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Abstract
Benchmarking is a common practice employed to quantify the performance of various approaches toward the same task. By
maintaining a consistent test environment, the inherent behaviours between methods may be distinguished—which is key to
progressing a research field. In robotic manipulation research there is a current lack of standardisation, making it challenging to
fairly assess and compare various approaches throughout literature. This paper proposes new criteria in conjunction with a
benchmarking platform to measure the effectiveness of a grasping pipeline. The proposed benchmarking template offers a testing
platform for 2-fingered, vision-based grasp synthesis methodologies. A prototype system was constructed. The prototype was
shown to serve as a suitable benchmarking platform for the deployment of various grasp synthesis methodologies. 4000 trials
were conducted to evaluate the differing approaches. Results showed that the proposed metrics provide useful insights into the
quality of grasp poses produced by a grasp synthesis methodology.Moreover, suchmetrics provide more comprehensive insights
into grasp outcome than traditional methods used to quantify performance of a methodology and present a fair baseline for
comparison between different approaches.
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1 Introduction

Reproducible benchmarks, protocols and metrics play a vital
role in progressing data-driven research by providing quanti-
fiable insights into the effectiveness of an approach. By ob-
jectifying such elements, a fair basis of performance evalua-
tion and comparison may be established, leading the research
community to build upon methods that work well. This was
particularly evident in computer vision. Large-scale datasets
such as Pascal VOC [1, 2], ImageNet [3] and COCO [4] for
instance, advanced image recognition considerably by expos-
ing gaps in the state-of-the-art—clarifying the direction of
community effort.

Reproducibility is particularly difficult in the field of robot-
ic manipulation, as it is not always possible for researchers to
experiment under the same conditions. Many works conse-
quently select for themselves a set of objects, hardware, tasks,

or objectives that they consider representative of the desired
functionality. Unfortunately, this hinders any direct compari-
son to other works and makes it difficult to assess relative
performance. This issue is well-established, long-standing
and stems in-part from variations in experimental protocols,
methodological assumptions, research goals and differences
in physical hardware, e.g., sensors, lighting, robotic arms,
grippers and tested objects [5–7]. Though this is broadly the
case, a few subsets of the manipulation community have con-
verged on standardised sets of test objects. Some have also
adopted the grasp rate metric, which is determined through
physical trials and defined by grasp success.

To accompany standardised object sets and the common
grasp success metric, this work proposes a low-cost, self-
contained benchmarking platform, experimental protocols
and new object-agnostic metrics that quantify the quality of
a grasp trial. By maintaining consistent test conditions and
employing comprehensive evaluation criteria, a grasping
pipeline may be placed with respect to other approaches and
the advantages and disadvantages of a specific methodmay be
recognised.

The benchmarking template offered in this paper is indus-
trially focused and aimed at 2-fingered, force-closure grasp
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synthesis methodologies that utilise machine learning (ML).
The platform is largely comprised of a conveyor system, vi-
sion enclosure and robotic manipulator—Fig. 1. Two RGB
cameras are employed, offset by 180°. The conveyor rests
on a load-cell subsystem, which is capable of weighing ob-
jects and centre of gravity (COG) acquisition. A beam sensor
is used to automatically situate assessed objects near the centre
of the vision system. Construction of the proposed system is
relatively simple and is mainly comprised of extruded alumin-
ium. The robotic manipulator is part of an education package
costing approximately $1600 USD. The calibration and inte-
gration of various subsystems is also considered in this paper.

New metrics are proposed that quantify the error intro-
duced by a grasp trial using top-down vision. In previous work
[8], it was shown that optimising for the proposed metrics
reduced orientational error by 2.7%, reduced translational er-
ror by 5.2% and improved grasp rates by up to 4.7%—com-
pared to optimising for grasp success alone. The proposed
metrics were demonstrated to objectively evaluate methodol-
ogy performance and showedmore descriptive power than the
traditional binary measure of grasp success.

Detailed fabrication schematics, CADmodels, accompany-
ing software, training datasets and other related documenta-
tion are made available online. A prototype benchmarking
system was constructed and used to evaluate a 3-stage grasp
synthesis methodology in previous papers [8, 9]. The results
of four grasping strategies from 4000 trials are published on-
line to help establish baselines for this benchmark. A dataset
of 144,000 annotated grasps is also made available to aid in
methodology development.

This paper is organised as follows. Section 2 introduces the
various approaches toward standardising manipulation re-
search. Section 3 provides an overview of the proposed
benchmarking platform. The experimental protocol and grasp

quality scores are described in Section 4. Section 5 details an
example application of the benchmarking system and the re-
sultant outcome. Finally, the conclusion of this research is
presented in Section 6.

