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Abstract
Object detection techniques that achieve state-of-the-art detection accuracy employ convolutional neural networks,
implemented to have lower latency in graphics processing units. Some hardware systems, such as mobile robots, operate
under constrained hardware situations, but still benefit from object detection capabilities. Multiple network models have
been proposed, achieving comparable accuracy with reduced architectures and leaner operations. Motivated by the need to
create a near real-time object detection system for a soccer team of mobile robots operating with x86 CPU-only embedded
computers, this work analyses the average precision and inference time of multiple object detection systems in a constrained
hardware setting. We train open implementations of MobileNetV2 and MobileNetV3 models with different underlying
architectures, achieved by changing their input and width multipliers, as well as YOLOv3, TinyYOLOv3, YOLOv4 and
TinyYOLOv4 in an annotated image dataset captured using a mobile robot. We emphasize the speed/accuracy trade-off in
the models by reporting their average precision on a test data set and their inference time in videos at different resolutions,
under constrained and unconstrained hardware configurations. Results show that MobileNetV3 models have a good trade-off
between average precision and inference time in constrained scenarios only, while MobileNetV2 with high width multipliers
are appropriate for server-side inference. YOLO models in their official implementations are not suitable for inference in
CPUs.
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1 Introduction

The recent successes in the field of object detection are
mostly due to the use of deep neural networks, more specifi-
cally convolutional neural networks (CNN). The underlying
operations that compose CNNs are highly optimized for
fast execution in graphics processing units (GPU). How-
ever, in some domains, GPUs may be unavailable and these
processes must be executed in CPUs. One such domain is
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mobile robotics, comprised of systems such as autonomous
terrestrial, aerial or underwater vehicles, as well as special-
ized units, such as humanoid robots. These systems may be
subject to limitations regarding space, weight and energy
consumption, constraining the robot’s hardware to contain
only CPUs, thus hindering the performance of systems
based on deep learning techniques.

With these limitations in mind, this work presents an
empirical and comparative analysis of the performance of
recent CNN architectures proposed for constrained hard-
ware settings and applied to object detection tasks, with the
goal of emphasizing the speed/accuracy trade-off present
in current models. Motivated by the creation of a near
real-time soccer ball detection system to be executed in
mobile robots equipped with embedded computers, that
contain only CPUs under an x86 architecture and no graph-
ics processing units, we train multiple models in the same
annotated image dataset and compare their average preci-
sion (AP) in a test data set, as well as their inference times
in both constrained and unconstrained hardware settings.
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In preceding work [11], we presented a similar analysis
of MobileNetV1, a CNN whose architecture was optimized
for low latency inference in mobile phones, adapted for
the task of object detection in an Intel NUC mini-PC
equipped with a Core-i7 CPU. Here, we expand our work
by analyzing MobileNetV2 [39] and MobileNetV3 [17],
models that incorporate more recent advances in deep
learning research to their architectures in order to achieve
even lower latency in CPU-only mobile systems. We focus
on benchmarking the performance of both architectures
under different combinations of their width and input
multipliers, two hyperparameters that control the underlying
architecture of the MobileNets. In this work, we also include
the YOLOv3 [36] and YOLOv4 [5] object detection models
and their “tiny” counterparts, due to also being one-stage
CNN-based object detectors.

With this study, we aim to fill an information gap related
to the performance of the selected CNN models and object
detection techniques, which are aimed at fast and accurate
inference in mobile systems, when executed in a hardware
platform typically used in mobile robots. In the case of the
MobileNets, we investigate how a change in their width
and input multipliers, two hyperparameters that control the
overall topology of the model, affect their final accuracy
and latency in the proposed task and hardware. For YOLO,
we showcase their performance in the same task, as well
as corroborate their high latency when executed in CPUs,
especially less powerful ones.

We also expect, given our use case, to provide useful
information to teams who participate in humanoid soccer
competitions, regarding the capabilities of the selected
models to perform near real-time inference with acceptable
precision in a dataset with relevant applications to the
competition. More broadly, this study is also aimed towards
guiding the choice of a low latency, high accuracy object
detection model to be executed in embedded computers
with an x86 architecture, with a focus on recent MobileNet
models that perform object detection using the Single Shot
MultiBox Detector (SSD) [29] method, and multiple YOLO
and TinyYOLO implementations.

This work also investigates the latency of the selected
implementations of the models by gathering their inference
times when processing videos in multiple input resolutions.
These measurements are done in both constrained and
unconstrained environments, providing readers with more
relevant results to make decisions regarding the choice of
neural network model to use in a single-object detection
system under local, mobile, constrained hardware scenarios,
but also accounting for situations in which remote and/or
unconstrained hardware configurations may be available.

