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Abstract
Drivable area detection is one of the essential functions of autonomous vehicles. However, due to the complexity and diversity of
unknown environments, it remains a challenge specifically on rough roads. In this paper, we propose a systematical framework
for drivable area detection, including ground segmentation and road labelling. For each scan, the point cloud is projected onto two
different planes simultaneously, generating an elevation map and a range map. Different from the existing methods based on
mathematical models, we accomplish the ground segmentation using image processing methods. Subsequently, road points will
be filtered out from ground points and used to generate the road area with the assistance of a range map. Meanwhile, a two-step
search method is utilized to create the reachable area from an elevation map. For the robustness of drivable area detection,
Bayesian decision theory is introduced in the final step to fuse the road area and the reachable area. Since we explicitly avoid
complex three-dimensional computation, our method, from both empirical and theoretical perspectives, has a high real-time
capability, and experimental results also show it has promising detection performance in various traffic situations.
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1 Introduction

In the field of autonomous driving, drivable area detection
is a key and fundamental task, especially in complex
scenes. The main application of the drivable area is to detect
whether a feasible trajectory exists and limit the search of

trajectories, which are the critical work for navigating au-
tonomous vehicles across unknown and unstructured envi-
ronments [1, 2]. For that purpose, the drivable area detec-
tion should be accurate and robust. However, the challenge
of achieving high detection performance on rough roads is
considerably greater than that in structured roads because
the former is more complex and irregular. And so far, to the
best of our knowledge, camera and LiDAR (Light
Detection and Ranging) are the two primary sensors to ad-
dress these challenges [3–6]. The LiDAR-based drivable
area detection has gained an increasing amount of attention,
but most of the related works focus on ground segmenta-
tion. Meanwhile, researchers generally regard drivable area
detection as a road detection task in camera-based methods.
However, considering their limiting on trajectory search,
the drivable area is significantly different from the ground
surface or the road area. Moreover, the noise caused by a
bump on rough roads also jeopardizes the performance,
especially for camera-based methods. Compared with the
camera, 3D LiDAR can provide accurate measurements of
the surrounding environment and has less sensitivity to il-
lumination. For the above reasons, an autonomous vehicle
could make safe decisions and achieve reliable navigation
with the drivable area generated by LiDAR-based methods.
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Therefore, we prefer a LiDAR-based solution to dress the
challenge of drivable area detection on rough roads.

1.1 Previous Work

Over the past decade, extensive research about drivable area
detection has been carried out with various sensors such as
monocular camera, stereo camera, and 3D LiDAR, leading to
varying levels of success. In the following content, we will
summarize these methods and analyze their characteristics and
applicable scenarios.

1.1.1 Methods Based on HD Map

High-Definition (HD) map provides strong priors, for exam-
ple, drivable area, lane direction, and traffic light location.
Yang et al. [7] introduce a single-stage detection algorithm
that extracts semantic and geometric features from traffic
HD maps, which can be used to detect the drivable area.
Chang et al. [8] present a dataset designed to support autono-
mous vehicle perception tasks, namely Argoverse. Argoverse
includes binary drivable area maps at 1-m grid resolution,
covering the region where vehicles can drive. Therefore, some
perception missions such as target recognition and tracking
can be restricted in the drivable area specified by the HD
map. Although HD maps can provide accurate drivable area,
a fatal defect is that the cost of constructing HD maps is very
high, which leads the HD map might not be available
everywhere.

1.1.2 Methods Based on Camera

For drivable area detection, it is generally regarded as road
detection or curb detection in purely camera-based methods,
and these methods mainly differ from each other based on the
type of cameras such as stereo camera, binocular camera, and
monocular camera [3]. Moreover, most of these methods rely
on vision conceptions or traffic signs [9] like colour cue, lane
lines, etc., but they are scarce on rural and unstructured roads.
With the development of artificial intelligence technology,
some image segmentation methods using the deep
convolutional neural network such as FCN and DeepLab have
significantly improved the performance of road detection [10].
However, due to the lack of accurate distance information, it is
difficult for camera-based methods to describe the drivable
area accurately, whether traditional methods or deep
learning-based methods. Besides, we also find some drivable
area detection methods based on the combination of camera
and LiDAR [9, 11]. Still, they depend enormously on the
precise spatial and temporal calibration between sensors,
which makes these methods susceptible to the vehicle vibra-
tion and road texture.

1.1.3 Methods Based on LiDAR

In terms of autonomous vehicles, LiDAR has shown signifi-
cant results and plays a vital role in environment perception
since it offers the ability to acquire massive scale 3D geomet-
rical information. However, most LiDAR-based methods con-
sider the drivable area detection as a road segmentation or
ground estimation task. Traditional point cloud segmentation
methods summarized in the literature [12] tend to segment
point clouds directly in 3D space. For example, the method
in [13] fits the points whose vertical height meets certain con-
ditions into a plane, which will be regarded as the ground.
Meanwhile, more researchers focus on modelling the ground
with complex mathematical models like Spatio-temporal con-
ditional random field [14], Gaussian process in polar grid map
[15], and Markov random field [16]. However, due to the
complexity of mathematical methods, such as the use of belief
propagation for inference on MRF [17], their real-time capa-
bility cannot be guaranteed, which is a disaster for autono-
mous vehicles. Similar to camera-based methods, various
methods using deep learning have emerged in the field of
point cloud processing, such as a specific deep learning frame-
work for off-road drivable area extraction [18], a fully seman-
tic segmentation network whose output category includes
ground [19] and a lightweight CNN model for road-object
semantic segmentation [20]. Nevertheless, most methods
using deep learning belong to the supervised approach, so
training data is critical for the final performance, and their
application scenes need to be similar to the training scenes,
which limits the general applicability of these methods.