2 Related Work

In general, data-driven, ML-based grasp synthesis methodol-
ogies have become over-represented within robotic manipula-
tion literature. Supervised schemes that leverage large num-
bers of example grasps are common. To avoid the time-
consuming nature of gathering real-world data, many works
utilise human-annotate datasets to train CNNs to recognise
new grasp instances. Such approaches exploit human exper-
tise and have been shown to be very effective. Jiang, Moseson
and Saxena for instance, successfully grasped a range of novel
objects 87.9% of the time with a pipeline trained using the
Cornell Grasp Detection Dataset [10]. Chu, Xu and Vela
achieved a grasp rate of 89.0% when implementing this
dataset during training [11]. More complex schemes have also
been suggested. Pinto and Gupta for example, employed self-
supervision to learn grasp behaviours from 50,000 grasp at-
tempts [12]. Similarly, Levine, Pastor, Krizhevsky and
Quillen utilised 14 manipulators over the course of two
months to collect over 800,000 grasp attempt samples [13].

In response to the issue of standardisation, a subset of the
manipulation community has adopted a fixed set of test ob-
jects. Such sets aim to provide a baseline for comparison by
trialling an approach on the same set of objects. The YCB
object set for example, consists of 75 objects categorised by
utility, e.g., food items, kitchen items, tool items, shape items
and task items [14, 15]. Leitner at al. proposed the ACRV
picking benchmark comprised of 42 widely available objects,
in addition to evaluation protocols and suggested arrange-
ments [16, 17]. Despite many efforts, standardised object test
sets have not been adopted by the wider community—
attributed to methodological differences and hardware con-
straints. Instead, works often use a common household or
common laboratory object set [18–23]—which varies and is
self-defined, but usually well-documented.

Trialling a physical system using a standardised set of ob-
jects can be time-consuming and relies on the availability of
expensive hardware. Many works have sought to circumvent
these requirements by proposing benchmark datasets—
enabling rapid assessments of methodologies on real sensor
data without any physical equipment. The Cornell Grasp
Detection Dataset for instance, has been used extensively for
training and testing [11, 24–29]. Some works assess their
methodology via dataset performance alone [24, 25, 30–32].
In such cases, dataset accuracy is generally interpreted as a
potential grasp rate—without conducting physical trials for
validation. Applying this approach to manipulation research

Fig. 1 Annotated isometric view of the proposed benchmarking system
with covers removed from the vision enclosure
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relies on the assumption that dataset performance translates
into real-world performance. Evidently this is not the case as
many works report disparities between real-world grasp rates
and dataset accuracy. Sun, Yu, Liu and Gu for instance, noted
an 11% disparity between dataset classification accuracy and
physical trial outcome [27]. Watson, Hughes and Lida report-
ed a 26% drop in expected performance [33].

Gathering large amounts of real-world data is particularly
cumbersome in this field and can be avoided by leveraging
simulation. GraspIt! [34–36] is a popular simulation environ-
ment commonly used in conjunction with standardised mesh
model datasets. Other similar tools include OpenGRASP [37,
38], Gazebo [39–41], openRAVE [42], VisGraB [43] and
MoveIt motion planning [44, 45]. Unfortunately, it is not clear
whether simulated environments currently resemble the real-
world well enough to transfer learned behaviour. Though syn-
thetic data can significantly increase the number of training
samples and simulated worlds make research timely, accessi-
ble and directly comparable, bridging the so-called reality gap
has been problematic [46–49]. James et al. for instance, noted
their 99% simulated grasp rate drop to 70% when tested in the
real-world [50].

Due to the lack of benchmarks and metrics, a common
practice has emerged where the success rate of an approach
is determined, given a fixed number of trials and objects—
where a trial is framed as either successful or unsuccessful,
i.e., pass or fail. This mode of comparison is problematic
because what constitutes a successful grasp is not well-
established. Several works utilise force sensors when defining
a successful grasp outcome [19, 51, 52]. Many works pose
task-based definitions, e.g., object transportation to a bin
[53–56], complex task descriptions [57, 58], shake protocol
[23, 59] and lifting the object above some pre-defined height
[10, 12, 29, 60–66]. Though defining a grasp as either a pass
or fail has been pragmatic for comparison, training, and as-
sessment purposes, it is not clear whether this single-faceted
criterion is related to grasp quality, handling quality or place-
ment quality. Therefore, this work proposes new metrics in
conjunction with a testing protocol and a self-contained
benchmarking platform.

3 Benchmarking Platform

Key aspects of design, calibration and other details related to
the proposed benchmarking platform are covered in this sec-
tion. Comprehensive documentation for construction is avail-
a b l e a t : h t t p s : / / d r i v e . g o o g l e . c om / o p e n ? i d =
1VsEjCl6hrX3FeL9VRF-J9CzVL7JHXO15.

