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Abstract
Energy-efficient path planning is essential for the autonomous underwater vehicle (AUV)-based ocean exploration. Existing
static environment-based AUV path planners do not work well in dynamic ocean environments. A novel onboard sensing
system-based AUV path planning strategy is proposed, and it is suitable for a regional dynamic environment to improve
the energy utilization efficiency of an AUV working in a small-scale and dynamic mission area. Firstly, unlike the existing
methods, the onboard sensing system including horizontal acoustic doppler current profile and detecting sonar is used to
obtain environmental information, and the probabilistic multiple hypothesis tracker and Kalman filter are employed to carry
out multi-step prediction of the environment. After that, the differential evolution algorithm is introduced as the optimizer,
and a novel prediction-based path evaluator is designed to evaluate the fitness of possible paths. Besides, a novel prediction-
based online re-planning strategy is designed, which is beneficial to reduce the impact of forecast error and the planning
is thus closed-loop. Finally, multiple simulation experiments are designed to verify the effectiveness and superiority of the
path planner, and the results show that the proposed planning strategy can reduce the AUV energy consumption by at least
4.6% compared with static environment-based planners.

Keywords Autonomous underwater vehicle · Kalman filter · Dynamic environment · Path planning

1 Introduction

Due to the high mobility and sensors integration, the autono-
mous underwater vehicle (AUV) is playing a non-negligible
role in many fields, such as marine expedition, aquaculture,
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data collection, and industrial devices monitoring [1]. The
ocean environment is full of complexities and vagaries,
so the AUV should autonomously plan its path to avoid
collisions and save the battery energy by utilizing the ocean
current. It is challenging for an AUV to reach a satisfactory
path in the mission region with the existence of dynamic
obstacles and time-varying current, which may seriously
endanger driving safety and impact AUV’s duration [2].

Path planning techniques are well-studied up to now,
and the fruitful progress can be applied to the further
study of AUV path planning. Geometric model search
algorithms that belong to the discrete optimal programming
are classical path search algorithms. Many of them have
been improved for AUV path planning, such as Dijkstra
algorithm [3], A* algorithm [4], the fast marching (FM)
algorithm [5], and level set method (LSM) [6]. The low
efficiency of the above geometric model-based algorithms
when being applied to a large-scale complex underwater
environment is still a fatal shortcoming [7]. The rapidly
exploring random tree (RRT) algorithm is powerful in
spatial searching, and experiments utilizing improved RRT
on three-dimensional path planning for an AUV in real sea
areas have achieved satisfactory results [8]. Although the
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search speed is fast, the result given by RRT or its variants
are usually suboptimal, and it is difficult to find a practical
path in a narrow channel [9].

Besides the geometric-based algorithms mentioned above,
intelligence algorithms that are efficient and robust in com-
plex environments have attracted more and more atten-
tion [10]. Typical intelligent algorithms for path planning
include the particle swarm optimization algorithm (PSO)
[11, 12], the ant colony optimization algorithm (ACO) [13],
and the genetic algorithm (GA) [14]. Besides, the differen-
tial evolution (DE) algorithm, which is an improved version
of the GA, was used in both local and global AUV path
planning [15]. A common weakness of all intelligence algo-
rithms is the large computational consumption. However,
[16] proved that the searching speed of swarm intelligence
path planning algorithms can be satisfied by adopting the
field-programmable gate array (FPGA)-based parallel com-
puting strategy. Reliable optimization capability and real-
time performance enhance the advantages of intelligence
algorithms in AUV path planning.

The dynamic environment containing strong ocean
current is always out of consideration [3]. It is admitted
that the impact of ocean currents on AUV’s motion is not
always significant [17], but this effect is non-negligible in
many cases. Inadequate consideration of the dynamic of
the current may result in the deterioration of the planned
path’s optimality because of the change of the environment
during AUV’s operation [18, 19]. Many attempts were made
to deal with the path planning problem in time-varying
currents field, but it is still full of challenges to predict
ocean current given the predictive capabilities of present
modeling systems. The problem of current prediction was
solved to a certain extent on the basis of global real-
time ocean forecast system (RTOFS-Global) and navy
coastal ocean model (NCOM), which are predictive tools
used in open-source ocean modeling [12]. However, in
many mission scenarios, such as exploration around the
island and monitoring in marine pastures, the AUV works
in a small-scale region, which is often within tens of
kilometers, and the numerical forecast models are seldom
helpful in estimating and predicting the environment in
these situations [20]. Horizontal acoustic doppler current
profile (H-ADCP) is believed to be helpful to infer the two-
dimensional structure of the current field in a limited region
in front of the AUV [21]. The regional current field can
be parameterized by approximating the solution of two-
dimensional Navier-Stokes equation as the superposition of
one-point vortex solutions called viscous Lamb vortexes
[22]. However, this method needs to be extended to be
suitable for path planning in the spatiotemporal current.
Besides, another important problem is to avoid collisions
with dynamic obstacles during AUV’s operation. The path
planning algorithms mentioned above can only deal with

planning problems in static environments and have to
be combined with a dynamic obstacle avoidance system,
which results in frequent unplanned maneuvers, and the
optimal path in a complex environment is hence often hard
to achieve.

Based on AUV onboard sensors, we aim to design
an AUV path planning method which can utilize ocean
current energy and avoid obstacles more efficiently, and
consequently enhance the durability of the AUV working in
a small-scale mission region. Usually, there are a series of
tasks to be carried out by the AUV during one launch. The
path planning strategy reduces the energy consumption of
each task effectively to achieve the purpose of completing
as many tasks as possible in one voyage. The essential
structure of our path planner is illustrated in Fig. 1. The main
contributions conclude:

– Based on the measurements obtained by H-ADCP and
detecting sonar, the Kalman filter (KF) is used to obtain
the multi-step prediction of the future states of ocean
current and dynamic obstacles.