In addition to the above methods, the point cloud pro-
cessing methods based on projection transform have also
been widely used in ground segmentation and obstacle de-
tection. Depending on the projection plane, there are two
main projection approaches, see Fig. 1. One is to project
point clouds onto an assumed or estimated ground plane,
which produces an elevation map [21]. The other is to
project point clouds onto a virtual cylinder whose axis is
the rotational axis of the scanner [22], and its result is
called depth image or range map. Considering the process-
ing strategy of points in the grid cell, the elevation map,
also known as a grid-based map, can be divided into clas-
sical Max-Min elevation map [23], mean elevation map,
multi-level elevation map, etc. [24] Since the point cloud
in the distance is sparse, these approaches naturally suffer
from an under-segmentation problem. To handle this prob-
lem, Bogoslavskyi et al. [25] focus on the spatial
neighbourhood relation in the range map. Although
methods based on the range map have excellent real-time
performance and allow to segment even sparse point
clouds, they are deficient in good robustness on rough
roads and cannot tell whether a plane belongs to the ground
or the smooth part on obstacles [26].
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1.2 Overview of our Method

Before introducing our detection framework, it is necessary to
clarify the relationship between drivable area detection and
ground segmentation or road labelling. As we mentioned
above, the drivable area has perhaps not been well defined
in previous literature, and it is commonly defined as the geo-
metric constraints of where the vehicle can traverse [27]. In
this paper, we first clarify the difference and connection
among the drivable area, the road area and the ground. Let
Ag ⊂ℝ2 refer to the ground and Ar ⊂ℝ2 refer to the road area
around a vehicle, and let the drivable area be represented by
Ad ⊂ℝ2, so the restriction exists that Ad ⊆ Ar ⊂ Ag. In most
time, the drivable area is approximately equal to the road area
except for some exceptional cases where there are obstacles
on the road. Consequently, we define the reachable area Rr ⊂
ℝ2 as a region with the obstacle and geometric constraints, so
there is another restriction that Ad = Ar∩ Rr, as shown in
Fig. 2. Note that the ground area includes the obstacle area,
but the ground points are strictly distinguished from obstacle
points in the point cloud.

Considering the limitation of the existing methods, we
propose a double projection based method. For each scan,
the point cloud is projected onto two different planes si-
multaneously. As a result, we get an elevation map and a
range map with the projection planes being the ground and
a virtual cylinder plane, respectively. Ground estimation
and obstacle detection are performed directly on the eleva-
tion map. After that, the reachable area will be generated
from the obstacle map, and the ground model built by

ground estimation will be regarded as a reference for
ground segmentation. Subsequently, road points will be
filtered out from ground points via extracting features on
the range map. Finally, the drivable area will be obtained
from a pixel-level Bayesian fusion method. The complete
process is illustrated in Fig. 3, and the main contributions
of our work are: (1) It clarifies the definition of drivable
area and proposes a systematical framework for drivable
area detection including ground segmentation and road la-
belling; (2) It uses new morphological operations to solve

Fig. 1 Types of point cloud projection: projection to the ground and projection to a virtual cylinder plane

Fig. 2 Schematic of the restriction: Ad = Ar∩Rr. The road area and
reachable area are indicated with white and yellow dashed lines,
respectively. And the current drivable area is represented by green lines.
Moreover, red points represent obstacles, and the ground points are
shown in yellow
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the challenge of ground segmentation. And for road label-
ling, it develops a range map based method by incorporat-
ing the ground model and richer features; (3) It introduces
a two-step reachable area search method including a fast
obstacle closing algorithm and a forward flood fill algo-
rithm; (4) To improve the performance of drivable area
detection, it proposes a Bayesian fusion method whose
input includes reachable area, road area, and previous driv-
able area after the ego-motion compensation.

The rest of this paper is organized as follows: Section 2
discusses the point cloud projection method. Section 3, 4, and
5 introduce our algorithm in detail. And some experiment
results in real traffic scenes are presented in Section 6.
Finally, Section 7 concludes this paper and gives an outlook
in this field.

2 Point Cloud Projection

The raw 3D point cloud obtained from a laser scanner is a set
of points representing distance measurements from the surface
of objects. Our primary sensor is a Velodyne HDL64 S2,
which has 64 laser beams and can provide a full 360∘ azimuth-
al field of view with a 0.17∘ of rotation angle resolution. Let
define a point as follows:

pkjl ¼ xkjl; ykjl; zkjl
� �T

k ¼ 1; 2;⋯;K ð1Þ

where k denotes the firing position whose total number per
turn is K, and l denotes the laser beam number from 0 to 63
(No.0 means the innermost beam). xk ∣ l, yk ∣ l, and zk ∣ l are
Cartesian coordinates in centimeters.

2.1 Elevation Map

The elevation map is usually generated by a grid-based meth-
od in which 3D measurements are projected onto a 2.5D oc-
cupancy grid. In our work, a lower-left corner coordinate sys-
tem is adopted for the elevation map Ewhose size is 500×750
with 20 cm resolution, and the vehicle is located at the grid
cell E(250,250). For a point pk ∣ l, it will be mapped into E(i, j) if
pk ∣ l satisfies the following constraints:

20i≤xkjl < 20 iþ 1ð Þ 0≤ i < 500
20 j≤ykjl < 20 jþ 1ð Þ 0≤ j < 750

�
ð2Þ

And S(i, j) is the set of points mapped into E(i, j). In this
paper, a Max-Min elevation map is used to distinguish obsta-
cle grid cells from other cells, so if the absolute vertical dis-
placement in a grid cell is greater than 15 cm, this cell will be
labelled as an obstacle grid cell. Finally, all obstacle grid cells
form the obstacle map. For a non-obstacle grid cell E i0 ; j0ð Þ, if
S i0 ; j0ð Þ≠∅, then this cell will be labelled as a ground cell,

otherwise, it will be labelled as an unknown grid cell.

