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Abstract
Accuracy and safety are necessary characteristics in social navigation. These characteristics still constitute a challenge in
this area. Yet, human comfort is the main goal in interactions involving human beings. The ROS Navigation Stack (RNS)
allows the variation of local path planning methods. This paper consists in a comparative study of methods related to social
navigation. This study promotes better social navigation on Home Environment Robot Assistant (HERA). This is a robot
platform developed by FEI University Center. This work evaluated various parameter combinations: type of environments,
types of obstacles, local and global planning algorithms and costmaps. The work also evaluated people in static, dynamic and
interacting ways. This study observed aspects of safety, accuracy of estimated time and space. Other aspects observed are the
smooth trajectory realized and respect for personal space. The experiments performed 1000 attempts for 37 combinations of
methods, environments and sensors. In total, the experiments counted 37000 attempts. With these experiments, was possible to
select a configuration for the navigation system. The point to the Timed Elastic Band (TEB) as a local planner and a proxemic
costmap as a good combination. The results reach 97.6% of success in a more complex environment with this combination.

Keywords ROS · Path planning · Performance evaluation · Social evaluation · Social navigation

1 Introduction

A mobile robot should be able to navigate freely in its envi-
ronment. It should address common issues regarding auto-
nomous navigation such as mapping, localization, motion
planning, and motion control. However, the coexistence of
robots and humans in the same environment adds some news
dimensions to mobility, like comfort and sociability. People
should not be treated as simple obstacles, because there is a set
of social and cultural rules that dictate how people should
move. Naturalness is related to similarities between robots
and humans in the low-level behavior pattern; comfort refers
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to suppression of annoyance or stress to the humans in
interactions with the robot, while sociability deals with the
robot’s suitability to high-level socio-cultural patterns.

This paper focuses on the social navigation challenges
presented in [12]. The motivation for this work lies in
the difficulties encountered to treat the navigation of an
autonomous service robot in a safe, natural, social and
comfortable way for humans that interact in the same
context of use. Exhaustive experiments were carried out
with various environments, types of obstacles, simulated
people in a static and dynamic way, interacting with other
people and objects, also varying local and global planning
algorithms and costmaps.

This work aims to increase human receptivity while
maintaining safe navigation in an environment with
different types of objects. An optimal configuration for the
navigation process is selected to make the robot navigation
safer, natural, social and comfortable for humans while
providing sociability in the robot’s behavior. Some methods
of global and local planning were tested, with a variety
of sensors, navigation costmaps and environments. This
study was completely evaluated in simulated environments.
Real environment experiments will be conducted in a future
work.
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This study contributes on the following:

– Methodology presented for the development of a social
navigation that takes into account different types of
objects present in the environment as well as the
comfort of people who interact with the robot.

– Evaluation and selection of a set of methods and sensors
that best suit the robotic platform for social navigation.

– Introduction of new evaluation metrics that assess
spatial and temporal coefficients in addition to the level
of naturalness and sociability necessary to carry out
social navigation.

After this introduction, the next sections are organized as
follows: Section 2 presents concepts and a review on mobile
robot navigation and social navigation. Section 3 presents
the materials, methods and metrics used in this study, such
as testing environment, robot, software tools and applied
methodology. In Section 4 the results and discussion are
presented. Finally, Section 5 presents conclusions and future
works.

2 Background

Social robot systems capable of assisting human beings
must address not only traditional robotics research topics
(movement planning, navigation and manipulation), but also
must have human interaction skills. In particular interest
to this project are the social robots designed to share the
living space and have degrees of interaction with one or
more human users, like social gatherings and conversations.
The next subsection presents definitions of a series of key con-
cepts used throughout this study and some related works.

2.1 Concepts

2.1.1 Navigation

According to [8], collision prediction approaches for mobile
robots can be divided into two categories: global and local.
Global techniques, such as roadmaps, cell decomposition
and potential field methods generally assume that a com-
plete model of the environment and of the robot is availa-
ble. The advantage of global approaches lies in the fact that
a complete trajectory from the starting point to the target
point can be calculated. However, these approaches are not
adequate to avoid obstacles quickly, and in this case local
approaches [8] are more appropriate.

The most common local planners found in the literature
are the Base Local Planner (Base) or Trajectory Rollout
[9] and the Dynamic Window Approach (DWA) [8]. They
are planners that provide control for a mobile base on
a 2D space. Using a map, the planner creates kinematic

trajectories for a robot to move from a start point to an end
point. The DWA planner differs from the Base planner in
the way it controls discretized space. While the Base local
planner checks all future simulation states [9], the DWA
local planner checks only the spaces immediately after the
current state.

Other known planners are the Elastic Band (EBand) [20]
and the Timed Elastic Band (TEB) [22]. These types of
planners use the bubble concept which is defined as a subset
of maximum location for a free area in a given configuration
and which allows the robot to move in all directions with-
out causing a collision [24]. The bubble is generated using
the simplified model of the robot in conjunction with infor-
mation available on the map. The Bubble band takes into
account forces from objects and internal forces trying to
minimize the energy between adjacent bubbles.

The EBand is a planner that generates a deformable and
collision-free path. It deforms the generated path in real-
time, keeping it away from obstacles, and continues to
deform as changes in obstacles are detected. This allows the
robot to adapt to an obstacle that moves unexpectedly. TEB
uses the same principle as EBand, however, it focuses on
time optimization. TEB also works with minimizing the cost
function instead of applying forces [22].

Another important concept is the costmap or occupation
grid [7]. It is a weight matrix used by a navigation system
to store probabilistic information about obstacles [9]. In an
occupancy grid, the environment is represented by a discrete
grid where each cell is filled (part of the object) or kept
empty (part of free space) [24]. It is commonly used to store
information locally for short-term obstacle avoidance and
globally for long-term route planning.

2.1.2 Social navigation

If only the collision avoidance is taken into account while
deciding on an optimal location and trajectory, it is possible
to create behavior in the robot that is considered uncom-
fortable, rude or inappropriate [2]. According to [21], social
navigation is the strategy displayed by a social robot that
identifies and follows social conventions in terms of space
management, in order to preserve a safe and comfortable
interaction with human beings. The resulting behavior is
predictable, adaptable and easily understood by humans.

