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Abstract
Intelligent unmanned robotic systems have recently gained popularity due to their ability to potentially explore inaccessible
and dynamically changing environments. In these environments, these vehicles might be subjected to unique types of
disturbances that may lead to mission performance degradation. This paper describes the design, development and proof
of concept of a novel adaptive control that combines concepts from model reference and feedback linearization and it is
augmented via nonlinear bounded functions typical in immune system responses of living organisms. Proof of stability of
the proposed control law using Circle Criterion is presented. Numerical hardware in the loop simulations along with actual
implementation are performed using a gimbaled mini-free flyer vehicle that uses thrust vectoring control actuation. A set
of performance index metrics are used to quantify and assess the performance of the adaptive control system which shows
stabilizing capabilities in the presence of system disturbances and uncertainties.

Keywords Adaptive control · Artificial intelligence · Aerospace vehicles

1 Introduction

The increase in the operational capabilities of robotic sys-
tems for space exploration missions demands a significant
improvement in their level of reliability, effectiveness, and
efficiency. Advanced autonomous space systems require
advanced intelligent systems with the ability to perform
complex information processing, reconfiguration and deci-
sion making to optimize performance within complex,
unstructured and dynamic, sometimes unknown, operating
environments. These technologies are expected to increase
autonomy by maintaining control of the mobile robots while
rejecting undesired conditions caused by unexpected uncer-
tainties and disturbances. Therefore, exploration of celestial
bodies imposes potential challenges that require the devel-
opment of new technologies.
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Current efforts by the authors have been focused on
developing technologies to enhance space exploration mis-
sions through the design of novel flying robotic vehicles [1–
4]. These vehicles, known as Extreme Access Flyers (EAF),
are powered by cold-gas jets with mobility and auton-
omy capabilities. They feature Thrust Vectoring Control
(TVC) actuation to increase maneuverability with limited
power consumption [5]. Early versions of these EAF proto-
types were equipped with propellers and brushless motors,
while a newer version, named Gimbaled Mini-Free Flyer
(GMFF), features ducted fans with thrust vectoring capabil-
ities (Fig. 1 left). These prototypes were developed to sup-
port validation and verification of intelligent control algo-
rithms for the next generation of space exploration robotic
systems. One example is the extreme-access spacecraft
flyer system that is powered with cold gas and uses thrust
vectoring actuation as shown in Fig. 1-right [6].

During space exploration tasks EAFs might be exposed
to uncertainties and disturbances that could compromise
the success of the mission. Therefore, disturbance rejec-
tion is still a challenge that must be addressed to increase
autonomy and operation performance. Of particular atten-
tion is the development of technologies that can provide
timely compensation to system upset conditions to main-
tain system stability [7–10]. Several adaptive control tech-
niques have widely investigated to resolve the problem of
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Fig. 1 GMFF Testbed (Left),
EASY spacecraft prototype
(Right)

disturbance rejection in aerospace systems. Although still
a matter of extensive research, adaptive control theory has
demonstrated to have the potential to increase autonomy,
resiliency and versatility of the system while providing a
robust solution when the system diverges outside bounds of
nominal design.

Fault tolerant adaptive control techniques inspired by
bio-mechanisms has recently been an active area of research.
These techniques have shown to address the multidimen-
sionality problem typical of nonlinear aerospace systems
when detecting and accommodating to sub-system mal-
functions or upset conditions [11–14]. Addressing adverse
dynamics and mitigating their effects using intelligent con-
trol laws could represent a key aspect in the development
of next generation of aerospace vehicles and its safety
operation.

Algorithms inspired by biological mechanisms represent
alternative solutions in the design of adaptive systems. In
particular, Artificial Immune System (AIS) has been known
to have special characteristics, that combined with other
machine learning techniques, can provide a framework and
the basis for the development of intelligent algorithms with
self-adaptiveness, strong robustness and cognitive capabil-
ities [15, 16]. Such characteristics have provided the basis
for the emergence of this new computational paradigm in
artificial intelligence. Different mechanisms of immune sys-
tem components are the source of inspiration for techniques
in a wide set of engineering applications including data
mining [17], distributed and cooperative control [18–21],
parameter optimization [22, 23], fault diagnosis and health
management [24, 25], control scheduling [26, 27], path
planning [28, 29], computer network protection [30], and
adaptive control [31]. In recent years, although new models
and applications are currently being developed and existing
methods are improved continuously, the field is still rela-
tively young, not well defined and no systematic theoretical
background yet supports the AIS.

The main contribution of the work presented in this
paper is the design, implementation and theoretical stability
analysis of a bio-inspired adaptive control architecture for

GMFF attitude control. The proposed control is primarily
based on a hybrid approach that uses feedback linearization
as a first layer and it is augmented by a novel Model-
Reference Adaptive Immune System (MRAIS) at a higher
level for disturbance rejection. The first layer guarantees
that the closed loop response behaves as close as possible
to a desired system dynamics while the higher adaptive
layer features a set of nonlinear functions that describe
the response of the immune system of living organisms to
external attacks. Successful implementation of the proposed
control laws, both in hardware in the loop and on a real
prototype, demonstrates the effectiveness of the adaptive
architecture to compensating bounded disturbances such as
thruster failures and variation of vehicle’s inertias.

The paper is organized as follows. Section 2 includes
an introduction to the GMFF vehicle dynamic model
followed by Section 3 that describes the baseline control
law design. Section 4 includes derivation of the proposed
adaptive control augmentation and provides a theoretical
analysis of the stability of the system. Section 5 discusses
numerical simulation results and describe the performance
metrics used to assess the capabilities of the control laws.
Description of the experimental setup and implementation
results are presented in Section 6. Finally, some conclusions
are specified in Section 7, followed by acknowledgments
and a list of references.

2 Vehicle and Thrust Vectoring Dynamics

A free body diagram of the GMFF is shown in Fig. 2.
The GMFF features four ducted fans [32, 33] where each
thruster has the capability to actuate with a tilting angle
defined by γ . Assuming rigid body and neglecting the
aerodynamics forces, Eqs. 1 and 2 represent the forces
and moments acting on the vehicle in body-fixed reference
frame.

mV̇b + ω × mVb = FT + Fg (1)

J ω̇ + ω × Jω = MT (2)
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Fig. 2 GMFF’s Free Body Diagram, isometric view (left) and top view (right)

where FT ∈ �3 and MT ∈ �3 represent the external
propulsion forces and moments, respectively. Fg ∈ �3 is the
gravitational force acting at the center of mass. Vb ∈ �3 is
the velocity, m ∈ � is the mass of the vehicle, and ω ∈ �3

is the angular velocity. J ∈ �3×3 is the inertia matrix of the
vehicle.