The proposed benchmarking platform illustrated in Fig. 2a
is portable and self-contained. The layout consists of a con-
veyor system, vision enclosure and robotic manipulator,
framed by 45 × 45 mm slotted aluminium extrusion.

Figure 1 illustrates an annotated diagram of the proposed
system.

The 460 × 430 × 420 mm (L ×W × H) vision enclosure
employs HD webcams, diffuse LED lighting and a photoelec-
tric through-beam sensor. The inside panels were matt white.
2 LED strips were mounted at the top of the enclosure, facing
downward. A plastic diffusor was added at the top of the
enclosure, below the lighting. Two identical Microsoft
Livecam Studio webcams were used for vision—offset by
180°. Specifications related to the components present in the
vision enclosure are tabulated in Table 1.

The 1600 × 210 × 60 mm conveyor system was driven by a
NEMA 23 stepper motor directly coupled to an aluminium roll-
er, fixed with bearings. The belt was matt white andmoved over
an aluminium base, with two plastic guard rails to guide objects
entering the vision system away from the edges. The conveyor
system rested on 4 load-cells used to compute the COG coordi-
nates of an object in vision space. Shielded cabling was used to
transmit data from the load-cell amplifiers to themicrocontroller.
Amplifiers were located directly under each load-cell to mini-
mise the length of wiring, thereby reducing the amount of volt-
age induced by the AC power system. This resulted in signifi-
cant noise reduction. The cabling used between amplifiers and
load-cells were also shielded. Table 2 provides information re-
garding the specific componentry used by the conveyor system.

The robotic manipulator used in this benchmark system is
part of the Dobot Magician pedagogical package [73]. The
system is relatively low-cost and provided ample features.
The Dobot Magician was rated to carry a maximum payload
of 500 g, while maintain a position repeatability of 0.2 mm up
to 320 mm from the base. Several end-effectors were included
in this package. A programmable I/O interface was present on
the forearm and base of the robot to encourage the develop-
ment of custom end-effectors and peripheral hardware. A
comprehensive specification list is tabulated in Table 3.

Power, communication, and control subsystems were
housed in a control box mounted to the apparatus. AC power
was converted to appropriate DC voltages. 24 V was used to
power the stepper motor driver and LEDs. 5 V was used to
power the microcontroller. Details regarding the componentry
within the control box are provided in Table 4.

The complete system occupies a cuboid of approximately
1600 × 700 × 470 mm. Dimensions and workspace are illus-
trated in Fig. 2b. The total cost of a single benchmarking
platform proposed in this paper is roughly $2300 USD. The
robotic manipulator accommodates gripping locations of up to
approximately 28 mm and objects weighting up to 500 g.
During development and experimentation, the manipulator
performed more than 10,000 grasp actions. Therefore, the
conveyor completed over 20,000 translation actions. No
breakages were encountered, and no significant wear is visi-
ble. No parts were replaced during this period, no screws were
tightened, and no cables were frayed.
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4 Benchmarking Protocol

4.1 Grasp Quality Scores

Many works throughout literature quantify the performance of
their method in terms of grasp success rate. To broaden the
scope of method assessment, this work proposes to measure
grasp-induced error through vision from a single top-down per-
spective. First, an image of the object is captured. The object is
then picked, lifted, and subsequently placed at the same loca-
tion. By solely supporting the object with the gripper, weight is
taken off the surface to remove any friction whichmay interfere
with the measurement. A final image is then captured of the
resultant. By comparing these two images, error introduced by
the gripping process itself can be observed.

Two criteria referred to as similarity metrics are computed:OS
and OE. The overlap score OS is described by the Jaccard

similarity index—introduced by Paul Jaccard in 1901 [78]. This
index is commonly used for object detection tasks that employ
ML [79, 80].OS is computed as the intersection over union (IoU):

OS ¼ jApre∩Apostj
Apre
�� ��þ Apost

�� ��− Apre∩Apost
�� �� ð1Þ

where Apre is the top-down area of the object prior to the grasp.
Apost is the area of the object after the grasp. Figure 3 illustrates
the area of intersection between pre-grasp and post-grasp im-
ages used to calculate OS in Eq. 1. This criterion measures
overlap, strongly responding to translation error—though rota-
tional misalignment is also captured. OS ranges from [0, 1]. As
the area of overlap tends toward 0%, this score also tends to-
ward 0. Conversely,OSwill register a value of 1 in the case of a
perfect grasp—where no difference between images is mea-
sured. The orientation error score OE compares the rotational
change of the object:

OE ¼ 1−
j θpost−θpre
� �j

180
ð2Þ

Fig. 2 a isometric view of the proposed benchmarking platform. b top and side views of the model, with measurements and approximate robot
workspace annotated

Table 1 Details of componentry utilised in the vision enclosure
subsystem

Component Details

Cameras Microsoft Livecam Studio [67]
• Sensor resolution: 1920×1080
• 30 FPS
• Manual override on image adjustments

LED strips RS PRO 136–3579 white LED strips [68]
• Colour temperature: 6500 K

Light diffusor Frosted acrylic sheet

Beam sensor PA18C [69]
• Response time: ≤ 1.0 ms
• Operating frequency: 500 Hz
• Range: 1 m

Table 2 Details of componentry utilised in the conveyor subsystem

Component Details

Load-cells TAL220 Parallel beam load-cell [70]
• Capacity: 10 kg
• Rated error: ± 0.05%

ADC amplifier HX711 ADC [71]
• Operating frequency (max): 80 Hz
• 24-bit, serial output

Stepper motor NEMA 23 SY57STH76-2804A [72]
• Holding torque: 19 kg-cm
• 200 steps per revolution

56    Page 4 of 16 J Intell Robot Syst (2021) 102: 56



where θpre is the major orientation of the object pre-grasp and
θpost is the major orientation of the object post-grasp. θpre and
θpost are measured between the horizontal axis of the image and
the major axis of the object before and after a grasp attempt,
respectively, and range from [0°, 180°]. This metric scores the
orientational change of an object introduced by the executed
pick-and-place action. It should be noted that it does not re-
spond to translational error—as illustrated in Fig. 4. OE ranges
from [0, 1]. The relationship between this score and the angular
difference between pre- and post-images is linear. As the angu-
lar change tends toward 180°,OE tends linearly toward 0. If no

orientation change is measured, OE produces a value of 1.
The proposed metrics may be of interest to other similar

works for improvement and as an objective baseline for com-
parison between methodologies—since they are not depen-
dent on the system or object test pool. OS and OE measure-
ment is relatively simple, requiring only a single top-down
RGB camera and basic DIP processing. Since OS and OE
are continuous, they can be used to train regression models
and assess grasp quality. Alternatively, classification models
can be trained via class-based thresholds.

4.2 Experimental Protocol

To objectively trial a methodology deployed on the discussed
apparatus, single objects are placed haphazardly on the con-
veyor belt furthest from the robotic manipulator. Detected
objects are translated to It x-axis centre utilising a beam sen-
sor. Once stationary, objects are analysed by the employed
grasp synthesis methodology. After finalising a grasp pose,
the object is translated into robot space—where it is subjected
to a manipulation procedure. Depending on the outcome, the
trial may be labelled as either pass or fail. Post-manipulation,

Table 3 Dobot Magician operational specifications. Source: Dobot
Magician User Guide V1.5.1 [74]

Component Details

Robot model Dobot Magician [73]

Max payload 500 g

Max reach 320 mm

Number axes 4

Repeatability 0.2 mm

End-effectors 3D printing kit
Laser engraver
Pen holder
Vacuum suction cup
2-fingered pneumatic gripper
• Range: 0–27.5 mm
• Maximum force: 8 N
• Payload: 500 g

Software Dobot Studio
Dobot Blocky
Dobot programming library

Exensions 10 × I/O interfaces
4 × Controllable 12 V power output
UART communication interface

Communications USB / Wi-Fi / Bluetooth

Table 4 Details of componentry within the control box

Component Details

AC-DC PSU (24 V) Mean Well MDR-60-24 [75]
• Input: 100–240 VAC, 1.8A
• Output: 24 V, 2.5 A

AC-DC PSU (5 V) Chinfa AMR1–05 [76]
• Input: 90–264 VAC
• Output: 5 V, 1.5 A

Stepper motor driver Leadshine M542 [77]
• Input: 20–50 VDC
• Output: 4.2 A per phase

Microcontroller Arduino Uno REV3
• Input: 5–20 VDC
• Digital I/O: 14
• Analog I/O: 6
• Clock speed: 16 MHz

Fig. 3 Illustration of pre-grasp object area (Apre), post-grasp object area
(Apost) and the area of intersection between pre-grasp and post-grasp
images (Apre∩Apost). Two examples of grasp outcome are shown

Fig. 4 Illustration of pre-grasp object angle (θpre) and post-grasp object
angle (θpost), relative to the horizontal axis of the image (horizontal). Two
examples of grasp outcome are shown
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the object is translated back into vision space to assess the
quality of the performed grasp in terms of OS and OE. The
above described process constitutes one trial.