– The DE algorithm is employed as the optimal path
searcher, and any possible path generated by it is
evaluated based on the prediction of the environment.

– The environment is re-sensed during the AUV’s
movement to correct the multi-step prediction. After
that, the re-planning mechanism is introduced to
maintain the optimality of the subsequent path.

The rest of this paper is organized as follows. Section 2
describes the mathematical model of the AUV path planning
problem and environment model. Section 3 introduces the
DE algorithm and the environment prediction method used
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Fig. 1 Structure of the introduced Path Planner

23   Page 2 of 15 J Intell Robot Syst (2022) 104: 23



in path planning. Section 4 gives the re-sensing-based re-
planning strategy. In Section 5, the simulation set and
results of comparisons are discussed. Section 6 draws the
conclusion.

2 Problem Formulation

2.1 AUV’s Mission and Path Evaluation

In a single mission, the AUV starts at the starting point
and moves toward the destination. The path planning
system is supposed to screen out the optimal path P ∗
from the possible path set P . By following P ∗, the AUV
accomplishes its motion at the lowest energy cost, and the
possibility of collision is minimized. A sample of such a
mission is depicted by Fig. 2.

The problem of AUV’s path planning is considered as an
optimization problem, and it is reasonable to take energy
consumption as the optimization goal function. Because of
the proportion between the water-referenced velocity and
the cube root of the thrust, the AUV’s thrust power is
constant, and then it is reasonable to assume that the AUV’s
water-referenced velocity is constant for simplicity [12]. In
other word, we assume the AUV adopts an accurate enough
motion controller to adjust its attitude in real time according
to the given path. Consequently, the time consumption,
which is a constant multiple of energy consumption, is
adopted to be the optimization function.

The AUV departs from A(x0, y0, z0) and is hoped to
arrive at B(xn, yn, zn). P = {p0, . . . , pi , . . . , pn} is one
feasible path, where pi (xi, yi, zi)(0 ≤ i ≤ n) are way
points of the path. AUV’s ground-referenced velocity V g

is the resultant of the water velocity V c and its constant
water-referenced velocity V a , satisfying

V g = V a + V c (1)

Fig. 2 An AUV following the planned path in the mission region

where the direction of V g is the same as the tangent of
the path, as shown in Fig. 3. The AUV’s ground-referenced
velocity can be derived by the digital visual interface (DVL)
[23] in real time.

A feasible path satisfies

P ∩ {O, L} = Ø (2)

where O is obstacles in the operation ocean area and L is
land, which means there exists no possible collision, and

V g

|V g| = pi+1 − pi

|pi+1 − pi |
(3)

which means the AUV will not be caught by strong counter-
currents and can keep moving forward.

The time consumption of the path, which is meanwhile
the objective function J , is given by

J (P ) = tsum =
n∑

i=1

ti

=
n∑

i=1

|pi+1 − pi |
|V g,i |

(4)

where V g,i is the ground-referenced velocity of the AUV
in the segment path {pi , pi+1}. pi and pi+1 are adjacent
way points in the path. Notice that to make the calculation
feasible, approximate discretization is performed. Equa-
tion 4 suggests that the local current influences the time cost
of {pi , pi+1}. Thus, the AUV should take advantage of the
ocean current to minimize the total time consumption.

The purpose of the path planning is formulated as the
following optimization problem:

P ∗ = arg min
P∈P

J (P )

= arg min
P∈P

tsum

= arg min
P∈P

n∑

i=1

|pi+1 − pi |
|V g,i |

Fig. 3 Ground-referenced velocity Vg : resultant of current velocity Vc

and thrust velocity Va
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s.t . p0 = A(x0, y0, z0),

pn = B(xn, yn, zn),

MAUV = 0

(5)

where MAUV is AUV’s kinematic model [24], which
means sharp curves are undesired during the planning. In
addition to this, the planning method is independent of the
AUV model.

2.2 No-fly Zone: Land and Obstacles

In most cases, the mission region is not completely free for
a sail because of the existence of land L and obstacles O

[25]. Because the safety of AUV is always the top priority,
a feasible path should avoid any possible collision. That
is, no intersection is allowed between P and {L, O}. The
AUV’s only changes its depth on the beginning navigation
stage, which means its depth is almost constant after
starting the movement. Besides, the AUV’s vertical motion
is comparatively negligible due to large horizontal scales
[15], and the AUV’s motion is usually assumed to be on a
horizontal plane. Thus, all the operations in our research are
performed on the two-dimensional horizontal plane.

The land L includes coasts, reefs, and islands. It is prior
information which can be obtained by satellite imagery
and manual measurement. Related technologies are mature
enough to convert satellite images or artificial charts into
0-1 maps, in which 1 stands for the accessible area and 0
stands for the no-fly zone. The map marking out the land is
sent to the vehicle before departure. Static obstacles, such
as fishing cages and other artificial facilities, can also be
treated in the same way.