Furthermore, based on Fig. 2, the external propulsion
forces can be modeled as:

F1T =
⎡
⎣

T1sinγ sinμ
T1sinγ cosμ
−T1cosγ

⎤
⎦ , F2T =

⎡
⎣

−T2sinγ sin(π/2−μ)

T2sinγ cos(π/2 − μ)

−T2cosγ

⎤
⎦

F3T =
⎡
⎣

−T3sinγ sinμ
−T3sinγ cosμ

−T3cosγ

⎤
⎦

F4T =
⎡
⎣

T4sinγ sin(π/2−μ)

−T4sinγ cos(π/2 − μ)

−T4cosγ

⎤
⎦ (3)

where [T1, T2, T3, T4] and [τ1, τ2, τ3, τ4] represent the
thrust and torque produced by each actuator and μ

represents the angle with respect to the y-axis when a thrust
tilting angle γ is applied. The total moments are calculated
as:
∑

MT = r1 × F1b + r2 × F2b + r3 × F3b + r4
×F4b + τ1 + τ2 + τ3 + τ4 (4)

with

r1 =
⎡
⎣

L1x

−L1y

L1z

⎤
⎦ , r2 =

⎡
⎣

L2x

L2y

L2z

⎤
⎦ , r3 =

⎡
⎣

−L3x

L3y

L3z

⎤
⎦ ,

r4 =
⎡
⎣

−L4x

−L4y

L4z

⎤
⎦ (5)

Lx , Ly , and Lz are the distances of each actuator to the

center of gravity (CG) and L =
√

L2
x + L2

y + L2
z . In this

case Lx = L1x = L2x = L3x = L4x and Ly = L1y =
L2y = L3y = L4y . Additionally, it is valid to assume that
the vertical CG distance with respect to the xy plane is small
so Lz = L1z = L2z = L3z = L4z = 0. The resultant sum
of moments at the CG will be:

∑
MT =

⎡
⎣

Lycosγ [(T1 + T4) − (T2 + T3)]
Lxcosγ [(T1 + T2) − (T3 + T4)]

Lsinγ (T1+T2+T3+T4)+τ1+τ2+τ3+τ4

⎤
⎦

=
⎡
⎣

Mxd

Myd

Mzd

⎤
⎦ (6)

and the total sum of forces yields to:

∑
FT =

⎡
⎣

sinγ (T1sinμ−T2cosμ−T3sinμ+T4cosμ)

sinγ (T1cosμ+T2sinμ−T3cosμ−T4sinμ)

cosγ (−T1 − T2 − T3 − T4)

⎤
⎦

=
⎡
⎣

Fxd

Fyd

Fzd

⎤
⎦ (7)

The inertia, mass and geometry characteristics of the
GMFF are listed in Table 1.

Table 1 Inertial and geometry characteristics of GMFF

Inertial Parameters Distance from Motor to CG

Jxx (Kg-m2) 0.012 Lx (m) 0.100

Jyy (Kg-m2) 0.012 Ly (m) 0.100

Jzz(Kg-m2) 0.017 Lz (m) 0.019

m (Kg) 2.04
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3 Control System Architecture

A baseline controller is designed following a feedback
linearization technique, also knwon as nonlinear dynamic
inversion (NLDI), as a first layer in the proposed control
architecture [34–36]. Since exact feedback linearization
is not usually achieved, specially in real applications, a
second layer includes an adaptive augmentation designed
to eliminate residual nonlinearities dynamics that might
still be present in the system. This augmentation relies
on a model reference architecture that is inspired by
the immune response mechanism to internal and external
attacks. The advantage of using this bio-inspired approach
is the introduction of a distributed self-adaptive system that
allows fast response to hostile invasions (e.g. disturbances
or failures) [15, 16].

3.1 Baseline Controller

A Lie-Derivative based single step inversion approach is
used as a baseline controller [36]. Hence, it is convenient
to express the kinematics and rotational dynamics in state
space form:

ẋ =
[

Θ̇

ω̇

]
=
[

g(Θ)ω

fω(ω) + J−1u(t)

]
(8)

where ω = [
ωx, ωy, ωz

]T is the angular rates vector, Θ =[
φ θ ψ

]T
is the attitude angles vector and u(t) = M̄T (t) is

the vector of control input moments. Defining the functions
g(Θ) and fω(ω) based on Euler-kinematics and rotational
dynamics we obtain:

g(Θ) =
⎡
⎣
1 sinφ tan θ cosφ tan θ

0 cosφ − sinφ

0 sinφ sec θ cosφ sec θ

⎤
⎦ (9)

fω(ω) = −J−1[−ω × (Jω)] (10)

Equation 8 can be written as an affine nonlinear system:

ẋ = F(x) + G(x)u(t) =
[
g(Θ)ω

fω(ω)

]
+
[ [0]3x3

J−1

]
u(t) (11)

where x = [ φ θ ψ ωx ωy ωz ]T and F(x) ∈ �6x1,
G(x) ∈ �6x3. Assuming full observability of the output
vector defined in Eq. 12 and taking the derivative of y until
u(t) appears explicitly, one can apply direct inversion to
obtain an expression of the control laws.

y = h(x) = Θ = [ φ θ ψ
]T

(12)

Taking the derivative of the output with respect to time,
we obtain:

ẏ = d

dt
h(x) = ∂h(x)

∂x
ẋ = ∂h(x)

∂x
[F(x) + G(x)u(t)] (13)

ẏ = Θ̇ =
⎡
⎣

φ̇

θ̇

ψ̇

⎤
⎦ = g (�) ω

=
⎡
⎣

ωx + ωy sinφ tan θ + ωz cosφ tan θ

ωy cosφ − ωz sinφ

ωy sinφ sec θ + ωz cosφ sec θ

⎤
⎦ (14)

Taking one more differentiation:

ÿ = d2h(x)
dt2

= dẏ
dt

= ∂ ẏ
∂x

ẋ = ∂ ẏ
∂x

[F(x) + G(x)u(t)] (15)

ÿ =
⎡
⎣

φ̈

θ̈

ψ̈

⎤
⎦ =

⎡
⎣

θ̇ φ̇ tan θ + θ̇ ψ̇ sec θ

−ψ̇φ̇ cos θ

θ̇ φ̇ sec θ + θ̇ ψ̇ tan θ

⎤
⎦

︸ ︷︷ ︸
Λ(Θ,Θ̇)