In addition to the idea of social navigation, trajectory
planning must be carried out so that the robot also does
not cause any kind of discomfort for humans [12]. People
should not be regarded as simple obstacles, as there is a set
of social and cultural rules that govern how people move, such
as, for example, always approaching a person in front of them.

In [12], the authors split the main factors of social nav-
igation into comfort, naturalness and sociability. Comfort
reflects the state of mind regarding safety and well-being.
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It is a complex measure to be evaluated, as it involves the
perception of context, social signals, micro expressions and
temporal analysis of human behavior. At the same time,
this measure is very important as a response to a social
robot. Naturalness reflects the behavior of a robot, seeking
behavior as close as possible to the human being. Finally,
sociability reflects the way the robot should behave in social
environments.

People in a social environment are expected to follow a
certain social rule, including distance rules. The proxemics
theory, proposed by in [11], is the study of manipulation
and dynamics interpretation of human social behavior that
are controlled by socio-cultural rules in social gatherings.
This study defines cultural rules and intimacy zone, personal
zone, social zone and public zone. To allow socially
accepted human-robot interaction, a robot must have the
ability to understand and respect this concept.

2.2 RelatedWorks

This review aims to investigate the state of the art on navi-
gation systems of mobile social robots. The search words
used were “ robots or robotics”, “human aware or socially
aware”, “navigation” and “model or framework”. In this
review, the aim was to verify if the works in the literature
develop or use valid models for social navigation; which
aspects of human receptivity are addressed, among comfort,
naturalness and sociability; what solutions were proposed;
and what problems are still open. The papers present the
themes of general social navigation framework [6, 17, 23],
crowd navigation [1, 18] and proxemics [3, 14].

On social navigation frameworks, [27] proposes an
efficient framework divided into 3 parts: (1) fusion of a
3D camera and laser sensors for detection and tracking of
human beings; (2) motion modeling and positioning and (3)
integration of modeling with trajectory planning. In [23]
was presented a modification of the ROS nav core package
to use social navigation. Tests were performed in simulated
environments. Finally, it also presents an architecture for
the social navigation system. In [17] presents a framework
for social navigation by developing a fuzzy controller to
perform multi-tasks in a crowd environment, as a challenge.
They plan in future work to build a more realistic model and
implement it in a real robot.

Concerning navigation in crowded environments, [18]
presents a plan based on the intentions of the human being.
It deals with the classification of human intentions and
prediction of future movements in a dynamic environment
shared between robot and human being. It has an offline
training phase, with tests carried out in simulated and real envi-
ronments, but no tests were carried out with real robots navi-
gating. In [1] was presented the formulation of a Bayesian
approach to global online learning of a crowd model.

In [14] was presented an approach to social navigation
using learning. This work compares its method with those
of proxemics. It uses data from surveillance cameras
noted with movement of people to carry out the training.
In [3], a real-time algorithm for social navigation was
featured. The tests are carried out in simulated environ-
ments with dozens of pedestrians. The work uses the con-
cept of proxemics and interpersonal distances.

The research entitled “The office marathon: Robust
navigation in an indoor office environment” [16], presents
a study of robust navigation for mobile robots in office
environments. It presents a problem in which robots are
able to avoid obstacles and walls with laser sensors, but
have difficulty to avoid obstacles beyond the laser reach.
The article explores how to treat 3D obstacles and small
obstacles in the path of the robot. The challenge was to avoid
obstacles with a non-trivial 3D structure, as well as navigate
through tight environments such as corridors and doors.
The author uses the autonomy time in the autonomous
navigation task as a proof of the robustness of the navigation
system. To evaluate the competence of navigation, the robot
was faced with some tests, both in simulated and real
environments. The robot completed the navigation tasks
in both simulated and real environments, avoiding small
obstacles up to 6 cm high.

Recently, the work entitled “The Marathon 2: A
Navigation System” [15] was published, in which current
trends in robotics are studied to create a new navigation
system based on the experiences of researchers working
with the ROS framework. Among the novelties is the Spatio-
Temporal Voxel Layer (STVL), the Timed Elastic Band
(TEB) controller and a framework for fusing sensors. In this
work, the robot traveled approximately 60 km during the
experiments, using the new ROS2 framework with the new
navigation stack called navigation2.

In [13], the authors develops and implements a costmap
of semantic layers (Fig. 1). The authors state that it is
not enough for the robot to avoid obstacles just to stop
collisions. It is necessary to treat obstacles differently,
depending on the nature of each obstacle. There are
several scenarios that take human personal space into
account, where the shortest path is not always the
best. The work divides the layers of the costmap into
classes, the main of which are: Standard and human-
robot interactions. The standard is derived from common
costmaps used in literature and consists of a static map layer,
representing the static map of the environment; obstacle
layers, representing the obstacles identified by the sensors;
voxel layer, also related to the sensed obstacles, however
in 3D representation; and inflation layer, responsible for
inflating obstacles, creating a collision-free region. The
human-robot interaction layers composed of a proxemic
layer representing the proxemic around each person; the
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Fig. 1 Navigation layers proposed in [13]. Source: [13]

hallway layer is responsible for making the robot prefer
tracing routes to the right of a human being, this is a
social rule present in some cultures; and wagon ruts layer,
responsible for reducing the cost in cells where a person has
just passed, makes it easier for the robot to follow navigation
flows. This layered costmap approach allows a wide variety
of robotic behavior representation related to social rules.

