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Abstract
In this work, we present a new mathematic model for the flight of a bird-scale flapping-wing aerial vehicle, in which
the impacts of the wing inertia and its deformations are considered. Based on this model, the longitudinal and later-
directional orbit stability of the vehicle at uncontrolled condition are proved to be steady via Floquet Theory combined
with the untethered flight experiment. However, both simulation and experiment show that the vehicle presents a periodical
motion state which is similar to spiral flight at uncontrolled condition. At this spiral-like flight state, the yaw angle of the
vehicle varies constantly, which makes it difficult to meet the requirements of the general flight mission. In this case, two
independent PID controllers are designed to stabilize the vehicle attitude based on the approximate linear model in the
vicinity of the equilibrium flight condition. And the controlled flight of the vehicle prototype is also proved to be stable
through numerical calculation and physical experiment.

Keywords Flapping-wing flight · Aerial robotics · Dynamic modelling · Stability analysis

1 Introduction

Bird, bat and insect flight has fascinated humans for many
centuries [1]. Especially in these two decades, with the
developing investigation in human-engineered flapping-
wing-based aerial vehicles, many excellent insect-scale
flapping-wing aerial vehicles [2–4] and bird-scale flapping-
wing aerial vehicles [5–7] have realized controlled flight,
which definitely revolutionize our capabilities in areas such
as environment monitoring and surveillance and security
[8].

Compared with conventional fixed wing aircrafts and
rotor-based aircrafts which use the rotantional motion of
propellers to realize flight [9, 10], flapping-wing aerial
vehicles can generate both thrust and lift to maintain flight
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through flapping wing motions. However, the complex
flight mechanism of flapping-wing vehicles dramatically
increases the difficulty in dynamic modelling [11] and
aerodynamic analysis [12] of the flapping wing flight. In
this topic, some literatures derived the motion equations of
the flapping-wing vehicle flight based on standard aircraft
model and quasi-steady aerodynamic model, in which the
inertial effects of the wings are neglected [13–15]. In order
to improve the precision of modelling, Lasek and Sibilski
and Buler et al. derived the multi-body dynamic model of
the flapping-wing aerial vehicle via Gibbs-Appel Equation,
in their model the wing motions are limited to two degrees
of freedom: flapping and lagging [16]. Besides, in [17],
Grauer and Hubbard derived the motion equations of an
ornithopter using the Boltzman–Hamel Equations and five
rigid bodies: one for the central body, one for each wing,
and two determining the linkage for the tail. Orlowski et al.
derived the equations of motion for a flapping wing micro-
air vehicle using D’Alembert’s Principle for Multiple Rigid
Bodies, and in their model the wings are determined by
three degrees of freedom [18]. In addition to mechanism-
based modeling, Pfeiffer and Lee and Han et al. realized
the flight simulation of flapping-wing vehicle via the co-
simulation of MSC. ADAMS and ANSYS, in which the
deformations of the wings can be also simulated by fluid-
structure interaction method [19].
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The investigation of flight modeling of flapping-wing
aerial vehicle naturally leads to its stability analysis, which
is significant to the design of aircraft. Taylor and Thomas
firstly analyzed the dynamic stability of the desert locust
Schistocerca gregaria in [20], in which the mass of the
wings is neglected due to the assumption that the wings
beat fast enough to not excite the rigid body modes of
the central body. In [21], Sun and Xiong used the same
approximation to analyze the hovering flight stability of
a bumblebee. In their work, the aerodynamic forces and
moments are cycle-averaged, and the resultant forces over
one flapping cycle are used to determine the equilibrium
flight condition in the vicinity of a hover condition [21]. The
analysis results show that, based on the linearized system,
the bumblebee flight is unstable at the longitudinal axis [21].
After that, Bolender analyzed the orbital stability for the
hover motion of flapping-wing micro air vehicle via Floquet
Theory, the analysis results show the system has unstable
orbits [22]. Dietl and Garcia also used Floquet Theory to
analyze the longitudinal orbital stability for the forward
flight condition of an ornithopter, and lead to the unstable
conclusion [23]. However, in their work [23], the passive
deformation angles of the wings are set beforehand, which
may induce differences to the dynamics of the physical
counterpart. In addition, Kim and Lee and Han used the
co-simulation method of MSC. ADAMS and ANSYS to
analyze the longitudinal orbital stability for an ornithopter,
the analysis results show that the passive deformations of
the wings will increase the stability of flapping wing flight
[24]. Besides, they found that the increase of flapping wing
frequency leads to the decrease of vibration amplitude at
pitch angle [25]. Furthermore, Stanford and Beran and Patil
optimized the wing kinematics of flapping-wing vehicle via
Floquet Theory, and realized the stabilized flight [26]. After
that, Bhatia and Patil and Woolsey et al. designed a LQR
controller for the model presented in [26] to adjust the wings
kinematics parameters, and realized the stabilized flight of
flapping-wing vehicle in gust environments [27].

In this work, the inertial effects and passive deformations
effects of the wings are considered in the flapping-wing
aerial vehicle flight modelling. Based on this model, the
longitudinal stability and lateral-directional stability of the
vehicle uncontrolled flight are analyzed respectively. After
that, in order to stabilize the attitude of the flapping-
wing aerial vehicle, two independent PID controllers are
designed respectively in pitch angular channel and yaw
angular channel according to the approximate linear model
in the vicinity of the equilibrium flight condition. And the
close-loop controlled flight stability of the vehicle is also
analyzed.

This paper is structured as follows. Section 2 is the
description of the modelling procedure of the vehicle proto-
type. Section 3 presents the stability analysis of the vehicle

flight under uncontrolled condition and controlled condi-
tion respectively via Floquet Theory. Section 4 presents the
physical prototype flight experiments including parameter
identification and untethered flight tests. Section 5 sum-
marizes the main conclusions and suggestions for futher
work.

