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Abstract
Autonomous mobile devices operating in confined environments, such as pipes, underground tunnel systems, and cave
networks, face multiple open challenges from the robotics perspective. Those challenges, such as mobility, localization,
and mapping in GPS denied scenarios, are receiving particular attention from the academy and industry. One example is
the Brazilian mining company Vale S.A., which is employing a robot – EspeleoRobô (SpeleoRobot) – to access restricted
and dangerous areas for human workers. The EspeleoRobô is a robot initially designed for natural cave inspection during
teleoperated missions. It is now being used to monitor other types of confined environments, such as dam galleries and
other restrained or dangerous areas. This paper describes the platform in its current version and the pipeline used for semi-
autonomous inspection in confined environments. The pipeline includes photorealistic mapping techniques, Simultaneous
Localization and Mapping (SLAM) with LiDAR, path planning based on mobility optimization, and navigation control using
vector fields to reduce operator dependency of the robot operation. The proposed concept was validated in simulations with
a realistic underground tunnel system and in representative real-world scenarios. The results endorse the viability of using
the proposed concept for real deployments.

Keywords Subterranean exploration with mobile robots · 3D reconstruction and mapping · GPS-denied localization ·
path planning in rugged terrains · Vector field control
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1 Introduction

Exploration of confined and risk areas is a dangerous
task, even for specialized personnel. Industrial maintenance
teams need to perform routine inspections of structures
such as pipes, small tunnels, and dams regularly despite
the inherent risks of such activities. Underground tunneled
systems are usual in many industrial situations. In the min-
ing scenario, other types of confined scenarios such as
natural caves are recurrent and the assessment of those nat-
ural structures is a legal requirement to determine their
preservation or exploitation. Some risks related to the men-
tioned environments are the presence of venomous ani-
mals, noxious gases, bat excrement, getting stuck in small
spaces, lack of oxygen, and the chance of roof collapse
or falling from elevated grounds.

Given those hazardous conditions, the use of a remote
robotic device that could enter into those complex environ-
ments and perform inspection tasks in a fast and reliable
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way is a desirable solution to improve safety. However,
from the robotics point of view, many of those scenarios,
such as caves and tunnels, present challenging operational
conditions. Irregular terrains, closed places, poor wireless
communication, magnetic interference, lack of GPS sig-
nal, and slippery grounds are common in many of those
environments. These hard restrictions are gaining attention
from the robotic academy and industry; even the current
DARPA (SubT) Challenge (2018-2021), a high-profile
robotic competition, is now focused on underground envi-
ronments [1].

A particular challenge for ground robots in subterranean
or enclosed scenarios lies in the terrain topography, which
is commonly complex and unstructured, presenting a mix of
flat and rugged areas. These particular characteristics force
any exploring device to have an efficient and adjustable
locomotion system, allying obstacle transposing, energy
consumption efficiency, and payload capabilities. In this
sense, the Vale S.A. company designed the EspeleoRobô
(illustrated in Fig. 1a), which is a man-packable robotic
device designed for inspecting confined spaces in mining
operations. The EspeleoRobô has six motors with versatile
locomotion configurations, also including multiple embed-
ded sensors such as cameras, Light Detection And Ranging
(LiDAR), and Inertial Measurement Unit (IMU) that allow
mapping the environment as a colored 3D point cloud.
Although the initial designs of the robot focused on teleop-
erated natural cave inspection, the platform also extends to
inspect other industrial confined spaces.

Despite teleoperation is one of the most used methods
for robot navigation in inspection, search and rescue
operations [2], a significant communication dilemma arises
with these manual approaches. Since the platform must
traverse unknown terrains and obstacles, the robot may be

operated without Line of Sight (LoS), meaning that any
wireless communication will have degraded performance
until full disconnection renders the robot unable to continue.
A usual solution is to use tether cables whenever possible.
On the flip side, the weight and resistance for dragging a
cable for long ranges and even the risk of cord-cutting or
entanglement with obstacles could make the tether cable
approach unfeasible for several situations.

Given those challenges, the development of methods that
allow autonomous or semi-autonomous operation is ben-
eficial for the continuous operation of the device. In this
sense, this paper presents the current developments aiming
at the autonomous operation of the EspeleoRobô platform.
We further extend the robotic system presented in our previ-
ous work [3] by describing the current state of the platform
and the pipeline used for autonomous inspection in con-
fined environments. The pipeline includes Simultaneous
Localization and Mapping (SLAM) with LiDAR, photore-
alistic mapping, path planning based on mobility optimiza-
tion, and navigation control using vector fields to reduce
operator dependency for commanding the robot. The pro-
posed concept was validated in simulations with a realistic
underground tunnel system and in representative real-world
scenarios. The results endorse the viability of using the
proposed concept for real deployments.

The remainder of this paper is structured as follows:
Section 2 details the EspeleoRobô robotic platform.
Section 3 shows a high-level overview of the proposed
methodology. In Sections 4 and 5 we present the proposed
methodology for online and offline mapping, and in Section 6
the pipeline for autonomous inspection is described. Section 7
shows the results in representative simulated and real
scenarios. Finally, Section 8 summarizes the contributions
of this work and points to future research directions.

a  Inspection of a subterranean
gold mine.

b  Point cloud and mesh of the environment 
used for planning and navigation.

c  Virtual cave inspection using
the photogrammetry reconstruc
tion of the mine.

Fig. 1 EspeleoRobô with the modular mapping unit exploring a min-
ing cave in a: a real-world scenario (Mina du Veloso, Minas Gerais
— Brazil), b mapping results and reconstructions of the environment

used for inspection, path planning and navigation, and c the photogram-
metry reconstruction of the same environment used for simulations
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2 Robotic Platform

In this section, we present the EspeleoRobô robotic plat-
form, a small robotic device for inspecting confined spaces.
We start with a brief explanation of the mechanical design,
locomotion capabilities, and platform components. Then,
we discuss the design choices for waterproofing the device
and the platform’s communication capabilities.

The EspeleoRobô uses a rigid chassis and six indepen-
dent motors for thrust. The robot can move with different
locomotion mechanisms that can be easily replaced through
quick release pins. Some of the locomotion configura-
tions include legs such as the Boston Dynamics’ multi-task
robot RHEX [4], circular and star-shaped wheels, and also
tracks. The original hexapod architecture was chosen due
to its good mobility capability, even over non-structured
surfaces.