In [26], the authors propose a generic and unified model
for treating social navigation with a person or group of
people standing or moving in different situations. The article
starts by presenting some problems of social navigation
observed in other studies. For example, most works deal
with only one person in the environment, standing human
beings or specific cases with the human being sitting or
moving in a linear way and the lack of a model of generic
situations. The work improves the concepts of safety,
sociability and comfort. Physical and psychological security
measures are used in addition to socially accepted behaviors
of robots with human beings. The tests are carried out in
simulated and real environments. The unified framework
presented is built on top of conventional navigation and
can be divided into two parts: (1) common navigation
and (2) extension for social navigation. The tests were
performed based on ROS costmap functions, simulating
the robot available in the laboratory using DWA as the
local planning technique. The robot used in the tests has

2 differential wheels. Three indices of comfort and human
security based on proxemics and validation of the robot’s
behavior were presented. Finally, the tests were carried
out with 10 different types of social situations (Fig. 2),
where the robot has to navigate sequentially to approach
static, dynamic individuals, and groups of humans in various
social situations. The simulated environment presents 3
types of tests: simulation 1, only using human portrayed
with static objects (conventional navigation); simulation 2,
using dynamic social zone; and simulation 3, using the
human approach framework proposed by the authors. The
real environment also has 3 types of test: test 1, where
the robot must approach a human or group of humans all
standing; test 2, where the robot approaches the human or
group of humans in motion; and test 3, where there is a human
or group of humans interacting with an object of interest.

In [5] a specification of metrics for evaluating robot navi-
gation performance is presented. In this work, the authors
uses the concept of trajectory as a continuous sequence of
states following a specific plan and the concept of path as a
geometric curve that the robot describes in a configuration
space. Only the shape of the curve is considered and the
metrics are applied over these two concepts. The work
shows the problem of a robot movement system that must
consider the execution time evaluation of a robot navigation
task, the model of the robot used, which implies dynamic
and kinematic restrictions, the model of the environment
and how the information on the environment is provided. As
critical factors, the trajectory characteristics and problems
related to physics and the choice of the movement system
that affects the state of the world, such as the speed of the
robot and its final position, must be evaluated.

In [5] the authors also divide the navigation problem
into two subproblems. The first is related to the destination of
the robot, where the challenge is to go to a specific position
or to a position near an object or a person. The second
problem is related to physics, in which the robot needs to
maintain a safe and comfortable navigation and generate
smooth and more natural trajectory. According to [5], if
the trajectory is not smooth, it becomes more difficult to
apply the control in real world, it can damage the robot with
sudden movements and is result in a less socially accepted
behavior.

The experiments in [5] were carried out in different
environments, path planning algorithms and types of
mapping, concluding that there still is a lack of tools
to evaluate robot movement systems. It presents steps
towards a standardization of the evaluation of navigation
systems in tasks of pure movement. For the authors,
mapping and locating are tasks that can be assessed
separately.

Throughout the works presented in this literature review,
several points of interest that serve to compose the
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Fig. 2 Simulated scenario
similar to an office with rooms,
doors, corridors, walls, objects
and human beings. Three people
on the move, two people sitting
and 13 people standing are
distributed on the stage. Source:
[26]

development of this work were studied. Initially, works
that explore the robustness of a common navigation taking
into account objects of difficult perception in everyday
environments such as an office, as seen in [16] and
[15]. The development of social navigation models was
also observed, taking proxemics into account [3, 14],
in an environment with one or more people. It was
found that the trajectory planning methods using DWA were
quite used, although more recent works, such as [15] suggest
the use of TEB as a planning method. The basis for the
development of a social costmap layer for this work was
inspired by [13], while integration in common and social
navigation was inspired by [26, 27]. To evaluate the experi-
ments presented in this work, [5] inspired the development
of the metrics used here. All of these works contributed to
develop the methodology presented in this study and com-
pose a scenario of tests and evaluation with metrics that
explore both aspects of completeness of common navi-
gation and comfort for social navigation that were never
used before in others works.

3Materials andMethods

In this section, a development method to evaluate and
select a social navigation system is presented. The next
subsections will list the materials used to carry out
experiments (Section 3.1), what procedures were performed

(Section 3.2) and finally, which metrics were used in order
to evaluate the results (Section 3.3).

3.1 Materials

This subsection is divided into two parts. The first
part describes the hardware configuration, including the
machine where the simulations were carried out and the
Home Environment Robot Assistant (HERA), used as a case
study in this project. The second part contains the software
settings used in this project.

3.1.1 Hardware

To perform the simulated experiments, a DELL XPS 8500
desktop computer was used, with intel® CoreTM i7-3770
CPU @ 3.40GHz processors with 8 cores, 12GB RAM and
NVIDIA GeForce GT640 graphics card, and Ubuntu 18.04
LTS (Bionic Beaver) 64bits operation system.

The HERA [25] (Fig. 3) is used for the development
of this project. The HERA robot was developed by the
RoboFEI@home team1 at FEI University Center.2 It has
4 omni-directional wheels capable of moving the robot in
any direction on a 2D plane and sensors used for 2D and 3D

1https://robofei.aquinno.com/athome/
2https://portal.fei.edu.br/
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Fig. 3 Real and simulated
HERA. In the simulated version
(left side) you can see the
sensors of the robot (red) used in
this study

mapping. The component parts of the robot can be seen in
the Table 1:

3.1.2 Software

The main tools used throughout this work were the Gazebo
(version 9.0.0), used in the simulated experiments, and the
Robot Operating System (ROS) Melodic Morenia for the
development of the robot modules and the communication
system for these modules.

3.2 Methods

The development methodology of this work aims to evaluate
social, safety and accuracy criteria in navigation planning

methods using different combinations of sensors, planners,
map layers, and different environments. The job here is to
select a navigation to be as natural, social and comfortable
as possible for the human being. With this, it is possible to
approach a more efficient, effective and safe navigation for
the social context.

The experiments execute a script that follows the steps
(Fig. 4): (1) Receive input data with a set of configura-
tions that will be used in the experiment; (2) An initial data
processing is performed. A set of regions (R = [CR0, ...,
CRnr ]) that has nr regions is extracted from the environ-
ment. This represents the regions through which the robot
must pass during the experiment, here called ChechRegions
(CR = [P0, ..., Pncr ]). Each CR has ncr points (P =
[x, y]). The points of the same region are space separated

Table 1 The component parts
of the HERA (2020 version
[25])

Control Mini PC Zotak ZBOX-EN-1060K, Intel® CoreTM i5 7500 CPU, 8GB RAM and

GeForce graphics card GTX 1060

Sensors Actuators

Base 1 Laser Hokuyo UTM-30LX, 1 Laser 1 Omnidirecional base (Mecanum Wheel

Hokuyo URG-04LX-UG01, and 1 Depth Vectoring Robot - IG52 DB).

camera Asus Xtion pro.