The text is organized as follows: Section 2 lists the recent
advances in the state-of-the-art in object detection, as well
as techniques to create smaller network topologies while

still maintaining high detection accuracy. We also describe
the network architectures utilized in this work and their
detection mechanisms. Section 3 depicts related works. The
experimental methodology is presented in Section 4. Results
are presented and discussed in Section 5. Lastly, Section 6
provides the conclusions and future work.

2 Research Background

In recent years, object detection techniques have advanced
at great pace due to the equally fast advances of deep
learning and convolutional neural networks applied to
computer vision [49]. Two-stage detectors such as Faster
R-CNN [37] first generate region proposals and then
detect objects only in the selected regions, while one-
stage detectors such as YOLO [34] and SSD [18] generate
bounding box coordinates and class predictions at the same
time, with YOLO using only convolutional layers for this
task.

More recently, effort has centered around building strate-
gies for efficiently scaling network models, reaching a
trade-off between FLOPS, number of trainable parame-
ters and accuracy. The MobileNetV3 architecture [17] has
been partially achieved via hardware-aware neural architec-
ture search techniques [42, 47], while AmoebaNet’s archi-
tecture [33], which achieved state-of-the-art classification
accuracy on ImageNet [12], was evolved using evolutionary
algorithms.

Other techniques attempt to shrink or expand the
dimensions of convolutional layers using hyperparameters.
MobileNetV1 [18] introduced the width multiplier and input
resolution parameters, discussed later in the text, while
EfficientNet [43] and EfficientDet [44] use a compound
coefficient to scale all three dimensions of convolutional
layers in order to maximize the network’s accuracy. This,
allied with neural architecture search, introduced the current
state-of-the-art in image classification and object detection
using CNNs.

2.1 MobileNets

MobileNets [18] are convolutional neural network archi-
tectures whose number of trainable parameters can be
controlled by two hyperparameters. The first is the width
multiplier α ∈ (0, 1], which controls the number of chan-
nels in each layer of the network. Smaller values of α reduce
the number of parameters in each layer of the network
uniformly, also reducing computational cost. The second
parameter is the resolution multiplier ρ ∈ (0, 1], which is
used to reduce the resolution of the input images and, con-
sequently, the number of operations throughout all layers of
the network.
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Additional features introduced in MobileNetV1 are
batch normalization [21] for learning stabilization, as well
as depthwise-separable convolutions [40], a convolution
operation that uses fewer parameters to achieve comparable
results to regular convolutions.

MobileNetV2 [39] advanced the state-of-the-art by
introducing linear bottleneck layers in the network, reducing
the size of the inputs in subsequent layers while preventing
information from being lost by non-linear activation
functions. The ReLU6 non-linearity [26] was chosen instead
of regular ReLU to prevent loss of information when
calculations with low-precision data types are performed.

Finally, the MobileNetV3 [17] builds upon MobileNetV2
and MnasNet [42] by using Mobile Neural Architecture
Search (MNAS) [42], an algorithm that manipulates blocks
of layers in the network, with the goal of maximizing
accuracy while ensuring inference is conducted under a
latency budget. The architecture is further simplified by
the use of the NetAdapt algorithm [47], which reduces the
number of filters in each layer of each block created by
MNAS, further reducing network latency while trying to
minimally affect network accuracy. For each iteration that
either NAS algorithm is applied to the current network, its
inference latency is measured in a mobile phone to ensure
that the resulting model architecture is optimized for that
type of hardware [17].

Both MobileNetV2 as well as the gradual enhancements
performed in MobileNetV3 have their latency measured in
the ARM-based processor of the Google Pixel 1 [17, 39].
In this work, we expect the performance gain achieved by
these enhancements to also be visible in our target hardware,
which differs from the original hardware the networks were
tested on.

2.2 Single-Shot MultiBox Detector

The Single-Shot MultiBox Detector (SSD) [29] is a
technique that utilizes a convolutional neural network,
called the base network, combined with multiple subsequent
convolutional filters of different sizes, to perform detection
under different scales and aspect ratios in multiple regions
of an input image. The feature maps of the base network
may be pretrained in a classification or detection class.
When training the network for a detection task, SSD
employs techniques such as data augmentation and hard
negative mining for faster training, as well as a loss function
that is a weighted sum of both localization and classification
losses.

2.3 You Only Look Once

You Only Look Once (YOLO) [34] simplified the object
detection problem, which was then composed of a

region proposal step followed by an image classification
step, to a single regression step composed of bounding
box coordinates and class probabilities. YOLOv2 [35]
introduced the use of anchor boxes to the algorithm, a
technique that allowed the detection of multiple objects with
different aspect ratios in the same quadrant of an input
image, using only convolutional layers.

YOLOv3 [36] introduces the prediction of bounding
box coordinates across multiple scales and the use of
residual layers [15] to speed up training, while YOLOv4 [5]
adapts multiple data augmentation and feature extraction
techniques to allow efficient training and inference of a
model on a single GPU with 8 to 16 GB of VRAM.