The different locomotion configurations allow the robot
to adapt to various types of terrain and obstacles, allowing
displacements over a higher variability of environments bet-
ter than if there were only one locomotion mechanism avail-
able, such as wheels. The assembly pattern permits hybrid
configurations. More details about the interchangeable loco-
motion system are described in the patent application [5].
Some of the locomotion’s configuration can be observed
in Fig. 2.

The platform was initially designed as a teleoperated
tool for cave inspection using only the six legs configura-
tion with no embedded computer, thus limiting any onboard
processing and autonomous capabilities. Also, the original
platform did not have any waterproof protection, making
it prone to water damage during partially flooded areas,
or in regions with high humidity like dam galleries and
pipes. In this sense, the platform has now evolved from the
original design to use lighter materials, improved onboard

sensors, processing capabilities, and now it has IP67 water-
proof protection. Figure 3 depicts the evolution of the
EspeleoRobô.

To make the device lighter, the internals of the robot
needed mechanical structural adaptations. Some parts are
now manufactured in polyacetal, aluminum 6061, magne-
sium and titanium alloy on the most robust components,
such as drive shafts. In this sense the reduced dimensions of
the robot (0.55 × 0.25 × 0.14 meters) and its weight (19 kg)
facilitate the logistics in field operations, being transported
inside a modified backpack or in a travel case.

2.1Waterproofing

Inspections in partially flooded or high humidity scenarios
are frequent for confined spaces. Our robot had a series
of mechanical modifications to allow waterproofing. It has
IP67 protection, making it possible to stay underwater up to
1 meter deep for half an hour and be sealed against dust.

The external mechanics of the robot were simplified
to facilitate the waterproofing process. We reduced the
number of top covers for robot upgrades from three to
one to minimize the surfaces sealed with o-rings. In
practice, this did not reduce capabilities for future robot
upgrades, since the middle cover has access to all required
internal connections. However, it significantly decreased the
complexities of sealing the robot. The lower battery covers
received a similar treatment, and are now manufactured on
aluminum 6061 and use o-rings for sealing.

The remaining parts of the robot were sealed using
mainly three methods: guarnital hydraulic sealing paper
with 0.6 mm of thickness, liquid gasket seals (Loctite 518),
and rubber seal cord (o-ring) as observed in Fig. 4. A
particular case is the front camera and LED covers, which
are fixed and sealed using liquid silicone.

Fig. 2 Possible configurations
for the robot locomotion
systems: circular wheels,
star-shaped wheels, legs, tracks,
and hybrid configurations
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Fig. 3 EspeleoRobô’s evolution,
from left to right, starting at the
first version in 2015 and ending
at the current waterproof version
of the platform

2.2 Embedded Equipment

The robot is currently equipped with six sets of reduction
gears, motors and power drivers from Maxon motors (MCD
EPOS), high-density energy military batteries form Bren-
Tronics, a mini PC Intel NUC Core I5 running Robot
Operating System (ROS) [6] with Ubuntu 16.04, high
density LED illumination system from Cree (XP-G) and
Stratus (100W module), and a pair of Axis-P12 cameras.
Figure 5 depicts an overview of the system architecture
inside the robot.

With a modular architecture, the robot can be easily
modifiable to add new sensors by replacing the upper lid
and perform the connection to the network switch, Arduino,
or NUC embedded computer. Typical sensing set up with
the platform is the Ouster OS 1 LiDAR, the RealSense T265
and D435i, and an Xsens MTI-G-710 IMU.

When operating in confined or unstructured environ-
ments, the communication link’s reliability is crucial, mean-
ing that the lack of connection during teleoperated missions
can increase the risks of accidents with the robot. Thus, the
platform has both wired and wireless modular communica-
tion systems that can adapt to the mission’s requirements.
The Ubiquiti Rocket M900 radio setup is the preferred
wireless communication method used in the platform. The
Rocket M900 provides long-range communication in the
902 Mhz to 928 Mhz frequencies and data rates up to
150 Mbps [7]. A Ubiquiti Airmax Amy 9m16 directional
antenna is used at the base station, and two ASA-900CI 2
dBi omnidirectional antennas are embedded in the robot [8].
Optionally we also use Reseiwe WL24 modules for robust
WiFi telemetry data. The Reseiwe WL24 is a wireless
communication module that allows stable, low bandwidth,
and low latency network connectivity using the ReWiLink
system [9].

For wired communications, we use the Fathom-X Tether
communication system that allows more than 350 meters of

high-speed Ethernet (up to 80 Mbps) over traditional two-
wire power cables using the HomePlug AV (IEEE-1901)
standard. This communication method is preferred for pipe
or dam inspections, where obstacles are not common, and
there is a low risk for entanglement of the communication
cable.

2.3 Graphical User Interface

Studies on search and rescue or inspection robots for critical
environments establish the Graphical User Interface (GUI)
as an essential tool for mission success [10]. The GUI of
EspeleoRobô was developed as an informative but easy to
use tool to aid the pilot in operating the robot even in unfa-
vorable conditions, to recognize the robot’s environment,
and to verify the state of the platform directly in one unified
graphical environment.

The graphical interface was developed under the Qt
framework using Python, integrated with the control and
embedded systems inside the robot using ROS (Fig. 6). The
information presented to the user is speed and current of
each motor, real-time video streaming, odometry estima-
tion, tip-over and radio signal quality alerts, lighting control,
and easy access to different system procedures such as tak-
ing pictures, video recording and the toggle switch for the
autonomous functionalities among other robot parameters.

3 Inspection Pipeline Overview

Autonomous navigation and exploration are still a challenge
for mobile robots. Confined scenarios bring particular dar-
ing problems such as lack of global positioning, uneven
terrains, wheel slip, and possible lack of visual features due
to poor illumination. To overcome some of those prob-
lems, we propose a semi-automated navigation pipeline
for exploration and mapping of confined spaces with the

Fig. 4 EspeleoRobô sealing
methods: a Guarnital hydraulic
sealing paper positioned
between the side plates (brown),
b Loctite 518 liquid sealing
(yellow and red), and c O’rings
at the upper and lower lids
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Fig. 5 EspeleoRobô platform: diagram of the proposed robot architec-
ture and electronic components

EspeleoRobô. Our method comprises a modular architecture
that deals with simultaneous localization and mapping, path
planning, and navigation control, as depicted in Fig. 7.