+
⎡
⎣
1 sinφ tan θ cosφ tan θ

0 cosφ − sinφ

0 sinφ sec θ cosφ sec θ

⎤
⎦

︸ ︷︷ ︸
g(Θ)

⎡
⎣

ω̇x

ω̇y

ω̇z

⎤
⎦ =

= Λ(Θ, Θ̇) + g(Θ)ω̇ (16)

Given that Eq. 14 contains the definition of the Euler
angle rates as a function of the states (Euler angles and
angular rates), this equation can be plugged into Eq. 15 so
that the function Λ can be re-written as function of the state
vector x:

ÿ = Λ(x) + g(x)ω̇ (17)

Moreover, replacing (10) into (17) an expression with
explicit input u(t) is obtained:

ÿ = Λ(x) + g(x)
{
J−1[−ω × (Jω) + u(t)]

}
(18)

Finally, after inverting the dynamics in Eq. 17, the
following control law is obtained:

u(t) = ω × (Jω) + J
{
g(x)−1[V(y, ẏ) − Λ(x)]

}
(19)

Applying (19) to the system in Eq. 18 will render the
following closed loop linear form:

ÿ = V(y, ẏ) = [ uvφ uvθ uvψ

]T
(20)

where V(y, ẏ) ∈ �3x1 is a pseudo controller that can
be designed to stabilize the closed loop dynamics. The
following linear control was chosen as the pseudo controller
baseline architecture:

φ̈ = uvφ(t) = kφkDφ(φref − φ) − kDφφ̇

θ̈ = uvθ (t) = kθkDθ (θref − θ) − kDθ θ̇

ψ̈ = uvψ(t) = kψkDψ(ψref − ψ) − kDψψ̇

(21)

The pseudo control gains in Eq. 21 can be calculated using
Eq. 22 based on desired dynamic response requirements.
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The gains are obtained by comparing the closed loop system
with a second order system response.
⎧⎨
⎩

kDφ = 2ξφωnφ, kpφ = ωnφ

/
2ξφ

kDθ = 2ξθωnθ , kpθ = ωnθ

/
2ξθ

kDψ = 2ξψωnψ, kpψ = ωnψ

/
2ξψ

(22)

4 Artificial Immune System based Adaptive
Augmentation

Immune system is a complex evolutionary network that
compiles several biological mechanisms to protect living
organism from hazardous threats. One of the key charac-
teristics is the capability to self-regulate and adapt to new
environments through the process of learning from previ-
ous encounters. As the immune system gets more robust, it
produces the correct amount of specialized cells to counter-
measures new or sometimes unknown attacks.

The immune system of living organisms is primarily com-
prised of two major subsystems, bone marrow and thy-
mus gland. Specialized cells such T-cells and B-cells are
produced from these subsystems following a regulatory
dynamic process. B-cells are produced in the bone marrow
and are the primarily defense against intruders by produc-
ing antibodies. T-cells, produced in the thymus gland, are
of two types: helper Th-cells and suppressing Ts-cells. They
control and regulate the amount of antibodies present in the
bloodstream and guarantee a balance between antibodies
and antigens. When an infection is detected, Th-cells stimu-
late the generation of antibodies until the threat is reduced.
Once the infection is controlled, Ts-cells inhibit the antibody
production and therefore a balance is eventually achieved.

Although immune system mechanisms are complex and
difficult to characterize, several simpler mathematical mod-
els have been proposed [16, 37–39]. Particularly, a model
that represents the interaction between B-cells and T-
cells can be derived following the difference between the
amount of Th-cells and Ts-cells [39–41]. If the antigens
total amount at a given instant time k is defined as λ(k),
then the response of the Th-cells can be represented as
Th(k) = c1λ(k) where c1 is a stimulation constant. Simi-
larly, the production of suppressing Ts-cells can be defined
as Ts(k) = c2f (ΔB(k))λ(k) where c2 is a suppression con-
stant, ΔB(k)) is the change of concentration of B-cells, and
f (ΔB(k)) is a nonlinear function that relates this change
with the amount of Ts-cells. Using these definitions, one can
obtain a more general equation that represent these immune
interactions:

B(k) = K[1 − ηf (Δu(k))]λ(k) (23)

where K is a reaction rate and η = c2/c1 is a factor that
characterizes the dynamic interaction between the Th-cells

and Ts-cells. In general, the stability will depend on the
parameter η and the nonlinear function f (Δu(k)). Notice
that Eq. 23 represents a feedback mechanism where the
amount of B-cells (input u(k) in the control sense) regulates
and minimize the total amount of antigents (error e(k) in the
controls sense) present in the the system.

Equation 23 represents a specific case of a more general
control structure that models the interaction between T-cells
and B-cells as shown in Fig. 3.

where function Ph(.) characterizes the stimulation of
antibodies production as a function of error. Function fh(.)
represents the dynamic interaction between helper Th cells
and antigens, and function fs(.) describes the interaction
of the suppressing Ts cells as a function of amount of
antibodies present in the system [16].

4.1 Immune Adaptive Augmentation

This paper presents an immune adaptive configuration
different from the ones developed in [12, 16, 40]. In our
case, a model reference control architecture is used such
the immune functions described in [12, 16, 40] are applied
to the Δux(t) (differences in inputs) between the model
reference plant and the real plant. The control architecture,
named Model Reference based Adaptive Immune System
(MRAIS), is also designed to add bounded adaptation such
that the absolute stability theorems can be guaranteed for
the tracking error dynamics of the closed loop system [42].