2Mathematical Model

2.1 Description of Flapping-wing Aerial Vehicle

The flapping-wing aerial vehicle prototype in this work is
shown at Fig. 1. This vehicle uses two servo motors to
drive the elevator and the rudder respectively, and it uses
a brushless motor to drive the flapping-wing mechanism
and the two wings via a gear box. Two symmetric four-
bar mechanisms coupled with two gear wheels form the
flapping-wing mechanism, whose parameters are optimized
with the seagull flapping wing flight kinematics data [28].
And the wing flapping motion rule is designed to be close
to the second order Fourier series obtained at [28], which is
shown at Eq. 1.

φ(t) = 8.4654 − 8.5368 · sin(ωt) + 17.8798 · cos(ωt)

+1.0898 · sin(2ωt) − 4.5880 · cos(2ωt) (1)

In which, the unit of the wing flapping angle φ(t) is deg,
ω is angular frequency whose unit is rad · s−1. And the
physical parameters of the prototype are shown at Table 1.

2.2 Definition and Assumptions for theModel

During flight motion, the flapping-wing aerial vehicle can
be regarded as an open kinematic chain that evolves under
the influence of gravitational and external aerodynamic

Fig. 1 Flapping-wing aerial vehicle prototype
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Table 1 Physical parameters of the prototype

Wing span: 1.5 m

Body length: 1.2 m

450 mAh Li-Poly Battery: 46 g

BLDC Motor for wings: 57 g

Frame & gear box: 265 g

Two servo motors for tails: 25 g

Tail joints: 23 g

Tail fans: 26 g

Wings: 116 g

Total weight: 558 g

forces. For analyzing and controlling this evolution, it is
essential to derive the mathematical model of the vehicle
flight. Figure 2 shows the multi-body model of the flapping-
wing aerial vehicle prototype, which consists of body, two
primary wings, two secondary wings, two elevator fans
and rudder fan. In this model, every two adjacent parts
are connected by hinges, in which two tail joints and two
shoulder joints are actuated joint, and the two elbow joints
are unactuated, this means that the two primary wings will
twist under the influence of inertia and forces caused by
gravity and aerodynamic. These two passive elbow joints
can be used to consider the effect of the deformations of the
two primary wings.

The open kinematic chain of the prototype can be defined
with some generalized coordinates. As shown in Fig. 2,
the orientation and position of prototype body according
to the inertial absolute coordinate O0ExEyEz can be
defined with the body-fixed coordinate oBexeyez located
at the mass center of body. In this case, the orientation
of coordinate oBexeyez can be determined by the Euler

angles (qx, qy, qz), which follow the rotating order “ZYX”,
and the position of body mass center oB is defined by
(px, py, pz). The wings can be determined by two actuated
joint coordinates (φR, φL) and two passive coordinates
(δR, δL), and the elevators and rudder can be determined by
coordinates (δe, δr ) respectively.

For modeling the flight of the vehicle prototype, there are
some assumptions made as preconditions:

1) The influence of the primary wing deformation on the
inertia of the whole wing is neglected.

2) The mass of the tail fans is not considered.
3) The aerodynamic forces on vehicle body are not

considered.
4) The aerodynamic forces on tail fans caused by the

velocity of tail joints are neglected.
5) The flapping motions of two wings follow the rule

shown at Eq. 1.

2.3 Rigid Multi-body Dynamics

Due to the assumption (1), the primary and secondary wings
on the same side of the vehicle body can be considered
as a whole, that is, as a rigid body. Besides, according
to the assumption (2), the tails can be considered as
parts of vehicle body during the rigid multi-body dynamic
modeling. Hence, the vehicle prototype dynamic model
is simplified as a three rigid body model composed of
body, left wing and right wing. And the dynamic model
can be determined with the generalized coordinates q =
[px, py, pz, qx, qy, qz, φR, φL]T ∈ R8.

In this work, recursive Newton-Euler method is used for
the formulation and solution of the simplified prototype
dynamical equations to avoid complex symbolic differential

Fig. 2 Multi-body model of the
vehicle prototype
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procedures. This method calculates the forward dynam-
ics of vehicle prototype with several inverse dynamic sub
procedures nested. In which, the inverse dynamics pro-
cedure based on recursive Newton-Euler method includes
two steps. First, the velocity and acceleration of each rigid
body is calculated from the base to two wings iteratively.
After that, external force and moment of each rigid body is
obtained from two wings to the base iteratively. During ana-
lyzing the motion of vehicle body, it can be considered as a
virtual joint located from the original point of base O0 to the
body mass center oB which consists of three translational
joint along the three axes of the inertial reference coordinate
system O0ExEyEz and three Euler rotational joint follow
the order “ZYX”, and this virtual joint can be determined by
coordinates (px, py, pz, qx, qy, qz). In this case, the kine-
matics and external force and moment of each part can be
calculated iteratively via inverse dynamics Newton-Euler
method (Fig. 3).

The kinematics iterative calculation is different in
translational joint and rotational joint. As for translational
joint:

i+1
i+1ω = i+1

i R · i
iω

i+1
i+1ω̇ = i+1

i R · i
i ω̇

i+1
i+1υ = q̇i+1 · i

ik + i+1
i R · (iiω × i

i+1p + i
iυ)

i+1
i+1υ̇ = q̈i+1 · i

ik + 2(i+1
i+1ω × q̇i+1 · i

ik)

+i+1
i R · [ii ω̇ × i

i+1p + i
iω × (iiω × i

i+1p) + i
i υ̇] (2)

And as for rotational joint:

i+1
i+1ω = i+1

i R · i
iω + q̇i+1 · i

ik

i+1
i+1ω̇ = i+1

i R · i
i ω̇ + q̈i+1 · i

ik + i+1
i R · [iiω × (q̇i+1 · i

ik)]
i+1
i+1υ = i+1

i R · (iiω × i
i+1p + i

iυ)

i+1
i+1υ̇ = i+1

i R · [ii ω̇ × i
i+1p + i

iω × (iiω × i
i+1p) + i

i υ̇] (3)

In which, i
iω and i

i ω̇ are the angular velocity and
angular acceleration of ith rigid body in its coordination
system oiexeyez respectively, i

iυ and i
i υ̇ are the translational

velocity and translational acceleration of ith rigid body
in its coordination system oiexeyez respectively. i

i+1p is
the position vector from the original point of coordination
system oiexeyez to original point of oi+1exeyez in the
coordination system oiexeyez. i

ik is the normalized vector
of the motion axis of ith joint in the coordination system
oiexeyez. qi+1 is the motion coordinate of ith joint, for
translational joint qi+1 is the linear displacement, and qi+1

means angular displacement when ith joint is rotational
joint. i+1

i R is the transformational matrix from coordination
system oiexeyez to oi+1exeyez.