The pipeline starts with the generation of online high-
quality 3D maps of the environment using LiDAR or visual

Fig. 6 EspeleoRobô’s Graphical User Interface, showing the state of several sensors, real-time video streaming, and the robot’s telemetry

sensors. After manually defining the next best point to visit,
the path planner uses the point-cloud extracted from the
LiDAR or Visual SLAM and generates a set of feasible
robot paths given the selected locomotion metrics. Finally,
the robot executes the generated optimal path by an
Artificial Vector Field control algorithm. This process
repeats until there are no more places to explore. At the end
of the exploration, a photorealistic offline reconstruction
is generated from the image logs captured by the RGB
cameras at the previous stages. The following sections
describe the sub-modules in detail.

4 Online Localization andMapping

Autonomous navigation is a fundamental problem of mobile
robotics that involves merging localization, planning, and
control techniques working concurrently. The environ-
ment’s structure determines the proper use of these methods,
especially when accurate localization is critical. In confined
environments, the localization can be affected by the sen-
sor’s interference and noise, lack of GPS and radio signals,
and wheel odometry failures due to slip caused by rugged,
wet, and slippery terrains.
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Fig. 7 Block diagram that shows the information flow of the navigation pipeline for inspection and mapping

In the last decades, localization and mapping have been
some of the most studied subjects in mobile robotics [11].
While the term localization represents the process of esti-
mating the pose of a robot, mapping involves the construc-
tion of models to represent the environment [12]. In many
cases involving navigation of robots, it is necessary to esti-
mate their poses and map the environment simultaneously,
in a process known as simultaneous localization and map-
ping (SLAM) [13]. Different techniques and methodologies
have been developed over years to solve the localization
problem in an unknown environment from a map generated
with information of sensors, as Visual-SLAM [14, 15] and
LiDAR-SLAM [16, 17].

4.1 Visual-SLAMwith RTAB-Map

A widely adopted technique is the Visual-SLAM, which uses
image processing to obtain both localization and mapping.
In this sense, camera-based sensors are common in SLAM
applications since they are lightweight, energy-efficient,
and provide information to perceive the shape, color and
texture of the objects present in the environment [14].

The Visual-SLAM algorithms are categorized into two
groups: direct, which uses the whole image to perform
the SLAM, and feature-based, which extracts features from
the images [15]. One of the most known methods for
direct Visual-SLAM is the Large-Scale Direct SLAM (LSD-
SLAM) [18], which uses intensity gradient and image fitting
to predict the pose and build a dense map. In contrast,
the ORB-SLAM is a popular feature-based technique that
provides a sparse map and a robust pose estimation [19],
using the Oriented FAST and Rotated BRIEF (ORB)
descriptor.

To perform Visual-SLAM, we use the open-source algo-
rithm called Real-Time Appearance-Based Mapping (RTAB-
Map) [20]. RTAB-Map was developed by the Interdis-
ciplinary Robotics Laboratory at the University of Sher-
brooke, Canada, and was initially proposed as a loop closure
detection method with memory management for large envi-
ronments [21]. The algorithm uses images from RGB-D
or stereo cameras as the main input information for pose

estimation and mapping. Also, it admits external data from
IMU, wheel odometry and LiDAR to complement the pro-
cedures.

The RTAB-Map is widely used in Visual SLAM applica-
tions, standing out among the conventional SLAM methods
found in the literature. The algorithm presents satisfactory
results for localization and a faithful semi-dense reconstruc-
tion [15], which contributed to the choice of the RTAB-Map
method instead of other popular algorithms. Figure 8 presents
a schematic representation of the RTAB-Map SLAM pro-
cess.

The main issue addressed by RTAB-Map is memory
management, which can be divided into three types: Short-
Term Memory, accessed during the odometry process;
Long-Term Memory, which stores data related to the global
map; and Working Memory. This last one involves all
the local SLAM processes, which consist of synchroniza-
tion, odometry, loop closure, proximity detection, graph
optimization, and construction of the global map.

The localization process computes the robot’s pose by
registering the transformation of the current frame with
respect to the local map of features (Map-To-Frame approach)
or the last keyframe (Frame-To-Frame approach). In both
approaches, the odometry procedure follows a sequence
of steps including feature detection and matching, motion
estimation and prediction, and update of the pose and the
map.

The map structure corresponds to a graph that contains
vertices and edges created at a fixed time interval. Each
node holds local information (such as odometry pose,
sensor data, visual words, and local occupancy grid), while
the edges correspond to a transformation between two
nodes. When a process (such as a loop closure or memory
management) modifies a node, the graph optimization
process takes place to correct the nodes’ positions and
minimize errors on the map.

4.2 LiDAR-SLAM

Visual-SLAM methods may be impaired by low lightness,
which difficult the perception of features in the environment.
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Fig. 8 Block diagram indicating the RTAB-Map operating process

A suitable solution is the use of LiDAR sensors for SLAM.
The LiDAR provides robust measures of distances from the
objects in the environment regardless of lighting conditions,
as shown in [22].

There are several algorithms and techniques for LiDAR-
SLAM that consider 3D [17] or 2D maps [23]. One of
the most popular techniques currently used for 3D SLAM,
based on Iterative Closest Point (ICP), is LiDAR Odome-
try And Mapping (LOAM) [24], which divides the SLAM
problem into two algorithms: one estimating odometry at a
high frequency by calculating the ego-motion between two
LiDAR scans with low fidelity; and other for fine estima-
tion of pose and map computation at a lower magnitude
frequency by recording multiple scanning in a K-dimensional
tree structure. The pose generated in an odometry algorithm
is merged with the pose computed in the mapping algorithm,
enabling the approach to run in real-time. Another method
is HDL-Graph-SLAM [25], which uses the Normal Distri-
bution Transformation (NDT) to estimate the displacement
between two scans and the Graph-SLAM algorithm to esti-
mate the pose with respect to a map and register the point
cloud. This technique also tracks people in the sensor view
to improve the estimation of three-dimensional pose and
map. Although the people detection feature could improve
the point cloud registration in crowded environments, it has
little use in the hostile confined environments that this work
focuses on, such as subterranean caves.

For the LiDAR-SLAM, we use the Lightweight and Ground-
Optimized Lidar Odometry And Mapping (LeGO-LOAM)
methodology [26], which is a light-weight version of the
LOAM technique, optimized for land vehicles. Moreover,
this method has a good performance running on embedded
systems, which motivated us to consider it to perform
the robot’s localization. Figure 9 shows the overview of
the LeGO-LOAM SLAM, subdivided into five modules:
Segmentation, which projects the point cloud into the image
range for segmentation in clusters; Feature Extraction, that
obtains planar and edge points of the point cloud adjusted

by the IMU; LiDAR Odometry, which applies a two-step
Levenberg-Marquardt optimization method to determine the
components of a homogeneous transformation H ∈ SE(3)

between two consecutive scans; The LiDAR Mapping that
records points on a point cloud map by merging multiple
scans into tree data structures, while the Levenberg-
Marquardt optimization computes the device pose that is
saved in a pose graph; Finally, the Integration Transform,
which merges the poses returned by the LiDAR Odometry
with the LiDAR Mapping module, and the algorithm
outputs the final pose estimation.