2.2 Range Map

Most laser ranging scanners provide raw data with a
timestamp and the orientation of beams. Therefore, a 2.5D
range map can be naturally created from the incoming
LiDAR measurements. In a range map, the total number of
rows is equal to that of laser beams in the vertical direction,
and the total number of columns is related to the horizontal
angle resolution of the scanner. Consequentially, all points of
one scan can be arranged within a range map R. If R(m, n),
which represents the pixel value at the coordinate (m,n) in R,
corresponds to the point pk ∣ l, then

m ¼ l
n ¼ f mod k þ δl;Kð Þ
R m;nð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2kjl þ y2kjl þ z2kjl

q
8><
>: ð3Þ

where fmod is a modulo operation, and δl is the zero deviation
of rotation angle for laser beam l. Note that for invalid mea-
surements, their pixel values are set to 0 in a range map.

3 Elevation Map Processing Strategy

Reachable area extraction and ground estimation are two main
tasks related to the elevation map. To improve real-time per-
formance, we avoid complex mathematical methods in our
framework, and the fact that the elevation map essentially is
a 2.5D image makes it possible to accomplish these tasks with
morphological operations.

Fig. 3 Framework of the drivable area detection based on point cloud
double projection
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3.1 Reachable Area Extraction

Considering the traversability, we need to exclude the region
obstructed by surrounding obstacles from the drivable area.
Therefore, reachable area extraction is to find out where the
vehicle can reach from its current position, and this process
illustrated in Fig. 4 can be divided into three steps as follows:

Step 1: Generating a mask used to limit the searching
area. The mask comes into being by drawing a line be-
tween each ground grid cell and the vehicle cell E(250,250).
For connectivity, it needs to be further dilated and eroded,
and the region beyond mask is identified as the unknown
region.
Step 2: Obstacle clustering and closing. In order to speed
up computations, the distance-based obstacle clustering
and closing, as shown in Fig. 5, are performed on a down-
sampled image with 250×375 pixels. In practice, we set
the distance threshold dth as 1.6 m. For a point pn, if pp is a
point in the cluster Cobs and ∣pnpp ∣ < dth, then pn also
belongs to Cobs, and pp becomes the parent point of pn.
Finally, each obstacle cluster will be closed by drawing
lines between its obstacle points and their parent points,
see Appendix 1.
Step 3: Searching for the reachable area. TakeE(250,250) as
the start point, then search for non-obstacle areas under
the mask. Since we focus on the area in front of vehicles,
our search algorithm named forward flood fill is direc-
tional, see Appendix 2.

Due to limitations of the Max-Min elevation map, some
special obstacles such as negative obstacles may be ignored.
Therefore, the obstacle information in our obstacle map is not
complete, resulting in that the range of reachable area is more
extensive than the actual. But this issue will be addressed in
the data fusion section. Moreover, reachable area extraction is
performed in a down-sampled image, so we need to up-
sample the search result.

3.2 Ground Estimation

Ground estimation is a basic pre-processing for ground seg-
mentation, and its purpose is to establish a ground reference
model or a digital terrain model Mg(x, y). If a point(xt, yt, zt)
satisfies the following condition:

jMg xt; ytð Þ−ztj < Z th ð4Þ

where Zth is a vertical height threshold and is set to 15 cm in
our work, then this point could be classified as a ground point.
Digital terrain modelling methods based on morphological
operations have been developed in some previous studies
[28, 29], but they are mostly used to process the airborne

LiDAR point cloud, which is significantly different from the
point cloud generated by the vehicle equipment. In our work,
online ground estimation is performed with the assistance of
an elevation map. Therefore, our ground model is a 2D refer-
ence matrix from which the reference height of the ground in
each grid cell can be inferred.

Firstly, the ground reference matrix G will be initialized
using all grid cells marked as ground:

G i; jð Þ ¼ 255

N i; jð ÞH
∑
L i; jð Þ

zþ 0:5N i; jð ÞH

 !
ð5Þ

where L(i, j) = {z| [z −min(z(i, j))] < vhth, z ∈ z(i, j)}, z(i, j) is the set
of the Z-coordinate of points in S(i, j), and N(i, j) is the size of
L(i, j). The parameter H named the normalization factor repre-
sents the limitation of ground height, and it is used to map the
vertical height in [−0.5H,0.5H] to a pixel value in (0,255]. The
threshold vhth has a value smaller than Zth. In our work, the
parameters H and vhth are set to 5 m and 5 cm, respectively.
For unknown grid cells, they will be set as 0, which means the
current point cloud cannot provide information about these
cells. After initialization, the ground reference matrix G can
be considered as a grey image. Therefore, the following image
morphological operations are introduced for ground
modelling:

(1) Image Dilation: Due to the existence of unknown grid
cells, image dilation is equivalent to the reasoning on
unknown cells, making the ground model satisfy the
continuity constraint. Unlike traditional dilation algo-
rithm, our dilation algorithm only changes the unknown
cells in the image:

Gdst
i; jð Þ ¼

min
i0 ; j0ð Þ∈ℕþ

Gsrc
i0 ; j0ð Þ Gsrc

i; jð Þ ¼ 0

Gsrc
i; jð Þ Gsrc

i; jð Þ ≠ 0

8<
: ð6Þ

where ℕ+ is the set of coordinates with a positive pixel value
in the 24-neighbourhood of G(i, j).