The mission region is always close to busy ports or
fisheries, where vessels and sampans are common. Besides,
other AUVs and fish schools will also bring danger. These
moving objects which introduce uncertainty to AUV’s
safety are defined as dynamic obstacles, and the AUV has
to handle them automatically. For those dynamic obstacles
that can not be detected in advance, AUV uses vehicle-
borne sonars to locate and track them. These obstacles
act autonomously in most cases, so the impact of ocean
current on them can be ignored. Based on this, a dynamic
obstacle is considered as a mass point moving at constant
velocity (CV) in a period, and its position uncertainty is
modeled as an independent Gaussian distribution [26], and
the process noise compensates the possible changes in target
velocity [27]. Ignoring the vertical position change, the
state of obstacle o at time k can be written as xo(k) =[
x(k), vx(k), y(k), vy(k)

]T
o

. Hence the formulation of the
motion satisfies

xo(k) = FCV xo(k − 1) + wp(k) (6)

where FCV is the state transition matrix and wp(k) is the
process noise with zero-mean white Gaussian distribution
N (0, Q(k)). FCV and Q(k) are given by

FCV =

⎡

⎢⎢⎣

1 T 0 0
0 1 0 0
0 0 1 T

0 0 0 1

⎤

⎥⎥⎦ , Qk = q2

⎡

⎢⎢⎢⎣

T 3

3
T 2

2 0 0
T 2

2 T 0 0

0 0 T 3

3
T 2

2

0 0 T 2

2 T

⎤

⎥⎥⎥⎦ (7)

where q is the intensity of the process noise of the CV model
and T is the sample interval [28].

Areas where the dynamic obstacles appear are marked
as “no-fly zone” together with the land and static obstacles.
To avoid the collision brought by position uncertainty, we
define the no-fly zone caused by o as a circle with the peak
of position distribution So being the center, and the radius R

satisfies

P(||So − Sr || < R) = 1 − η (8)

where Sr is the obstacle’s real position and η is the
maximum tolerable collision probability. For instance, if
η = 0.01, the circle with radius R represents the collision
boundary with the confidence of 99%.

2.3 Time-varying Current

The ocean currents may influence the AUV positively
or negatively. The vehicle saves much energy flowing
downstream and consumes additional energy when going
upstream. The AUV may even get caught in the vortex if the
current is too strong. The ocean dynamics can be described
by the 2-D Navier-Stokes equation:

∂ω

∂t
+ (V ∇)ω = νΔω (9)

where V = (Vx, Vy) is the ocean current velocity field, ν

is the viscosity of the ocean, ω is the vorticity and ∇ and
Δ are respectively the gradient and Laplacian operators. In
consideration of simplicity and timeliness of the calculation,
it is impossible to handle such an equation that is difficult
to be solved analytically online by using the finite element
method. Fortunately, the current field can be modeled as a
superposition of multiple Lamb vortexes [21]. The current
velocity at r(x, y) in the field excited by a single vortex can
be expressed as

V c = (vc,x, vc,y) = f (r0(x0.y0), Γ, δ)

vc,x = −Γ
y − y0

2π(r − r0)2

[
1 − e

−(r−r0)2

δ2

]

vc,y = Γ
x − x0

2π(r − r0)2

[
1 − e

−(r−r0)2

δ2

]
(10)
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where r0(x0, y0) is the vortex center, vc,x and vc,y are
respectively the two horizontal components of the current
velocity V c, Γ is the vortex strength, and δ is the vortex
radius. Equation 10 describes the static current field in
the ocean, but the current is generally time-varying in the
mission region. When a vortex is not close to another, it
will move with nearly uniform velocity in the direction of
its rectilinear axis [22]. Therefore, the vortex can also be
described by CV model and the parameters of the dynamic
vortex at time k can be determined by

xv(k) = FCV xv(k − 1) + wp(k) (11)

where xv(k) = [
x(k), vx(k), y(k), vy(k)

]T
v

is the state
of the vortex, FCV and wp(k) are respectively the state
transition matrix and process noise defined by Eq. 7.

3 DE-based Path Planning with Prediction
of the Environment

A path planner’s duty is to find a feasible path by following
which the AUV can take full advantage of current, avoid
collisions, and save as much energy as possible. Since the
AUV’s motion is coupled to the environment, the credible
estimation of the time-varying current and moving obstacles
is meaningful.

Planners based on swarm or evolutionary algorithms
have been proved to be feasible and efficient in AUV path
planning [29]. DE is one of the most powerful and versatile
evolutionary optimizers for the continuous parameter
spaces, and it has exhibited remarkable performance
in terms of final accuracy, computational speed, and
robustness [30]. Figure 4 presents the structure of the
proposed DE-based path planner.

3.1 DE-based AUV Path Planner

3.1.1 Chromosome and Coding

The details of a path are decided by r control points. Given
the starting point and the destination, the line segments that
connect these points in sequence constitute the basic path.
Naturally, the basic path has to be smoothed to form a
feasible path, and that would be discussed latter.

Two real numbers are used to represent the two horizontal
coordinates of each one of the r control points in the 2-D
space. Thus the chromosome Ci of individual i contains 2r

genes

Ci = [
xi,1, xi,2, . . . , xi,r , yi,1, yi,2, . . . , yi,r

]T . (12)

The genetic operations described later will be performed on
the chromosomes of each individual in the population.

3.1.2 Evolutionary Operations

The DE algorithm is made up of the following four basic
steps:

– Initialization: Assume the size of the population is n.
Generate n individuals with the elements of whose
chromosomes are randomly selected in the 2-D mission
region.

– Mutation: For ct
i , the i-th individual in generation t ,

create the donor vector with

vt
i = ct

i + F ×
(
ct
p − ct

q

)
, (13)

where F is the scaling factor, and ct
p and ct

q are two
different individuals who are chosen randomly from the
population.

Fig. 4 DE-based Path Planning with Forecast Environment Map
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– Crossover: The donor vector vt
i will be mixed with ct

i to
form the offspring ut

i according to

ut
i,j =

{
vt
i,j randi,j [0, 1] < K

ct
i,j randi,j [0, 1] ≥ K

(14)

where ut
i,j is the j -th gene of ut

i , and K is the crossover
rate predefined.

– Selection: The selection operator determines whether
the chromosome ut

i generated by mutation and
crossover will survive to the next generation. The i-th
individual in the (t + 1)th generation will be

ct+1
i =

{
ut

i J
(
ut

i

)
< J

(
ct
i

)

ct
i J

(
ut

i

) ≥ J
(
ct
i

)
.