The LeGO-LOAM approach uses the point cloud map
to correct the pose of the robotic device, characterizing
a complete problem of SLAM. The method also has
the option of enabling the loop closure technique, which
corrects possible deviation errors in the pose estimation and
the map’s construction.

We implemented the methodology by making adapta-
tions in the LeGO-LOAM ROS package enabling it to run
on a robot with the Ouster OS1-16 LiDAR. It was necessary to
configure the LiDAR parameters and the sensor’s pose with
respect to the robot’s base frame. Also, we parametrized
some parts of the loop closure technique and LiDAR map-
ping to enable an easy configuration.

5 Photorealistic Mapping

Videos, photos, and realistic 3D maps are the main product
of inspections in confined spaces. Despite the usefulness
of video or monocular images, accurate three-dimensional
representations improve understanding of challenging or
hazardous situations for remote inspectors. Realistic maps
can also be used as virtual training scenarios for robot
operators or in simulations. In this section, we propose
an approach for realistic offline maps using SLAM and
photogrammetry. We also propose a method for generating
fast and accurate 3D meshes from point clouds.
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Fig. 9 System overview of the LeGO-LOAM package, adapted from [26]

5.1 Photogrammetry Reconstruction

In general, photogrammetry can be divided into two distinct
groups: (i) metric photogrammetry and (ii) interpretative
photogrammetry, where (i) consists of performing precise
measurements and (ii) deals mainly in recognizing and iden-
tifying objects and environments [27]. Figure 10 illustrates
the workflow of the interpretative photogrammetry that we
use to perform a 3D reconstruction.

Thanks to recent advances in computer vision meth-
ods, photogrammetric techniques have received numer-
ous improvements. State-of-the-art systems based on local
feature matching across images [28, 29] and specialized
optimization frameworks for large-scale non-linear prob-
lems [30, 31] significantly enhanced modern software’s
capability to generate accurate 3D reconstructions from
large unordered image collections automatically. We use a
workflow composed of seven steps: feature extraction [28];
image matching [32]; features matching [28]; Structure
from Motion (SfM) [33]; depth estimation [34]; mesh-
ing [35]; and texturing [36]. Photogrammetry has many
industrial and academic applications, and its commonly
used in topography applications for generating soil, for-
est, geological, and city maps [27]. Thanks to the sensory
capacities of the EspeleoRobô, we can apply a photogram-
metry step to create realistic reconstructions of the environ-
ment using the onboard high-definition cameras. Our pho-
togrammetry step is based on the AliceVision Meshroom
open-source reconstruction software [37, 38]. This soft-
ware implements the state-of-the-art reconstruction pipeline

and provides photorealistic 3D models with high-resolution
textures.

Reconstruction methods that use RGB images are sen-
sitive to illumination changes, lack of texture in images,
and occlusion. In this sense, to perform a correct recon-
struction in typical subterranean environments, the platform
needs powerful external light modules to overcome the
lack of proper illumination. Figure 11 shows the compari-
son between a photo used as input for the photogrammetry
reconstruction algorithm and a snapshot of the reconstructed
corridor section of a subterranean mine. It can be observed
that the reconstruction yields realistic results for the mine’s
ground and walls. Holes in the corridor’s uppermost region
happen due to the restricted camera’s field of view and could
be improved by using wider angle lenses or a sensor directly
aimed at the offending areas. Nevertheless, maps created
with this technique can be used inside the robot’s simulation
environment to improve realistic robot behaviors and path
planning.

5.2 Mesh Generation

Given an unstructured 3D point cloud, which is a discrete
and noisy measurement of real surfaces in the 3D world,
surface reconstruction methods estimate a bi-dimensional
manifold that approximates the real 3D surfaces composing
the scene, which is required for many practical applications
in robotics. The most common representation used by many
applications is the triangular mesh [39]. In the past years,
considerable advancements have been achieved regarding

Fig. 10 Workflow of the
photogrammetry pipeline
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Fig. 11 Photogrammetry
reconstruction example in a
representative subterranean
mine environment: a An image
of the environment during the
inspection, and b a snapshot of
the 3D reconstruction

a  Real environment. b  Reconstructed environment.

the accuracy, robustness, and efficiency of the surface recon-
struction methods. Among representative methods are: the
Marching Cubes algorithm [40, 41], Radial Basis Func-
tions (RBFs) [42] and more recently, Poisson’s reconstruc-
tion [43]. Nevertheless, state-of-the-art methods still require
extensive parameter tuning to generate good results from
real-world data.

The output of several mapping algorithms used in the
EspeleoRobô comes in the form of an unstructured, colored
or monochromatic point cloud. This input data will most
likely contain noise, outliers, misalignment, a non-uniform
point sampling, and missing parts. In order to tackle these
problems, we propose a robust and automatic mesh pro-
cessing pipeline to generate realistic meshes. The result-
ing 3D mesh can be used in a myriad of applications in
Robotics, Computer Vision, and Virtual/Augmented Reality
(VR/AR). Although an experienced 3D expert can produce
visually compelling, high-quality meshes using advanced
software pipelines, it comes at the price of spending plenty
of time tweaking a large number of parameters. Our mesh
processing pipeline has been designed to provide an opti-
mized textured mesh ready to be used in simulation and
virtual/augmented reality platforms. The algorithm provides
an intuitive set of parameters available for non-expert users
to adjust and, in most cases, works out-of-the-box. It is com-
posed of four main steps: (1) Normal estimation; (2) Surface
reconstruction; (3) Hole filling; and (4) Color embedding.
Figure 12 illustrates the complete pipeline.

Preprocessing Most of surface reconstruction methods require
the normals of each point to be estimated beforehand. Thus,
for each 3D point, we fit a local plane using the singular
value decomposition (SVD) of the covariance matrix of
nearby points. After estimating the normals for all points,
we orient the normals using the method presented by
Hoppe et al. [44]. We compute a minimum spanning tree
(MST) over the Riemannian graph and a seed orientation is
chosen and propagated throughout the MST.