Torso 1 Emergency button. 1 Manipulator with 7 degrees of freedom.

Head 1 rgb and depth camera 1 Apple Ipad (3rd generation) serving as

Microsoft Kinect, 1 Multi-sensor a virtual face display for interaction.

Matrix Creator, e 2 Directional

Microphones RODE VideoMic GO.
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from each other in the simulated world by 0.5 meters and
have spatial information (x, y) relative to the origin of the
simulation. For each CR, a P is selected randomly. It will
compose the path that the robot will take during the experi-
ment (CP = [P0, ..., Pnr ]). Then, the global planer is used
to calculate the shortest distance passing through all P in
CP ; (3) The environment and the robot are then reset with
their initial settings; (4) The experiment is started by passing
the list of CP to RNS. The experiment is finished when the
robot reaches its final destination or some navigation failure
occurs; (5) Finally, the experiment data is saved for future
analysis.

The RNS used in this work was optimized using the ROS
navigation3 tutorials and the ROS Navigation Tuning Guide
[28] in contrast to the previous work [19] that used non-
optimized parameters. The optimization process was carried
out observing the robot’s behavior next to obstacles and
taking into account the physical properties of the HERA
platform. The main influence of this optimization was the
safety in the trajectory planning versus the execution speed.

Aspects of success in navigation between two points, per-
centage of collisions are evaluated in environments with dif-
ferent kind of objects and simulated people. Also, an adap-
tation of the navigation algorithms for a social navigation is
carried out. In this step, a layer of social navigation is added
as a cost map and environments are tested with simulated
humans. All experiments were carried out without using a
graphical interface in the simulator (headless).

The testing methodology is divided into 6 stages. In each
stage, a modification is made in the RNS environment or
configuration, in order to promote a gradual increase in
the complexity and capabilities of the HERA platform. It
is a way to isolate the behavior of the robot in specific
situations and configurations such as, to evaluate if these
configurations lead to a complete task (navigation between
two points) and to evaluate the naturalness of the robot’s
movements that even being an important point of social
navigation as pointed by [12], and in it can be observed
without (stages 1, 2, 3 and 4) the presence of people or with
the presence of people (stages 5 and 6). For the stages 1,
2 and 3 the environments of Fig. 5 was used, for the stage
4 the environments of Fig. 6 was used, for the stage 5 the
environments of Fig. 7 was used and for the stage 6 the
environments of Fig. 8 was used.

The 6 stages are, as follows. Stage I (Simple Con-
figuration): The simplest RNS configuration is evaluated.
Stage II (Global Planners): The global planners NavFn and
GlobalPlanner are variated and evaluated. Stage III (Local
Planners): Local planners Base, DWA, EBand and TEB are
varied and evaluated. Stage IV (Sensors): Changes are made
in the environment to include objects that are difficult to

3http://wiki.ros.org/navigation/Tutorials

perceive by the robot, as well as the addition of a new sen-
sor to facilitate this perception. Stage V (Navigation Layer):
Environments are presented with simulated people, in static
positions or with dynamic behavior and interaction with
other people and objects. The costmap layers used in this
stage are based on [13] and can be seen in the Fig. 1. The
selected layers were: Static Map layer, representing the map
of the environment previously created; the Obstacle layer,
representing the obstacles captured by the sensors; the Prox-
emics layer, representing people and their personal spaces;
and finally, the inflation layer that determines a safe zone
around the obstacles. All of these layers make up the mas-
ter layer, where trajectory planning takes place. Stage VI
(Marathon): A mix of all the previous steps is presented,
where the robot must go through a series of checkpoints in
a more complex environment.

After the end of the experiment, the results are evaluated
based on the criteria presented in the following subsection.

3.3 Evaluation

These evaluations aim to select optimal planners in the
current navigation of the robot so that it becomes safer,
more natural and comfortable for the human being, since
these features are the main pillars for social navigation
according to [12]. With this we can improve aspects of
social navigation while minimizing the compromise of basic
navigation. The following variables will be analyzed in this
study:

• Success rate (SR): Determines the percent number
of experiments, where the navigation was successfully
completed. It is given by:

SR = s

ex max
∗ 100 (1)

where s is the number of experiments completed
successfully and ex max is the maximum number of
experiments performed.

• Failure rates (FR): Determines the ppercentage of
experiments in which the navigation failed. There are
five types of FR and they are given by the following
formulas:

– Space Exceeded (FR SE):

FR SE = f 1

ex max
∗ 100 (2)

where f 1 is the number of experiments that
failed by space exceeded.

– Time Exceeded (FR T E):

FR T E = f 2

ex max
∗ 100 (3)

where f 2 is the number of experiments that
failed by time exceeded.
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Fig. 4 Experiment pipeline

Fig. 5 The simulated environments used in stage 1, 2 and 3. The green area represents the start region and the blue area represents the goal region

Fig. 6 The simulated environments used in stage 4. The green area represents the start region and the blue area represents the goal region
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Fig. 7 The simulated environments used in stage 5. The green area represents the start region and the blue area represents the goal region. The
red area represents prohibited regions where the robot will cause discomfort to the humans

– Abortion (FR A):

FR A = f 3

ex max
∗ 100 (4)

where f 3 is the number of experiments that
failed by abortion.

– Collision (FR C):

FR C = f 4

ex max
∗ 100 (5)

where f 4 is the number of experiments that
failed by collision.

– Invasion (FR I ):

FR I = f 5

ex max
∗ 100 (6)

where f 5 is the number of experiments that
failed by invasion of personal space.

• Spatial Coefficient (SPC): determines how close
the distance traveled by the robot is to the planned
navigation distance, given by:

SPC = 1 − se − smin

smax − smin

(7)

where se is the space traveled by the robot, smin is
the minimum space between the initial and the final
position, smax is the maximum space the robot can
navigate in this experiment, being defined as 5 ∗ smin.
The result varies from 0 to 1, where 1 means that the
path executed is equal to the path planned.