(2) Image Filtering: Since LiDAR has wrong measurements
and Eq. (5) cannot deal with overhanging and sunken
obstacles, the ground reference matrix G after dilation
needs to remove its abnormal value. And for this pur-
pose, our filtering method only targets local extremum
points, making the ground model satisfy the smoothness
constraint. For each grid cell, if G(i, j) is the maximum or
the minimum in its cross neighbourhoodℂ,G(i, j) will be
regarded as an abnormal value and its new value will be
given by:
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Fig. 4 Process of reachable area extraction: (1) Generating the obstacle map and a mask; (2) Obstacle clustering and closing; (3) Searching for the
reachable area with forward flood fill method
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vave ¼ 1

n
∑

i0 ; j0ð Þ∈ℂ
Gsrc

i0 ; j0ð Þ

vsum ¼ ∑
i0 ; j0ð Þ∈ℂ

jGsrc
i0 ; j0ð Þ − vavej þ ξ

� �−2

Gdst
i; jð Þ ¼ ∑

i0 ; j0ð Þ∈ℂ

Gsrc
i0 ; j0ð Þ

jGsrc
i0 ; j0ð Þ − vavej þ ξ

� �2

vsum

ð7Þ

where ξ is a tiny positive number, ℂ = {(i, j + c), (i + c, j)| c =
± 3, ±7}, and n (n = 8) means the total number of elements in
ℂ.

After the above morphological operations, the ground
model G has been constructed in the form of a reference
matrix, and its pixel value can be mapped to the actual
ground height through Eq. (5). Therefore, we can effi-
ciently implement ground segmentation with the help of
model G in real-time, marking each point in 3D point
clouds as a ground point or an obstacle point. Some
segmentation results in different scenarios are illustrated
in Fig. 6.

4 Road Labelling Based on Range Map

Given the mapping relationship established by Eqs. (2) and (3),
the result of ground segmentation can be utilized to find all
ground points on the range map. After that, we need to filter
the road points from the ground points. Unlike the existingworks
[25, 30], the geometric relationship between adjacent laser beams
is not critical in our method, on the contrary, the smoothness of
adjacent points in the same beam is designed as a filter. For a
road point pv∣ e, it should first meet the following conditions:

(1) Referring to the form of Eq.(4), the ground model con-
straint condition is given as follows:

j
G i0 0; j0 0ð ÞH

255
−0:5H−zvjej < Z th ð8Þ

where G i0 0; j0 0ð Þ is the associated grid cell of point pv ∣ e.

Moreover, all the points in the 4-neighbourhood correspond-
ing to pv ∣ e on the range map, namely {pv − 1 ∣ e, pv + 1 ∣ e, pv ∣
e + 1, pv ∣ e − 1}, also need to satisfy the groundmodel construct-
ed by ground estimation.

Fig. 5 Sketch of obstacle clustering and closing. In practice, the parameter dth is slightly smaller than thewidth of a car to pass through narrow rural roads
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(2) Neighbourhood smoothness constraint condition.
This condition consists of the distance smoothness
sd < Sdth and the angle smoothness sa < Sath. The
former is related to the variance of the distance
between adjacent points, and it needs to be calcu-
lated separately on the left and right sides of pv ∣ e.
For the latter, it can be represented by the mean of
the angle between two vectors that start from pv ∣ e

and end on different sides of pv ∣ e.

The detailed definitions of sd and sa are given by:

sld ¼
1

nl−1
∑
nl−1

k¼1
jLkLkþ1j− 1

nl−1
∑
nl−1

k¼1
jLkLkþ1j

� �2

srd ¼
1

nr−1
∑
nr−1

k¼1
jRkRkþ1j− 1

nr−1
∑
nr−1

k¼1
jRkRkþ1j

� �2

sd ¼ min sld; s
r
d

� 	
ns ¼ min nl; nrf g

sa ¼ π−
1

ns
∑
n¼1

ns

f acos
pvjeLn



! � pvjeRn




!
jpvjeLn



!

‖pvjeRn



!j

0
@

1
A

ð9Þ

Fig. 6 Results of ground estimation in different scenarios. Left column:
camera image. Middle column: the result of point cloud segmentation.
Red points represent obstacles, and the ground points are shown in

yellow. Right column: ground model. To facilitate illustration, we select
a 500×500 area on the elevation map for display and adjust the grid
resolution to 2 m. For unknown grid cells, their height is set to -5 m
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where L and R are the set of ground points selected from {pv −
10 ∣ e,..., pv − 1 ∣ e} and {pv + 1 ∣ e,...,pv + 10∣ e}. And nl, nr are the
total number of points in L and R, respectively. The operation
facos is an inverse cosine function. There are two thresholds for
neighbourhood smoothness: Sath and Sdth, and the former is set
to 0.75 in our experiments, however, for the latter, different
beams correspond to different values, here we recommend
setting them to 1.5–2 times the distance between two adjacent
measurements on the flat ground.

However, in most cases, the points only satisfy the above
conditions may contain non-road targets due to the existence
of isolated areas, as shown in Fig. 7(b). An obvious fact is that
laser scan lines on the road surface are discrete on the eleva-
tion map, but they are continuous on the range map.
Therefore, we extract all connected components on the range
map and take connected components with a large area as road
areas, see Fig. 7(c). Then, all road points are mapped into the
vehicle Cartesian coordinate and connected end to end to gen-
erate the road area Ar, see Fig. 7(e).

5 Drivable Area Detection Based on Bayesian
Fusion

As mentioned above, the robustness and accuracy of drivable
area detection are pivotal but challenging, especially on rough
roads. We address these challenges through a Bayesian fusion

framework, whose input includes the previous drivable area
after an ego-motion compensation (M1), the current road
area(M2), the reachable area (M3) and the intersection area of
the road area and the reachable area (M4), as shown in Fig. 8.
Moreover, all input matrices have been binarized to 0 or 1, and
the candidate region M is the union of the above areas, M =
M1 ∪M2 ∪M3.