In the manipulation procedure, autonomously computed
grasp poses are physically attempted by the robotic manipu-
lator. The object is grasped and lifted vertically to a height of
15 cm. The object is then suspended for 10 s, after which it is
placed back on the conveyor platform at the initial grasp lo-
cation. For a grasp trial to be labelled as pass or 1, the object
must not fall at any stage of the trial. Moreover, objects must
be solely supported by the gripper—such that no other part of
the object touches any other hardware. Any trial which does
not conform to the outlined criteria is labelled as fail, or 0. The
derivation of a pass label definition stems from many works
throughout literature. Saxena et al. for instance [65, 66], con-
sider a trial successful if an object can be lifted to a height of
1 ft and held stationary for 30 s. Similarly, Pinto and Gupta
[12], Johns, Leutenegger and Davison [63] and Kopicki et al.
[64] consider the same standard, but substitute a height of
20 cm. Many other works also consider a grasp attempt as
successful if the trialled object is lifted above some pre-
defined height for some time interval [29, 56, 60, 61].

Fig. 5 Various prototype-related
images. a frontal view of the
complete apparatus. b Dobot
Magician manipulator stacking
calibration discs. c Dobot
Magician picking an object. d
internal view showing cameras
and beam sensor. e top down
view of the apparatus

Fig. 6 Diagram illustrating the conceptual basis and relative positions of
the top-view grasping rectangle representation and the side-view grasping
rectangle representation

Table 5 Error associated with the conveyor system, found from 50
measurements

Component Associated error

Conveyor belt translational error (pix) ± 3.4 pixels

Conveyor belt translational error (mm) ± 0.5 mm

56    Page 6 of 16 J Intell Robot Syst (2021) 102: 56



5 Example Application

5.1 Prototype System

An experimental prototype was constructed to physically val-
idate the proposed benchmarking platform. A grasp synthesis
methodology presented in previous works [8, 9] was deployed
and trialled using the test system. Various images of the pro-
totype system are illustrated in Fig. 5.

The trialled synthesis methodology employed a 3-stage,
CNN-based structure to generate numerous candidate
grasps—of which a final grasp was selected for implementa-
tion. A 5-dimenstional, rectangular representation was used to
characterise a grasp pose within top-view camera space It:

poset ¼ xt; yt; θt; ht;wtf g∈I t ð3Þ
where xt, yt refer to the gripper’s centre position in Cartesian
coordinates within It. Rotation of the rectangle is defined by
angle θt about centre point xt, yt, with respect to the horizontal
axis Itx. Physically, the 2 fingers of the gripper close perpen-
dicular to θt. ht relates to the physical width of the gripper in
pixels and wt refers to the available distance between the two
parallel plates of the gripper at maximum extension, also in
pixels. Note that ht and wt are fixed, as the dimensions of the

gripper from perspective It do not change. In addition, side-
view pose component of a grasp, poses, is defined as:

poses ¼ xs; ys; hs;wsf g∈I s ð4Þ
where xs, ys refer to the centre position of the ideal contact area
of the gripper pads, within side-view vision space Is. hs and ws

are the height and width of this contact area in pixels, respec-
tively. Figure 6 graphically depicts the relative grasping poses.

5.2 Calibration, Coordinate Frame Consolidation and
Design Considerations

The conveyor belt is actuated in one axis only. The x-axis of
the top camera and conveyor coordinate frame act in the same
plane—graphically depicted in Fig. 7a. The conveyor coordi-
nate system is expressed in terms of motor steps. One step was
found to correspond to approximately 0.096 mm, or 0.64
pixels. The only function of the conveyor is to move objects
in and out of coordinate frames. Initially, objects placed on the
conveyor belt are translated to an approximate x-axis mid
position within top-view image space by utilising the beam
sensor. At this stage, objects are discoverable through vision
and grasp configurations may be computed by the deployed
grasp synthesis methodology. Top-view image space It and

Fig. 7 Graphical illustration of
the load-cell arrangement and
related coordinate frames

Fig. 8 a visualisation of various coordinate frames associated with the
proposed benchmark system. b illustration of the function of the conveyor
system. Object are placed haphazardly at one end of the prototype, where

they may be moved into vicinity of the desired coordinate frame by the
conveyor. Red, green, and blue coordinate lines express the x, y, and z-
axes, respectively

Page 7 of 16     56J Intell Robot Syst (2021) 102: 56



robot workspace G may be treated as though they occupy the
same space by translating the object a set amount between
frames. Effectively, conveyor space is ignored and treated as
an intermediary consolidation step prior to an interaction.
Figure 8b illustrates the function of the conveyor system.
Note that the intermediate conveyor translate step introduces
a fixed error, shown in Table 5.