• Temporal Coefficient (T EC): Determines how close
the execution time by the robot is to the estimated time
to perform the navigation, given by:

T EC = 1 − te − tmin

tmax − tmin

(8)

Fig. 8 The simulated
environments used in stage VI.
The green area represents the
start region and the blue area
represents the goal region. The
red area represents prohibited
region where the robot will
cause discomfort to the human.
The orange area represents the
regions where the robot needs to
go through in the experiment
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where te is the time used by the robot in the experiment,
tmin is the minimum time needed by the robot to travel
from the starting point to the end in a straight line, given
the maximum speed of the robot, tmax is the maximum
time that the robot can navigate in this experiment,
being defined as 5 ∗ tmin. The result varies from 0 to 1,
where 1 means that the time elapsed is equal to the time
planned.

• Smooth Coefficient (SMC): Determines how smooth
the trajectory performed by the local planner is. It is
used with a measure to evaluate the naturalness of
the robot, which is given by the average of the angle
differences of each line that creates the trajectory.

SMC = 1 −
∑n

i=1(arctan(yi − yi−1, xi − xi−1)/π)

n − 1
(9)

where n is the number of points present in the executed
route and x and y are the coordinates of the points. The
result varies from 0 to 1, where 1 means that navigation
is smoother.

• Proxemic Coefficient (PRC): Determines how much
the trajectory carried out by the robot respects
proxemics in an environment with people. This metrics
tries to represent the average degree of comfort of the
person closest to the robot in the experiment, given by:

PRC = 1 − x,

{
x ← d/1.2, if d ≤ 1.2

x ← 0, if d > 1.2
(10)

where d is the distance in meters from the closest person
to the robot. The result varies from 0 to 1, where 1
means that navigation respect proxemic rules.

4 Results

For this work, 1000 experiments were carried out for
each configuration combination presented in Section 3.2
for simulated environments, defining a subset of tests. In
total, 37 subsets of tests were performed, totaling 37000
navigation experiments in simulated environments with
random start and goal positions. The main objective of these
experiments is to evaluate the robot’s navigation behavior
in different scenarios and configurations, providing baseline
results to compare with future works using learning
methods. The scripts for performing these tests can be
found on Github repository4 and all results can be found on

4https://github.com/fagnerpimentel/phd

OneDrive cloud.5 The next subsections present the tests and
the results of all performance tests proposed in Section 3.

4.1 Stage I: Simple Configuration

The scenarios used in this stage (Fig. 5) have only easy to
perceive obstacles or no obstacles at all. The input data for
this stage are presented below:

• robot max vel: 0.3.
• xy goal tolerance: 0.1.
• yaw goal tolerance: 3.1415.
• time factor tolerance (tf t) : 5.
• space factor tolerance (sf t): 5.
• use amcl: Yes.
• global planner: NavFn (NavfnROS).
• local planner: Base (TrajectoryPlannerROS).
• observation sources - 3 sensors:

– laser scan front observation (LaserScan).
– laser scan back observation (LaserScan).
– point cloud base front observation

(PointCloud2).

• layers - Common configuration:

– static layer (costmap 2d::StaticLayer).
– obstacles layer (costmap 2d::VoxelLayer).
– inflation layer (costmap 2d::InflationLayer).

From Table 2 shows the results of the experiments per-
formed for this simple configuration. It can be observed
that the default configuration obtained excellent results
(above 90%) in SR for 2 scenarios (simple and boxes) and
poor results (below 50%) in the corridor scenario. For the
scenario with a narrow corridor, this configuration had the
highest error rates. This configuration does not present
problems due to the excess of space traveled (FR SE). In
terms of spatial efficiency, this configuration present small
differences towards the environments. In terms of spatial
efficiency, this configuration also presented small differ-
ences when comparing the three environments. In terms of
time efficiency, this configuration presented considerable
differences with different scenarios. The behavior that
resulted in these values are the same as the space coeffi-
cient. The worst result in the narrow corridor was due to
small space available to navigate and the necessity to make
more corrections in path, planning to avoid collisions with
obstacles.

5https://feiedu-my.sharepoint.com/:f:/g/personal/fpimentel fei edu br/
Ej7C9KvCwXxHo8I45xP0NMIBBZdEmRL1r8MW qnDNRm5yQ?
e=erLRlm
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Table 2 Simple configuration

Simple Boxes Corridor

SR 98.4% 94.5% 43.1%

FR SE 0% 0% 0%

FR T E 0.1% 1.4% 25.7%

FR A 0.9% 2.6% 25.3%

FR C 0.6% 1.5% 5.9%

SPC x̄ = 1 x̄ = 0.98 x̄ = 0.98

σ = 0 σ = 0.01 σ = 0.03

T EC x̄ = 0.96 x̄ = 0.88 x̄ = 0.74

σ = 0.06 σ = 0.14 σ = 0.24

SMC x̄ = 0.93 x̄ = 0.84 x̄ = 0.79

σ = 0.06 σ = 0.01 σ = 0.12

The best values are shown in bold

x̄ = mean, σ = standard deviation

At this stage, it was possible to notice that the robot pre-
sented some location problems. The AMCL showed sudden
jumps in position. As such, the robot was lost in the
environment resulting in the impossibility of reaching the
destination or think that it reached the destination when, in
fact, it had not arrived. Preliminary tests in a more complex
environment indicated that this type of problem occurred
less frequently. This behavior happens because in the
complex environments have enough details that serve as a
reference for the AMCL, which enables the robot to locate
itself. Given this information and since the optimization
of the location is not the focus of this initial phase of
testing in a simulated environment, it was chosen to use

Table 3 Global planner:
NavFn x Global Navfn Global

Simple Boxes Corridor Simple Boxes Corridor

SR 98.8% 97.9% 79.3% 99.3% 97..2 % 69.4%

FR SE 0% 0% 0% 0% 0% 0%

FR T E 0% 0.6% 18.4% 0% 0.9% 26.9%

FR A 0.7% 0.4% 0.5% 0.5% 0.9% 1.2%

FR C 0.5% 1.1% 1.8% 0.2% 1% 2.5%

SPC x̄ = 1 x̄ = 0.98 x̄ = 0.98 x̄ = 1 x̄ = 0.97 x̄ = 0.97

σ = 0 σ = 0.01 σ = 0.02 σ = 0 σ = 0.01 σ = 0.03

T EC x̄ = 0.96 x̄ = 0.89 x̄ = 0.83 x̄ = 0.96 x̄ = 0.91 x̄ = 0.73

σ = 0.04 σ = 0.13 σ = 0.2 σ = 0.04 σ = 0.11 σ = 0.25

SMC x̄ = 0.93 x̄ = 0.85 x̄ = 0.85 x̄ = 0.93 x̄ = 0.85 x̄ = 0.81

σ = 0.05 σ = 0.09 σ = 0.11 σ = 0.05 σ = 0.07 σ = 0.12

The best values are shown in bold
x̄ = mean, σ = standard deviation

the positioning of the robot that comes directly from the
simulator for further testing.