The Bayesian theory has been widely applied in the
field of the drivable area or traversability [31–33]. For
the Bayesian approach to unsupervised classification, the
goal is to find the most probable class description given the
data and prior expectations. In our work, each point in M
has two possible states, belonging to the drivable area (ψ1)
or not belonging to the drivable area (ψ2). Therefore, there
are two elements in the class set Ψ = (ψ1, ψ2). The matrices
Mi,i ∈ I and I = {1, 2, 3, 4}, will be regarded as classifiers,
and let’s denote xi, xi ∈Ψ, as the classification result of the
classifier Mi for a point p(x, y) in M:

xi pð Þ ¼ ψ1 Mi x; yð Þ ¼ 1
ψ2 Mi x; yð Þ ¼ 0

�
ð10Þ

The class prior probability is represented as P(ψ), class
conditional probabilities are denoted by P(xi|ψ), and P(x1,
x2, x3|ψ) is the joint probability. According to the Bayesian
minimum error rate theory [34], if the class of a point in M is
ψc, then ψc satisfies the following condition:

ψc ¼ argmax
ψ∈Ψ

f ψ; x1; x2; x3; x4ð Þ ð11Þ

Fig. 7 Process of road area detection. Since there is a blind area around
the vehicle, a circular road area will be artificially added around the
vehicle

Fig. 8 Illustration of the Bayesian fusion method for drivable area
detection. The current road area based on a range map M2 and the
reachable area under obstacle constraints M3 are extracted from point
clouds in real-time. M1 is the historical drivable area after the
coordinate transform fcoordinate, and M4 is the intersection of M2 and M3
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Since M4 is directly related to M2 and M3, they are not
conditional independent, so we design the target function as
follows:

f ψ; x1; x2; x3; x4ð Þ ¼ P ψjx1; x2; x3ð Þ þ λP ψjx4ð Þ ð12Þ
where λ is a value greater than 1, which means that from
experience,M4, as the intersection area ofM2 andM3, is more
reliable. And in our experiments, we set λ as 1.2.

The probability P(ψ| x1, x2, x3) can be estimated using
Bayesian rule:

P ψjx1; x2; x3ð Þ ¼ P x1; x2; x3jψð ÞP ψð Þ
P x1; x2; x3ð Þ ð13Þ

Assuming that the classifiers Mi, i ∈ 1, 2, 3 are approxi-
mately independent of each other, thus we have:

P x1; x2; x3jψð Þ ¼ ∏
i¼1;2;3

P xijψð Þ ð14Þ

P x1; x2; x3ð Þ ¼ ∏
i¼1;2;3

P xið Þ ð15Þ

Combining Eqs. (13) (14) and (15), we can obtain that:

P ψjx1; x2; x3ð Þ ¼
P ψð Þ ∏

i¼1;2;3
P xijψð Þ

∏
i¼1;2;3

P xið Þ ð16Þ

After converting the class conditional probabilities to the
posterior probabilities, we have

P ψð Þ ∏
i¼1;2;3

P xijψð Þ ¼ P−2 ψð Þ ∏
i¼1;2;3

P xið Þ ∏
i¼1;2;3

P ψjxið Þ ð17Þ

Combining Eqs. (16) and (17), Eq.(11) can be rewritten as:

ψc ¼ argmax
ψ∈Ψ

P−2 ψð Þ ∏
i¼1;2;3

P ψjxið Þ þ λP ψjx4ð Þ
" #

ð18Þ

Furthermore, assuming that there is only a slight deviation
between the posterior probability and the corresponding prior
probability [35]:

P ψ jjxi
� � ¼ P ψ j

� �
1þ δij
� �

i ¼ 1; 2; 3 j ¼ 1; 2 ð19Þ

where δij < < 1. After some mathematical manipulations, we
have

P−2 ψ j

� �
∏

i¼1;2;3
P ψ jjxi
� � ¼ P ψ j

� �
∏

i¼1;2;3
1þ δij
� � ð20Þ

Expand the product on the right of Eq.(20) and ignore
higher-order items, then:

P ψ j

� �
∏

i¼1;2;3
1þ δij
� � ¼ P ψ j

� �þ ∑
i¼1;2;3

P ψ j

� �
δij ð21Þ

Combining Eqs. (18), (19), and (21), Eq. (18) can be re-
written as:

ψc ¼ argmax
ψ∈Ψ

∑
i¼1;2;3

P ψjxið Þ þ λP ψjx4ð Þ−2P ψð Þ
" #

ð22Þ

In general, the map of an unknown environment is not
available, so the prior knowledge is blank in the system. As
a result, we assume the prior probabilities of all classes are
equal, and then Eq. (22) can be further simplified as follows:

ψc ¼ argmax
ψ∈Ψ

∑
i¼1;2;3

P ψjxið Þ þ λP ψjx4ð Þ
" #

ð23Þ

From the above derivation result, it is evident that posterior
probabilities play a decisive role in our Bayesian fusion meth-
od. Considering the variability of environments, we estimate
the posterior probabilities according to the fusion result in
real-time. And this process can be divided into four steps:

Step 1: Calculating the probabilities of each state for all
position p(x, y) at time t:

Fig. 9 Our intelligent vehicle used for the experiments. It is equipped
with five cameras, a Velodyne HDL-64E S2 LiDAR, and a GPS-aided
inertial navigation system
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p1 ¼ ∑
i¼1;2;3

Pt ψ1jxi pð Þð Þ þ λPt ψ1jx4 pð Þð Þ

p2 ¼ ∑
i¼1;2;3

Pt ψ2jxi pð Þð Þ þ λPt ψ2jx4 pð Þð Þ

ð24Þ

Step 2: Making Bayesian decision:

Ad x; yð Þ ¼ 1 p1 > p2
0 other:

�
ð25Þ

Step 3: Estimating the posterior probabilities:

Ptemp ψ1jxi ¼ ψ j

� � ¼
∑

Mi¼ψ j

M

∑Ad

Ptemp ψ2jxi ¼ ψ j

� � ¼
∑

Mi¼ψ j

M

∑M−∑Ad þ 1

ð26Þ

Ptþ1 ψ1jxi ¼ ψ j

� �
¼ f nor

Ptemp ψ1jxi ¼ ψ j

� �
Ptemp ψ1jxi ¼ ψ j

� �þ Ptemp ψ2jxi ¼ ψ j

� �
 !

