,
is reported in [146]. In this case, the flying commands are
learned using a CNN called DenseNet-161, which takes
an 180x320 RGB image as input and classifies corridor
images as [left, center, right, stop]. The UAV was controlled
in an open-loop fashion using 4 flight commands: Roll-
Right, Pitch-Forward, Roll-Left, Stop, corresponding to
the 4 classes [left, center, right, stop], respectively. The
navigation method achieved a 77.3% success rate without
collision. This work is based on imitation learning, which
aims to learn a control policy and map states to actions
by observing expert behavior. One important aspect of this
approach is that it can be used in end-to-end deep learning.
However, imitation learning is also challenging to scale as it
is difficult to get expert examples to imitate every potential
scenario that an agent may encounter.
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Another recent paper about autonomous navigation in
an unstructured forest trail environment is [135]. The work
presents an optimized CNN architecture trained and tested
using a patch of the unstructured environment dataset IDSTA
available at [3]. The network takes an RGB image of
size 101x101 as input, and outputs a triple vector holding
the classification probability values that are translated into
the path direction, whether to the left, to the right, or
forward. This network was inspired by the work done
in [63], applying data augmentation during training to
improve model’s performances. However, the method fails
to generalize on data with low resolution, and the control
flow was not discussed in the paper.

A similar system called Dronet is presented in [122].
Dronet is a CNN that can safely drive a drone through
the streets of a city. This network was trained using data
collected by bicycles and cars, which are integrated into
the urban environment. The network takes an input image
200x200 frame in gray-scale, and its architecture is based
on ResNet-8 (eight-layers residual network), while its last
two fully connected layers can produce separately a steering
angle prediction and collision probability that allows the
drone to recognize dangerous situations and quickly react to
them while navigating. The predicted collision probability
is used in the control law to modulate the forward velocity,
so that the drone could fly at the maximum speed if the
probability of collision is null and stop if the probability is
1. The predicted steering angle is mapped to the yaw angle
from the range [-1,1]to [-7, F].

7.2 Ground Robots

DNNs have been also used extensively in stationary and
mobile ground robots. The work reported in [62] uses
a MobileNet implementation of Single Shot Multibox
Detector (SSD) architecture to keep track of a person using
a ground robot. As the target is moving, a proportional-
integral (PI) control law is applied to maintain the target
in the field of vision of the robot’s camera. When a person
is detected, the position of the bounding box generated by
MobileNet is compared to a set-point bounding box position
placed at the center of the image. The robot moves to keep
the camera’s forward speed and yaw rate at a specified safe
distance from the moving target object.

Using a different approach, [92] proposed a rein-
forcement learning method called BADGR (Berkeley
Autonomous Driving Ground Robot) that learns its phys-
ical environment by experiencing it. This self-supervised
end-to-end approach to autonomous navigation uses image
data from real-world environments to train a neural net-
work without needing any human supervision or simulation.
BADGR image-based neural network model is capable of
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predicting which sequences of actions will lead to avoid
bumpy roads and collisions. The network processes the
input images via convolutional and fully connected layers
to form the initial hidden state of a recurrent Long Short
Term Memory (LSTM) unit [79]. This recurrent unit takes
as input each of the future actions in a sequential fashion and
outputs the corresponding predicted future events. Based
on these events, a planner selects the actions correspond-
ing to desirable outcomes, such as reaching a goal position
or avoiding undesirable events, such as bumpy terrain and
collisions.

The training dataset of a predictive model consisted of
observations, actions and event labels recorded iteratively
and in an online fashion while BADGR robot navigates.
BADGR deployment requires the definition of a reward
function that defines what the user wants the agent
to accomplish in terms of the model’s predicted future
events, for example by penalizing collisions and positively
rewarding driving towards the goal. Given the reward
function, the learned predictive model, and the current
observation, BADGR can plan and execute a set of actions
in a way that the reward function is maximized until the
task is completed. BADGR was evaluated against the use of
a 2D LIDAR and the use of naive based policies, where in
the later case, the robot navigates straight towards the goal.
BADGR registered a 92% success rate (without collision)
against 60% for LIDAR and naive methods.

Robotics soccer is another example of computer vision
applications that require real-time vision algorithms that
run with very limited computational resources. Examples
of recent robotics soccer applications include ball detection
[177], soccer player detection [9, 46], and visual navigation
[114]. The ball detection in [177] uses an architecture based
on three convolutional layers and two fully connected layers
corresponding to x and y coordinates of the ball’s center.
The network uses a normal distribution around the x and
y values, which can help to quantify the uncertainty of the
detection. Even though this network performed relatively
well (81% x peak and 75% y peak), it could only process a
few images per second operating on low resolution images
and suffers from over-fitting.