Each load-cell unit was calibrated individually. Note
that a load-cell unit consists of an HX711 amplifier and
TAL220 load-cell pairing. Calibration was specific to
each unit and varied slightly between units. 50 initial
measurements were taken with no weight present to tare
the unit. A calibration tool was bolted to the load-cell and
used for calibration. The calibration tool and bolts
weighed 1079.60 g. Measurement accuracy was found to
be consistent within ± 0.1 g of the calibration weight for
individual load-cell units. A 133.63 g calibration disc was
used to measure the combined load-cell error. Errors as-
sociated with this subsystem are tabulated in Table 6.

Because an object is supported by a fixed number of load-
cells—and the total weight is known—the ratio of weight
distribution between axes can be calculated. This ratio may
be used in conjunction with known distances between load-
cells to compute a relative COG position within vision. The
load-cell coordinate frame LC is quantified by 4 sensitive
components—the conveyor platform rests on these compo-
nents. Load-cell space LC and the top-view camera frame It
share two axes—Fig. 8a and Fig. 8.

To formalise load-cell coordinate space in terms of
vision x- and y-axes, the output of each component is
measured. Ratio coefficients are used to estimate the
COG position of an object xtCOG½ ; ytCOG � in image space

It directly:

xtCOG ¼ acoeffx−b ð5Þ
ytCOG ¼ ccoeffy−d ð6Þ

where a, b, c and d are found through experimentation. Ratio
coefficients are defined by:

coeffx ¼ weightRF þ weightRR
weighttotal

ð7Þ

coeffy ¼ weightRF þ weightLF
weighttotal

ð8Þ

where weighttotal is computed as the sum of all weight mea-
surement inputs. A 133.63 g calibration disc was used to

Table 6 Error and calibration tool weights associated with the load-cell-
conveyor subsystem

Component Associated error

Combined load-cell error ± 0.10 g

Calibration tool weight 1079.60 g ± 0.01 g

Calibration disc weight 133.63 g ± 0.01 g

Fig. 9 Relationship between top-view image x-axis and load-cell x-
coefficient

Fig. 10 Relationship between top-view image y-axis and load-cell y-
coefficient
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measure the response of coeffx and coeffy as the disc was
iterate across It[x, y]. Disc centre location was found through
vision. The resulting relationships between It[x] and coeffx and
It[y] and coeffy are graphed in Figs. 9 and 10, respectively.

The error associated with the COG measurement subsys-
tem is shown in Table 7.

Due to inaccuracies in construction, the conveyor platform
surface was not perfectly perpendicular with the robotic ma-
nipulator z-plane. This offset is illustrated in Fig. 10.

To compensate for this error, bed level was modelled in terms
of robot z-axis values. This was achieved by sampling end-
effector z-axis positions of the conveyor surface along the x-
axis with y-axis coordinates set to 0. A second-degree polyno-
mial relationshipwas found to relate the true conveyor bed height
with the robot x-axis—illustrated in Figs. 11 and 12. This model
was used to mitigate the slight error between the robot z-plane
and conveyor level surface, improving manipulation accuracy.

5 calibration discs with rubber bottoms were used to tune
the vision system, find threshold values, and consolidate co-
ordinate systems—shown in Fig. 5a. Discs were matt black
with 20 mm diameters. An approximate pixel to mm conver-
sion was found by calculating the disc area in mm:

Adiscmm ¼ πD2

4
ð9Þ

where Adiscmm is the calculated area of a calibration disc from
a top-down perspective in squared millimetres. A conversion
may then be established through relationship:

mm per pixel ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Adiscmm

Adiscpix

s
ð10Þ

where Adiscpix is the area of the disc measured by the vision
system, in pixels. This calculation provides an approximate
conversion frommm to pixel. Note that this conversion is only
an estimate and assumes a linear relationship between pixel
and mm. Due to minor lens distortion, this value may vary
slightly between x-axis, y-axis, and distance from the camera.

5 calibration discs were used to consolidate the G x ; y½ � com-
ponents of the robot coordinate frame with the top-view cam-
era frame It[x, y]. The calibration pattern is shown in Fig. 13.

Disc centre positions were found through vision. Figs. 14
and 15 graphically illustrate the relationship between It[x] and
G y½ � and It[y] and G x½ �, respectively.