4.2 Stage II: Global Planners

In the second stage of the tests, the same scenarios of the
previous stage were used (Fig. 5). In this context, only the
use of localization was changed and the global planners. The
details of the changed variables are presented below:

• use amcl=: No.
• global planner:

– Navfn (NavfnROS).
– Global (GlobalPlanner).

From the Table 3 we can see the results of the experi-
ments performed by using localization from the simulator
and the two global planners used: Navfn and Global. It can
be observed that both planners obtained excellent results
(above 90%) in SR for 2 scenarios (simple and boxes), and
unsatisfactory results (below 80%) in the corridor scenario.
The NavFn planner has For scenario with narrow corridor,
it is remarkable that a performance upgrade occurred, when
comparing with the previous stage: +36.2% for NavFn
Planner and +26.3% for Global planner. Most of the failures
were related to the time exceeded (FR T E). This upgrade
is more related to the use of simulation localization. This
configuration does not presented problems due to the excess
of space traveled (FR SE). In terms of spatial efficiency
(SPC), time efficiency (T EC) and smooth coefficient
(SMC), this configuration present a behavior similar to that
obtained in the previous stage.
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4.3 Stage III: Local Planners

In the third stage of the tests, the same scenarios of the
previous stage were used (Fig. 5). Here we select the NavFn
as global planner due to the best results with this planner
and variate the local planners. The details of the changed
variables are presented below:

• global planner: NavFn.
• local planner:

– Base (TrajectoryPlannerROS).
– DWA (DWAPlannerROS).
– EBand (EBandPlannerROS).
– TEB (TebLocalPlannerROS).

From the Table 4 we can see the results of the experi-
ments performed by using the four local planners used:
Base, DWA, EBand and TEB. Note that the Base planner
results is the same as presented in the Table 4 for NavFn.
It can be observed that the four planners obtained excellent
results (above 90%) in SR for 2 scenarios (simple and
boxes) and good results (above 70%) in the corridor scena-
rio. For the scenario with a narrow corridor, again,
a noticeable performance upgrade was achieved, when
compared to the previous stage: +17.3% for TEB Planner,
with most of the failures related to the time exceeded
(FR T E). This configuration did not present problems
due to the excess of space traveled (FR SE). In terms
of spatial efficiency (SPC), time efficiency (T EC) and
smooth coefficient (SMC) this configuration presented a
behavior similar to that obtained in the previous stage

4.4 Stage IV: Observation Sources

In the fourth stage of the tests, the environment was changed
to explore more difficult obstacles, such as tables and small
objects, both hard to see by a common laser. The environ-
ment used in this stage can be seen in the Fig. 6. Here we
select the TEB as local planner due to the best results with
this planner and variate the sensors observation sources. The
details of the changed variables are presented below:

• local planner: TEB.
• observation sources:

– 3 sensors:

laser scan front observation.
laser scan back observation.
point cloud base front observation.

– 4 sensors:

laser scan front observation.
laser scan back observation.
point cloud base front observation.
point cloud torso front observation.
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From Table 5 we can see the results of the experiments
performed by using the two different sensor’s configuration.
The first configuration with 3 sensors (base front laser, base
back laser and base front 3D camera) and the second con-
figuration with 4 sensors (base front laser, base back laser,
base front 3D camera and torso front 3D camera). It can
be observed that in scenario with tables, excellent results
(above 90%) were obtained in SR for both configurations.
It means that the tables can be well perceived by one of the
sensors in the robot In the other 2 scenarios in this stage,
very poor results were obtained (bellow 30%) for three sen-
sor’s configuration and excellent results (above 90%) for the
four sensors configuration.

4.5 Stage V: Navigation Layers

In the fifth stage of the tests, the scenarios were changed
to explore human populated environments, there are
static and dynamic simulated people and person in inter-
action with others people and objects. The environment
used in this stage can be seen in the Fig. 7. Here we
select the observation sources from 4 sensors due to the
best results with this sensors and variate the costmap
layers. The details of the changed variables are presented
below:

• observation sources: 4 sensors.
• layers:

– Common configuration:

static layer
(costmap 2d::StaticLayer).
obstacles layer
(costmap 2d::VoxelLayer).

inflation layer
(costmap 2d::InflationLayer).

– Social configuration:

static layer
(costmap 2d::StaticLayer).
obstacles layer
(costmap 2d::VoxelLayer).
inflation layer
(costmap 2d::InflationLayer).
proxemic layer (social navigation
layers::ProxemicLayer).

From Table 6 we can see the results of the experiments
performed by using the two different navigation layers
configuration. The first configuration has 3 layers (static,
obstacles and inflation) and the second configuration with
4 layers (static, obstacles, inflation and proxemic). It can be
observed that only the scenario with static people obtained
excellent results (above 90%) in SR for both configurations.
In the human interaction environment, poor results were
obtained (around 50%) for Common configuration and
excellent result (above 90%) for Social configuration. In
the other 2 scenarios in this stage, very poor results were
obtained (bellow 10%) for both configurations.