ð27Þ

Ptþ1 ψ2jxi ¼ ψ j

� �
¼ f nor

Ptemp ψ2jxi ¼ ψ j

� �
Ptemp ψ1jxi ¼ ψ j

� �þ Ptemp ψ2jxi ¼ ψ j

� �
 !

ð28Þ

where i = 1,2,3,4, and j = 1,2. The symbol ∑Ad means the
total number of drivable area points in M, and ∑

Mi¼ψ j

M indi-

cates the total number of points inM that meet the constraints

xi(p) = psij. And the normalization function fnor is given by:

f nor rð Þ ¼
0:9 r > 0:9
r r∈ 0:1; 0:9½ �
0:1 r < 0:1

8<
: ð29Þ

Step 4: Updating t + 1 posterior probabilities with smooth
filtering:

Ptþ1
new ψjxð Þ ¼ 0:25∑PT ψjxð Þ T ¼ t−2;…; t þ 1 ð30Þ

6 Experiments and Results

For the evaluation, our experimental platform, a sports utility
vehicle Pajero, is modified as shown in Fig. 9. It has been
equipped with five cameras, a Velodyne HDL64 on the top
covering a 360∘ field of view, and a GPS-aided inertial navi-
gation system that provides vehicle velocity and orientation.
To fully demonstrate the performance of our method, our ex-
perimental evaluation consists of two parts: the evaluation of
ground segmentation and the evaluation of drivable area de-
tection. About the former, we quantitatively test it on the
SemKitti dataset [36] and compare our method with some
previous methods. Besides, we also make qualitative compar-
isons on our off-road data. For the latter, we first calculate the
time of each step in our method to evaluate real-time

Table 1 Statistical results of Accuracy on SemKitti dataset (%)

Approach Seq00 Seq01 Seq02 Seq03 Seq04 Seq05 Seq06 Seq07 Seq08 Seq09 Seq10 Mean

MethodGA 87.44 85.32 88.79 90.40 93.89 86.06 86.81 86.74 86.61 88.00 86.11 87.83

MethodPF 97.21 67.49 90.84 92.85 97.37 96.45 95.23 96.69 96.78 89.10 89.74 91.79

MethodOG 93.30 94.08 94.86 96.34 97.31 94.54 93.53 93.65 93.17 95.06 94.64 94.59

MethodVH 91.15 91.98 89.96 91.48 85.64 89.72 83.89 90.82 90.87 88.47 86.28 89.11

Ours 96.94 98.65 96.90 97.32 99.03 96.25 97.02 96.42 97.33 97.11 95.86 97.16

Table 2 Statistical results of Recall on SemKitti dataset (%)

Approach Seq00 Seq01 Seq02 Seq03 Seq04 Seq05 Seq06 Seq07 Seq08 Seq09 Seq10 Mean

MethodGA 92.77 94.20 91.00 92.83 95.29 92.08 91.20 92.80 92.33 92.28 91.34 92.56

MethodPF 97.54 59.72 89.14 92.23 99.67 97.69 95.68 96.80 96.56 85.61 84.92 90.51

MethodOG 93.53 97.82 94.83 96.83 97.83 94.60 94.68 93.38 94.31 96.20 94.39 95.31

MethodVH 91.62 92.61 90.78 92.59 86.90 91.47 79.72 92.02 89.79 87.76 83.85 89.01

Ours 99.51 99.70 99.17 99.53 99.65 99.38 97.91 99.39 99.35 99.41 99.09 99.28
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performance. However, since there is no suitable dataset for
quantitative evaluation, the qualitative results of drivable area
detection are shown in the end.

6.1 Ground Segmentation

At first, we test our method on the SemKitti dataset
based on the odometry dataset of the KITTI Vision
Benchmark [37]. The SemKitti dataset provides labels
for sequential point clouds including ground, structure,
vehicle, human and so on. Because ground segmentation
is a binary classification problem for point clouds, we
take ground-related points as the positive class, and the
points belonging to other classes, such as vehicle, hu-
man, object, and structure, are labelled as the negative
class in the test. Note that since the nature class in-
cludes both ground vegetation and non-ground vegeta-
tion like shrubs, this class is excluded in comparison
experiments.

We adopt four previous ground segmentation methods as
comparison tests. For a point pv ∣ e, its vertical height may be
the simplest feature for ground segmentation, and this method

(denoted as MethodVH) is generally used as a simple prepro-
cessing step. In this method, we set the ground condition as
∣zv ∣ e∣<30 cm. Paper [13] presents a deterministic iterative
multiple plane fitting technique (denoted as MethodPF), and
in our contrast test, some critical parameters of this method are
set as follows: the number of iterations (3), the number of
points used to estimate the lowest point representative (20),
the threshold for points to be considered initial seeds (120),
and threshold distance from the plane (15 cm). For Thrun’s
method [23] (denoted as MethodOG), all the points in an
occupied grid cell whose vertical distance is less than 15 cm
are regarded as ground points. Moreover, the geometric angle
between the line pv ∣ e pv ∣ e + 1 and the horizontal plane serves
as a decisive segmentation condition in paper [25] (denoted as
MethodGA), and we set the angle threshold to 30∘ in this
comparison test.