Then, the external force and moment at body mass center
can be obtained as:

i
i υ̇c = i

i υ̇ + i
i ω̇ × i

i rc + i
iω × (iiω × i

i rc)
i
ifc = mi · i

i υ̇c
i
inc = i

iIc · i
i ω̇ + i

iω × (iiIc · i
iω)

(4)

Fig. 3 Simplified model of the
vehicle prototype
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In which, i
i υ̇c is the translational acceleration of ith rigid

body mass center in its coordination system oiexeyez, i
i rc is

the position vector of ith rigid body mass center in oiexeyez.
mi and i

iIc is the mass and moment inertia matrix of ith rigid
body respectively.

After that, the constraint force and moment of each joint
can be calculated as:
i
if = i

ifc + i
ifext + i

i+1R · i+1
i+1f

i
in = i

inc + i
inext + i

i+1R · i+1
i+1n

+i
i rc × (iifc + i

ifext ) + i
i+1p × (ii+1R · i+1

i+1f )

τi = i
in · i

ik

fi = i
if · i

ik

(5)

In which, i
if and i

in are the constraint force and moment
of ith joint in coordination system oiexeyez. i

ifext and i
inext

are the equivalent force and moment on ith rigid body mass
center caused by the interaction with environment, which
are aerodynamic force and moment in this work. i

i+1R

is the transformational matrix from coordination system
oi+1exeyez to oiexeyez. τi is the driving torque on rotational
joint, and fi is driving force on translational joint.

During the forward dynamical solution, the equations of
motion of vehicle prototype take the form as:

M(q)q̈ + C(q, q̇)q̇ + G(q) = Q (6)

In which, q = [px, py, pz, qx, qy, qz, φR, φL]T is the
generalized coordinate vector of the multi rigid body
system. M(q) ∈ R8×8 is the inertia matrix, C(q, q̇) ∈ R8×8

is the Coriolis matrix, G(q) ∈ R8 is the gravity vector
and Q ∈ R8 denotes all applied non-conservative forces.
According to Eq. 6, if q̇, i

ifext , i
inext and gravity acceleration

g are set to be zero, and q̈ is set to be ej ∈ R8 whose
elements are zero except its j th element, which is one,
then the vector composed of the driving forces of the eight
joints obtained during the inverse dynamics calculation is
the j th column vector of M(q). And if q̈, i

ifext , i
inext are

set to be zero, then the driving forces vector is the sum
of Coriolis force, centrifugal force and gravitational force,
namely C(q, q̇)q̇ + G(q). Finally, if q̇ and q̈ are set to be

zero, and gravity acceleration g are set to be zero, then the
driving forces vector obtained is the generalized force Q.

2.4 Aerodynamic Model

The flight of birds, insects and others flying animals
is benefited from the unsteady aerodynamic mechanism,
which can be simulated based on the finite element solution
of the Navier-Stokes equations [29, 30]. However, this
method is hard to be applied on control purposes, since
it requires several hours for simulating a single wingbeat.
Fortunately, thanks to scaled models of flapping wings [31,
32], several advances have been achieved in understanding
the unsteady aerodynamic mechanism.

The mathematical aerodynamic modeling method
adopted in this work is based on the quasi-steady aero-
dynamic model, which can reduce the time of simulating
the flapping-wing flight of prototype to one second for a
single wingbeat. According to the quasi-steady approach,
the total force on a wing is obtained by diving the wing into
infinitesimal blades of thickness dr , and the force on each
blade can be calculated as Eq. 7 which is similar to [33]

dFL(t, r) = 1
2CL(α(t))ρc(r)U2(t, r)dr

+ 1
2Crotρc2(r)U(t, r)α̇(t)dr

dFD(t, r) = 1
2CD(α(t))ρc(r)U2(t, r)dr

(7)

In which, dFL and dFD are lift and drag of each wing
blade respectively, α is the local attack angle of the wing
blade, ρ is the density of air which is set to be 1.293 kg·m−3

in this work, c is the chord length of the wing blade, U is
the wing blade velocity relative to the fluid, CL and CD

are lift coefficient and drag coefficient respectively. Crot

is the rotational force coefficient, which can expressed as
Crot = 2π((3/4) − x̂0), x̂0 is the dimensionless distance of
the longitudinal rotation axis from the leading edge, which
is set to be 1/4 in this work. These parameters are illustrated
in Fig. 4, in which coordinate system oxwyw is the local
wind coordinate of wing blade whose x axis is parallel to
the direction of U .

Fig. 4 Aerodynamic force on
wing blade
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In addition, since the primary wings adopted on the
vehicle prototype are thin airfoil which is similar to the wing
configures in [31], the aerodynamic coefficients CL and CD

of the primary wings are formed by the results from [31].
And its expressions are shown as follows:

CL = 0.225 + 1.58sin(2.13α − 7.20)
CD = 1.92 − 1.55cos(2.04α − 9.82)

(8)

However, these two coefficients of the secondary wings
need to be redetermined due to the different airfoil type.
In this work, the CL and CD of the secondary wing
blade is adopted by the corresponding static aerodynamic
coefficients which are obtained from the CFD simulating.
And the expressions of these two coefficients are shown as
follows:

CL = 1.125sin(1.04α + 1.325)
+1.126sin(2.056α + 0.06919)

CD = 5.096sin(0.02086α + 0.2175)
+1.087sin(1.945α − 1.505)

(9)

Figure 5 shows the original data and the fitting
expressions of the aerodynamic coefficients of secondary
wings. Compared with the results in [31], it can be found
that the lift coefficient CL of secondary wings is larger than
that of primary wing when the local attack angle of airfoil
blade is between -60◦ and 60◦. When the local attack angle
locates in the range from 60◦ to 120◦, the lift coefficients in
primary and secondary wings are approximately equal. And
when local attack angle locates in the range from -180◦ to
-60◦ or the range from 120◦ to 180◦, the lift coefficient of
primary wings becomes lager than that of secondary wings.
Besides, the variation trend of the drag coefficient of the
secondary wings according to the attack angle is similar to
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Fig. 5 Aerodynamic coefficients of wings

that of the primary wings, while the value of the coefficient
of seconding wings is smaller than that in primary wings.