4.6 Stage VI: Marathon

In the sixth stage of the tests, the scenarios were changed
to explore a more realistic and complex environment, by
combining all of the elements presented in the previous
stages. The environment used in this stage can be seen inthe
Fig. 8. The details of the changed variables are presented
below:

Table 5 Observation sources: 3
sensors x 4 sensors 3 Sensors 4 Sensors

Tables Boxes small Mix Tables Boxes small Mix

SR 96.2% 8.5% 29.6% 97.5% 96.1% 98.2%

FR SE 0% 0% 0% 0% 0% 0%

FR T E 1.5% 0% 0% 1.2% 2.1% 1%

FR A 0.4% 0.4% 0.3% 0.6% 0.4% 0.6%

FR C 1.9% 91.1% 70.1% 0.7% 1.4% 0.2%

SPC x̄ = 0.98 x̄ = 0.99 x̄ = 0.96 x̄ = 0.98 x̄ = 0.96 x̄ = 0.95

σ = 0.01 σ = 0 σ = 0.04 σ = 0.01 σ = 0.04 σ = 0.04

T EC x̄ = 0.96 x̄ = 0.97 x̄ = 0.92 x̄ = 0.96 x̄ = 0.92 x̄ = 0.91

σ = 0.01 σ = 0.01 σ = 0.08 σ = 0.01 σ = 0.09 σ = 0.07

SMC x̄ = 0.89 x̄ = 0.93 x̄ = 0.85 x̄ = 0.89 x̄ = 0.86 x̄ = 0.84

σ = 0.02 σ = 0.01 σ = 0.06 σ = 0.02 σ = 0.06 σ = 0.06

The best values are shown in bold
x̄ = mean, σ = standard deviation
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– robot max vel: 0.3.
– xy goal tolerance: 0.1.
– yaw goal tolerance: 3.1415.
– time factor tolerance (tf t): 5.
– space factor tolerance (sf t): 5.
– use amcl=: No.
– global planner: NavFn.
– local planner: TEB.
– observation sources: 4 sensors.
– layers: Social configuration

From Table 7 we can see the results of the experiments
performed by using a complex environment, with obstacles,
small obstacles, tables, and people. In the previous stages,
a poor performance was observed in the environments
with dynamic humans and humans interacting with objects.
Therefore, at this stage, the environment was evaluated in
a scenario with all these elements (M1), an environment
without human interacting with objects (M2), and an
environment without humans interacting with objects and
without dynamic humans altogether (M3). It can be
observed that only environment M3 obtained excellent
results, equal to 97.6% in SR as expected due to small
performance in the environments with dynamic humans and
humans interacting with objects.

4.7 Result Discussion

In a previous study [19], 24000 experiments were carried
out. That work explore two test environments, with and
without furniture; 3 sensors (1 front laser, 1 back laser and
1 depth camera); and 4 local planners (Base, DWA, EBand

Table 7 Marathon

FEI K5 M1 FEI K5 M2 FEI K5 M3

SR 1% 77.9% 97.6%

FR SE 0% 0% 0%

FR T E 0.1% 0.1% 0%

FR A 0.7% 1.9% 2.3%

FR C 0.2% 20.1% 0.1%

FR I 98% 0% 0%

SPC x̄ = 0.97 x̄ = 0.94 x̄ = 0.94

σ = 0.01 σ = 0.03 σ = 0.03

T EC x̄ = 0.93 x̄ = 0.88 x̄ = 0.89

σ = 0.02 σ = 0.04 σ = 0.05

SMC x̄ = 0.46 x̄ = 0.46 x̄ = 0.46

σ = 0.01 σ = 0.01 σ = 0.01

PRC x̄ = 0.09 x̄ = 0.89 x̄ = 0.91

σ = 0.02 σ = 0.02 σ = 0.01

The best values are shown in bold

x̄ = mean, σ = standard deviation

and TEB). As future work, proposed in [19] it was expected
to optimize the parameters of the local planning methods
in simulated environment and to also optimize human
comfort and robot sociability. Furthermore, it was proposed
to conduct experiments in a simulated environment with
specific situations, such as navigating in environments with
obstacles out of laser range and interaction with people.

In this study, some metrics were used to test e the robust-
ness, safety and human comfort. This metrics evaluates
only the robot’s movement and interaction with people over
37000 experiments performed gradually in order to test each
one of the navigation system components. The robot was
able to perceive and avoid small obstacles and 3D objects
such as tables. It was possible to note that depending on
the shape and position of the sensors, adding a 3D camera
is not enough to carry out the task safely. For the HERA
platform, two 3D cameras were required for this purpose.
Nonetheless, it is possible that for other less complex and
smaller robots, only one sensor is enough.

In the last stage of the experiments, in addition to safety,
the respect for social norms and people’s comfort was also
assessed. With the presented method, it was possible to
observe that problems with dynamic people did not achieve
a satisfactory result. Analyzing the failure cases, it was ob-
served that the robot tries to evade people in a safe way and
respecting the proxemics. However, the simulated human
who is programmed to walk in a certain space continuously,
walks towards the robot. It cause a collision, since the robot
has a slower speed and it was unable to deviate in time. This
behavior of the simulated human is not an attitude expected
in a real environment and does not match the behavior of the
human being. The human is a conscious obstacle and mana-
ges to avoid collisions. In preliminary experiments in a real
environment, the robot manages to deviate from the human
in a satisfactory way. As future work, the behavior of the
virtual human will be replaced by a behavior generated
by PedSim simulator [10] using Social Force Models to
avoid this unrealistic behavior. Formal experiments will
be carried out in a real environment to assess the people
comfort.

At this stage, the following conclusions were reached.
The global planners NavFnPlanner and GlobalPlanner per-
formed similarly, however NavFn had better results. In a
corridor environment, NavFn obtained approximately 10
percentage points more than GlobalPlaner and a lower colli-
sion rate. Among the local planners, the analyzed methods
had a greater discrepancy for the corridor environments,
where it was observed that the success rate increased by
approximately 17 percentage points and the collision rate
was 0% for the TEB planner. Unlike DWA and Base plan-
ners, the Eband and TEB planners were designed to smooth
your curves, which makes the methods more suitable for
social navigation. TEB differs from EBand in order to opti-
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mize its temporal performance, proven in the experiments
realized. TEB is also more suitable to be used with mobile
obstacles and for car-like robots. Moving like a car is not
what is expected for the HERA platform, however this
behavior was the one that best suited this platform. TEB was
also presented as a trend in [15].