3 RelatedWork

This work lies at the intersection of two problems,
which may be considered complementary to each other.
The first is the execution of computer vision tasks
in embedded computers, which introduces complications
regarding energy efficiency, storage and memory capacity
and processing power. The second relates to compressing,
reducing or simplifying a CNN model to achieve lower
latency while sacrificing as little model accuracy as
possible.

3.1 Neural Network Reduction Strategies

One way to make neural network inference feasible in
embedded computers is to use techniques that simplify
existing network architectures before deployment in the
constrained hardware. The goal of this approach is to either
reduce the amount of memory necessary to store the model;
the number of multiply–accumulate operations (MAC) in a
forward pass of the network, or other more direct metrics,
such as the wall-clock inference time. Given the possible
loss in representation power of the model resulting from its
reduction, a loss of accuracy in the target task is usually
expected as trade-off.

One model reduction technique is network pruning [14],
which consists in the detection and removal of low-valued
weights from a network model, followed by the retraining
of the network, promoting the re-purposing of the remaining
weights. There have been works that have applied pruning
in order to make network models more fitting to be executed
on embedded systems [1, 27].

Another approach to reduce the memory necessary
to store a neural network is the quantization of the
network’s parameters [20], a technique which consists
in representing numbers from a range of values by a
less precise subset of values, consuming less memory
and possibly making operations simpler. A more extreme
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approach to quantization are the binary neural networks [10,
32], whose weights are represented by sets of binary or
ternary values, enabling straightforward implementation of
the models direct in the hardware level, at the cost of
unstable training and reduced precision. Other works have
already covered the applications of quantization [23, 25,
45] and binarization [25] of networks for use in embedded
systems.

Model compression [2, 6], also known as knowledge
distillation [16] is a process in which one shallow network
(called the student) learns to imitate the output of one
or more networks with more complex architectures (the
teachers), achieving better results than if trained directly
in the source dataset. This is usually done by using the
predictions of the teacher models to classify or generate
synthetic dataset, which is then used to train the student
model. Thus, the student learns to approximate the function
modeled by teacher ensemble instead of the function that
represents the original data, which may be more accurate.

There have also been works that focus on representing
neural network weights in alternative ways, e.g. using low-
rank approximations of the weight matrices [38]. However,
these techniques may require domain knowledge to be
implemented without side-effects. Another option is to
rethink the operations that compose the neural networks.
One example of relevance to this work are depthwise
separable convolutions [9, 40], which decompose the
standard convolution operation applied to multiple channels
into multiple single-channel convolutions, followed by a
single pointwise convolution that joins the results from
multiple channels. Depthwise separable convolutions are
used in MobileNetV2 and V3, which are analyzed in this
work.

Neural architecture search is yet another family of
techniques aimed towards adapting a network’s architecture
according to an optimization objective and algorithm.
A relevant example to this work is MNAS [42], a
reinforcement learning-based technique which aims to
maximize model accuracy and minimize wall-clock latency
in mobile devices.

For individual works that build upon the aforementioned
network reduction techniques, the reader is pointed to
surveys on the topic [8, 38, 41].

3.2 CNNs in Embedded Systems

Due to the relative novelty of the use of deep convolutional
neural networks in computer vision tasks, their transposition
to more specialized and energy-efficient hardware is an
ongoing topic of research. One category of such specialized
hardware are the portable NVIDIA Jetson development
boards, equipped with an ARM CPU and CUDA-capable
GPU. There have been MobileNetV1 [31] and V2 [48]

implementations aimed towards object detection tasks in
Jetson boards, as well as Fast R-CNN [30] and Faster
R-CNN [22].

Previous work [7] has analyzed the inference time of
multiple CNNs in image classification tasks under the
Jetson TX1. A linear upper bound was observed when
comparing model accuracy with inference time, i.e. models
that took longer to perform a forward pass on an image were
more accurate and the relation between both quantities was
linear. In order to minimize memory usage and accelerate
convolutions in the Jetson TX1, another work [27] explores
the representation of CNN weights as sparse matrices and
the use of different sparse matrix multiplication algorithms
as alternatives to the convolution operation.

There have also been efforts to implement CNNs in field-
programmable gate arrays (FPGA), such as the proposal
of toolsets and methods to convert, accelerate and analyze
the latency and precision of CNN operations in the new
hardware [13, 46]. A common trend in these works is the
observation of a negligible loss of precision due to the
quantization of the parameters of the network [13, 25],
which is greatly offset by a considerable gain in terms
of energy efficiency and latency. Some works report a
speed up of 10 to 16 times in inference when compared
to executing the same architectures in the aforementioned
Jetson boards [3, 13].