(15)

By performing the above operations on each individual
in the population (except initialization, which is only for
the 1st generation), individuals in the next generation are
determined.

3.1.3 Path Smoothing

A smooth curve is more feasible for the AUV to follow
than a couple of straight lines. Thus B-spline method
[31] is employed to smooth the path determined by
the chromosome-defined m control points. The B-spline
smoother is integrated into the path planner. Specifically,
the smoother is called to produce the corresponding feasible
curve every time when a new chromosome is generated. The
time consumption of the smoothed path will be used in the
following evaluation and evolution. The path defined by an
individual and the B-spline curve based on it is depicted by
Fig. 5.

3.2 Forecast Dynamic Environment with Kalman
Predictor

The AUV detects the external environment using onboard
sensors. The detecting sonar system is powerful in detecting

SP

CP
1

CP
2

CP
3

TP

Original Path
B-spline Curve

Fig. 5 Control points and B-spline curve

the position and motion of obstacles over the range of
hundreds of meters [32], and H-ADCP is believed to be
effective in inferring the two-dimensional structure of the
current field within 300 meters ahead the vehicle [21]. The
current environmental information obtained by the sensing
system is helpful in path planning. However, if the planner
plans the path only on the basis of the current external
environment, the variation of the environment will definitely
weaken the practice performance of the result.

From the one-dimensional information obtained from
an H-ADCP, Ref. [21] provided a practical algorithm to
abstract parameters (vortexes center, strength, and radius)
of the current made up of several vortexes. The vortex
parameters, together with the positions and velocities of
obstacles, constitute the state vector to be estimated and
forecast. That is, state vector at time k is defined as

x(k) = {xv(k); xo(k)} (16)

and the measurements are obtained by

z(k) = Hx(k) + wo(k) (17)

where H is the output matrix and wo(k) is the observation
noise superimposed on the outputs. For simplicity, H is
chosen to be identity matrix and wo(k) is Gaussian noise.

For a single moving target, KF is a powerful tool
to estimate and predict its state [33]. It is requisite to
associate multiple measurements with their sources if
we want to predict the future state of the environment
that contains multiple vortexes and obstacles. In the
open ocean environment, it is usually easy to distinguish
measurements of different moving objects, and the similar
property of vortexes is stated in Section 2.3. In our work,
the expectation-maximization-based probabilistic multi-
hypothesis tracker (PMHT) [34] is employed to carry out
the measurement-association task.

Here we take the obstacle detecting system as an
example. The number of obstacles in the field of sonar scope
is dynamic, and the adjustment of it can be accomplished
by employing existing track initiation and termination
methods, such as the logic-based technique [35].

Assume there are no obstacles existing at a certain
stage of the sensing, and mo measurements are detected.
The measurements can be effectively associated with the
obstacles by carrying out the PMHT algorithm. The result
of the association can be converted from the probabilistic
form to the definite form by applying

fk(i, j) = arg max
s∈[1,no]

πs
k , (1 ≤ i ≤ mo, 1 ≤ j ≤ no) (18)

where fk(i, j) = s means the j -th measurement at time k

comes from obstacle s, and πs
k is the probability that the

measurement comes from the obstacle s. The problem is
consequently converted into several single-target prediction
problems.
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Multi-step prediction [36] is performed to forecast the
future state of the obstacle. Consider the system described
by Markov model:
{

x(k + 1) = Φ(k + 1, k)x(k) + B(k + 1, k)w(k)

z(k + 1) = H (k + 1)x(k + 1) + v(k + 1)
(19)

where Φ(k +1, k) is one-step state transition matrix, B(k +
1, k) is excitation transition matrix, w(k) ∼ N (0, Q(k)) is
process noise, H (k + 1) is output matrix, and v(k + 1) ∼
N (0, R(k+1)) is observation noise. The optimal prediction
with the advanced-time N is

x̂(k + N |k) = Φ(k + N, k)x̂(k|k) (20)

where

Φ(k + N, k) =
k+N−1∏

i=k

Φ(i + 1, i) (21)

is the N-step state transition matrix, and x̂(k|k) is the
optimal state estimation at time k.

The performance of the prediction is described by error
covariance

P (k + N |k) = Φ(k + N, k)P (k|k)ΦT (k + N, k) (22)

+
k+N∑

i=k+1

[
Φ(k + N, i)B(i, i − 1)Q(i − 1)

×BT (i, i − 1)ΦT (k + N, i)
]

where Q(k) is the covariance of w(k).
For the obstacle system with x = [x, y, vx, vy]T being

the state vector, B(k + 1, k) = I is unit matrix, Φ(k + 1, k)

is time-independent, and w(k) is Gaussian noise. Thus the
error covariance is

P (k + N |k) = ΦNP (k|k)
(
ΦT

)N

+
k+N∑

i=k+1

[
Φk+N−iQ

(
ΦT

)k+N−i
]

. (23)

For an obstacle moving in CV mode, FCV given by Eq. 7
is substituted in Eq. 23, therefore

P (k + N |k) = FN
CV P (k|k)

(
F T

CV

)N

+
k+N∑

i=k+1

[
F k+N−i

CV Q
(
F T

CV

)k+N−i
]

. (24)

It is well known that elements on the main diagonal of
P (k + N |k) indicate the uncertainty of the state prediction
of time k + N . Subsequently, the forecast map of the no-fly
zone can be generated according to Eq. 8.

The state vector of the ocean vortex system is

x = [
xc, yc, vx, vy, Γ , δ

]T (25)

where xc and yc are positions of vortexes’ centers. The
current measurements and the vortexes can also be uncou-
pled by using the PMHT algorithm. Then Eqs. 20 - 24
are employed to carry out the prediction. The ocean cur-
rent field can be constructed by substituting the forecast
parameters in Eq. 10.