Following the analysis in Section 3.1, let’s first consider
one of the channels in the control design, e.g. roll control.
Similarly, this analysis will hold for the other two decoupled
attitude channels (pitch and yaw). The goal is that the
closed loop dynamics follow the model reference plant with
dynamics represented by:

φ̈m = uxm(t) = kDφkφ(φref − φm) − kDφφ̇m (24)

We can augment the pseudo control law described in
Eq. 21 by adding a dynamic adaptation term uADx(t) as
follows:

φ̈ = uvφ(t) = ux(t) + uADx (t)

φ̈ = kDφkφ(φref − φ) − kDφφ̇︸ ︷︷ ︸
ux(t)

(25)

+ {−keφ(t)(φ − φm) − keDφ(t)(φ̇ − φ̇m)
}

︸ ︷︷ ︸
uAD(t)

where the adaptive gains are designed as a function of
f (Δux(t)) as:

keφ(t) = kDφkφηxf (Δux(t))

keDφ(t) = kDφηxf (Δux(t))
(26)

In Eq. 26, ηx is an arbitrary constant and f (Δux(t)) is
chosen to be a bounded positive definite nonlinear function

Page 5 of 16    43J Intell Robot Syst (2021) 102: 43



Fig. 3 General architecture for
T-B Cells model interaction

that describes the immune response to intruder attacks [12,
40]:

f (Δux(t)) =
[
1 − 2

eγx [Δux(t)]2 + e−γx [Δux(t)]2
]

(27)

where γx is a constant. The closed loop plant dynamics will
take the form:

φ̈ = kDφkφ(φref − φ) − kDφφ̇ − ηxf (Δux(t))

× [kDφkφ(φ − φm) + kDφ(φ̇ − φ̇m)
] (28)

The difference in control inputs between the nominal
model and the non-adaptive portion of the control law can
be defined as:

Δux(t) = umx (t) − ux(t)

= kDφkφ(φref − φm) − kDφφ̇m

− {kDφkφ(φref − φ) − kDφφ̇
}

= kDφkφ(φ − φm) + kDφ(φ̇ − φ̇m)

(29)

Figure 4 depicts the proposed immunity-based adaptive
control architecture.

4.2 Absolute Stability Analysis

If the error is defined as the difference between the actual
and the nominal plant:

eφ = φ(t) − φm(t)

eDφ = φ̇(t) − φ̇m(t)
(30)

then the difference control input becomes:

Δux(t) = kDφkφeφ + kDφeDφ (31)

Moreover, to find a state space definition of the error
dynamics, we can start from the definition of the error
provided in Eq. 30:

ėφ = φ̇(t) − φ̇m(t) = eDφ

ėDφ = −kDφkφeφ − kDφeDφ + ηxf (Δux(t))

× [−kDφkφeφ − kDφeDφ

] (32)

Using the definition of Eq. 26 the state space error dynam-
ics reduces to:

[
ėφ

ėDφ

]
=
[

0 1
−kDφkφ −kDφ

] [
eφ

eDφ

]
+
[

0
−keφ(t)eφ − keDφ(t)eDφ

]

Fig. 4 Model reference AIS adaptive augmentation
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The nonlinear error dynamics can be represented as a
Lur’e closed loop system as the one shown in Fig. 5 [43] by
defining the output of the closed loop system as follows:

yx(t) = [ kDφkφ, kDφ ]
[

eφ

eDφ

]
= C̄xex = kDφkφeφ

+kDφeDφ = Δux(t) (33)

The nonlinear feedback element ψx(.) within the Lur’e
system will take the following definition:

ψx(yx(t)) = yx(t)ηxf (yx(t))

= ηxf (Δux(t))
[
kDφkφeφ + kDφeDφ

]
(34)

then, the closed loop error dynamics become:
[

ėφ

ėDφ

]
=
[

0 1
−kDφkφ −kDφ

] [
eφ

eDφ

]
(35)

+
[
0
1

] [−ψx(yx(t))
]

⇒ ėx = Āxex + B̄x

[−ψx(yx(t))
]

In order to apply the absolute stability theorems the
following sector condition must hold globally:

αxyx(t)
2 ≤ yxψx(yx(t)) ≤ βxyx(t)

2, yx(t) ∈ [−∞, ∞]
(36)

Following this inequality, further analysis can be per-
formed from the nonlinear feedback function ψx :

ψx(yx(t)) = yx(t)ηxf (yx(t))

= yx(t)ηx

[
1 − 2

eγx [yx(t)]2 + e−γx [yx(t)]2
]

(37)

where ηx, βx, αx are real numbers. In this case, αx < βx

which represents the minimum and maximum linear sectors
where the nonlinear functionψx(yx) can lie. Without of loss
of generality in this analysis, we can set αx = 0 in Eq. 36:

0 ≤ yx(t)ψx(yx(t)) ≤ βyx(t)
2

0 ≤ ηxf (yx(t)) ≤ βx
(38)

Since sup {f (yx(t))} = 1 , the following inequality
holds:

0 ≤ ηxf (yx(t)) ≤ ηx sup[f (yx(t))] ≤ βx

0 ≤ ηxf (yx(t)) ≤ ηx ≤ βx
(39)

Therefore, given that βx <= ∞ as long as ηx is a
real positive scalar, the sector condition will hold globally.
Figure 6 shows that the non-linearity behaviour for the case
ηx = 1, it can be seen the sector condition holds.

Furthermore, the Circle Criterion can be applied as an
extension of Popov’s theorem. As described by Khalil in
[43], this theorem establishes that a system with a feedback
sector nonlinearity that holds globally will be absolutely
stable if :

Re[1+βxGx(jω)]>0, → Re[Gx(jω)]>− 1

βx

∀ω ∈ R

(40)

Equation 40 implies that the Nyquist plot of Gx(jω)

must lie to the right hand side of the vertical line defined
by Re(s) = −1/βx . The following more conservative
condition will also met the Circle Criterion:

Re[Gx(jω)] > 0, ∀ω ∈ R (41)

Consequently, the transfer function Gx(jω) must be
specified in frequency domain as follows:

Gx(jω) = C(sI − Āx)−1B̄x = kDφ(jω) + kDφkφ

(jω)2 + kDφ(jω) + kDφkφ

=

= kDφ(jω) + kDφkφ

−ω2 + kDφ(jω) + kDφkφ

(42)

where the real part of the transfer function results in:

Re {Gx(jω)} =
k2φk2Dφ + ω2

(
k2Dφ − kφkDφ

)

k2φk2Dφ + ω2
(
k2Dφ − 2kφkDφ

)
+ ω4

(43)

Therefore, to obtain a positive real part of the transfer
function, the following inequalities must hold:

kDφ > 2kφ (44)

Fig. 5 Closed loop roll error
dynamics seen as a Lur’e type
system
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Fig. 6 Sector nonlinearity

kDφ > kφ (45)

The condition in Eq. 44 is more conservative and also
meets the condition in Eq. 45 so it is the one selected.

In order to prove absolute stability the transfer function
Gx(s) also needs to be Hurwitz. To verify this condition, the
following analysis in s-domain is performed:

Gx(s) = C̄x(sI − Āx)
−1B̄x = kDφs + kDφkφ

s2 + kDφs + kDφkφ

(46)

The gains in the transfer function denominator must be
positive, which implies that the following conditions must
be met:
{

kDφ > 0
kφkDφ > 0

(47)

Consequently, it can be concluded that if the conditions in
Eqs. 44 and 47 are met then the closed loop error dynamics
of the adaptive system in Fig. 4 will be absolutely stable.