In order to enforce uniformity in the spatial distribution
of the points, we apply a grid-based downsampling strategy
to the raw pointcloud. This step increases the stability
of the surface reconstruction algorithm. The grid-based
downsampling strategy requires only the cell size as
parameter input that can be extracted from the data by
considering the average distance between the k-NN points.
In this paper, the six-ring average distance between the 6-
NN points is defined by the parameter davg and is estimated
from the input point cloud.

Surface Reconstruction Since we work with the arbitrary
shapes of caves and other confined spaces, a suitable method
for reconstructing the surfaces is the Poisson Surface
Reconstruction (PSR) [43]. In our pipeline, we compute the
implicit function using the PSR method and also extract
an isosurface and triangulate the final mesh [45]. We used
a minimum triangle size and surface approximation error
w.r.t to the average point spacing that provides a balanced
trade-off between accuracy and mesh complexity.

Mesh Trimming Due to the cavities of arbitrary shape, it is
necessary to trim some parts of the mesh. The PSR assumes
that the object has a closed form, which leads it to over-
extrapolate the opening of the cave when estimating the
implicit function. To remove the over-extrapolated portion,
we use a threshold distance τ = αdavg , where α is a
parameter that controls the maximum allowed distance in
six-ring average distance units. All vertices of the mesh
having a distance from the nearest neighbor point in the
original point cloud bigger than τ are removed as well as all
associated edges and faces connected to them.

Hole-filling Algorithm When scanning a cave, several holes
naturally arise in the point cloud because of the shad-
ows created when the laser rays are blocked by the cave
structure. To solve the problem of holes on the mesh, we
propose to use the mesh trimming algorithm first to obtain
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Fig. 12 Automatic mesh reconstruction pipeline overview

a well-conditioned reconstructed surface with reduced arti-
facts but with holes. Second, a hole-filling algorithm adapted
from [46] is used to consistently fill all holes. A perimeter
classification threshold based on τ is defined to avoid fill-
ing, e.g., the entrance of the cave and other parts that do not
represent actual holes.

Mesh Parametrization A simple but efficient per-face para-
metrization was chosen in our pipeline. The per-face para-
metrization seamlessly handles any surface topology and
does not require solving linear systems in contrast to most
per-vertex algorithms, which can be ill-conditioned in some
cases. A disadvantage of the per-face parametrization is
that it distorts the texture from triangles having very acute
angles. Considering this issue, in a previous step, we
optimize the triangles’ shape to have similar internal angles
(minimum angle value of 20◦). We extend this technique to
consider the size of the triangles in the parameter space to
minimize loss of resolution in texture. Our implementation
of the per-face parametrization is based on packing the
triangles in the parameter space in a sorted manner, from
the largest to the smaller ones, aiming to reduce the loss
of resolution in large triangles. The arrangement of the
triangles uses a parameter space described by squares of size
l × l. Each square parametrizes two or more faces as shown
in Fig. 13a.

Texture Baking After per-face parametrization is per-
formed, we use the inverse distance weighting (IDW)
scheme [47] to bake the texture map into an image using
the original RGB point cloud. To convert the image coordi-
nates p(x, y) ∈ R

2 into 3D coordinates P(x, y, z) ∈ R
3,

we borrow the shading idea from Phong [48]. A bijective
mapping function φ : R2 → R

3 is defined by linearly inter-
polating positions (instead of normals) along segments, and

then linearly interpolating the values between the interpo-
lated values of the segments. This approach is illustrated in
Fig. 13b.

Using the 3D point found in the mesh space, a KD-tree
is employed to query the k nearest neighbors of this point
(k = 6 in our approach). The R, G and B values of each p

point in the texture map are obtained according to the k-NN
IDW interpolator:

c(P ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

k∑

i=1
wi(P )ci

k∑

i=1
wi(P )

if d(P, Pi) �= 0 for all i,

ci if d(P, ci) = 0 for some i,

(1)

where wi(P ) = 1/d(P, Pi)
n is the inverse weighted dis-

tance powered by n, which in this paper was set to 1.5,
P = φ(p) is the position of the 3D point mapped from
a 2D texture coordinate, d(·, ·) returns the euclidean dis-
tance between two points, ci is a known value for the nearest
neighbor query, and k the number of the nearest neigh-
bors used by the algorithm. A real sample of the generated
texture map can be seen in Fig. 13a.

Figure 14 shows a reconstruction example from a point
cloud of a representative subterranean mine scenario. We
can see that the input cloud contains challenging misalign-
ments and noise from the RGB-D sensor, and the final
textured mesh does not present visible misalignments or
artifacts. We make our implementation available as open-
source code1. The output reconstruction follows standard
3D model formats, and can be easily integrated with sev-
eral other mapping algorithms and directly imported on
rendering platforms.

1https://github.com/verlab/mesh-vr-reconstruction-and-view
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ba

Fig. 13 a Proposed parametrization scheme. We divide the parameter
space into a grid and pack the faces in the respective pyramid level
based on their area. We use three pyramid levels in our implementation,
but for sake of simplicity, we depict an example with two pyramid lev-
els. b The mapping function φ maps pixels coordinates into 3D points

on a face using linear interpolation. We first interpolate from vertex Va
to Vb (blue dots) and Va to Vc (yellow dots). Then for each interpo-
lated value from both vectors, we interpolate the values between them
(green dots)

6 Autonomous Navigation

For autonomous navigation, robots need a reference path
and a control system working in conjunction with a local-
ization system. This section presents our planning approach
to generate appropriate terrain-aware reference paths based
on mesh reconstructions and the Dijkstra Algorithm. Also,
we present a control method based on artificial vector
fields capable of making the robot follow this planned path
efficiently.

As the robot will need to traverse complex 3D environ-
ments, traditional planning techniques that rely only upon
2D information are not adequate [49]. In this sense, a graph
representation allows increased flexibility in representing
terrain topography and multi-level scenarios. There are sev-
eral graph-based algorithms to generate the graph and find
a path already used for robotic navigation [50]. One of
the most popular algorithms, RRT* (Optimum Rapidly-
exploring random tree), adopts a probabilistic strategy that
generates a tree from a set of sampled vertexes. In this
work, we use a mesh to represent a complex environment.
Thus, probabilistic path generation algorithms may not be
the most appropriate since small deviations of the best path
could cause robot failure. Therefore, we opted to use the

Dijkstra Algorithm; this way, we define a terrain cost for
each edge of the graph and then use Dijkstra to search for
the best path.