From Eqs. 7–9, the force and moment of each blade of
primary wing and secondary wing on the mass center of the
whole wing can be obtained in the shoulder joint coordinate
system osexeyez. After deriving the sum of these forces and
moments, the aerodynamic force and moment on the wing
mass center can be calculated as follow:

s
sfext = ∑

s
i R ·

⎡

⎣
0

−dFD(t, r)i
dFL(t, r)i

⎤

⎦

+ ∑
s
eR · e

jR ·
⎡

⎣
0

−dFD(t, r)j
dFL(t, r)j

⎤

⎦

s
snext = ∑

(ssri − s
src) ×

⎛

⎝s
i R ·

⎡

⎣
0

−dFD(t, r)i
dFL(t, r)i

⎤

⎦

⎞

⎠

+ ∑
(ssrj − s

src) ×
⎛

⎝s
eR · e

jR ·
⎡

⎣
0

−dFD(t, r)j
dFL(t, r)j

⎤

⎦

⎞

⎠

(10)

In which, s
i R is the rotational transformation matrix from

the shoulder joint coordinate system osexeyez to the local
wind coordinate system oiexeyez on the quarter chord point
of the ith airfoil blade on the secondary wing. And the x
axis of coordinate oiexeyez is perpendicular to the blade
profile, while the y axis is coincided with the projection of
the velocity of the blade quarter chord point on the blade
profile. s

eR is rotational transformation matrix from the
shoulder joint coordinate system osexeyez to the elbow joint
coordinate system oeexeyez, which is determined by the
secondary wing fixed angle ψ and elbow twist angle δ. e

jR

is the rotational transformation matrix from the elbow joint
coordinate system oeexeyez to the local wind coordinate
system oj exeyez on the quarter chord point of the j th airfoil
blade on the primary wing. s

sri and s
srj are the position

vectors of quarter chord point of the ith airfoil blade on the
secondary wing and j th airfoil blade on the primary wing in
the shoulder joint coordinate system osexeyez respectively.
And s

src is the position vector of the wing mass center in
the shoulder joint coordinate system. These coordinates are
illustrated in Fig. 6.

Besides, during the simulating calculation, the effects of
the inertia variations caused by the deformations of primary
wings is not considered due to the low mass ratio of the
primary wings. In this case, the twist motions of the primary
wings can be decoupled from the whole-body dynamic
motion, which can be considered as two linear subsystems,
and equations of these subsystems are expressed as:

J δ̈ + Cδ̇ + Kδ = τ (11)
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Fig. 6 Aerodynamic force on
wing blades and tail fans

Where, J is the moment of inertia of the primary wing
about its elbow joint, C and K are the damping coefficient
and stiffness coefficient respectively, these two parameters
can be obtained by the system identification experiment
which is shown at physical prototype part in this work.
τ is the external torque acts on each elbow joint caused
by both the aerodynamic load on corresponding primary
wing and the gravitational force, and it can be obtained as
Eq. 12, in which e

ej is the position vector of the quarter
chord point of the j th airfoil blade of the primary wing
in the elbow joint coordinate system oeexeyez. e

erc is the
position vector of the primary wing mass center in the elbow
joint coordinate system. O

e R is the rotational transformation
matrix from the global coordinate system to the elbow joint
coordinate system. And mp is the mass of the primary
wing.

τ = [1 0 0]·
⎡

⎣
∑

e
erj ×

⎛

⎝e
jR ·

⎡

⎣
0

−dFD(t, r)j
dFL(t, r)j

⎤

⎦

⎞

⎠

+e
erc ×

⎛

⎝O
e R−1 ·

⎡

⎣
0
0

−mpg

⎤

⎦

⎞

⎠

⎤

⎦

(12)

The same method is adopted to obtained the aerodynamic
loads on the tail fans, in which the distributed aerodynamic
loads are equivalent to the concentrated force on the
aerodynamic center of each tail fans. As shown in Fig. 6,
the wind coordinate of each tail fan is located on the fan
aerodynamic center, whose x axis is perpendicular to the
longitudinal symmetry plane of the tail fan, while the y axis
which locates on the longitudinal symmetry plane of tail fan
is coincided with the projection of the velocity of the tail
fan aerodynamic center on the longitudinal symmetry plane
of the tail fan. After that, the z axis of the wind coordinate
can be determined by the right-hand rule. Besides, the effect
of the lateral component of the airflow on each tail fan is
neglected due to the thin airfoil of tail fans. In this case,
the aerodynamic force and moment on the vehicle body

caused by three tail fans in the body coordinate system can
be expressed as:

B
Bfext = ∑

B
T Rk ·

⎡

⎣
0

−dFDk

dFLk

⎤

⎦

B
Bnext = ∑

B
Brk ×

⎛

⎝B
T Rk ·

⎡

⎣
0

−dFDk

dFLk

⎤

⎦

⎞

⎠

(13)

In which, B
T Rk is the rotational transformation matrix

from the vehicle body-fixed coordinate oBexeyez to the
wind coordinate of the kth tail fan. And the lift FL and drag
FD of each tail fan can be calculated as Eq. 14 in which
CLk and CDk are the lift coefficient and drag coefficient of
the kth tail fan respectively, Sk is the area of the kth tail fan,
and Ūk is the componment of the velocity of the kth tail fan
aerodynamic center on the longitudinal symmetry plane of
the tail fan.