The experiment for ground segmentation produces
four outcomes: true positive, true negative, false positive,
and false negative, therefore, we adopt accuracy (ACC),
recall (TPR), and precision (PPV) as evaluation metrics,
and experiment results are tabulated in Tables 1, 2, 3,
respectively. The results show that our method possesses

Table 3 Statistical results of Precision on SemKitti dataset (%)

Approach Seq00 Seq01 Seq02 Seq03 Seq04 Seq05 Seq06 Seq07 Seq08 Seq09 Seq10 Mean

MethodGA 83.55 86.97 92.92 94.13 96.64 82.58 87.54 80.71 85.78 89.58 82.55 87.54

MethodPF 96.83 94.01 97.63 98.00 96.97 95.44 96.41 95.90 97.89 97.29 93.84 96.38

MethodOG 92.92 94.36 97.80 98.20 98.64 94.68 94.64 92.60 93.99 96.20 94.80 95.35

MethodVH 90.54 96.37 94.72 95.78 93.80 88.72 92.63 88.16 94.28 94.11 87.97 92.46

Ours 94.56 98.49 96.52 96.93 99.08 93.65 97.20 93.14 96.18 96.26 93.02 95.91

Fig. 10 Results of Fscore average and its range on all sequences
Fig. 11 Accuracy of our ground segmentation method compared to that
of other methods on 4540 continuous scans
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competitive performance metrics to the relevant methods
in structured environments. Although the precision of our
method is not the best, its accuracy is the highest. Since
the road point is a subset of the ground point in our
framework, the high accuracy can avoid the loss of road
points caused by misclassification of ground points,
which is determinant for the drivable area detection, es-
pecially on rough roads.

Besides, Fscore is a comprehensive indicator of perfor-
mance in the statistical analysis of binary classification. And
Fscore is defined as:

Fscore ¼ 2PPV � TPR
PPV þ TPR

ð31Þ

The average of Fscore and its Max-Min range on all se-
quences are shown in Fig. 10. And Fig. 11 demonstrates
the accuracy of different methods on 4540 continuous
scans. As can be seen from these figures, the comprehen-
sive performance of our segmentation result is pretty well,
and the accuracy of our method has a small fluctuation in
different traffic scenes, indicating that it is better adapted
to complex roads. Moreover, we also test these methods on
our off-road scenarios since there is no dedicated off-road
dataset. The test results are qualitatively shown in Fig. 12,
and it is obvious that our method will not cause false-
negative points on a massive scale when the vehicle pos-
ture changes dramatically. Consequently, the proposed
method has optimal robustness compared to other
methods, and it can better handle challenges on unstruc-
tured and rough roads.

Fig. 12 Results of ground segmentation with different methods on a rough road. Red and yellow points indicate obstacles and the ground, respectively.
And flaws are marked by white boxes in which the blue points should be labelled as ground points

Table 4 Average computation times (ms)

Obstacle
detection

Reachable
area

Ground
segmentation

Road
labelling

Data
fusion

Total
time

12.98 5.19 32.49 19.85 6.35 76.86
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6.2 Drivable Area Detection

Without an accurate perception of the environment, au-
tonomous vehicles could not make safe decisions to
achieve reliable navigation. In addition, the real-time
capability is also crucial for practical applications.
Therefore, experimental evaluations of drivable area de-
tection are intended to demonstrate the practicability of
our method, including real-time performance and detec-
tion accuracy.

6.2.1 Runtime Evaluation

We implement the proposed method in C++, and the real-
time performance is evaluated on a desktop computer with
an Intel i7–7777 3.6GHz CPU and 16 GB memory. The
average time for each part is shown in Table 4. Since the
rotation frequency of LiDAR is generally 10HZ, our meth-
od can support online processing in real-time with the av-
erage computation time for each frame being 76.86 ms.

Fig. 13 Results of drivable area detection based on our method and
Bayesian fusion maps in two challenging situations

Fig. 14 Comparison of our method to voting with a different voting
threshold vth

Fig. 15 Trend of posterior probabilities for each classifier on rough roads
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Besides, the real-time capability can be further improved
through the parallelization of data processing.

6.2.2 Accuracy Evaluation

Since the off-road environment is complex and diverse, it is
difficult to characterize the drivable area with a single feature

accurately. In Fig. 13(a), the point cloud in region A has the
features of a road surface. However, our vehicle cannot reach
there due to the existence of obstacles, so region A belongs to
the road area but not the reachable area. In contrast, if only the
connectivity on the obstacle map is considered, region B be-
longs to the reachable area, but it cannot be labelled as the
road area since no point cloud exists in region B. For the

Fig. 16 Qualitative results of our method on challenging rough roads. The columns from left to right are camera image, point cloud segmentation result,
Bayesian fusion map, and drivable area with obstacles
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above situations, only the reachable area or road area is not
sufficient to define the distribution of the drivable area.
Therefore, we introduce the Bayesian fusionmethod to handle
these complex situations, and we also provide an ablation
study to show the advantages of our method.

As shown in Fig. 13(b), there are apparent errors from a
single classifier in the Bayesian fusion map, but the proposed
method can better solve these challenges and provides reliable
drivable areas. In addition, since voting is the most common
method for classification problems with multiple classifiers,
we compare our approach to it in terms of drivable area de-
tection as an ablation study. The input of the voting method
includes the previous drivable area after an ego-motion com-
pensation, the road area and the reachable area, namelyM1 −
M3. First, all input matrices are summed up, and then a voting
threshold vth is chosen to binarize the sum matrix. The final
detection result is given by:

Ad ¼ f binarize ∑
i¼1;2;3

Mi; vth

 !
ð32Þ

where fbinarize is a binarization function, and the voting thresh-
old vth means that if the number of classifiers supporting a
point is not less than vth, this point will be classified into the
drivable area. Although voting methods with different thresh-
olds vth have different effects, our method is better than them
in terms of accuracy and robustness, and the results of the
ablation study are illustrated in Fig. 14.