Regarding the control module, trajectory tracking can be
considered as a possible solution, which is already used
by several papers in the literature [51, 52]. In our case,
the planning algorithm generates a path, not a trajectory,
which means that there is no bound between the points in
the path and time. Several path-following algorithms have
been proposed in the literature, such as the ones based on
virtual target points [53], and artificial vector fields [54].
This work takes upon the vector field approach for path-
following since it has demonstrated to be less susceptible to
practical motion failures such as slipping of the wheels [55].

6.1 Path Planning

After the definition of the target points where the robot
should move to explore the uneven environment, it is
necessary to compute feasible paths connecting the robot’s
current and goal positions. In the current stage of our
exploration pipeline, the target points are defined by the
human operator, while the optimum paths are computed
autonomously.

Fig. 14 Subterranean mine
mesh reconstruction. At the
bottom-left, the input cloud
contains visible noise and
misalignment, marked in dashed
red. After the preprocessing
step, the raw cloud is filtered
(bottom-right). At the middle,
the final textured mesh
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Natural caves commonly present rough terrain, which
is challenging for path planning. Complex terrains require
a full three-dimensional map for planning a safe and
efficient robotic locomotion. Three-dimensional meshes
are highly descriptive environment models since they can
represent any 3D shape. Unlike 3D point clouds, they
have face information that is useful for terrestrial robot
mobility. Other representations such as elevation maps have
difficulties in representing some cave structures, e.g. arcs
and narrow tunnels. In this sense, we extend the path
planning pipeline presented in [3, 56] by integrating a
mesh generation process in the planner, performing pre-
processing filtering of non-reachable regions. This pipeline,
in contrast to our previous works, can be executed online
at the exploration mission and mapping phases. Figure 15
illustrates the new path planning pipeline.

The mesh generation process for ambient reconstruction
combines local point clouds provided by the LiDAR-SLAM
methodology presented in Section 4.2 and the triangulation
procedure described in Section 5.2.

The path planning pipeline models the 3D mesh repre-
senting the environment as a graph G = (E, V ), where the
faces centroids correspond to the vertices V , and the edges
E connecting the nodes have an associated cost regarding
the adopted metric. Over this graph, we use the well-
established Dijkstra algorithm to calculate optimal paths
according to different metrics, such as distance, traversabil-
ity, energy consumption, or a combination of them. Con-
sider a route p = {

n1, n2, ..., ni, ..., ngoal

}
consisting

of neighboring nodes and p̄ = p\n1. In the following we
specify how each metric is computed for this route.

Traveled Distance Metric This metric aims to find the
shortest path from the robot’s current start position to a goal.
The cost function using this metric is defined as follows:

C1(p) =
∑

n∈p̄

D(n), (2)

where D(n) is the 3D euclidean distance between the points
n and n − 1.

Terrain Traversability Metric The terrain traversability met-
ric helps to find the flattest path from start to goal positions.
This metric defines the cost function C2(p) based on the

positive angle T (n) between the mesh normal vector (Ni)
and the canonical Z-axis (Z), such as:

T (n) = arccos

( |Ni · Z|
‖Ni‖‖Z‖

)

, C2(p) =
∑

n∈p̄

T (n). (3)

Energy Consumption Metric This metric aims to compute
the path that leads to the minimum energy consumption
from the start to the goal. For simplification purposes, we
considered that the robot moves with constant velocity; this
means that the robot spends energy while accelerating and
braking to keep the uniform movement.

The energy E(n) required to move the robot from neigh-
boring nodes n − 1 and n is estimated as a linear regression
of the battery consumption and terrain inclination, the fric-
tion coefficient, robot mass, angle θ between the vector
linking the mesh centers, resulting in the cost function
C3(p). Emean is the mean battery consumption while turn-
ing 2π rad and a, b are the linear regression parameters. The
quantities δ(n) and α(n) are estimates of the angular and
linear displacements, respectively, when the robot moves
between nodes n − 1 and n. Finally we define C3(n) as:

E(n) =
(

Emean α(n)

2π

)

+ (aθ(n) + b)δ(n), v C3(p)

=
∑

n∈p̄

E(n). (4)

Combined Metrics Considering the conflicting objectives,
we propose a cost function based on all the multiple metrics
previously mentioned during the path planning, where the
robot operator can set a trade-off between them through
weights. Therefore, the algorithm evaluates the relevance
of each metric while finding paths connecting the start and
goal positions. Thus, the cost function is given as follows:

C4(p) =
∑

n∈p̄

[PdNdD(n) + PtNtT (n) + PeNeE(n)] , (5)

where Pd , Pt and Pe are the weights that set the metric
priorities related to distance traveled, terrain traversability,
and robot energy consumption, respectively. The scalars Nd ,
Nt e Ne are normalization coefficients calculated according
to the neighboring nodes. When exploration time is a
priority, the operator can set Pd with a higher value than the
others. In environments with a high risk of tipping over, Pt

Fig. 15 Path planner workflow
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Fig. 16 Path planning validation
in simulated reconstruction of a
rugged environment. a
Simulated environment in
CoppeliaSim. b Point cloud and
paths according to each metric

requires a higher priority. On the other hand, in situations
where energy consumption is critical, Pe should be greater.

The path planner works as a finite state machine, where
the robot needs to reach the final path waypoint (or another
terminal state) to plan a new path. The mesh reconstruction
algorithm must get the most extended point cloud possible
– generally from the final location of the previous path –
to allow the mesh to cover the robot’s maximum reachable
range and maximize the next waypoint’s distance from the
current robot position. This prevents generating short paths
for a limited view of the environment, and allows to estimate
fewer and longer paths.

To validate the path planner, we used a rugged repre-
sentative simulated environment to compute paths connect-
ing multiple points through obstacles and uneven terrains.
Figure 16a shows the CoppeliaSim2 scene considered for
the simulation. The terrain corresponds to a Motocross
field in the city of Ouro Preto (MG-Brazil), whose model
was obtained with the photogrammetry reconstruction tech-
niques presented in Section 5.

Figure 16b shows the point cloud used to compute the
cost functions of each metric described. The paths in red,
white, and yellow correspond to the shortest, flattest, and
most economical paths, respectively. The green path was
obtained with the combined cost function. The paths behave
as expected, as the shortest path tends to perform as a direct
line to the goal, and the most economical and flat ones tend
to minimize terrain roughness and high slopes.