Fig. 11 Illustration of
misalignment due to inaccuracies
in construction. Note this offset
has been exaggerated for clarity

Fig. 12 Measured conveyor level height in terms of robot z-value along
the robot x-axis. This relationship was used to mitigate misalignment
errors due to inaccuracies in construction

Table 7 Error associated with the COG position estimate, taken from
20 measurements using the 133.63 g calibration disc

Component Associated error

COG position error @ 133.63 g (pixels) ± 4.1 pixels

COG position error @ 133.63 g (mm) ± 0.6 mm
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Linear models were fit to the resulting data. These relation-

ships are used to estimate robot coordinatesG x ; y½ �, given top-
view camera coordinates It[x, y]. Therefore, grasps generated
in vision space by a grasp synthesis methodology may be
converted to robot space for implementation via the following
transform:

x ¼ a I t y½ � þ b ð11Þ
y ¼ cI t x½ �−d ð12Þ
θ ¼ θt þ e ð13Þ

where a, b, c, d and e are found through experimentation.
Robot end-effector angle θ and top-view grasping rectangle
angle θt are related by a fixed offset. No significant rotational
offset was found between coordinate frames. As such, simple
linear relationships could be applied accurately, as opposed to
computationally expensive rotation matrices that account for
rotational offsets between coordinate systems. The error asso-
ciated with the transformation between vision and robot
frames is shown in Table 8.

Photoelectric diffuse-reflective sensors situated at the en-
trance to the vision enclosure were used to translate objects to
It x-axis centre. As the assessed object is stepped toward the

Fig. 13 Calibration pattern used
to consolidate robot and vision
coordinate frames. Vision
coordinates are annotated

Fig. 14 Relationship between robot y-axis and top-view vision x-axis Fig. 15 Relationship between robot x-axis and top-view vision y-axis
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vision system, the beam is interrupted. This initial object-
beam incidence step location is denoted as Ni. As the object
continues past the beam sensor, the beam can resume uninter-
rupted. This change in signal is transmitted to the microcon-
troller, which notes the associated step position. The step lo-
cation at which the beam resumes is denoted as Ns. By record-
ing the step count atNi and Ns, the length of the object may be
approximated in steps asNs −Ni. The distance from the end of
the beam sensor to It x-axis centre Nmid is known a priori.
Therefore, the steps required to translate the object to It centre
is computed as:

Nstep ¼ Nmid−
Ns−Ni

2
ð14Þ

It centre is denoted as I t W
2 ;

H
2

� �
, where W and H are the

width and height of image space, respectively. Note that the
conveyor only translates objects within the It x-axis. Object
length approximated in the above manner does not necessarily
relate to a true dimension of the object. This length simply
refers to the number of beam steps interrupted by the object.
Consequently, object orientation does not affect the accuracy
of centring objects near I t W

2

� �
. This process is graphically

represented in Fig. 16.
Due to noise present in the vision system, conveyor, and

robotic manipulator, OS and OE assessments were prone to
minor errors in measurement. Table 9 lists the amount of error
associated with each respective component.

5.3 Data Collection

The grasping pipeline employed to evaluate the proposed
benchmarking platform used a CNN to detect grasps through
vision. The dataset used to train this network was composed of
144,000 hand-annotated samples from 15 unique objects.
47,000 samples related to a positive class—defined to reflect
grasping areas that likely facilitate successful grasps when
implemented. The remaining samples pertain to areas that
may result in unsuccessful grasps when implemented. 70%
of this dataset was used for training/validation and 30% was
used for testing. The resulting network correctly classified
99.5% of the training set and 99.6% of the validation set.
Time to classify was 0.31 ms using an NVIDIA Quadro
K2200 GPU.

The selection components of the employed pipeline were
trained using real data from actual grasps—recorded using the
prototype benchmark system. 2000 grasp trials were conduct-
ed by randomly selecting a sample generated by the grasp

Table 8 Error associated with the vision-robot transform, found from
50 measurements

Component Associated error

Robot-vision transformation error (pix) ± 1.70 pixels

Robot-vision transformation error (mm) ± 0.24 mm

a

b

c

Fig. 16 Illustration of the beam sensor process used to measure object
length. a depiction of object heading toward the vision frame. b depiction
of initial object-beam incidence. c depiction of beam resuming as object
moves past sensor. By recording the step locations of change in beam
signal, object length may be estimated
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detection CNN. Note that many candidate grasp poses were
generated by the detection network, but only one candidate
was attempted per object instance. A trial consisted of
attempting one grasp pose per object and recording outcome
in terms of pass/fail label, OS and OE—as described in
Section 4.B. This dataset was used to train various regression
models to predict the outcome of a grasp, given various grasp-
related scores. The predicted value was used to select a grasp
for implementation from the pool of candidates. Refer to our
most recent publication for more information regarding the
training methodology, datasets, network architectures, and de-
tails related to the object test pool used in this study [8].

5.4 Testing and Results

To evaluate the proposed benchmarking system and associat-
ed grasp quality scores, four separate grasping approaches
were trialled. Table 10 details the various criteria employed
during experimentation.