Another work [24] similar to this one has analyzed
YOLOv3, YOLOv4, TinyYOLOv3, TinyYOLOv4 and a
custom network both in a server equipped with an Intel
Xeon E5-2678 v3 and an NVIDIA GeForce GTX 1080Ti,
as well as a Raspberry Pi 3B. Like this work, they
have reported prohibitively high inference times in their
constrained hardware, ranging from 3.225 seconds to 5.555
seconds when doing a forward pass in a single image.
Unlike them, we provide an alternative with faster inference
times for our constrained hardware.

3.3 Discussion

This section has presented related works in two main areas
of which this work is an intersection of: neural network
reduction techniques and the execution of neural networks
in embedded devices.

This work differs from its related works by focusing on
the analysis of convolutional network architectures applied
to object detection tasks in mobile computers with an x86
architecture processor. More specifically, we analyse the
MobileNetV2 and V3 neural networks in a different target
hardware than their original one and how their precision
and inference times differ when a set of hyperparameters
that dictate their architectures (input and width multipliers)
change. We also provide the same analysis for the YOLOv3,
YOLOv4, TinyYOLOv3 and TinyYOLOv4 networks, due
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to their prominence in object detection tasks with high
frame rate needs.

4 Experimental Methodology

This study is motivated by the development of a computer
vision system for an autonomous humanoid robot, which
provides the robot with the capabilities of detecting soccer
balls in a time that is compatible with the dynamics of the
game. The target hardware of the vision system is CPU-only
embedded computer of the x86 architecture, such as a mini-
PC. We identify two properties that are desirable in an object
detection system, given the aforementioned requirements.
The first is high detection accuracy, a desirable feature in
all object detection systems. The second is low latency,
providing the robot with updated object locations under
actionable intervals of time.

These two properties can be considered opposite, since
higher accuracy usually indicates a more complex model,
with more layers and operations. Also, when working with
mobile robots and embedded computers, there is a tendency
towards employing simpler machine learning models, in
order to achieve acceptable operating thresholds with
regards to time and power consumption, while sacrificing as
little precision as possible.

To compose a detection system with low latency and
high accuracy, we have selected multiple recent neural
network architectures developed for computer vision tasks
which attempt to reach a balance between both properties.
Models were selected according to their performance
in object detection tasks, their availability for the x86
processor architecture and homogeneity in pretraining in the
MSCOCO [28] dataset.

The remainder of this section describes the selected
neural network models; the image dataset used to train
the models and analyze their performance; the humanoid
robot our experiments are geared towards (with no loss
of generality over other x86 embedded systems); and
the hardware used for training, as well as the different
hardware used for testing the models under constrained and
unconstrained scenarios, providing even more broad and
informative results.

4.1 Network Architectures and Training

Twenty MobileNetV2 configurations were tested by modi-
fying the values for the width and resolution multipliers. For
the width multiplier, the values 1, 0.75, 0.5 and 0.35 were
used, resulting in networks with 3.47, 2.61, 1.95 and 1.66
million trainable parameters, respectively. The values used
for the resolution multiplier were chosen so that the input
resolution of the network is equal to 224, 192, 160, 128 and

96. The combined values of both hyperparameters resulted
in a total of twenty models that were trained using the soccer
ball dataset, described on Section 4.2.

MobileNetV3 [17] models are composed of the “Large”
and “Small” variants, both with width multipliers of 1
and 0.75, possessing 5.4 (Large, α = 1), 4 (Large,
α = 0.75), 2.9 (Small, α = 1) and 2.4 million (Small,
α = 0.75) trainable parameters, as well as minimalistic
versions of both variants with α = 1, possessing 3.9 and 2
million parameters. Minimalistic models do not contain the
more advanced squeeze-and-excite units, hard-swish, and
5 × 5 convolutions operations from the non-minimalistic
counterparts. YOLO models are composed of the v3 [36]
and v4 [5] versions of the neural networks, as well as their
“tiny” counterparts.

The MobileNet implementations selected for this work
are provided in the TensorFlow Object Detection API [19],
while YOLO is provided in the original paper implementa-
tion [5]. All models used pretrained weights learned in the
COCO dataset [28].1

4.2 Image Dataset

The dataset used in this work [4]2 consists of 4364 images
in 1920 × 1080 resolution, collected from the point-of-view
of the humanoid robot described in Section 4.4. A fish-eye
lens is used to maximize the field of view of the robot and
so all images in the dataset also inherit this feature.

Of the 4364 images, 4014 compose the annotated training
set and 250, the annotated test set. In these sets, the
soccer balls visualized by the robot have been marked
with bounding boxes. The training and test sets were
collected from different sets of videos, with the purpose of
minimizing data correlation.

Each image contains a single soccer ball, captured under
multiples lighting conditions, as well as at different angles
and distances from the camera. There are pictures of both
stationary and moving soccer balls. Figure 1b presents
examples of the dataset.