6.2 Navigation Control

Given that the path is already defined, it is necessary
to compute control signals to make the robot follow this
reference. The control problem is solved with the use
of artificial vector fields. This methodology consists in a
function F(p) : R2 → R

2 that defines a reference velocity

2http://www.coppeliarobotics.com

F for the robot at each point p it may be. This velocity
is responsible for guiding the robot towards a reference
path. Since the EspeleoRobô is not holonomic, an additional
technique is necessary in order to impose ṗ = F(p). The
Feedback Linearization [57] is able to solve this problem
by computing linear v and angular ω velocities given the
translation velocity reference F(p). This strategy consists in
attributing the reference velocity to a virtual point located
at a distance d , in the forward direction, from the robot’s
rotational center. In the experiments performed, we choose
the parameter d = 0.2m. Figure 17 shows the control
structure used for the autonomous navigation control.

The methodology to construct the vector field F(p) given
a reference path is presented in [54]. The reference path C
must be represented as the zero level set of a scalar function
α(p), i.e. C = {p ∈ R

2 : α(p) = 0}. It is also necessary
that the gradient ∇α does not vanish at the curve, in other
words, ∇α(p) �= 0 ∀ p ∈ C . Similar to [54], the vector field
is computed as:

F(p) = vdkG(α)
∇α

‖∇α‖ + vdkH (α)
R90◦∇α

‖∇α‖ , (6)

in which vd is the desired speed of the robot, ∇α is the
gradient of α and R90◦ is a rotation matrix of 90◦. Given
a convergence gain kf > 0, function kG is defined as

kG = −(2/π)atan(kf α) and kH =
√

1 − k2
G. An example

of an α function with parameters r , cx , cy and γ is:

α(p) ≡ α(x, y) = (
(x − cx)

γ + (
y − cy

)γ ) 1
γ − r . (7)

Figure 18 shows two examples of vector fields generated
by Eq. 6, both of them can be obtained with the α function
described in Eq. 7 with r = 2.8m, cx = 1.0m, cy = 1.5m.
The circular path on the left corresponds to the parameter
γ = 2 while the square like curve on the right to γ = 4.

In order to compute the vector field, it is necessary
to have a function α whose zero level set is the desired
path. In the general case, when the paths are represented
as a sequence of points, such as the ones provided by the
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Fig. 17 Control diagram including vector field and feedback linearization

techniques presented in Section 6.1, a numerical method is
needed to define the function α. In [54], the authors present
a solution to construct an α function from a set of points.
The method uses radial basis functions [58] and relies on the
solving of a linear system. It is perfectly applicable to the
paths generated by the path planner presented in Section 6.1.

A Python implementation, compatible with ROS, of the
vector field-based control is available online3. It subscribes
to the robot’s pose topic from the LiDAR-SLAM system,
and to the path topic from the planner system. This informa-
tion is used to compute the robot’s control signals.

7 Experiments and Results

The proposed mapping and navigation pipeline was eval-
uated through simulated and real-world experiments with
the EspeleoRobô in representative scenarios of subterranean
caves and indoor spaces.

7.1 Simulated Results

To validate the pipeline in a safe scenario, we used the sub-
terranean cave environment from the DARPA Subterranean
Challenge4. This environment has obstacles, uneven ter-
rain, and realistic subterranean cave geometry (Fig. 19). All
experiments were performed using the virtual version of the
EspeleoRobô inside the CoppeliaSim simulator, executed
with ROS Kinetic and Ubuntu 16.04.

7.1.1 Mapping in a Simulated DARPA Cave Scenario

The three methods for mapping and reconstruction were val-
idated in a sub-section of the cave map. The online visual
mapping methodology was tested using an RGB-D device
with similar configurations to the robot’s embedded Intel
RealSense Depth D435i. As this camera has a narrow field
of view, the robot moved through a route that maximizes the
explored space. In this sense, it is possible to capture infor-
mation from all the environment, maximizing the map’s
completeness. Also, the route used enforces local loop
closures to reduce localization errors and deformations on

3 https://github.com/adrianomcr/vector field control
4“cave 02” from https://github.com/osrf/subt

the map. The LiDAR algorithm was evaluated with simu-
lated versions of a Velodyne VLP-16 (16 lines) and a Xsens
IMU. The photogrammetry reconstruction was performed
with the RGB images acquired by the simulated RGB-D
sensor.

Figure 20 presents inner and external views of the final
map obtained with the online Visual and LiDAR SLAM
algorithms, including the estimated odometry. Despite the
limited sensor range and other challenges for Visual-SLAM
methods, such as reduced lighting and texture similarity,
the resulting model estimated with Visual-SLAM (Fig. 20a)
looks very similar to the original cave, preserving rich geo-
metric and texture features. The point-cloud estimated by
the LiDAR-SLAM, observable in Fig. 20b, is also faithful
to the real cave scenario and contains fewer errors and holes
than the Visual-SLAM estimation, which is understandable
given the higher range and field of view of the LiDAR.

The odometry estimated online by the SLAM methods
can be observed in Fig. 20c, showing a significantly reduced
localization error of the LiDAR-SLAM algorithm compared
to the ground truth odometry. In this sense, given the
structural properties of the studied scenarios, the LiDAR-
SLAM algorithm showed up as a more suitable option for
navigation and localization.

A comparison of the point clouds generated by the
LiDAR-SLAM, Visual-SLAM, and photogrammetry, using
the DARPA map ground truth, is depicted in Fig. 21. The
top row presents the point cloud generated by each method,
the middle is the comparison between the clouds and the
DARPA map, and the bottom row shows the error histogram
of the point clouds. The LiDAR-SLAM map presented
the best results with a map composed of 31,239 points,
with 95% of the cloud points exhibiting errors smaller
than 0.115 m, a 3σ (99.7% of the steady-state) interval
smaller than 0.258 m, and a maximum total error of 0.33 m.
The Visual-SLAM algorithm achieved intermediate results,
estimating a cloud with 383,862 points and an error of
less than 0.185 m in 95% of these points, a 3σ interval
of 0.48 m and a maximum error of 0.8 m. Although the
photogrammetry obtained good performance for 95% of
the 79,404 cloud points, with errors smaller than 0.054 m,
the 3σ of 0.332m associated to a 1.85 m maximum error
configure the worst results.

The photogrammetry reconstruction was performed offline
and used 405 images of size 640 × 480 taking a total time
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Fig. 18 Illustration of the vector
field (blue) that guides the robot
to the curve (in black). Real
experiment results are shown in
red, tracking the vector field,
using LiDAR-SLAM
information as pose feedback

Fig. 19 Experimental setup with
the CoppeliaSim simulator: (a)
Simulated EspeleoRobô, and (b)
inside view of the cave

a  Simulated EspeleoRobˆo with LiDAR. b  Inside view of the cave environment.

ba

c

a  Visual-SLAM point cloud. b  LiDAR-SLAM point cloud.

c  Odometry estimation.Odometry estimation.