5 PerformanceMetrics and Numerical
Simulations

To assess the effectiveness of the proposed control archi-
tecture, a set of metrics were used that include actuation
performance and tracking error for attitude, angular rates,
velocity and position. As an example, Eq. 48 represents

the attitude performance metric as the measurement of
accumulated tracking error in the attitude angle.

ẽΘ = 1

CΘ

⎛
⎝

3∑
i=1

√∫ T

0
ei(t)dt

⎞
⎠ (48)

Similar equations can be used for angular rates ẽΔΩ ,
velocity ẽV and position ẽP performance metrics.

The actuation performance index metric measures the
activity of the thrust actuation and thrust vectoring required
to perform the commanded maneuvers and maintain
stability of the vehicle. It can be defined as:

s̃ = 1

CΔS

⎛
⎝

4∑
i=1

√∫ T

0
Si(t)dt

⎞
⎠ (49)

where ei is the tracking error of the ith attitude, velocity,
position and angular rate states. S is the actuation that
combines power and thrust vectoring at each thruster. A set
of normalization factors CΘ , CΔΩ , CV , CP and CΔS
are also defined based on the worst performance case. The

Table 2 Control gains of the baseline controller

KDφ = 16 Kφ = 6.58 KVx = 0.4 KPx = 0.16

KDθ = 16 Kθ = 6.58 KVy = 0.4 KPy = 0.16

KDψ = 16 Kψ = 6.58 KVz = 0.4 KPz = 0.16
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Table 3 Adaptive augmentation parameters

ξx 0.78 ηx 5.5 Tsx(s) 0.5

ξy 0.78 ηy 5.5 Tsy(s) 0.5

ξz 0.78 ηz 3.0 Tsz(s) 0.5

individual metrics can then be combined to obtain a Global
Performance Index PI :

PI = 1 − (w1ẽΘ + w2ẽΔΩ + w3ẽV + w4ẽP + w5S) (50)

where w1, w2 , w3 , w4 and w5 are weights chosen by
the user to determine the contribution of each performance
metric. A PI of 1.0 corresponds to the best performance.

Numerical simulations were performed to evaluate the
control architecture under nominal and failure conditions.
The mission was designed such that the vehicle is
commanded to track a set of pre-set waypoints. A failure
was then introduced at 45 seconds after the vehicle takes
off, and it was modeled as a saturation at 4.6% of
maximum power in one of the thrusters with a tilting angle
locked at 10 degrees in the same thruster. Tables 2 and 3
outline the control parameters for the baseline and adaptive
augmentation control laws.

Figure 7 shows examples of the commanded trajectory
and tracking performance for both, baseline and adaptive
controllers under nominal conditions. Under nominal
condition both controllers are able to track the commanded
trajectory with an acceptable and similar performance.

Figure 8 shows the tracking performance of the con-
trollers while the vehicle operates under failure condition.
In this scenario, the tracking is significantly improved when
MRAIS augments the baseline controller compared to the
baseline controller alone, e.g., the baseline controller per-
formances poorly to the point that the vehicle is not able to
complete the mission and the simulation stops when the it
reaches the 7th waypoint. As an additional example and to
better visualize the effect of the adaptation, Fig. 9 shows the
performance of both controllers for angular rates. After the
failure is injected, MRAIS controller is capable to maintain-
ing tracking of the commanded rates with minimum error
whereas the NLDI controller induces a significant amount

of tracking error. Additionally, Fig. 10 shows an example of
time history of the adaptive gains for pitch and yaw controls.
Once the failure takes effect at 45 seconds, the adaptation
gains show activation to compensate the failure. Table 4
summarizes the performance metrics for both cases, nomi-
nal and failure. It is notable that the adaptive augmentation
provides a better performance with an accumulative normal-
ized PI of 86%, compared to that of the baseline control law
with 0.6% PI.

6 Hardware Implementation

Two approaches were considered for real-time hardware
implementation, the first one consists on a Hardware in
the Loop (HIL) setup which includes a host computer that
runs the mathematical model of the vehicle dynamics and
a target computer that runs the designed control laws at
100Hz. The main goal of the HIL setup was to evaluate
the dynamic performance of the novel adaptive control
algorithm on the same type of space exploration missions
presented in section 5 while running the control laws on the
target hardware.

The second setup involved the development of a research
vehicle prototype developed by NASA named “Gimbaled
Mini-Free Flyer” (GMFF). This test-bed incorporates a
real flight control computer (Pixhawk 1), real sensors and
actuators in the loop. The main goal of this setup was
to assess the attitude tracking capabilities of the proposed
adaptive control laws in a gimbaled setup that allows
motion of the vehicle on its three axis of rotation (roll, pitch
and yaw).

6.1 Hardware in the Loop Implementation Results

• Condition 1 - nominal: this test was designed to assess
the control performance given a change of inertia while
the vehicle is commanded to track a trajectory defined by
nine waypoints. At waypoint 5, the vehicle is commanded
to land and take a mass sample of 200g. The exta mass is
placed at−→r = [0 0.152 0.152]m from the vehicle’s CG. This

Fig. 7 Position tracking under
nominal condition (Left: NLDI,
Right: NLDI+MRAIS)
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Fig. 8 Position tracking under
failure condition (Left: NLDI,
Right: NLDI+MRAIS)

Fig. 9 Pitch rate tracking under failure condition (Left: NLDI, Right: NLDI+MRAIS)
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Fig. 10 MRAIS adaptive gains (left: roll control, right: yaw control)

extra mass produces the following change of inertia and CG
location:

ΔJ2 =
⎡
⎣
0.0092 0 0

0 0.0046 0
0 0 0.0046

⎤
⎦Kg.m2; Δ

−→
r 2

= [0 0.0017 0.0017
]
m (51)

• Condition 2 - sampling extra weight: this mission
follows the same profile of Mission 1, but the vehicle is
now loaded with an extra mass of 800g at the location −→

r =
[0 0.152 0.152]m from the vehicle’s CG that consequently
changes the inertia and CG location as:

ΔJ2 =
⎡
⎣
0.0355 0 0

0 0.0177 0
0 0 0.0177

⎤
⎦Kg.m2; Δ

−→
r 2

= [0 0.0067 0.0067
]
m (52)

• Condition 3 - thruster reduced efficiency: similar to
nominal case in Mission 1, the vehicle is commanded to
follow the same trajectory while is loaded with an extra
mass of 200g at −→

r = [0 0.152 0.152]m from the CG.