The soccer player detection described in [46] uses two
different detectors, one based on SqueezeNet and the
other on XNORNet architectures. A XNORNet [156] is an
approximation to standard CNNs where both the filters and
input of the convolutional layers are binary, which can result
in 58x faster convolutional operations and 32x memory
savings.

In the case of the SqueezeNet-based detector and in order
to reduce the size of the network without reducing the
network accuracy, the authors follow an iterative procedure
in which the RELU activation function is replaced by a

PReLU activation function in the early layers. In case
this approach does not increase the network accuracy, the
fire modules (Squeeze and Expand layers) in SqueezeNet
are replaced by extended fire modules where a 5x5 filter
is added to the expand layer in the fire module. Both
XNORNet and SqueezeNet based detectors were tested on
a NAO robot and achieved very similar performance of
around 97% detection rate and 1ms inference time.

Similarly, the work in [114] can detect players, balls,
and the orientation of the robot inside the playing field.
The classifiers were trained via an active learning-based
algorithm that automatically selects and pseudo-annotates
unlabeled data. Without using any color information, the
system can work in real-time in NAO robots. To perform
robot detection, first a grayscale image is scanned using
windows of 16x16 pixels, to find the high contrast regions,
which may contain a robot. Then, the robot detection
CNN model (RobotNet) takes these greyscale regions as
proposals and classify them into robots or non-robots. The
robot’s orientation detection module takes as input the
bounding boxes coming from the robot’s detection module,
to detect the lower silhouette of the robot corresponding
to its feet, by using a vertical scan lines method. The
main idea behind the robot’s orientation pipeline is to find
the lines around the robot’s feet and legs that represent
the most likely direction of the robot. For this purpose, a
CNN model based on SqueezeNet architecture classify the
regions around the lines as side, front or back regions. The
ball detection pipeline takes both the high contrast regions
and the previously detected robots, in order to generate
ball proposals in the grayscale image, which then fed to
a cascade of two CNNs: BoostBallNet that limits the ball
proposals to a maximum of five, and BallNet to classify the
filtered proposals. When the robot is static, the success rates
of the robot detection, ball detection, and robot’s orientation
detection are of 94.90%, 97.10%, and 99.88% respectively.
When the robot is moving the robot’s orientation detection
rate is of 95.52%.

7.3 Robotic Arms and Manipulators

In [6], a robotic arm manipulator with a single eye-in-
hand camera grabs and holds objects such as leaves. The
leaf detector is a CNN based on AlexNet architecture. The
proposed CNN consists of five convolutional layers and
two fully-connected layers, that classify two types of object
leaves and their background. To locate and grasp a leaf from
a plant, the CNN was combined with Monoscopic Depth
Analysis (MDA), a visual servoing method that uses two
images and triangulation to deduce the position of some
feature points in the image in the Cartesian space relative to
the camera.
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However, this work only focused on how to bring the end-
effector close to the leaf, and although the MDA approach
accurately gives the leaf position, the system suffers from
a limitation in which a leaf had to be tracked throughout
all the steps of the control algorithm. This implies that
if the identification step of a leaf fails, between camera
movements, the information about the leaf position is lost,
and the procedure has to start from the beginning.

Another work described in [106] presents a robotic grasp
detection system. The robot is capable of predicting the
best grasping pose of a robotic gripper using an RGB-D
(RGB data plus depth) image of the scene. The method
uses two parallel ResNet-50 CNNs, one for RGB and
another for depth, to extract features from RGB-D images to
produce grasp configurations for the objects in the images,
using the Cornell grasp dataset [2]. In the grasp predictor,
the last fully connected layer of ResNet-50 is substituted
by two fully connected layers with rectified linear unit
(ReL.U) as activation function, and to reduce over-fitting, a
dropout layer is appended to the first fully connected layer.
This system does not use a physical robot to perform the
experiments, and since the network architecture relies on
two ResNet50, this may cause difficulties when deploying
on real-world grasping [41].