4.3 Training Procedure

The models were trained in a server with Intel Xeon
Gold 5118@2.3 GHz processors totaling 48 CPUs, 192
GB of RAM and an NVIDIA Tesla V100-PCIE with 16
GB of memory, running CentOS 7.6.1810. The MobileNet
models were trained for 50000 training steps. The YOLO

1In order to facilitate the replication of these results and encourage the
development of similar approaches by other researchers, the software
used in this paper is available for download at: https://github.com/
douglasrizzo/JINT2020-ball-detection.
2The dataset was also made available at http://ieee-dataport.org/
open-access/open-soccer-ball-dataset
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Fig. 1 Image dataset and
humanoid robot used to collect
it. a One of the teen-sized robots
of the RoboFEI team. b
Examples of images from the
soccer ball dataset

and TinyYOLO models were trained for a total of 6000
training steps, following recommendations from the original
developers of the model, given the number of classes to be
detected.

All MobileNetV2 models were trained using batches of
32 images and the RMSProp optimizer with initial learning
rate of 4 · 10−3, an exponential decay schedule with a
decay factor of 0.95 and a momentum coefficient of 0.9.
All MobileNetV3 models were trained using batches of 32
images, stochastic gradient descent with initial learning rate
of 0.4, a cosine decay schedule and a momentum coefficient
of 0.9.

YOLO and TinyYOLO models were trained using
batches of 64 images, stochastic gradient descent with a
momentum coefficient of 0.9. YOLOv3 and TinyYOLOv3
models used a learning rate of 10−3, while YOLOv4 and
TinyYOLOv4 used a learning rate of 2 · 10−3. Two step
decays at 80% and 90% of the training were applied to these
learning rates.

4.4 Humanoid Robot

Our use case for this work is a mobile humanoid robot built
for the task of playing soccer. One of its capabilities is the
detection of soccer balls through visual inputs. The robot
weighs about 5.9 kg and measures 81 cm in height. It is
composed of 19 Dynamixel servomotors (a combination of
MX-64, MX-106 and XM430 models), totaling 19 degrees
of freedom. The humanoid robot uses a Genius WideCam
F100 (Full HD) camera for image capture and a CH
Robotics UM7 orientation sensor. The center of mass has a
height of 36.1 cm and the robot has a foot area of 174 cm2.
Other measurements include 39.5 cm of shoulder length,
38.5 cm of leg height, 18.8 cm of neck height and 38.5 cm of
arm length. The robot is equipped with an Intel NUC Core
i7 mini-PC. A picture of the robot is presented in Fig. 1a.

4.5 PerformanceMetrics

To evaluate the performance of the selected models in both
time and correctness, we gathered their average precision
and inference time during the experiments. The meaning of
these two measures is explained in this section.

4.5.1 Average Precision

In this work, both ground-truth annotations and predictions
are represented as rectangular bounding boxes. Given a
predicted rectangle A and a ground truth rectangle B, it
is possible to calculate a similarity measure between both
rectangles, called intersection over union (IoU),

IoU = (A ∩ B)

(A ∪ B)

When the IoU among both rectangles surpasses a certain
threshold t , the detection represented by A is considered a
true positive (TP). Otherwise, if no other predicted rectangle
has an acceptable IoU ≥ t wrt. B, the failed detection is
considered a false negative (FN). Lastly, all predicted boxes
which have IoU < t for all ground truth boxes in an image
are considered false positives (FP). These quantities allow
us to calculate a detector’s precision and recall,

Precision = T P

T P + FN
, Recall = T P

T P + FP
.

By ordering all predictions in order of decreasing
confidence and calculating precision and recall at each
new prediction, we arrive at a monotonically decreasing
precision/recall (PR) curve. Average precision (AP) is the
area under the PR curve. It is a single-valued metric which
summarizes model performance when retrieving objects of
a single class.
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4.5.2 Inference Time

In this work, inference time is defined as the time it takes
a detection model to generate predictions for a given input
image, in milliseconds. To get a more accurate measure,
all models operated over a 30-second video taken from
the robot’s point-of-view and the inference time of the
model is taken as the average time over all frames of the
video. Experiments were conducted in the same video at
the native resolution of 1920 × 1080 pixels, as well as
other versions scaled down to 1280 × 720, 640 × 480
and 480 × 360 pixels. All networks then processed these
four versions of the same video and the mean inference
time over all frames of each video for each network was
recorded.

4.6 Constrained Hardware for Inference

The constrained hardware configuration in which the
inference time of the models was captured is equipped with
an i5-4210U CPU @ 1.70GHz and 8 GB of RAM and
no GPU, in line with the hardware typically used by an
autonomous mobile robot. For comparison purposes, the
same experiments were performed in the training computer,
under GPU and CPU-only settings. In all cases, when
CPU-only experiments were executed, all CPU cores were
allowed to be utilized.