Table 4 Performance metrics for numerical simulations

Performance Index Nominal Failure

NLDI MRAIS NLDI MRAIS

Angular Rates 1.05 0.24 268.98 2.25

Attitude 1.90 0.03 41.28 9.61

Velocities 1.05 1.05 11.76 3.68

Position 31.61 3.61 42.84 33.67

PI 0.63 0.67 0.004 0.56

Normalized PI 0.95 1.00 0.006 0.86

However, while performing the commanded maneuvers,
power on thruster 1 slowly starts reducing efficiency by
decreasing its power to 40% from the maximum force
within a period of 150 seconds.

Table 5 summarizes the accumulated global performance
index obtained from the three missions. Results from a typ-
ical PID controller have also been included for comparison
purposes. The results show that MRAIS outperforms the
other two controllers achieving more than 50% increase in
performance for all three missions.

6.2 Experimental Results on GimbaledMini Free
Flyer

As mentioned before, the GMFF is a vehicle prototype
mounted on a gimbal that allows the vehicle rotate on its
three axis (see Fig. 1), in order to demonstrate attitude
tracking capabilities. The system is equipped with four
Electric Ducted Fans (EDF) capable of producing 4.8kg of
total thrust and four servos that allow rotational motion of
each of the EDFs.

Results were obtained from tests where the EDF#3 is
fully jammed at 67 seconds while the vehicle is commanded
to track smooth roll and yaw reference inputs.

Figure 11 presents a qualitative comparison of the
numerical simulation and the experimental results on the

Table 5 Performance metrics for HIL simulations

Control Laws Test Condition

Nominal Extra Mass Failure in T1

PID 0.490 0.425 0.006

NLDI 0.611 0.531 0.121

MRAIS 1.000 0.953 0.813
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Fig. 11 Experimental vs
simulation results, failure in
EDF 3

GMFF vehicle. It can be seen that the numerical simulation
closely matches the real implementation results. The dif-
ferences in the responses can be attributed to unmodeled
dynamics such as friction of some of the mechanical com-
ponents present in the experimental setup (i.e. gimbals and
bearings).

Figure 12 presents the time history of angular rate for
both, the baseline and the adaptive augmentation. Signifi-
cant improvement is achieved by the adaptive augmentation
with less oscillatory dynamics and higher tracking perfor-
mance. The results in Fig. 13 also shows similar behaviour
for roll angle tracking. It is clear that the adaptive augmen-
tation outperforms the NLDI with improved tracking under
abnormal conditions.

Figure 14 shows activity of the roll angle adaptive gains.
As predicted from the numerical simulation results, it is
notable the activation of the adaptive gains once the failure
takes effect on the system dynamics.

Further tests were performed with a mass of 130 grams
added in one of the arms of the vehicle after 5 seconds
from the first commanded maneuver, while the controller
is tracking a smooth cycloid roll command. As shown in
Figs. 15 and 16, the angular rate and roll angle tracking
performance are improved by the adaptive augmentation.
However, it is also noticeable how this type of disturbance,
that corresponds to a significant changes in vehicle’s inertia,
represents a more challenge case, even for the adaptive
augmentation.

Fig. 12 Angular rates tracking
under failure in EDF 3
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Fig. 13 Roll angle tracking
under failure in EDF 3

Fig. 14 Adaptive gains
activation under failure in EDF 3

Fig. 15 Angular rates tracking
performance for case of adding
130g on left arm
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Fig. 16 Roll angle tracking
performance for case of adding
130g on left arm

7 Conclusions

A novel control adaptation based on immunity based
mechanisms has been introduced in this paper. The MRAIS
control architecture combines a feedback linearization
approach as a baseline controller with an adaptive scheme
augmentation inspired by immune mechanisms of living
organisms. A theoretical framework and proof of absolute
stability using Circle Criterion were presented in this paper.

Numerical simulations were performed using different
flight scenarios and the performance of the proposed
control laws evaluated and analyzed. Results show that
the proposed control augmentation provide a promising
alternative tool that significantly enhance the baseline
control with adaptability characteristics.

Validation of these results were further obtained using
a HIL setup and actual implementation using a vehicle
research test-bed. In all scenarios, the adaptive augmen-
tation is capable of rejecting failures and compensating
system uncertainties or unmodeled dynamics. It is notewor-
thy, however, that implementation shows more conservative
performance compared to that of simulation. This might
be explained by the fact that some basic assumptions were
made in the analytical proofs that were not explicitly con-
sidered in the real case implementation. For example, con-
tinuous time domain was assumed in the analytical design
of the controller which might cause discrepancies in the
dynamic response if the real system is not properly sam-
pled at a high frequency. Additionally, the delay between
the commanded input and the actuation response, typical
in control applications, was not included in the analytical
development, although it was included in the numerical sim-
ulations. Possible future work would include stability proof
analysis considering the effect of the actuator time response,
which indeed will allow to obtain more realistic gain bounds
to maintain stable operation of the system.

Acknowledgements The authors would like to thank the support and
funding provided by NASA to perform the research study under
contract number NNX14CK09P.

Author Contributions All authors of this research paper, Dr. Andres
Perez and Dr. Hever Moncayo, have directly and equally participated
in the planning, execution, or analysis of this study.

Funding This research work was funded by National Aeronautics and
Space Administration under contract number NNX14CK09P

Data Availability Some or all data, models, or material used during the
study may only be provided with restrictions upon request.

Code Availability Some or all codes generated during the study may
only be provided with restrictions upon request.

Declarations

Ethics approval Not applicable as this study does not contain biologi-
cal applications.

Consent to participate All authors of this research paper have
consented to participate in the research study.

Consent for Publication All authors of this research paper have read
and approved the final version submitted.

Conflict of Interests The authors declare that they have no conflict of
interest.