The predictor can give out the predictions of the next
N sampling periods. The obstacle map and current map
together form the forecast map to be used to evaluate paths.

3.3 Path Evaluation Using Forecast Map

In the DE-based path planner, multiple individuals corre-
sponding to different paths are generated in each generation.
The predictions of the environment given in Section 3.2 will
be used in path evaluation, and the results are used as the
gist in the subsequent evolution.

Now we consider path P = {p0, p1, . . . , pn}. The
sample interval is Ts , and the forecast environment map
series given by the predictor is Mf = {M1, M2, . . . , MN }.
That is, Mf contains the predictions for the next N periods.

As what Eq. 4 states, traveling time is chosen to be the
optimization goal. Thus

J = tsum =
n−1∑

i=0

ti (26)

where ti satisfies

ti = |pi+1 − pi |
|V g| = |pi+1 − pi |

|V a + V c| . (27)

When calculating ti , the proposed evaluator uses the
forecast map M[Ti ] instead of the static environment map,
and

Ti = 1

Ts

i−1∑

j=1

tj + 1 (28)

is the time cost of sub-path {p1, p2, . . . , pi}, which is the
first part of P , and [Ti] is the integer part of Ti . The
estimator accumulates the time cost of each segment of
the path from the starting point, and calls the next frame
prediction map whenever the threshold is reached, i.e., [Ti]
is changed. To put it more clear, Eq. 26 can be transformed
into

tsum = t1 + · · · + ta︸ ︷︷ ︸
M1

+ ta+1 + · · · + tb︸ ︷︷ ︸
M2

+ · · · + tc + · · · + tn−1︸ ︷︷ ︸
Mq

(q ≤ N) (29)

where Mq is the last forecast map in Mf that is used
until the AUV arrives at the destination or the re-plan is
performed.
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Many paths generated by DE may cross the no-fly zone
or strong counter-current area, but the above calculation
does not consider the feasibility of the path. Thus, the
feasible detection should be performed.

For path P , after the time cost of [pi , pi+1] is obtained,
define the feasible detection mark

Fi =
{

0 [pi , pi+1] ∩ {O, L} 	= Ø or V g

|V g | 	= pi+1−pi

|pi+1−pi |
1 others

(30)

where [pi , pi+1]∩O 	= Ø indicates that a collision is likely

to occur in this segment of the path and V g

|V g | 	= pi+1−pi

|pi+1−pi |
means that the controller cannot keep the direction of the
vehicle moving in the same direction as the path, which
implies the counter-current at pi is too strong for the AUV
to move forward along P .

If path P is infeasible, its cost will be deemed as infinite:

J = tsum =
{

∞ ∃Fi = 0
∑n−1

i ti others
. (31)

For clarity, the pseudo-codes of the procedure of the path
evaluation is summarized in Algorithm 1.

Algorithm 1 Evaluate path using forecast maps.

1: Input path P = {p0, p1, . . . , pn}.
2: Input AUV velocity Va , forecast map series Mf =

{M1, M2, . . . , MN } and map update interval Ts .
3: Set timer t = 0 and j = 1.
4: for i = 0, 1, 2, . . . , n − 1 do
5: Use Mj to obtain AUV’s ground-referenced speed

V g = V a + V c.

6: ti = |pi+1−pi |
|V g | .

7: t = t + ti .
8: if [pi , pi+1]∩{O, L} 	= Ø or V g

|V g | 	= pi+1−pi

|pi+1−pi | then
9: t = ∞.

10: Break loop and jump to line 14.
11: end if
12: j = [ t

Ts
] + 1.

13: end for
14: return t .

4 Re-sensing and Path Re-planning

The forecast environment map-based planner guarantees
the security and reduces energy consumption effectively by
introducing prediction information. Without the prediction,
the AUV will carry out unplanned maneuver when it detects
an obstacle online to avoid the collision, and that will

consume much unplanned energy and deteriorate the AUV’s
endurance dramatically.

However, Eq. 23 indicates that the prediction error
increases linearly with time, and more and more areas will
be marked as no-fly zone due to the forecast uncertainty,
hence the reduction of the positive influence of the
predictive information. Besides, the scope of the onboard
sensors is limited, the AUV will approach the undetected
area gradually. To further improve the energy efficiency
based on the conservative path planning strategy and reduce
the prediction error by the feedback mechanism, the path
re-planning strategy is introduced.

4.1 Modify the Prediction by Acquiring New
Measurements

If the AUV re-senses the environment during the movement,
the accumulated prediction error can be effectively reduced.
Due to the battery limit, the sensing system equipped does
not keep working all the time: after a period of work,
the sensing system will enter the standby mode until the
processor issues a re-planning instruction.

After being awakened from the standby mode, the detect-
ing sonar and H-ADCP restore sensing the environment, and
the new measurements will be sent to the CPU. The state
estimation x̂(k +N |k +N) will be updated according to the
new measurement z(k + N):

x̂(k + N |k + N) = x̂(k + N |k) + K(k + N) (32)

× [
z(k + N) − H (k + N)x̂(k + N |k)

]

where x̂(k + N |k) is the N-step optimal prediction obtained
at time k and K(k + N) is Kalman gain derived by

K(k+N)=P (k + N |k)H T (k + N) (33)

×
[
H (k+N)P (k+N |k)H T (k+N)+R(k)

]−1
.

Then the state estimation and prediction can be obtained
by KF.

This process is equivalent to giving KF the initial value
with a large error. The efficient performance of KF enables
the state estimation to converge quickly. This operation
is illustrated in Fig. 6, where the stars indicate the real
and predicted positions of the obstacle, and the circles
indicate the collision boundary defined by the position with
uncertainty.