5 Results

Table 1 displays the AP of all trained models in the test set,
as well as the inference time in milliseconds for different
hardware configurations. In this table, the inference time
was calculated with the videos in their native 1920 × 1080
resolution. These results allow us to conclude that the
canonical YOLOv3 and YOLOv4 implementations, as well
as their tiny counterparts, are not optimized for inference on
CPUs, achieving the highest inference times of all models
in the Intel Core i5-4210U. In fact, it is stated by the author
of the model [5] that their implementations are optimized
for inference in single GPUs. This can be seen by the
comparatively low times achieved in the Tesla V100 GPU,
especially by the TinyYOLO models, which achieved the
lowest inference times of all models.

As for the MobileNet models, we can see that
MobileNetV3 and MobileNetV2 with α = 1 achieved
the highest AP in the test data set. However, with the
high variation in inference times between all combinations
of hyperparameters, the results from Table 1 alone
do not provide enough information to compare model
performances. To remedy that, we calculate a performance
score for each neural network in each hardware setting

pm,h = APm

tm,h
, where APm represents the AP of network m

(a value that is hardware-independent) and h, the hardware
setting the inference time t of model m was gathered from.
Then, the performance scores of all models in the same
hardware are normalized by the highest performance score
in that hardware, leading to the normalized score sm,h =

pm,h

maxη pη,h
. Achieving a normalized score sm,h = 1 means

that model m had the highest AP/inference time ratio off all
models in hardware h.3

Table 2 presents the normalized scores of all models.
Overall, MobileNetV2 models with width multipliers α ∈
{0.75, 1} had the best scores of all MobileNetV2 models
in all hardware settings. We can also see that the five best
models in unconstrained hardware settings are the same for
both CPU and GPU. However, when operating under the
Intel Core i5 4210U processor, both MobileNetV3 models
(large and small) with α = 0.75 achieved the highest scores,
making MobileNetV3 models a viable option for an object
detection system that operates under constrained hardware
settings, whereas they did not exhibit the same performance
in GPUs.

5.1 Performance with Different Input Video
Resolutions

This section presents the inference times in milliseconds of
all model implementations when processing input videos
of several resolutions (1920 × 1080, 1280 × 720, 640 ×
480, 480 × 360). Table 3 presents the mean and standard
deviation of the inference time of all YOLO models for
the tested hardware configurations. Overall, all YOLO and
TinyYOLO models achieved low standard deviation in this
test, implying that their implementation [5] is indifferent to
the input resolution of images.

As for the MobileNet results, we first discuss the
distributions of results in the three hardware settings. In
total, 104 values were collected in each setting (twenty V2
and six V3 models applied to videos in four resolutions),
with the following means and standard deviations: μi5 =
68.292, σi5 = 17.374, μV100 = 47.24, σV100 = 8.756,
μXeon = 47.009 and σXeon = 8.981.

Due to the similarity in the inference times collected from
the NVIDIA Tesla V100 GPU and the Intel Xeon Gold
5118, we executed a two-sample Kolmogorov-Smirnov test
between the two samples, with a result of p = 0.97371,
indicating that the measurements collected in the 48 quad-
core CPUs and the single GPU are similar with high

3This score may easily break or be less informative if one neural
network in the sample has disproportionately low inference time or
high AP. However, given the well-behaved values presented in Table 1,
we consider the use of the proposed score appropriate for the purposes
of our analysis.
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Table 1 Average precision (higher is better) and inference time in milliseconds (lower is better) of the trained models

Width mult. Input res. Inference time (ms)

Network AP Core i5 V100 Xeon

MobileNetV2 0.35 96 0.4065 99.964 65.37 64.959

128 0.7095 101.166 51.062 49.642

160 0.6304 88.651 52.642 50.97

192 0.6756 87.006 53.613 52.232

224 0.4984 78.553 42.852 41.703

0.5 96 0.4065 91.403 58.919 57.626

128 0.6986 81.08 44.529 43.388

160 0.3361 91.775 58.288 58.616

192 0.0944 116.076 65.629 64.828

224 0.3253 78.624 42.759 43.18

0.75 96 0.7284 86.569 51.065 51.528

128 0.6954 84.159 42.097 41.866

160 0.6679 81.351 41.883 42.309

192 0.6952 78.699 42.347 41.776

224 0.7874 85.186 48.343 47.854

1 96 0.8133 122.853 56.992 57.83

128 0.7672 82.277 46.921 47.799

160 0.8597 88.886 52.278 52.569

192 0.3632 110.75 61.263 60.052

224 0.8177 79.547 42.438 42.183

MobileNetV3 (large min.) 1 224 0.6007 85.808 58.706 59.581

MobileNetV3 (large) 0.75 224 0.8847 89.362 63.515 63.703

MobileNetV3 (large) 1 224 0.6875 120.045 88.017 91.369

MobileNetV3 (small min.) 1 224 0.6024 79.142 48.68 49.236

MobileNetV3 (small) 0.75 224 0.7067 60.654 49.328 47.741

MobileNetV3 (small) 1 224 0.8651 96.975 70.689 70.017

TinyYOLOv3 0.3381 588.235 33.557 85.47

TinyYOLOv4 0.3504 714.286 29.851 119.048

YOLOv3 0.1355 5000 44.248 588.235

YOLOv4 0.1419 5000 50 833.333

The five best in each category are marked in bold

statistical relevance. Because of that, in this section we only
report results for the MobileNets in the NVIDIA Tesla V100
GPU and the Intel i5-4210U processor.