FLk = 1
2CLkρSkŪ

2
k

FDk = 1
2CDkρSkŪ

2
k

(14)

2.5 Flight Dynamic Simulator Architecture

The simulator architecture shown in Fig. 7 consists of
five parts including actuator part, aerodynamics module,
multi-body dynamic module, primary wings passive twist
dynamic module and controller part. In which, actuator part
made up of wing actuator whose function is generating the
motions of two shoulder joints according to the time and
tail actuators which can translate the control signal into the
rotational motions of the tails fans and limit the deflect angle
of each tail fan into [ − 45◦, 45◦]. According to the motion
signals of the wings, vehicle body and tails, the aerodynamic
module can generate the signals of aerodynamic forces. The
input signals of the primary wings passive twist dynamic
module are the torques on the elbow joints caused by the
aerodynamic loads on the primary wings, and the output
signals of this module are the twist motions of primary
wings. The multi-body dynamic module can simulate the
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evolution of the vehicle based on the wing kinematic signals
and aerodynamic forces. And the function of the controller
part is sampling the motion signals of vehicle body and
generating the control signals to the tail actuators.

This flapping-wing aerial vehicle flight system is a
nonautonomous system, since the variation of system state
depends on the time. And the motion equations of this
system can be reformed as:

ẋ = f (x, t) (15)

In which, x = [px, py, pz, qx, qy, qz, ṗx, ṗy, ṗz, q̇x, q̇y,

q̇z, δR, δL, δ̇R, δ̇L]T is the system state, and f is a 16
dimensional vector function. Besides, the set of the initial
value of system state x0 is necessary. The simulation
environment in this work is MATLAB/SIMULINK, fixed
step Runge-Kutta solver is adopted to calculation the Eq. 15,
and the simulating step time is 1/6 ms, while the flapping-
wing frequency is 3 Hz.

3 Flight Simulation and Stability Analysis

In this section, the longitudinal stability, later-directional
stability and the stability of the vehicle prototype controlled
flight are analyzed. During flight, the aerodynamic forces
acted on the prototype are periodic due to the periodic
motions of the wings. Hence, the Poincare map method is
adopted to analyze the periodic motion of the vehicle flight,
and the flight stability is also analyzed based on this method.

3.1 Poincaré Map and Stability of Periodic Motion

Poincaré map is a common method for analyzing periodic
motion, which constructs a surface of section to capture the
periodic orbit of system state on the fixed point. And the
stability of this fixed point is equivalent to the stability of
the periodic orbit [34].

If replace t with new item θ in Eq. 15, then the original
nonautonomous system can be reformed as an autonomous
system which is shown at Eq. 16, where, the vari-
able x = [px, py, pz, qx, qy, qz, ṗx, ṗy, ṗz, q̇x, q̇y, q̇z, δR,

δL, δ̇R, δ̇L]T is the system state vector of the vehicle flight
simulating system.
{

ẋ = f (x, θ)

θ̇ = 1
(16)

The flow generated by this system is φ(t, (x, θ)) =
(x(t), θ(t)). If Σ ⊂ R16 × S1 is a hypersurface, and for
any (x, θ) ∈ Σ , the normal vector of Σ at this point n(x, θ)

is not orthogonal to the vector field [f (x, θ), θ̇ ]T , that is
n(x, θ) · [f (x, θ), θ̇ ]T �= 0, then this hypersurface Σ can be
set as the surface of section of Poincaré map of this vector

field. If Γ is the orbit whose cycle time is T ,Σ is the surface
of section which intersects the Γ at point (p, θ0) ∈ R16×S1,
and the trajectory from the point (p, θ0) returns to Σ for the
first time after T . Then, according to continuity theorem,
there is a neighborhood U ∈ Σ of point (p, θ0) from which
the trajectory can return to the surface of section Σ . And if
q belongs to U , and τ(q) is the time of the first time the
trajectory returns to Σ from q, then this Poincaré map can
be expressed as follow:

P((q, θ0)) = φ(τ(q), (q, θ0)) (17)

As shown in Fig. 8, the point p fits the map P((p, θ0))

= (p, θ0 + T ), which makes point (p, θ0) become a fixed
point of the Poincaré map.

And let point (x0, θ0) be a fixed point of the Poincaré
map P , for any ε > 0, there is a δ > 0, which satisfies
the condition that if |(x, θ0) − (x0, θ0)| < δ, the inequality
|P((x, θ0)) − (x0, θ0 + τ(x0))| < ε is true, in this case, x0
is the stable fixed point of the map.

The Poincaré map P((x, θ0)) can be expanded by Taylor
Series around the fixed point (x0, θ0):

P((x, θ0)) = P((x0, θ0)) + DP((x0, θ0)) · (x − x0)

+O(|x − x0|2) (18)

In which, DP((x0, θ0)) is the Jacobian matrix of
Poincaré map P((x, θ0)) at the fixed point (x0, θ0). And the
eigenvalues of the DP indicate the stability of fixed point.
If all the eigenvalues of DP satisfy the inequality |λ| ≤ 1
then the fixed point is stable. And if the condition is stricter
that |λ| < 1, then the fixed point is asymptotically stable.
On the contrary, if one of the eigenvalues is greater than one,
then the fixed point is unstable.

For the system of Eq. 16, it is hard to find the analytical
form of the state orbit and the Poincaré map. In this work,
numerical method is adopted to obtain the Jacobian matrix,
whose form is expressed at Eq. 19.

DP((x0, θ0))ij = P((x0+Δxj ,θ0))i
2δxj

−P((x0−Δxj ,θ0))i
2δxj

(19)

In which, DP((x0, θ0))ij is the element in ith row and
j th column of the Jacobian DP , Δxj is a column vector
whose j th element is δxj while other elements are zero.
P((x0 + Δxj , θ0))i and P((x0 − Δxj , θ0))i are the ith

elements of the state vector after a Poincaré map of (x0 +
Δxj , θ0) and (x0 − Δxj , θ0) respectively.