4.2 Path Re-planning withModified Prediction

The forecast map-based path planning has taken the
dynamic of the ocean current and obstacles into account.
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Fig. 6 Re-sensing for prediction
error reduction

Collision boundary

Re-sense

Re-plan

Real position

Predicted position

Based on this, the path re-planning by re-sensing the
environment can effectively correct the deterioration of path
planning optimality.

Given the continuity and slowness of the environment’s
changes, the path planning problem in the new circle is
similar to the previous one, thus it is rational to deem that
the new optimal path is most likely to be found near the
previous path [37]. The first generation C = {Ci |1 ≤ i ≤ n}
in the re-planning is initialized by

Ci =
{

C
p
i i < λn

Cnew others
(34)

where n is population size, 0 < λ < 1 is the reused
rate and C

p
i is the individual with the i-th largest fitness

in the previous generation Cp = {Cp
i |1 ≤ i ≤ n}.

The new individuals are randomly generated according to
Section 3.1.1.

When the re-prediction is completed after the re-sensing,
a new planning process will be performed based on the
new generation. A new optimal path P ∗

new from the current
position to the destination will be obtained, and the rest
of the previous planned path P ∗ will be discarded. The
AUV will follow P ∗

new to complete the rest journey until the
re-sensing and re-planning are performed again.

Obviously, more frequent re-planning results in more
accuracy and consumes more energy. To decide when to
carry out the re-planning, a simple and convenient way is to
set a re-planning interval. Besides that, a more flexible re-
planning trigger mechanism can be adopted. As mentioned
before, the error covariance matrix P (k + N |k) describes
the uncertainty of the predicted state, thus it can be used to
determine when to perform the re-planning. The re-planning
threshold is set to S on the need of the prediction accuracy.
The re-planning will be performed when the trace of the
error covariance matrix satisfies

trP (k + i|k) > S (35)

where i = 1, 2, . . . , N and N is the maximum prediction
step. After the re-planning, the AUV will follow the new
path and the planner will wait for the next re-planning.

5 Simulation Results

To verify the effectiveness and superiority of the proposed
path planning method, simulations are performed in Mat-
lab R2017b under Windows 10 on a PC with Intel i7-8700
CPU, 16 GB of RAM. Four sets of simulations are designed
to explore the performance of our path planning method,
and it is compared with traditional path planners which do
not take the dynamic environment into consideration. In the
first simulation, the AUV moves in a dynamic current field.
The main purpose is to take full use of the ocean energy to
shorten the travel time. In the second simulation scenario,
moving obstacles exist and the reliability and robustness
of the proposed algorithm are tested. In addition to con-
sidering energy consumption, the AUV should also avoid
temporary maneuvers that are executed to avoid collisions.
Subsequently, the re-planning mechanism is introduced in
the third test. Lastly, a real map is used to test the effective-
ness of the entire path planning strategy.

The simulations are based on the torpedo type AUV TH-
B050R produced by Tianhe Maritime, as shown in Fig. 7.
The well-expandable AUV can be equipped with multiple
different types of sensors in the form of external hangers
and cabins. The AUV’s water-referenced velocity is set to
1m/s, and its minimum turning radius is 15 meters. In the
simulation tests, the 2D 500m × 500m mission region is
divided into 100 × 100 grid. The spatiotemporal current
field is composed of four dynamic vortexes. The current
velocity is limited to less than 0.6m/s, and the vortexes
move in random different directions at the speed of 0.1m/s.
Except for the first simulation scenario, several moving
obstacles exist in the mission region, and the current field is
updated every 50 seconds. The parameters of DE are listed
in Table 1.
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Fig. 7 Torpedo type AUV: TH-B050R

5.1 Energy-saving Performance in Spatiotemporal
Current Field

In this simulation case, we study the performance of the
path planner when the AUV moves in a spatiotemporal
current field. The AUV departs from (50, 50) (marked
with a triangle) and the destination is (450, 400) (marked
with a star). Before the departure, the current field is
sensed by the H-ADCP for several intervals, and that
guarantees the convergence of the current estimation. The
observation errors of each vortex center, strength, and radius
are respectively Qr0 ∼ N (0, 1), QΓ ∼ (0, 0.5), and Qδ ∼
(0, 0.5). The KF-based multi-step optimal prediction will be
performed, and the forecast maps are used by the DE-based
planner to generate the optimal path for the AUV to follow.
30 Monte Carlo (MC) experiments are performed.

Traditionally, the ocean current is ignored or only the
static current information is used to evaluate possible paths.
Figure 8 shows the paths obtained by the ocean current-
ignored planner (OCIP) [38], the static current-based
planner (SCP) [15], and the proposed forecast current-based
planner (FCP) in one typical experiment. The current fields
at t = 0 and t = 600s are represented by two sets of arrows
that represent the intensity and direction simultaneously.
The average of the MC experiments result is listed in
Table 2. The expected time cost refers to the time that a

Table 1 Parameter setting of DE

Population
Size

Iterations Scaling
Factor

Crossover
Rate

Control
Points

50 100 0.5 0.6 5

Fig. 8 Optimal paths given by OCIP, SCP, and FCP

planner expects the AUV to spend on the given path, while
the execution time cost refers to the actual time spent in
the experiments. The MC experiments result shows that the
proposed FCP has respectively saved 10.9% and 6.6% time
compared with the OCIP and the SCP. It can be observed
that when the AUV departs, the current field in the lower
right of Fig. 8 forms an area that is downstream for the
AUV’s traveling. The static current-based planner tends to
utilize the current to compress the energy cost. However,
the dynamics of ocean current restricts this downstream
current from lasting, and the current becomes unfavorable
for the AUV’s movement later. In contrast, the designed
FCP considers the dynamic of ocean current and effectively
improves the energy efficiency.