The distance between μi5 and μV100 is indicative of
the performance lost by executing deep learning models in
constrained CPUs, while a larger standard deviation on the
CPU (σi5) indicate that there is a larger variation in network
performance, given the resolution of the input video.

Figures 2 and 3 present a series of boxplots containing the
inference time by frame in milliseconds for the MobileNets
when processing the same video under multiple resolutions
in the Intel i5-4210U CPU and the NVIDIA Tesla V100
GPU, respectively. The central line in each box represents
the median value in the group; boxes represent the first

and third quartiles of the data; and whiskers represent the
minimum and maximum acceptable range, whereas dots
outside the whiskers are considered outliers.

In all of the figures, it is possible to observe a gradual
decrease in inference time as the resolution of the input
videos decreases. This information may be relevant, as
the largest input resolution used by a MobileNet model is
224 × 224. Furthermore, the implementations used in this
work [19] already operate in downscaled images, with a
resolution of 300 × 300 pixels. Both of these observations
indicate that using a low-resolution input feed for object
detection is a valid strategy to achieve lower inference times.
This speedup is visualized in both constrained CPU and
GPU settings.
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Table 2 Normalized scores of the trained models under different hardware

Width mult. Input res. Normalized score

Network Core i5 V100 Xeon

MobileNetV2 0.35 96 0.349 0.323 0.323
128 0.602 0.721 0.737
160 0.61 0.622 0.638
192 0.666 0.654 0.667
224 0.545 0.604 0.617

0.5 96 0.382 0.358 0.364
128 0.74 0.814 0.831
160 0.314 0.299 0.296
192 0.07 0.075 0.075
224 0.355 0.395 0.389

0.75 96 0.722 0.74 0.729
128 0.709 0.857 0.857
160 0.705 0.828 0.814
192 0.758 0.852 0.858
224 0.793 0.845 0.849

1 96 0.568 0.741 0.726
128 0.8 0.849 0.828

160 0.83 0.853 0.844
192 0.281 0.308 0.312
224 0.882 1 1

MobileNetV3 (large min.) 1 224 0.601 0.531 0.52
MobileNetV3 (large) 0.75 224 0.85 0.723 0.716
MobileNetV3 (large) 1 224 0.492 0.405 0.388
MobileNetV3 (small min.) 1 224 0.653 0.642 0.631
MobileNetV3 (small) 0.75 224 1 0.744 0.764
MobileNetV3 (small) 1 224 0.766 0.635 0.637
TinyYOLOv3 0.049 0.523 0.204
TinyYOLOv4 0.042 0.609 0.152
YOLOv3 0.002 0.159 0.012
YOLOv4 0.002 0.147 0.009

Higher is better. A normalized score of 1 indicates that the model performed the best under that hardware, compared with the others

Table 3 Inference time of YOLO and TinyYOLO models when processing videos of multiple input resolutions

Inference time

Network Hardware mean std. dev.

TinyYOLOv3 Tesla V100 41.957 10.022
Xeon Gold 5118 88.983 3.369
i5-4210U 588.235 0.000

TinyYOLOv4 Tesla V100 38.808 9.136
Xeon Gold 5118 114.529 6.094
i5-4210U 714.286 0.000

YOLOv3 Tesla V100 46.726 4.081
Xeon Gold 5118 588.235 0.000
i5-4210U 5000.000 0.000

YOLOv4 Tesla V100 50.385 0.676
Xeon Gold 5118 817.308 32.051
i5-4210U 5000.000 0.000
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Fig. 2 Inference time of MobileNetV2 and V3 models in the Intel
i5-4210U

To discover whether the distributions presented in
Figs. 2 and 3 can be considered different with statistical
significance, a series of one-way analysis of variance
(ANOVA) tests were performed, whose results can be
viewed in Table 4. We can see that MobileNetV2 is sensitive
to the input resolution hyperparameter only when inference
is done on a GPU and not the constrained CPU.

The other results in Table 4 also confirm that there is a
difference in feeding video frames in different resolutions
to the TensorFlow implementations of the MobileNets.
MobileNetV2 demonstrated statistically significant dif-
ferences both on the constrained CPU and the GPU,

Fig. 3 Inference time of MobileNetV2 and V3 models in the NVIDIA
Tesla V100

while MobileNetV3 demonstrated statistically significant
differences only in the constrained CPU. Lastly, in all cases,
a change in the width multiplier of the networks did not
result in a significant change in their inference times.