3.2 Longitudinal Stability Analysis

During the analysis of the longitudinal stability, the vehicle
motion is limited in a vertical plane. In this case, the
later-directional motion of the vehicle is constrained, which
can be expressed as [ṗx, p̈x, qy, q̇y, q̈y, qz, q̇z, q̈z]T = 0.
Through simulation, the flapping-wing vehicle flight system
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Fig. 7 Simulator architecture of the vehicle prototype

enters periodic motion orbit when the initial condition is set
as Eq. 20.

x0 = [0, 0, 0, −0.0843, 0, 0, 0, 4.2612, −1.2197, 0.3038,
0, 0, 0.1409, 0.1409, −4.0492, −4.0492]T

(20)

Figure 9 shows the variation of related state of the
periodic motion during two flapping wingbeats, it can be
found that the pitch angle qx fluctuates around -7◦, the
forward speed ṗy fluctuates around 4.3 m/s, the upward
speed ṗz fluctuates around -1 m/s. And the state pitch angle
rate q̇x , elbow joint angle δ and its rate δ̇ fluctuate around 0,
while the cure of q̇x has two wave crests, and the cures of δ

and δ̇ have four wave crests.
For analyzing the stability of the longitudinal motion of

the vehicle, Σ = {(x, θ) ∈ R16 × S1|θ = kT }(k ∈ N) is
adopted as the surface of section to trim the periodic motion
of the flow trajectory. During analysis, the states considered
are (qx, ṗy, ṗz, q̇x, δR, δL, δ̇R, δ̇L) due to the fact that the
later-directional motion related states are constrained and
forward displacement py and upward displacement pz are
nonperiodical.

According to Eq. 19, the Jacobian matrix is expressed
as Eq. 21 and its eigenvalues of the longitudinal periodical
motion of the vehicle can be obtained, which is shown at

Fig. 8 Schematic of Poincaré map

Eq. 22.

DP =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.1729 0.1527 0.1036 0.0361 0.0089
−1.1112 0.6383 −0.2746 −0.0642 0.1330
0.2892 0.7422 0.4318 0.1217 −0.0533

−1.0431 0.3402 −0.1148 −0.0692 0.2147
−0.0445 −0.0530 0.0458 −0.0023 −0.5816
−0.0445 −0.0530 0.0458 −0.0023 0.0757
7.7382 0.0537 −0.8962 0.4142 28.3640
7.7382 0.0537 −0.8962 0.4142 −7.3981

0.0082 0.0000 0.0000
0.1340 −0.0011 −0.0011

−0.0559 0.0002 0.0002
0.1899 −0.0038 −0.0037
0.0731 −0.0122 0.0032
0.5843 0.0033 −0.0123

−7.1694 −0.5889 0.0815
28.5927 0.0843 −0.5918

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(21)
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Fig. 9 Variation of state during two wingbeats
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And the eigenvalues of the Jacobian matrix are:

λ = 0.5664 ± 0.6547i,−0.4953 ± 0.4436i,
0.0078 ± 0.0166i,−0.6653 ± 0.7439i

(22)

Hence, the longitudinal periodical motion of the proto-
type is asymptotically stable.

3.3 Later-Directional Stability Analysis

When the constraint of the longitudinal plane of the vehicle
flight is removed, the vehicle will fly freely with the
deflection angles of elevator and rudder set to be zero.
Figure 10 illustrates the trajectory of the vehicle body
mass center during the uncontrolled flight under the initial
conditions of Eq. 20. It can be found that the vehicle
gradually deviates from the initial course after releasing, and
then enters a flight state which is similar to spiral motion.

According to the flight simulation, when the initial state
equals (23), the vehicle will present a periodical motion
state which is similar to spiral flight.

x0 = [0, 0, 0, −0.0843, −0.0133, 2.1766, −3.4972,
−2.4353, −1.2198, 0.3038, 0.0050, 0.0284,
0.1410, 0.1408, −4.0475, −4.0502]T

(23)

In this case, Σ = {(x, θ) ∈ R16 × S1|qz = qz0 +
2kπ}(k ∈ N) is adopted as the surface of section to trim
the periodic motion of the flow trajectory. And the peri-
odical states considered are (px, py, qx, qy, ṗx, ṗy, ṗz, q̇x,

Fig. 10 Trajectory of vehicle uncontrolled flight

q̇y, q̇z, δR, δL, δ̇R, δ̇L). And according to Eq. 19, the Jaco-
bian matrix and its eigenvalues of the uncontrolled motion
of the vehicle can be obtained.

λ = 1, 1, 0.0344, 0.0032, 7.0466 × 10−4, 1.5369 × 10−8,

−4.7522 × 10−9, 2.6702 × 10−9, −3.7730 × 10−13

±4.1496 × 10−12i, 1.9202 × 10−12, 7.9685 × 10−14,

−7.6684 ×−14 ±1.0574 × 10−13i

(24)

Equation 24 lists the eigenvalues of the Jacobian matrix
of the Poincaré map. There are two eigenvalues’ norm
equal to one while other’s smaller than one, this means the
periodical spiral flight is stable. In addition, if the horizontal
position (px, py) is not considered, then the two eigenvalues
which equal to one will be removed, in this case, other
periodical states are asymptotically stable.

3.4 Stability Analysis of Close-Loop Controlled Flight

Although, the uncontrolled flight of the vehicle is stable, its
yaw angle varies constantly and its pitch angle fluctuates
around a certain value, which is not enough to meet the
requirements of the general flight mission. For realizing the
stabilization control of the pitch and yaw to desired values,
two independent PID controllers were designed in pitching
channel and yaw control channel respectively based on the
approximate linear models.

However, the pitch and yaw data of the vehicle fluctuate
constantly due to the periodical flapping wing motion,
which increases the difficulty of the system identification
for the two approximate linear models. In this work, sliding
average filtering method is adopted to process the Euler
angular data of the vehicle flight system, which can reduce
the impact of the fluctuations on identification. In this case,
the processed pitch and yaw angular incremental signals can
be expressed as Eq. 25, where, T = 1

3 s is euqal to the
periodic time of one flapping wing beat.