References

1. Garcia, D., Perez, A., Moncayo, H., Rivera, K., Betancur, Y.,
DuPuis, M., Mueller, R.: Spacecraft heath monitoring using a
biomimetic fault diagnosis scheme. J. Aerosp. Inf. Syst. 15(7),
396–413 (2018)

2. Perez, A., Moncayo, H., Prazenica, R., Zacny, K., Mueller, R.,
Dupuis, M., Ebert, T.: Control laws development for a free-
flying unmanned robotic system to support interplanetary bodies
prospecting and characterization missions. In: AIAA SciTech
Conference, San Diego, CA (2016)

3. Zacny, K., Yaggi, B., Spring, J., Chu, P., Mueller, R., Ebert,
T., Dupuis, M., Moncayo, H., Prazenica, R.: Sample acqusition
systems for a free-flying unmanned robotic system to support
interplanetary bodies prospecting and characterization missions.
In: AIAA SciTech Conference, San Diego, CA (2016)

4. Prazenica, R., Kern, K., John, T., Moncayo, H., Zacny, K.,
Mueller, R., Ebert, T., Dupuis, M.: Vision-aided navigation for
a free-flying unmanned robotic system to support interplanetary
bodies prospecting and characterization missions control. In:
AIAA SciTech Conference, San Diego, CA (2016)

5. Deshpande, A.ditya.M., Kumar, R.umit., Minai, A.A., Kumar,
M.anish.: Developmental reinforcement learning of control policy
of a quadcopter UAV with thrust vectoring rotors. In: ASME
Dynamic Systems and Control Conference DSCC, Pittsburgh,
Pennsylvania (2020)

43   Page 14 of 16 J Intell Robot Syst (2021) 102: 43



6. Betancur, Y., Moncayo, H.: Spacecraft testbed to support control
system design for space missions. In: AIAA SciTech Conference,
GNC (2021)

7. Edwards, C., Lombaerts, T., Smaili, H.: Fault Tolerant Flight
Control: A Benchmark Challenge. Springer, Berlin (2010)

8. Khalastchi, E., Kalech, M.: On fault detection and diagnosis in
robotic systems. ACM Comput. Surv. 51(1), 9 (2018)

9. Ibrahim, S., Ayman, M., Zeidan, A.: Machine learning techniques
for satellite fault diagnosis. Ain Shams Eng. J. (2019)

10. Dias, P., Zhou, Y., Van Kampen, E.: Intelligent Nonlinear
adaptive flight control using incremental approximate dynamic
programming. In: AIAA, Session: Advances in Adaptive Control
Systems IV (Invited), Published Online, pp. 2019–2339 (2019)

11. Ibrahim, S., Ahmed, A., Eldin, M., Ziedan, I.: Machine learning
techniques for satellite fault diagnosis. Ain Shams Eng. J. (2019)

12. Mo, H., Fu, D., Xu, L.: Research of a kind of improved immune
controller based immune network. Int. J. Intell. Comput. Cybern.
3(2), 310–333 (2014)

13. Zhao, G., Shen, Y., Zhang, L.: Research on CNC machine tool
fuzzy immune PID position controller. Res. J. Appl. Sci. Eng.
Technol, Maxwell Scientific Organization 212, 209 (2013)

14. Coulter, N., Moncayo, H.: Comparison of optimal and bio-
inspired adaptive control laws for spacecraft sloshing dynamics. J.
Spacecr. Rockets 57(1) (2020)

15. Benjamini, E.: Immunology A Short Course. Wiley-List Publica-
tions, New York (1992)

16. Mo, H.: Handbook of Research on Artificial immune systems and
natural computing. Med. Inf. Sci., 262–303 (2008)

17. Mehare, V., Thakur, R.S.: Data mining models for anomaly
detection using artificial immune system. In: Proceedings of Inter-
national Conference on Recent Advancement on Computer and
Communication. Lecture Notes in Networks and Systems, vol. 34.
Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-
8198-9-44

18. Timmis, J., Andrews, P., Hart, E.: On artificial immune sys-
tems and swarm intelligence. Swarm. Intell. 4, 247–273 (2010).
https://doi.org/10.1007/s11721-010-0045-5

19. Daudi, J.: An overview of application of artificial immune system
in swarm robotic systems. Autom. Control. Intell. Syst. 3(2),
11–18 (2015). https://doi.org/10.11648/j.acis.20150302.11

20. Zhao, F., Li, G., Yang C., Abraham, A., Liu, H.: A human–
computer cooperative particle swarm optimization based immune
algorithm for layout design. Neurocomputing 132, 68–78 (2014).
ScienceDirect

21. Xia, M., Song, Y.: Immune network-based swarm intelligence and
its application to unmanned aerial vehicle swarm coordination.
Neurocomputing 125, 134–141 (2014). ScienceDirect

22. Coello, C.A.C., Cortés, N.C.: Solving multiobjective optimization
problems using an artificial immune system. Genet. Program
Evolv. Mach. 6, 163–190 (2005). https://doi.org/10.1007/s10710-
005-6164-x

23. Zhang, W., Yen, G.G., He, Z.: Constrained Optimization via
Artificial Immune System. IEEE Trans Cybern. 44(2), 185–98
(2014). https://doi.org/10.1109/TCYB.2013.2250956

24. Parra dos Anjos Lima, F., Chavarette, F.R., dos Santo e Souza,
A., Silva Frutuoso de Souza, S., Martins Lopes, M.L.: Artificial
immune systems with negative selection applied to health monitoring
of aeronautical structures. Adv. Mater. Res. 871, 283–289 (2014)

25. Anaya, M., Tibaduiza, D., Pozo, F.: Data driven methodology
based on artificial immune systems for damage detection

26. Lau, H.Y.K., Qiu, X.: An artificial immune systems (AIS)-based
unified framework for general job shop scheduling. IFAC Proc.
Vol. 47(3), 6186–6191 (2014)

27. Wang, M., Feng, S., He, C., Li, Z., Yu, X.: An artificial
immune system algorithm with social learning and its application

in industrial pid controller design. https://doi.org/10.1155/2017/
3959474 (2017)

28. Deng, L., Ma, X., Gu, J., Li, Y.: Mobile robot path planning
using polyclonal-based artificial immune network. J. Control
Sci. Eng., Hindawi Publishing Corporation 2013, 13 (2013).
https://doi.org/10.1155/2013/416715

29. Yuan, M., Jiang, Y., Hua, X.: A real-time immune planning
algorithm incorporating a specific immune mechanism for multi-
robots in complex environments. In: Proceedings of the Institution
of Mechanical Engineers, Part I: Journal of Systems and Control
Engineering (2017). https://doi.org/10.1177/0959651816677198

30. Suliman, S.I., Abd Shukor, M.S., Kassim, M., Mohamad, R.,
Shahbudin, S.: Network intrusion detection system using artifi-
cial immune system (AIS). In: 3rd International Conference on
Computer and Communication Systems (ICCCS). Nagoya, Japan,
pp. 178–182 (2018). https://doi.org/10.1109/CCOMS.2018.
8463274