For environments with people, we explore the use of the
proxemic layer which makes up the social configuration
of stage V. This layer of costmap was presented in [13].
In these scenarios, it was observed that the use of a new
layer of costmap improved performance in almost all scena-
rios. However, some points need to be noted. For scenarios
with static people, there was not a considerable difference
(1%). The planner ends up treating the static people as a
common obstacle, already analyzed in the previous stages.
The people’s social space is respected, but for the environ-
ment with dynamic people, the results with both configura-
tions (common and social) were lower than expected with
a high collision rate (95.1% for the common configuration
and 92.5% for the social configuration). For the human in-
teraction environment, there was a significant improvement
of 41.4% points. The biggest cause of failures in this sce-
nario was due to the invasion of the people’s interaction
space, 46.4% for the common configuration and 3.8% for
the social configuration. This behavior can be improved by
using a new simulator to represent human behavior more
appropriately.

The last stage was inspired in [16], which presents a
navigation marathon in an office setting and in [26] which
presents a series of robot social gatherings. In this scenario,
the behavior was consistent with that observed in previous
stages. 1% of success rate was observed with 98% of inva-
sion in the area of interaction in the environment with inter-
action between human and object; 77% of success rate with
20% of collision in the presence of dynamic people, the suc-
cess rate is greater than that presented in the Table 6. In
the last scenario (M3), without dynamic people and with-
out interaction with objects, the success rate was 97.6%,
compatible with was already observed in the previous
steps.

In relation to the spatial and temporal coefficients, there
were changes in the results related to the previous work
which must be considered. The results of these metrics for
the SPC and TEC will be analyzed, which measure how
much the path executed by the robot approaches the planned
path in spatial and temporal terms.

In relation to the SPC, there was no significant difference
in spatial performance. The SPC getting close to 1 in practi-
cally all experiments. The observed drop is due to the fact
that the environment in the previous work was mapped
with the objects already positioned in their places. In other
words, the planning takes these objects into account when
carrying out the initial planning. In this work, no object was

positioned in the environment for the mapping, therefore,
they are not considered in the initial planning, and it is
necessary to deviate from the globally planned trajectory in
order to avoid these obstacles. The results in this work indi-
cate that all the configurations used are able to satisfacto-
rily respect the trajectory planning, with a maximum stan-
dard deviation of 0.08. The worst values were observed in
more complex environments, as in the case of stage VI, with
different types of objects and people, with an average SPC
of 0.95 and standard deviation of 0.03.

It is possible to notice that these values fall in the stage
VI (Fig. 8). That influence of scenarios at TEC values is
because the complexity of the environment is proportional
to the need to make adjustments in navigation. Adjustments
such as reducing the speed of the robot at certain points
and rotating movements of the robot that generates a lot
of time loss. Possible solutions to this problem are to take
into account such reductions in speed and time spent with
turning when planning the time of execution of the expe-
riment as well as modifying the navigation behavior of the
robot to perform smoother.

The next metrics analyzed make reference to the main
points presented in [12] as fundamental for social naviga-
tion. The SMC that verifies the smoothness of the paths
taken by the robot, related to naturalness in social navigation
and the PRC that verifies the application of proxemics and is
related to the comfort of the human being. In a future work,
a new metric related to sociability will be inserted.

In the results related to SMC, we observed an improve-
ment in the values, as well as observed for the TEC for
stages I to V and a drop in stage VI. This variation is due to
the same reasons given by the TEC. Since in a more com-
plex environment the robot will need to make more turns to
reach its destination, thus influencing the SMC values.

The results related to the PRC appear only in stages V
and VI, where people are present. For stage V, both experi-
ments that used common configuration and experiments that
used social configuration obtained similar results, around
0.9. These results show that the social layer did not contri-
bute significantly to social navigation in comparison with
the applied common layer, that is, the path executed with the
common layer already satisfies the requirements of proxe-
mics in a satisfactory way. However, it is still possible to
make improvements to the configuration of the social layer
so that it better satisfies proxemics. These improvements
will be presented in a future work.

5 Conclusion

This paper presented a comparative study of social naviga-
tion components. The methods were evaluated using the
ROS navigation stack. The comparative study is one of the
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steps to implement social navigation in a social robot. This
aims to improve the naturalness behavior in the movement
of the robot and the comfort for the human. The evaluation
was made independently of the sensors or environment in
which it is acting.

In this work, it was possible to carry out an incremental
development of the environment. Also, an evaluation of
several elements in this test scenarios. Environments, global
and local planners, sources of sensing and custom map
layers were varied. The tests explored from simple sce-
narios to more complex ones. The study explores scenarios
with no objects and with objects of different natures. Some
static and dynamic people were also explored in such
environments.

With the results in Section 4, it was possible to select a
configuration for the navigation system. Some problems are
still present with dynamic people, however, the results have
reached 97.6% success in a more complex environments.

Although tests were not carried out in a real environment,
we had a better analysis of the results carried out gra-
dually increasing the complexity of the environment and
components of the navigation system, as well as more
metrics and more tests regarding in [16]. Compared to [26],
this study have few variations in social situations, however
a greater variety of these situations is expected in a future
works.

In relation to experiments in real environments, which
will also be performed in a future work. The authors expect
a drop in success rates in real environments. This drop is
common in this type of transition due to noises with real
actuator and sensors. However, due to experiments carried
out in the simulation, it will be possible to identify and treat
errors easily and quickly. The Home Environment Robot
Assistant (HERA) will be used with the same configura-
tion utilized in the test stage VI of this work. A smaller
number of experiments will be carried out in the real envi-
ronment, so that it does not overwhelm the humans involved
in the experiment. In addition to the metrics used, a ques-
tionnaire will also be carried out to assess the degree of com-
fort of people during the real experiments. It is hoped that
it will be possible to improve the values of social metrics
without the need to change the environment. The robot must
be able to produce better values for social metrics just by
changing the way it interprets and acts on the world, even in
the most complex and populous environments.

As a future work, the test environment will be inte-
grated with the OpenAI [4] learning environment to
carry out comparative tests with state-of-the-art approaches
that use reinforcement learning and carry out compar-
ative tests with a new approach using ontology to the
problem of social navigation. They will be considered
and evaluated to measures of naturalness, sociability and
comfort. The results presented in this work will be

used as a baseline for comparison with state-of-the-art
approaches.
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