To discover which combinations of the aforementioned
parameters actually resulted in lower inference times for
each neural network, the ANOVA tests were followed by
a series of Tukey’s Honestly Significant Difference (HSD)
tests, whose results are displayed in Figs. 4 and 5. Whenever
there is no vertical overlap between the intervals covered by
two pairs of lines, their distributions are considered different
with a statistical significance greater than 95%. It can be
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Table 4 One-way analysis of
variance of the inference times
achieved by the MobileNets

Network Parameter Hardware F p

MobileNetV2 Input res. Core i5 1.476 0.2176

V100 6.773 0.0001

Width mult. Core i5 0.639 0.5921

V100 2.606 0.0577

Video res. Core i5 63.744 1.0595 ·10−20

V100 14.929 9.8719 ·10−8

MobileNetV3 Width mult. Core i5 2.471 0.1302

V100 1.873 0.1848

Video res. Core i5 7.350 0.0016

V100 1.885 0.1646

Values in bold indicate results that were different with p ≤ 5%

seen on Fig. 4a that MobileNets with input resolutions of
128 and 224 pixels achieve lower inference time than the
ones with input resolutions of 96 and 192 pixels.

The other subfigures confirm that feeding video frames
in a natively low resolution to the MobileNets result in lower
inference times. In all cases, the optimal video resolutions
are 640 × 480 and 480 × 360, in contrast with 1920 ×
1080. In the case of MobileNetV2 on CPU, 1280 × 720
achieves a statistically significant compromise among the
two aforementioned groups.

5.2 Discussion

The results presented in Tables 1 and 2 show that
MobileNetV2 models with α ≤ 0.5 do not achieve

(a)

(b)

Fig. 4 Tukey’s HSD tests applied to the MobileNet groups who had
p ≤ 5% in the ANOVA tests on the Intel Core i5-4210U

the top results with regards to AP. While some of the
V2 models do achieve low inference times (in bold in
Table 1), the ANOVA results from Table 4 indicate that
the differences in latency resulting from a change in the
α hyperparameter are not statistically significant, which
leads us to the conclusion that, under our experimental
settings, MobileNetV2 models with α > 0.5 should be
prioritized.

Another interesting observation is that MobileNetV3 is
the only model whose latency lowered (in comparison with
the other models) in the less powerful CPU, in comparison
with the server CPU and GPU. This is a strong indication
that the optimizations performed in MobileNetV3 [19] on
top of MobileNetV2 and MnasNet, which initially targeted

(a)

(b)

Fig. 5 Tukey’s HSD tests applied to the MobileNet groups who had
p ≤ 5% in the ANOVA tests on The NVIDIA
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a performance gain in ARM-based mobile phones, are also
visible in Intel-based x86 processors.

Lastly, since the MobileNets studied in this work receive
images with a maximum input size of 224 × 224 pixels, the
observation that using video feeds with smaller resolutions
boost the inference time of all MobileNets is a clear
indicator that low latency object detection applications
should always prioritize using the lowest video resolution
possible to avoid any overhead related to processing or
resizing high definition images before each forward pass.

As for YOLO, its high latency in CPUs can be attributed
to the optimization of its canonical implementation towards
single GPU systems [5]. More specifically, the particularly
high latency in low power CPUs achieved in this work
for all YOLO models is in line with related work that
also performed inference time measurements of the same
models, albeit in different hardware [24].

6 Conclusions

This work presented a comparative analysis of the precision
and inference time of reduced CNN architectures and
single-stage object detectors in the task of single-class
object detection under constrained hardware situations.
Multiple MobileNetV2 and V3 models, as well as YOLOv3,
YOLOv4 and their tiny counterparts were trained to detect
soccer balls and tested in a computer with an Intel Core
i5-4210U CPU and no graphics capabilities, following the
use case of a humanoid robot operating with an embedded
computer.

We used open implementations of all networks, provided
either from the TensorFlow Object Detection API [19] or
from the official YOLO repositories [5] and compared their
average precision in a test data set, as well as their inference
times in the constrained CPU setting, an unconstrained CPU
setting and a server-class GPU, when operating on videos
under multiple resolutions.

Results have shown that MobileNetV2 models with high
width multipliers have the best trade-off between average
precision and inference time in unconstrained hardware
settings, being suitable when executing inference in remote
servers is an option. However, while MobileNetV3 models
did not show remarkable performance when operating
in the unconstrained hardware settings, a performance
boost was observed when inference was executed under
a local, constrained, CPU-only scenario. Lastly, the
official implementations of YOLO and TinyYOLO, being
optimized for inference in GPUs, displayed poor results in
our low-end Intel Core i5-4210U processor.
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