5.2 Robustness Facing Dynamic Obstacles

The performance of our path planning methods is explored
when dynamic obstacles exist in the mission region. Based
on the simulation set in the previous case, the static no-fly
zone exists in the mission area, together with three obstacles
moving in CV mode at the speed of 0.08, 0.08, 0.06m/s,
respectively. In addition to taking full advantage of ocean
currents to save energy, the AUV should keep the safety
distance from obstacles at all times. Therefore, the real-time
no-fly zone is determined by comprehensively considering

Table 2 Planning result of different planning methods in spatiotempo-
ral current field

OCIP SCP FCP

Expected Time Cost (s) 532.0 540.8 571.7

Execution Time Cost (s) 641.2 612.1 571.6

CPU Time (s) 1.63 2.59 2.96
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the safety distance and the uncertainty of obstacles’
position.

Figure 9 presents the comparison of the results of the two
path planner. The static environment-based planner (SEP)
[12] plans the path based on the environmental information
that the vehicle detects at the time of departure, while
the proposed predicted environment-based planner (FEP)
takes the dynamic of the environment into consideration
additionally. Significant differences exist between the two
paths: the SEP path shifts to the right in the middle
stage in order to rely more efficiently on the current.
However, on account of the lack of estimation of obstacles’
future position, there is a high probability of the collision
at the position marked by a hexagram. By contrast, the
AUV following the FEP path avoids possible dangers by
predicting the location of obstacles in advance.

The online collision avoidance system keeps working
during the entire AUV movement to ensure safety. When an
obstacle is detected in front of the AUV, maneuvers will be
performed to avoid the collision. However, the temporary
maneuver requires an emergency brake and yaw, which
will consume much unplanned energy. Besides, not every
circumvention will be successful. Therefore, the reliability
of planners can be reflected by the probability of the
circumvention. In our experiments, if an obstacle appears
within the safe distance from the AUV during the operation,
the AUV will be considered to be threatened and it will need
to perform a maneuver. Hence, a greater safety distance
means a smaller chance of a collision. Due to the uncertainty
in the location of obstacles, different safety distances are
set and the reliability of the paths given by the SEP and
the FEP are tested in 100 MC experiments, and the result
is presented by Fig. 10. Compared with the FEP which
guarantees security almost all the time, the path generated

Fig. 9 Optimal paths in mission region with spatiotemporal current
and dynamic obstacles

by the SEP results in the risk of 10% at the safety distance of
2m. That means the AUV encounters at least one collision in
10% of the experiments, and the probability of risk increases
with the threshold for risk determination (safety distance).
We can conclude that the proposed path planning method
is more likely to avoid the circumstance in which the AUV
deviates the established motion plan, or even be damaged in
an accident.

5.3 Path Planning with Re-planningMechanism

In this part, path re-planning with environment re-sensing is
introduced to further improve the performance of the path
planner. During the AUV’s movement, the onboard sensing
system will be turned on whenever the path re-planning is
triggered, and the future state of the spatiotemporal current
field and dynamic obstacles will be re-predicted according
to the new information.

Three moving obstacles exist in the AUV’s working
area. The previous discussion implies that the proposed
path planner tends to give a more conservative but safer
result. The re-planning mechanism expands the solution
space on the promise that the AUV’s safety is ensured.
The initial path is generated based on the prediction of the
environment before the AUV’s departure. The uncertainty
of obstacle prediction increases with time, that is, the area
where the obstacles are likely to appear is becoming larger
and larger. For safety, the planner leads to AUV to avoid
the no-fly zone occupied by the risk area. Meanwhile, the
feasible solution space is largely compressed, which limits
the further optimization of the energy consumption. To push
the limit caused by the conservative strategy, the sensing
system will be turned on for a while during the movement,
and the path re-planning will be performed sequentially
based on the new environmental information.

Figure 11 presents the paths when the re-planning is not
performed, performed once, and twice. The positions of the
two re-plannings are marked in the figure. The AUV moves
along a new path after a re-planning is performed. It can be
seen that the two re-planned path is visibly different from
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Static current-based path
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Fig. 10 Safety rate under different path planning strategies
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Re-planning

Re-planning

Fig. 11 The initial and re-planned paths

the initial one: the AUV does not choose the open area on
the left but moves through the gap between the obstacles
and the land when the safety is confirmed. Additionally, the
last re-planning path almost coincides with the previous one,
and this indicates that in the simulation scenario, the new
information obtained from the last re-sensing is of limited
help to improve the optimality of the planning result.

The expected and tested results of time consumption in
50 Monte Carlo experiments are shown in Fig. 12, where
the central mark, bottom and top edges mark on each
box indicate the median, the 25th and 75th percentiles,
respectively, and the whiskers extend to the most extreme
data points not considered outliers, while the outliers are
noted individually by the ‘o’ symbol. The expected time
cost is the running time estimated by the planner, and the

Initial Path Re-planned Path
(Expected)         (Tested)            (Expected)         (Tested)
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Fig. 12 Improve performance by re-planning: costs in simulation and
execution

tested time cost is the average of 30 tests, in which the
variation of the environment is random. The average tested
time costs of the initial and re-planned path are 770.7s

and 718.3s, respectively. The proposed re-sensing and re-
planning mechanism helps the AUV save 6.8% energy at
the cost of tripling the computation cost compared with the
no-re-planning planner.