Δ̄qx(t) =
∫ t
t−T Δqx(τ)dτ

T

Δ̄qz(t) =
∫ t
t−T Δqz(τ )dτ

T

(25)

In this work, pulse signal, step signal and harmonic signal
are adopted as the driving signal of elevator and rudder.
According to the input signals and two processed signals
Δ̄qx and Δ̄qz, two approximate linear SISO systems whose
transfer functions are expressed at Eq. 26 can be obtained
around the stable periodic orbit of the vehicle.

Δ̄qx(s)

δe(s)
= −0.3297s3+10.2496s2+22.8000s−0.0563

s4+5.5898s3+11.9762s2+39.5123s+0.1153
Δ̄qz(s)

δe(s)
= 0.0226s+1.0391

s2+0.0454s+0.0373

(26)

For elevator deflection – incremental pitch angle system,
a PID controller whose P = 1, I = 0.5, D = 0.3
and control period is 20 ms is adopted as the feedback
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controller of this subsystem. And for the rudder deflection
– incremental yaw angle system, the other PID controller
whose P = 0.3, I = 0.02, D = 0.5 and control period is 20
ms is adopted as the feedback controller of this subsystem.

Figure 11 shows the responses of real vehicle flight
model and its approximate linearized model to the step
signal. It can be found that the cures of the linearized model
output signals can indicate the variations of the real model
response. However, compared with the pitch channel, there
are still some deviations between the output signals of the
linearized rudder deflection – incremental yaw angle system
and the real vehicle system.

The analysis of the controlled flight of the vehicle is
still based on the Poincaré map method, while the desired
pitch and yaw are set to be 0◦ respectively. According to
simulation, the vehicle will enter a periodical orbit under the
initial conditions expressed as Eq. 27.

x0 = [0, 0, 0, 0.0241, 1.6549 × 10−4, 3.3399 × 10−5,

6.9085 × 10−4, 3.7434, −1.3251, 0.4694,
−0.0038, 1.3781 × 10−4, 0.1450, 0.1456,
−4.1926, −4.1767]T

(27)

In this case, Σ = {(x, θ) ∈ R16 × S1|qz = 0}
is adopted as the surface of section to trim the periodic
motion of the flow trajectory. And the periodical states con-
sidered are (px, py, qx, qy, ṗx, ṗy, ṗz, q̇x, q̇y, q̇z, δR, δL,

δ̇R, δ̇L). According to Eq. 19, the Jacobian matrix and its
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Fig. 11 Responses of the models to the step signal

eigenvalues of the uncontrolled motion of the vehicle can be
obtained.

λ = 1, 1, −0.8028, −0.4172, −0.1937, −0.2157
±0.1262i,−0.0696 ± 0.1897i, 0.0637, 0.0011,
−0.0022 ± 0.0006i

(28)

Equation 28 lists eigenvalues of the Jacobian matrix of
the Poincaré map. There are two eigenvalues’ norm equal
to one while other’s smaller than one, which indicates that
the controlled flight of the vehicle is stable. What’s more, if
the horizontal position (px, py) is not considered, then the
two eigenvalues which equal to one will be removed, in this
case, other periodical states are asymptotically stable.

4 Physical Prototype Experiments

This section shows some experiments of the physical
prototype, first the flapping wing movements were recorded
for the parameter identification of the passive twist of the
primary wings. After that, untethered flight of the vehicle
prototype under uncontrolled and controlled conditions
were taken to verify the stability of the prototype.

4.1 Parameter Identification

During the parameter identification of the passive twist of
the primary wings model, the wing motion of the vehicle
prototype under different flapping wing frequencies was
recorded by two high speed cameras which is located in
front and side of the prototype respectively. After that,
these videos were used to measure the wing-stroke angle
and the deformation of the primary wings, in which, the
wing-stroke angle can be regarded as the projected angle
of the secondary wing leading edge in the front view,
and the deformation of the primary wing can be indicated
from the projected angle of its middle support bar which
is highlighted by red lines in the side view in Fig. 12. In
this case, the deformation of the primary wing will be also
represented by the equivalent rotation of the primary wing
around the elbow joint, which can be derived by the two
projected angles data.

The kinematic data of the wings under three flapping
wing frequencies including 1 Hz, 2.9 Hz and 5 Hz
was obtained in the identification experiments. Figure 13
illustrates the wing-stroke angle data at three flapping wing
frequencies, it can be found that the experimental data
expressed by the realistic lines are approximately consistent
with the designed wing flapping motion rule represented by
the dashed line, which verifies the feasibility of the flapping
wing mechanism.

For identifying the parameters including equivalent
moment of inertial J , rotational damping C and rotational
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Fig. 12 Morphological variation
of wings during 2.9 Hz flapping

stiffness K of the passive twist model of primary wings, the
least square method is adopted to evaluate the differences
between the output signals of the mathematical model under
body fixed condition and the experimental data, whose
expression is listed at Eq. 29.

f =
∑

[δexperiment (i) − δmodel(i)]2 (29)

In which, the equivalent passive rotation of primary
wings at physical experiments δexperiment is derived by the
projected angle of middle support bar of the primary wing

in the side view which is expressed in Eq. 30. Where,
θexperiment (i) is the projected angle of middle support bar
on the side view of the ith frame, φexperiment (i) is the wing-
stroke angle in the ith frame. O

S R is the rotation matrix from
the measuring coordinate system to the secondary wing
fixed coordinate system, S

ER is the rotation matrix from
the secondary wing fixed coordinate system to the primary
wing fixed coordinate system, andEbar is orientation cosine
vector of middle support bar in the primary wing fixed
coordinate system. And the equivalent passive rotation of

Fig. 13 Shoulder joint angle of
different flapping frequency
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the primary wing δexperiment can be obtained by solving the
nonlinear equation of Eq. 30.
⎡

⎣
0

cos(θexperiment (i))

sin(θexperiment (i))

⎤

⎦ = O
S R(φexperiment (i))