As shown in Fig. 14(a), the voting method with vth = 2
produces some problematic drivable areas, which indicates
that it is less effective in suppressing the errors from a single
classifier. However, if we set vth as 3, the obstacles in a flash
(for example, a bird in Fig. 14(b)) will cause a sudden change
in the drivable area, so the voting method with vth =3 is too
sensitive in abnormal situations to guarantee the robustness of
drivable area detection. On the contrary, in this case, the his-
torical information (M1) in our framework works through the
Bayesian decision method, increasing the robustness of the
detection system.

Figure 15 depicts the trend of posterior probabilities for
each classifier on rough roads. Due to the complexity of en-
vironments and the uncertainty of each classifier, posterior
probabilities are constantly changing over time, and it is con-
tinuously revised posterior probabilities that ensure the accu-
racy of Eq. (23). In addition, as shown in Fig. 15(d), the
posterior probabilities of M4 change slightly compared with
those of other classifiers, indicating that the intersection of the
road area and the reachable area can characterize the drivable
area in most cases, which is consistent with our experience,
and this is also the reason why we set λ as a number greater
than 1 in Eq. (12). Further, since there is no drivable area test
dataset for quantitative evaluation, we qualitatively show the
detection results in several complex off-road scenarios, see

Fig. 16. Meanwhile, the results of ground segmentation and
road labelling, and Bayesian fusionmaps are also illustrated in
Fig. 16. From experimental results, it is proved that our meth-
od can guarantee the real-time detection of drivable areas in
front of the vehicle with promising performance, assisting
autonomous vehicles with path planning in rough and un-
known environments.

7 Conclusion and Future Work

In this paper, we present a framework based on the double
projection of point clouds, including ground segmentation,
road labelling and drivable area detection. Moreover, our
method focuses on the combination of the elevation map
and the range map, and some new morphological opera-
tions are applied to improve the robustness and real-time
performance. More importantly, the decision-making
method based on the Bayesian minimum error rate theory
is introduced to ensure the stability of the system. And this
fusion method takes into account the previous drivable
area, the road area and the reachable area, so the final result
is conducive to path planning of autonomous vehicles on
rough and unstructured roads. Besides, the experiments in
different situations verify the robustness and efficiency of
our method.

Since only the positive obstacles around the vehicle are
considered, the reachable area is more likely to be divergent
if the obstacles are sparse. Although this problem can be
solved by final data fusion, the richer the obstacle information
in obstacle maps, the more accurate the subsequent drivable
area detection can be. Therefore, the major work in the future
is to expand the types of obstacles such as the negative obsta-
cle and the dynamic obstacle with motion models, making
drivable area detection more accurate and reliable.

Supplementary Information The online version contains supplementary
material available at https://doi.org/10.1007/s10846-021-01381-7.

Acknowledgements This work was supported by National Key Research
and Development Program of China (2018YFD0700602,
2017YFD0700303, and 2016YFD0701401), Youth Innovation
Promotion Association of the Chinese Academy of Sciences (Grant No.
2017488), Independent Research Project of Research Institute of
Robotics and Intelligent Manufacturing Innovation, Chinese Academy
of Sciences (Grant No. C2018005), Equipment Pre-research Program
(Grant No. 301060603), and Technological Innovation Project for New
Energy and Intelligent Networked Automobile Industry of Anhui
Province.

Availability of Data and Material The authors declare that all data and
materials support our claims in the manuscript and comply with field
standards. The data involved in our research include public dataset
(SemKitti) and private dataset. The public dataset can be downloaded
from the official website of SemKitti dataset. Our private dataset is cur-
rently not available.

45    Page 16 of 19 J Intell Robot Syst (2021) 102: 45

https://doi.org/10.1007/s10846-021-01381-7


Code Availability The custom code is currently not available.

Authors’ Contributions Conceptualization: Fengyu Xu, Zhiling Wang;
Methodology: Fengyu Xu, Linglong Lin; Formal analysis and investiga-
tion: Fengyu Xu, Linglong Lin; Writing - original draft preparation:
Fengyu Xu, Linglong Lin; Writing - review and editing: Fengyu Xu,
Linglong Lin, Zhiling Wang; Funding acquisition: Huawei Liang,
Zhiling Wang; Resources: Huawei Liang; Supervision: Huawei Liang,
Zhiling Wang.

Funding This work was supported in part by National Key Research
and Development Program of China (2018YFD0700602,
2017YFD0700303, and 2016YFD0701401), Youth Innovation
Promotion Association of the Chinese Academy of Sciences (Grant
No. 2017488), Independent Research Project of Research Institute of
Robotics and Intelligent Manufacturing Innovation, Chinese
Academy of Sciences (Grant No. C2018005), Equipment Pre-
research Program (Grant No. 301060603), and Technological
Innovation Project for New Energy and Intelligent Networked
Automobile Industry of Anhui Province.

Declarations

Ethics Approval Not applicable.

Consent to Participate Not applicable.

Consent for Publication Not applicable.

Conflicts of Interest/Competing Interests The authors have no conflicts
of interest to declare that are relevant to the content of this article.

Appendices

This algorithm is used to eliminate the narrow gaps in the
obstacle map, while it does not need to traverse all gaps
resulting in real-time performance.
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This algorithm is used to find reachable areas in the front of
vehicles with the help of ObsCloseMap generated by
Algorithm 1. Note that this algorithm is performed in a

down-sampled image, so we need to up-sample the search
result ReachAreaMap.
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