An example of a visual servoing system that employs
transfer learning to retrain AlexNet in performing relative
camera pose estimation for a robot with 6 degrees of
freedom are presented in [20] and [21]. The network is
used to move the robot from an arbitrary initial pose to
a desired pose with respect to the observed scene. The
authors replace the classical direct visual servoing system
with a CNN-based system where the network learns the
relative pose between the current and reference images, and
outputs a transformation matrix that represent the current
camera frame with respect to the reference frame. To reach
a pose related to a desired image, the CNN estimates the
relative poses between the desired and reference images,
and between the current and reference images. Then
from these two transformations we can get the relative
pose between the current and the desired images. This
information becomes the cost function in an optimization
equation. In this work, AlexNet was fine-tuned by training
the upper layers and keeping the lower layers responsible
for image feature extraction, since these layers perform the
same task in the relative pose estimation. The last layers
produced the 6DOF pose. The training data used in [20]
consisted of a synthetic set of images generated from a
single image by simulation. One of the issues with this
approach is that for each new reference pose, the network
has to be trained again, and this makes it unpractical for
actual industrial settings [204].

In [128], a CNN estimates the probability of success
when grasping objects in depth images. Grasps are defined
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as the planar position, angle, and depth of a gripper relative
to an RGB-D sensor. The model architecture consisted of
four convolutional layers in pairs of two separated by the
ReLU activation function, followed by three fully connected
layers and a separate input layer for the distance z of the
gripper from the camera. The network takes a candidate
grasp and a depth image as input, and estimates the grasp
robustness or probability of success, which is used to rank
grasp candidates. The performance of the grasp planning
method was assessed on both known objects and novel
objects with a 93% success rate and 94% precision, and
80% success rate and 100% precision, respectively. The
grasp failure cases were mainly due to poor depth sensing
in measuring thin parts of the object geometry, and due to
collisions with the object.

Another recent work where a generative approach to
grasping is presented by Morrison et al. [139]. The authors
propose a Generative Grasping Convolutional Neural
Network (GG-CNN) as a visual grasp detection algorithm,
which is a fully convolutional network that maps an input
depth image to a prediction of grasp quality and pose at
every pixel in real-time. The proposed network takes a gray
scale depth image (I) and generates a grasp pose for every
pixel (G), consisting of the grasp quality (Q), grasp width
(W), and grasp angle (F). The output of this network is used
to compute the best grasp point to reach. The network was
trained using the Cornell Grasping Dataset and evaluated on
the Jacquard dataset [4]. In the grasp detection pipeline, the
GG-CNN takes a 300x300 depth map image and produces a
grasp map. The grasp quality was refined using a Gaussian
filter. The best grasp pose is determined from the maximum
pixels in the filtered grasp quality image and the rotation and
width are calculated from (F) and (W) images, respectively.
The velocity signal of the end-effector was calculated by
a PBVS controller, based on the poses of the grasp and
the gripper fingers. The tests were performed with isolated
objects and cluttered objects with a grasp success rate of
100% and 87%, respectively.

In a related work, the authors in [147] introduce a novel
technique for transferring a deep reinforcement learning
(DRL) grasping agent for gripper pose estimation from
simulation to a real robot, in a reverse real-to-sim fashion
without fine-tuning in the real world. The approach involves
a CycleGAN [211] by effectively “tricking” the agent into
believing it is still in the simulator. The CycleGAN consists
of two GANSs, where the architecture for both generator and
discriminator networks follows U-nets, with seven layers
in the encoder and the decoder and the output is the
semantic segmentation mask. In addition, a visual servoing
(VS) grasping task is included to adjust inaccurate agent
gripper pose estimations derived from deep learning. The
approach used the CycleGAN to adapt a real image from
the camera for its use in simulation. The training dataset
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consists of RGB-D images manually collected from a real
robot, as well as the same amount of simulation images
automatically generated using data augmentation. The pose-
based VS system was integrated to refine the grasp pose
estimation previously inferred by the DRL system, based
on the segmentation mask obtained from CycleGAN for
tasks like feature extraction, object tracking, and control
law encoding. The object’s centroid and orientation are the
features used in the visual servoing system. The experiments
showed that using the CycleGAN alone was not sufficient
for transferring the pose estimation policy. However, the
system succeeded in positioning the gripper correctly in the
x and y directions, as well as orienting the gripper correctly,
but failed in the z direction. This is because the depth image
is very noisy and lacks a clear definition of the simulated
images, making the CycleGAN less effective in adapting the
depth images. However, using DRL + CycleGAN worked
well for finding an approximate pose that can be sent to the
visual servoing module.