31. Farouq, O., Maryam, L., Dawood, H.: Model reference adaptive
control based on a self-recurrent wavelet neural network utilizing
micro artificial immune systems. Al-Khawarizmi Eng. J. 13(2),
107–122 (2017)

32. Siceloff, S.: Extreme Access flyer to take planetary exploration
airborne, nasa.gov. [Online]. Available: https://www.nasa.gov/
feature/extreme-access-flyer-to-take-planetary-exploration-airborne.
[Accessed 24 October 2020] (2015)

33. Verberne, J., Betancur, A., Rivera, K., Coulter, N., Moncayo,
H.: Comparison of MRAC and L1 adaptive controllers for a
gimbaled mini-free flyer. In: AIAA SciTech Conference. San
Diego, California (2019)

34. Tipan, S., Theodoulis, S., Thai, S., Proff, M.: Nonlinear dynamic
inversion flight control design for guided projectiles. J. Guid.
Control Dyn. 43(5) (2020)

35. Smeur, E., de Croon, G.E., Chu, Q.: Cascaded incremental
nonlinear dynamic inversion for MAV disturbance rejection.
Control. Eng. Pract. 73, 79–90 (2018)

36. Yuan, R., Guoliang, F., Yi, J., Yu, W.: Robust attitude controller
for unmanned aerial vehicle using dynamic inversion and
extended state observer. In: Second International Conference on
Intelligent Computation Technology and Automation. Beijing,
China, pp. 850–853 (2009)

37. Jian-Min, S., Peng-Tao, Z.: Immune feedback strategy in an
electronic throttle control system. J. Highway Transp. Res. Dev.
13(3) (2019)

38. Wang, W., Gao, X.Z., Wang, C.A.: A new immune PID controller
based on immune tuning, advanced intelligent computing theories
and applications. ICIC 2007. In: Communications in Computer
and Information Science, vol. 2 (2017)

39. Perez, A., Moncayo, H., Perhinschi, M.G., Al Azzawi, D.,
Togayev, A.: A bio-inspired adaptive control compensation system
for an aircraft outside bounds of nominal design. J Dyn Syst Meas
Control, ASME 137 (2015)

40. Takahashi, K., Yamada, T.: Application of an immune feedback
mechanism to control systems. JSME Int. J. 41(Series C), 184–191
(1998)

41. Liu, X., Chen, X., Zheng, X., Li, S., Wang, Z.: Development of a
GA-fuzzy-immune PID controller with incomplete derivation for
robot dexterous hand. Sci. World J. https://doi.org/10.1155/2014/
564137 (2014)

42. Perez, A.: Development of fault tolerant adaptive control laws
for aerospace systems. Ph.D. Dissertation, Aerospace Engineering
Department Embry-Riddle Aeronautical University (2016)

43. Khalil, H.K.: Nonlinear Systems. Prentice Hall, New Jersey (1996)

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Page 15 of 16    43J Intell Robot Syst (2021) 102: 43

https://doi.org/10.1007/978-981-10-8198-9-44
https://doi.org/10.1007/978-981-10-8198-9-44
https://doi.org/10.1007/s11721-010-0045-5
https://doi.org/10.11648/j.acis.20150302.11
https://doi.org/10.1007/s10710-005-6164-x
https://doi.org/10.1007/s10710-005-6164-x
https://doi.org/10.1109/TCYB.2013.2250956
https://doi.org/10.1155/2017/3959474
https://doi.org/10.1155/2017/3959474
https://doi.org/10.1155/2013/416715
https://doi.org/10.1177/0959651816677198
https://doi.org/10.1109/CCOMS.2018.8463274
https://doi.org/10.1109/CCOMS.2018.8463274
https://www.nasa.gov/feature/extreme-access-flyer-to-take-planetary-exploration-airborne
https://www.nasa.gov/feature/extreme-access-flyer-to-take-planetary-exploration-airborne
https://doi.org/10.1155/2014/564137
https://doi.org/10.1155/2014/564137


Andres Perez received his B.S and MS in Mechanical Engineering
from Universidad de los Andes (Bogota, Colombia) and his
doctorate in Aerospace Engineering from Embry-Riddle Aeronautical
University (Daytona Beach, Florida). During his doctorate he focused
on the development of novel bio-inspired fault tolerant adaptive
controls while participating in various projects sponsored by the
department of defense DARPA and NASA. Dr. Perez is currently
a systems engineer, control law analyst and product owner at
Collins Aerospace flight controls department. In his current role he
actively participates in the development and testing of the Autopilot,
Flight Guidance and Autothrottle software applications for different
commercial and military aviation aircraft like the Airbus A220, Viking
Water bomber, Global 7500, French E-3F AWACS, Embraer KC-
390 and Xian MA700. He has also recently participated in multiple
innovation projects for the development of vision based Autoland and
resilient autopilot systems.

Hever Moncayo is an Associate Professor with the Aerospace
Engineering Department at Embry-Riddle Aeronautical University.
He earned a Bachelor of Science in Engineering Physics, a
Master of Science in Mechanical Engineering and a Ph.D. in
Aerospace Engineering. As a researcher, Dr. Moncayo has focused
his efforts to advanced research and development of algorithms
for guidance, navigation and control, including simulation of
comprehensive/integrated methodologies for intelligent/adaptive fault
tolerant flight control systems. He has contributed to the study of
technologies to ensure increased aerospace system safety operation
and autonomy by providing alternative and innovative comprehensive
solutions. Dr. Moncayo is director of the Advanced Dynamics
and Control Laboratory, a senior member of American Institute
of Aeronautics and Astronautics (AIAA), member of the AIAA
Intelligent Systems Committee, and an Associate Editor of the Journal
Aerospace Science and Technology.

43   Page 16 of 16 J Intell Robot Syst (2021) 102: 43


	Bio-Inspired Feedback Linearized Adaptive Control
	Abstract
	Introduction
	Vehicle and Thrust Vectoring Dynamics
	Control System Architecture
	Baseline Controller

	Artificial Immune System based Adaptive Augmentation
	Immune Adaptive Augmentation
	Absolute Stability Analysis

	Performance Metrics and Numerical Simulations
	Hardware Implementation
	Hardware in the Loop Implementation Results
	Experimental Results on Gimbaled Mini Free Flyer 

	Conclusions
	Declarations
	References