Each approach was trialled 10 times per 100 unique ob-
jects, for a total of 1000 physical grasp attempts per criterion.
4000 trials were conducted in total. 15 objects were used to
generate training data, while the remaining 85 objects were
used for testing purposes only. The object pool consisted of
objects such a screwdriver, a pen, several nuts and bolts, a
VGA connector, several small toys, several pneumatic com-
ponents, a hex key, a USB pen drive, and many small com-
ponents [8]. This pool was split into three series, labelled
known, unknown, and miscellaneous. In addition, objects
were subcategories according to utility: common household
objects, tools, and components. The known set consisted of

the 15 objects seen during training. The unknown set
contained 45 objects and the miscellaneous set contained the
remaining 40.

The results of the 4000 trials are illustrated in Fig. 17.
Randomly attempting a grasp classified by the detection net-
work resulted in an aggregate grasp rate of 94.0%. Grasping
based on the softmax output of this network improved grasp
rates to 96.4%. Implementing a grasp based on a network
trained to optimise for grasp success, resulted in a grasp rate
of 96.3%. Finally, selecting for the proposed metrics, i.e.,
highest combined OSpred, OEpred, improved grasp rates to
99.0%. From the trials, it was clear that the quality of a grasp
in terms of resultant OS and OE varied by grasping approach.
The average OS and OE scores from the 1000 trials by the
random approach were 0.53 and 0.94, respectively. Highest
Ksf improved OS and OE performance to 0.56 and 0.96, re-
spectively. passpred improved the resultant OS to 0.57 but
yielded a lower average OE score of 0.95. Grasping based
on the proposed similarity scores by predicting OSpred and
OEpred resulted in an average OS score of 0.63 and OE score
of 0.98. Fig. 17b illustrates the resultant OS scores by selec-
tion criteria and object series. For the resultant OE, refer to
Fig. 17c.

Analysis of the 4000 trials revealed a potential relationship
between the physicallymeasured similarity scoresOS,OE and
the pass/fail classification of grasp outcome. The average OS
andOE scores for a pass outcome were 0.59 and 0.97, respec-
tively. The average OS and OE scores for a fail outcome were
0.10 and 0.69, respectively. Refer to Figs. 18 and 19 for more
details.

Some potential system limitations were observed during
testing. The orientation score OE is computed by comparing
the pre-grasp angle θpre, with the post-grasp angle θpost. The
derivation of these angles is based on the major axis of an
ellipse fitted to the object. Circular objects do not have a major
orientation. Therefore, OE cannot be computed for such ob-
jects. In practice, the sensitivity of the vision system captured
and responded to irregularities within seemingly circular ob-
jects. Although this issue was not found relevant in this study,
it may be problematic in some other cases.

Table 9 Error associated with OS and OE, found from 20
measurements per type of error for a total of 120 samples

Vision Vision + conveyor Vision + conveyor + robot

OS ± 0.0012 ± 0.0204 ± 0.0545

OE ± 0.0001 ± 0.0007 ± 0.0033

Table 10 Description of the four grasping approaches employed during trials

Approach Description

Random The grasp to be implementedG is randomly selected from candidate graspmatrix g—generated by grasp detection network.

Highest KIRGW The highestKIRGW scoring sample from candidate grasp matrix g is selected for implementation. KIRGW denotes the softmax
function output of the grasp detection network for the positive class.

Highest passpred Implemented graspsG are selected from grasp matrix g by a network trained to predict the probability of a pass label based
on the 10 input scores. The candidate with the highest probability of resulting in a pass label is selected for
implementation.

Highest combined OSpred,
OEpred

A grasp G is selected from matrix g by predicting the resultant OS and OE scores given 10 inputs. The candidate with the
highest combined predicted scores, OSpred and OEpred, is selected for implementation.
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6 Conclusion

A platform was proposed in this paper to benchmark vision-
based grasp synthesis methodologies. In addition, two grasp
quality scores were explored to compliment the traditional
grasp rate metric used by many works to assess their method-
ology. A prototype system was constructed. 4000 trials were
conducted to evaluate four separate grasp approaches. It was
shown that the benchmarking platform was robust to many

trials and capable of serving as a platform for the deployment
of various grasp approaches. The results revealed that the
proposed scores provided useful insights related to the tested
methodology. Moreover, the metrics comprehensively quan-
tified the performance of a methodology and provided a fair
baseline for comparison between differing approaches.

Exhaustive design details, source code, datasets, trained
networks, results, and reference material is available online
at the link given in Section 3.

Fig. 17 Performance of various grasp approaches by object series and category from 4000 trials. a performance in terms of grasp rate. b performance in
terms of the proposed overlap score. c performance in terms of the proposed orientational score

Fig. 18 Performance in terms of the proposed overlap score by pass/fail
label

Fig. 19 Performance in terms of the proposed orientational score by pass/
fail label
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