7.4 Underwater and Surface Vehicles

The work in [118] proposed an improved recurrent
neural network for unmanned underwater vehicle (UUV)
online obstacle avoidance. The proposed network is a
Convolutional Recurrent Neural Network (CRNN) that uses
a convolutions to replace the full connection between
adjacent layers of the recurrent neural network (RNN). The
obstacle avoidance planning network takes as input an 81-
dimensional vector consisting of a direction vector plus
80-dimensional distance-vector obtained from the sonar.
The output of the CRNN is a two-dimensional vector from
the obstacle, which consists of the velocity and the yaw of
the UUV. During the training step, the use of a CRNN
was compared to a regular RNN and gated recurrent units
(GRUs) models, in order to assess the performance of the
obstacle avoidance planner. The three models have the same
architecture: an input layer of 81 neurons corresponding to
the input vector, the hidden layer consists of one of three
network structures, the middle layer has 24 neurons, and
the output layer consists of two neurons (yaw and velocity
of the UUV). To avoid overfitting, a dropout with 60%
retaining was performed on the three networks resulting
in RNN1, RNN2, GRUI, GRU2, CRNNI1, and CRNN2.
The experiments showed that CRNN performs better than
the RNN and GRU models in terms of both MSE and
convergence, with a short training time, a simpler network
structure, and better generalization performance. In the
simulation tests, the planning success rate was 88% and
96% for the RNN algorithms (RNN1 and RNN2) while 98%
and 99% for the proposed CRNN algorithms (CRNN1 and
CRNN2).

Additionally, the proposed CRNN-based obstacle avoid-
ance planner needs less computing time, generates shorter
paths, consumes less energy through the UUV actuators,
and less sensitive to noise, compared to the ACO (Ant
Colony Optimization) algorithm.

A more recent work in underwater exploration by AUV
is presented in [109], where a DNN called PSPNet based
on ResNet does image segmentation, enabling the AUV to
compute its position relative to the segmented elements.
The DNN was trained using synthetic images with their
corresponding labels generated from the Unreal a game
engine. The DNN was implemented on an FPGA, however
the control block of the AUV was not discussed by the
authors.

Another state-of-the-art method has been introduced by
[51] to solve the underwater localization problem. The
proposed approach estimates a cross-view and cross-domain
image matching in underwater scenarios with partially
submerged structures. A vehicle equipped with a Forward-
Looking Sonar (FLS) obtains acoustic images in a place
where there is an aerial image available. The aerial image
can be obtained by drones or satellites. Then, this aerial
image is preloaded into the vehicle or previously captured
in the case of a hybrid vehicle that can navigate in both
air and underwater and can acquire both high-resolution
aerial images and underwater acoustic images when diving
[53, 136]. The approach consists of three phases: Aerial
image processing, Underwater Acoustic image processing,
and matching process. In the first phase, segmentation and
binarization of the aerial images are performed with the
help of a CNN. The scene is segmented, but only the
stationary structures remain in the binary image. In the
second phase, a threshold is applied to acoustic images
to remove low-intensity acoustic return and reduce noise.
The last phase of image comparison uses a CNN capable
of producing a matching score to identify similar places.
The first CNN responsible for the semantic segmentation
of the areal images is based on the U-Net architecture
[161] with a 256x256x3 color aerial image as input and
a 256x256x3 segmented image as output. The network
architecture consists of five encoder layers and four decoder
layers, with the original padding being preserved to avoid
cropping and finally a softmax layer.

DeepLab [34] is another type of network which is
widely used in semantic segmentation. DeepLab achieves
high performance on semantic segmentation by combining
DCNN and probability map models to improve object
boundary detection segmentation extracting dense features
using atrous convolution (or convolution with upsampled
filters). However, the major challenge to achieve reasonable
accuracy through these deep CNN models was the
high computational cost [90]. To overcome this issue,
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Xception [39] used more efficient model parameters and
gained robust performance without increasing capacity.
MobileNets [34] introduced an efficient convolution neural
network architecture to boost the performance of semantic
segmentation by building low latency models for mobile
vision applications, and it was used as a backbone for
DeepLab (“Mobile DeepLabv3”) in Camille et al. [100],
where the issue of multi-class indoor scene segmentation
was addressed. The network in [51] used in matching
problems was inspired by the Siamese network [40]. The
network takes two 256x128x1 images as input and produces
a matching score.