·SER(δexperiment (i)) · Ebar

(30)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min f (X) = ∑ [δexperiment (i) − δmodel(i)]2
X ∈ [J, C, K, δ10, δ̇

1
0, δ

2
0, δ̇

2
0, δ

3
0, δ̇

3
0]

T

S.T . 0 ≤ J ≤ 0.01

0 ≤ C ≤ 0.2

1 ≤ K ≤ 4

−40◦ ≤ δ
j

0 ≤ 40◦

−1 ≤ δ̇
j

0 ≤ 1

(31)

In order to minimize the difference between the
simulation model and the real model, particle swarm
optimization algorithm is used in this work to optimize the
least squares value of Eq. 29, so as to obtain the relevant
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Fig. 15 Spectral distribution of torques act on elbow joint

parameters of the passive twist model of the primary wing.
And this optimization problem can be expressed as Eq. 31,
in which δ

j

0 and δ̇
j

0 are the initial twist angle and twist
angular velocity of the primary wing respectively.

Fig. 14 Elbow joint angle of
different flapping frequency
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Fig. 16 Motion Sequence of the Vehicle Uncontrolled Flight

Through iterative optimization, the three parameters of
the passive twist model can be obtained: J = 0.0021 kg·m2,
C = 2.5 × 10−5 N · s · m−1, K = 3.5780N · m−1.
Figure 13 illustrates the shoulder joint angle of vehicle
at different flapping frequencies including 1 Hz, 2.9 Hz
and 5 Hz, the experiment results show that the should
joint movement can realize the predetermined motion rule
expressed at Eq. 1. And, Fig. 14 illustrates the comparison
of the equivalent elbow rotation data between simulation
model and the physical prototype under three different
flapping wing frequencies. It can be found the simulation
data represented by the dashed line can basically reflect
the motion trend of the equivalent elbow twist of prototype

primary wing. However, there are some differences between
the simulation data and experiment results, which may be
caused by measurement error.

In addition, the inherent frequency of the identified
second-order linear system shown in Eq. 11 is determined
at around 40 rad/s after linear analysis. Figure 15 illustrates
the frequency distribution of torques act on elbow joint at
different flapping wing frequencies. It can be found that the
fundamental component of torque signal at 3 Hz flapping
wing frequency locates near to the inherent frequency of the
twist system. Based on this property, the vibration amplitude
of primary twist motion is sensitive to the flapping wing
frequency near 3 Hz, which causes the obvious difference
between the experiment and simulation results in Fig. 14
when the frequency is 2.9 Hz. What’s more, the modeling
error between the equivalent linear model and the physical
model also made a contribution to this difference. In this
work, the structural deformation of the primary wing is
approximately substituted by its second-order linear rigid
rotational motion to speed up the vehicle flight dynamic
calculation. However, this method will induce the modeling
error between equivalent model and physical model. As a
result, this modeling error could be magnified when the
flapping wing frequency near to the structural resonance
frequency of the primary wing.

Fig. 17 Euler angles of four
tests of uncontrolled flight
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Fig. 18 Motion sequence of the vehicle controlled flight

4.2 Uncontrolled Flight Experiment

For verifying the stability of vehicle prototype under
uncontrolled condition, the untethered flight experiment of
the prototype was carried out outdoors, which is illustrated
in Fig. 16 as the form of motion sequence. During the flight
experiment, the deflect angles of elevator and rudder were
set to be 0◦ respectively. As shown in Fig. 16, the course
of the prototype will gradually deviate from the initial flight
direction in the early stage of flight, and then, the prototype
will enter a spiral like flight state in the later stage.

Figure 17 illustrates the variation of the Euler angles of
the prototype during four uncontrolled flight tests. As shown
in Fig. 17, the pitch angle qx represented by the blue lines
moves to the vicinity of 0◦ and vibrates periodically around

0◦ , while the roll angle qy represented by the red lines
varies to the upside of 0◦ and then fluctuates within that
range. However, the yaw angle qz represented by the yellow
lines can not be stabilized near a fixed value, instead, it will
move towards the negative direction, which indicates that
the vehicle prototype presents a flight state which is similar
to spiral flight.

4.3 Controlled Flight Experiment

Figure 18 illustrates the motion sequence of the controlled
flight of the vehicle prototype, in which, the desired pitch
angle is set as qx = 0◦ , and the desired yaw angle is set as
qz = 0◦. The motion sequence of Fig. 18 indicates that the
vehicle prototype can stabilize the yaw angle, however, the

Fig. 19 Euler angles of four
tests of controlled flight
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prototype still has a lateral displacement during controlled
flight.

Figure 19 illustrates the variation of the Euler angles of
the prototype during four controlled flight tests. It can be
found that the pitch angle qx is stable to the vicinity of 0◦
and vibrates periodically around 0◦ , while the roll angle qy

and the yaw angle qz stabilize to the vicinity of 10◦ and -
10◦ respectively, which verifies the stability of the prototype
under controlled flight conditions. However, there are still
some differences between the roll angle and yaw angle
data of the physical prototype and the simulation results,
which may be leaded by the difference in the movement
and deformation of the wings on both sides caused by the
manufacturing error of the physical prototype. In this case,
the positive roll angle and the negative angle make the
prototype have the tendency to move to the side direction,
which explains the displacement in the lateral direction of
the physical prototype in Fig. 18.

5 Conclusions and FutureWork

In this paper, the mathematic model which considers the
impact of the deformations of the wings is established
for a flapping-wing vehicle. Based on this model, the
longitudinal and later-directional stability of prototype
uncontrolled flight are proved to be steady combined with
the untethered flight experiment. After that, for preventing
the stable spiral-like flight in prototype uncontrolled flight,
two independent PID controllers are designed based on the
approximate linear model in the vicinity of the equilibrium
flight condition. And the controlled flight of the prototype
is also proved to be stable based on the mathematic model
and untethered flight experiment.

As a continuation of this work, a more complete
controller which considers the position close-loop and
resistance to disturbance need to be designed, which will
improve the capacity and performance of the flapping-wing
vehicle prototype.
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