5.4 Path Planning in Complex Actual Environment

In this case, the proposed planner is tested in a real
scenario. In the cage farming area of Luxi Island, Zhejiang,
China, nodes in the sensor network transmit the water
quality monitoring data to the central node [39], and an
AUV equipped with communication system is ordered to
approach and retrieve data from the center node. The
starting and ending points are marked in Fig. 13, and the
AUV working area is presented. The vehicle needs to avoid
fixed obstacles (land, fish cages, and cultivation facilities)
and moving obstacles using based on the onboard sensing
system, and it should reach the destination with the lowest
possible energy consumption. The FEP with the re-planning
mechanism is tested in this experiment. The SEP only based
on static environmental information is tested as a contrast.
The AUV detects obstacles and avoids collisions in real-
time during the operation, additional 30s will be added into
the total time cost, and the path will be re-planned if an
unplanned maneuver occurs.

As shown in Fig. 14, the static map is loaded prior to
the launch of the AUV, and the spaces occupied by static
obstacles are marked as the no-fly zone. The solid curve

Fish Cages

Cultivation 
Facilities 

Starting Point

Obstacles

Destination

AUV

Fig. 13 Results for the mission in Luxi island cage area given by path
planners
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Fig. 14 Results for the mission in Luxi island cage area given by path
planners

represents the FEP path. By following this path, the AUV
successfully avoids collisions and reaches the destination
safely. The dash-dot curve represents the path given by the
SEP. As the AUV following this path travels to the location
of about (600, 200), an obstacle in front of it is detected,
and the AUV immediately adjusts its course to the southeast
direction to avoid the collision. When the AUV is safe,
the current position is used as the starting point to re-plan
the new path for the AUV to finish its journey. The AUV
employing SEP has also reached the destination, but there
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Fig. 15 Execution time of path planners in MC experiments

is an emergency evasion on its way. The static environment-
based planner and the proposed planner are tested in 10
different environments where the states of the five moving
obstacles and vortexes are generated randomly. The result
of the 50 MC tests is shown in Fig. 15. The average
execution times are 1135.7s and 1190.5s respectively, and
the proposed path planner helps the AUV save about 4.6%
of the running time.

6 Conclusion

In this paper, we propose a novel path planning method
for the AUV working in small-scale time-varying ocean
environment. The proposed method predicts the future
of ocean current and dynamic obstacles based on the
measurements obtained by onboard sensors. The DE
algorithm is employed to generate candidate paths, and
the environment prediction is used to evaluate these paths
to select the optimal one. The re-planning strategy is
adopted to correct the errors online. The path planner is
tested in multiple simulation scenarios, which takes land,
spatiotemporal ocean current, static and dynamic obstacles
into consideration. The results suggest that the planner helps
the AUV to take full advantage of the ocean current and
avoid collision efficiently, thereby reducing at least 4.6%
travel time compared with the existing methods.

Future work involves designing a complete vehicle path
planning framework that enables the vehicle to perform a
series of tasks, and 3D environment prediction algorithms
will be proposed. Additionally, hardware design is required
to integrate multiple sensing devices on the AUV.
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Path planning for underwater gliders using iterative optimization.
In: Proc. IEEE International Conference on Robotics and
Automation (ICRA), pp. 1538–1543, Shanghai, China (2011)

19. Kim, K., Ura, T.: Towards a new strategy for AUV navigation
in sea currents: A quasi-optimal approach. In: Proc. IEEE
Symposium on Underwater Technology and Workshop on
Scientific Use of Submarine Cables and Related Technologies
(SSC), pp. 1–10, Tokyo, Japan (2011)

20. Barron, C.N., Kara, A.B., Martin, P.J., Rhodes, R.C., Smedstad,
L.F.: Formulation, implementation and examination of vertical
coordinate choices in the Global Navy Coastal Ocean Model
(NCOM). Ocean Model. 11(3-4), 347–375 (2006)

21. Garau, B., Alvarez, A., Oliver, G.: AUV navigation through
turbulent ocean environments supported by onboard H-ADCP. In:
Proc. IEEE International Conference on Robotics and Automation
(ICRA), pp. 3556–3561, Orlando, FL, USA (2006)

22. Lamb, H.: Hydrodynamics. Cambridge University Press, Cam-
bridge (1993)

23. Karmozdi, A., Hashemi, M., Salarieh, H., Alasty, A.: INS-DVL
navigation improvement using rotational motion dynamic model
of AUV. IEEE Sensors J. 20(23), 14329–14336 (2020)

24. Lammas, A.K., Sammut, K., He, F.: A 6 DoF navigation algorithm
for autonomous underwater vehicles. In: Proc. OCEANS 2007-
Europe, pp. 1–6, Aberdeen, UK (2007)

25. Pereira, A.A., Binney, J., Hollinger, G.A., Sukhatme, G.S.: Risk-
aware path planning for autonomous underwater vehicles using
predictive ocean models. J.Field Robot. 30(5), 741–762 (2013)

26. Gonzalez, J.P., Stentz, A.: Planning with uncertainty in position
an optimal and efficient planner. In: Proc. IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 2435–
2442, Edmonton, Alta., Canada (2005)

27. Pak, J.M., Kim, P.S., You, S.H., Lee, S.S., Song, M.K.: Extended
least square unbiased FIR filter for target tracking using the
constant velocity motion model. Int. J. Control Autom Syst. 15(2),
947–951 (2017)

28. Chen, H.Y., Liu, M.Q., Zhang, S.L.: Energy-efficient localization
and target tracking via underwater mobile sensor networks. Front
Inform Technol Electron Eng 19(8), 999–1012 (2018)

29. Zeng, Z., Sammut, K., Lian, L., He, F., Lammas, A., Tang, Y.: A
comparison of optimization techniques for AUV path planning in
environments with ocean currents. Robot. Auton. Syst. 82, 61–72
(2016)

30. Das, S., Mullick, S.S., Suganthan, P.N.: Recent advances in
differential evolution–an updated survey. Swarm Evol Comput 27,
1–30 (2016)

31. Prautzsch, H., Boehm, W., Paluszny, M.: Bézier and B-spline
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