Classic Image-based matching techniques proposed in
the literature include block matching [173], and Semi-
Global Block Matching (SGBM) [78]. Nevertheless, these
methods suffer from different limitations [28] (e.g., match
ambiguity, inadequacy of geometric model, and disparity
sampling), and they employ cost functions that are
handcrafted, or where only a linear combination of features
is learned from data [126]. Contrarily, the Siamese network
can learn the similarity between a template image that holds
a particular object of interest and a search image where a
similar-looking object is to be found [65]. To achieve this
goal, two identical CNNs are trained with their respective
template and search images to represent random objects in
an embedding and used to perform an efficient comparison.
Cross-correlation is used to create a similarity score map,
from which the maximum value is chosen as the predicted
landmark location [65].

Unmanned Surface Vehicles (USVs), or Unmanned Sur-
face Vessels, have recently attracted significant attention for
their potential applications in performing time-consuming
and/or dangerous missions such as surveillance and recon-
naissance, patrol, environmental monitoring, and inspection
of marine structures [72]. The authors [200] propose to use
a deep CNN to detect the obstacles and maneuver safely
by learning how to steer the vessel through sample data.
The network was trained to recognize dangerous collisions
and change course in accordance with the Convention of the
International Regulations for Preventing Collisions at Sea
(COLREGS) which describes operations and manoeuvres
to perform in situations like crossing, head-on and overtak-
ing. The CNN model was trained using USV maneuvering
vision data that was created from the European Ship Simula-
tor game. The algorithm showed good results, however, the
authors did not describe the details of the CNN architecture
proposed.

8 Discussion

In this survey, we presented a comprehensive review of
state of the art research work on visual servoing systems.
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The systems we have described employ classical methods
that have not been included in other surveys, together
with DNN-based approaches. One of the goals of this
survey was to review state-of-the-art on DNN-based visual
servoing systems, since this technology has become the
predominant one in computer vision, robotics and other
artificial intelligence related fields.

Additionally, this paper extended the taxonomy used
in classical visual servoing systems to include the newest
developments in this field, e.g., direct servoing, end-to-
end, and target tracking systems. In particular, end-to-end
systems have changed the traditional concept of visual
servoing systems as a feedback control loop system.
Now, DNNs are capable of learning the control laws
directly during training, eliminating the controller and
transforming these systems in open-loop systems. An
additional benefit of end-to-end systems is that they reduce
system’s complexity, at the cost of relying on the use of
exhaustive training techniques. At the same time, well know
analytical methods like Lyapunov analysis, commonly used
in control systems to determine system’s stability can not
be used in these systems. Moreover, recent direct servoing
systems eliminate the need in the classical approaches for
having a priori geometrical information about the target
object space or camera calibration parameters.

The surveyed systems show that DNNs will continue
playing a key role, as new and improved DNN architectures
will emerge. For instance, in [77] the concept of capsules
was proposed. These structures are aimed at better
modeling hierarchical relationships that are invariant to
the transformations commonly found in images. Capsules
will ease training and produce more accurate results in
object recognition and detection. However, to be used in
visual servoing systems, these new architectures need to be
optimized in size and latency, as latency introduces a delay
that may affect the control system’s stability. Additionally,
transformer networks, originally proposed in 2017 for
natural language processing [190], are now widely used in
computer vision [52, 99, 198] and may even replace CNNs
in the near future. Transformer networks will improve the
computer vision systems used in visual servoing for robotic
applications.

More importantly, depth estimation can be now per-
formed accurately with DNNs [209]. These networks fused
with object detection models makes it possible to create
robotic systems that use only a monocular video camera to
perform visual servoing.

In spite of the current improvements in DNN architec-
tures, there are issues that must be addressed to implement
DNN-based visual servoing systems in robotic systems. For
instance, in object detection the bounding box data about
the position of a detected object has statistical variations
due to UAV movement. This must be modeled [54] to be
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properly filtered. Additionally, the uncertainty produced
by the inference processing should be estimated reliably.
This is a challenging problem since there are no ground
truth estimations available. However, several approaches in
uncertainty estimation have been proposed to solve this
problem, using for instance calibration techniques [69, 76],
Bayesian deep learning [127, 143] ensemble methods [107],
or dropout sampling [60, 97].

Lastly, transfer learning techniques commonly used in
DNNs to reduce the number of training images needed
in object recognition and object detection, require labeled
training datasets with bounding boxes. This preprocessing
step may be partially automated by using simulations and
synthetic augmentation techniques.
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