Fig. 20 Point cloud mapping results and visualization with the proposed online SLAM methods in a simulated DARPA cave scenario: a
Visual-SLAM and b LiDAR-SLAM. In c, the odometry for both methods is depicted in blue and yellow solid lines
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Fig. 21 Point cloud error analysis. Comparison between the ground truth map and partial maps obtained with: a LiDAR-SLAM, b Visual-SLAM,
and c Photogrammetry in the simulated DARPA cave scenario

of one hour and 10 minutes in a laptop equipped with an
i7-10875H CPU, with 32GB of RAM and an Nvidia RTX
2070 video card. The results showed that, despite the Visual-
SLAM online method was faster to compute (56±12 ms per
frame and 486±123 ms per keyframe) and more efficient
than photogrammetry, the latter method for reconstruction
generated a point cloud 99.7% more faithful to the original
cave, but with a few larger outliers with a greater maximum
error. However, the camera used as the source for the
photogrammetry reconstruction had certain limitations in
capturing the surrounding environments only using RGB
data (the depth sensor has an increased FOV), yielding a
denser and detailed reconstruction only of the ground where
the robot went.

On the other hand, the LiDAR SLAM provides the robot
odometry for the remainder robot modules at 0.1 s and the
map at 5 s. The processing time for all steps in simulation is
1,239±226 ms, calculated from the entry of the point cloud
scan provided by the sensor until the map’s update. This
time depends on the number of loop closure events and the
submap size updated on the map. In the simulation, LiDAR
SLAM identified many loop closures, which increased
the processing time. Finally, the LiDAR-SLAM algorithm

presented a reduced and more consistent error rate than the
other approaches while having a similar processing time
than Visual-SLAM, although at an increased range.

7.1.2 Autonomous Navigation in a Simulated Scenario

The complete pipeline of navigation, mapping, localization,
and control was evaluated on a simulated exploration
mission, as shown in Fig. 22. In this experiment, the robot
performed path planning using the point cloud generated
by the LiDAR mapping algorithm. This point cloud is
converted to a 3D mesh, and the paths are calculated using
this mesh.

The sequential evolution of the map and the 3D meshes
can be observed in Fig. 22a and b. Finally, in Fig. 22c,
the final reconstructed environment is depicted with the
odometry data estimated by the LiDAR-SLAM algorithm
(white dotted line), and an example of the different path
planning metrics in solid colors. During the planning step
of the exploration, the robot used the combined metrics
strategy defined in Eq. (5) to navigate (solid green line) with
Pd = 0.25, Pt = 0.50 and Pe = 0.25. The density of the
LiDAR-SLAM point cloud was defined as 20cm.
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a  Sequential process of mapping and navigation.

b  Resulting map meshes for path planning at the previous steps.

c  Top view of the complete map, depicting one instance of path planing (colored lines). 
Odometry is signalized as white dots.

Fig. 22 Inspection pipeline experiment in a simulated DARPA cave
environment. Top: sequential coverage and the corresponding point
clouds (a) and map meshes (b) used to calculate the paths. Bottom:
top view (c) of the complete map. The robot odometry is depicted in

a white dotted line. The routes for every step are denoted in solid red
(distance), yellow (energy consumption), white (traversability), and
green (combined metrics) lines

7.2 Real World Results

Real experiments were also performed with the Espele-
oRobô platform in two representative scenarios: (i) a subter-
ranean gold mine and (ii) an indoor multi-level scenario. In
both experiments, we use a high range directional 900MHz

antenna for communication. The robot was equipped with
an Ouster OS1 LiDAR (16 lines), an Xsens MTI-G-710
IMU, and an Intel RealSense Depth D435i camera.

The robot followed the combined metrics path (green
path in Figs. 26c and 27c) and the weights were defined with
Pd = 0.80, Pt = 0.10 and Pe = 0.10. The density of the
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Fig. 23 Experimental setup of
the EspeleoRobô at the Mina du
Veloso gold mine

point-cloud for the LiDAR-SLAM algorithm was defined
at 5 cm.

7.2.1 Subterranean Mine Mapping

The subterranean mine experiment was performed at the
Mina du Veloso gold mine, located in Ouro Preto – MG,
Brazil (20◦22’34”S, 43◦30’57”W). In Fig. 23 the environ-
ment and robot setup can be observed. Mina du Veloso is a

400-year-old colonial gold mine with almost 300 meters of
narrow multi-level corridors, with rugged terrain and strong
magnetic interference.

Figure 24 presents the final map’s inner and external
views obtained with the online Visual and LiDAR SLAM
algorithms, including the estimated odometry. A 100 W LED
module from StratusLEDS adapted to the robot platform
compensated for the lack of proper illumination inside the
mine. The real-time odometry estimated by the SLAM

ba

c

a  Visual-SLAM point cloud. b  LiDAR-SLAM point cloud.

c  Odometry estimation.

Fig. 24 Point cloud mapping results and visualization with the proposed online SLAM methods in a real subterranean Gold Mine (Mina du
Veloso): a Visual-SLAM and b LiDAR-SLAM. In c, the odometry for both methods is depicted in blue and yellow solid lines
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methods (Fig. 24c) shows similar accuracy at the X and Y
axis with a more significant variation on the Z-axis.

A comparison of the point clouds generated by the three
mapping methods is depicted in Fig. 25. In this case, given
the precision and range of the LiDAR point cloud, we
use it as the ground truth to compare the photogrammetry
and Visual-SLAM methods. Different from the simulated
results, the photogrammetry obtained the best performance:
for 95% of the 154,881 cloud points, the errors were smaller
than 0.29 m, the 3σ interval was 0.5 m with a maximum
error of 2.06 m. The Visual-SLAM algorithm achieved less
precise results, estimating a cloud with 1,235,708 points and
an error of less than 1.276 m in 95% of these points, a 3σ

interval of 1.896 m and a maximum error of 2.56 m.
Although the photogrammetry technique presented bet-

ter results than the Visual-SLAM in the real scenario, it is
important to mention that a precise scale cannot be esti-
mated correctly using only RGB images without an external
reference. Thus, the resulting cloud was rotated and trans-
lated manually to match the LiDAR’s point-cloud and
estimate an approximate comparison. The photogramme-
try technique is more prone to errors due to rotational
movements than the other technique and depends only
on visual features, while the Visual-SLAM with RGB-
D cameras could also use depth information to aid
registration.

The photogrammetry reconstruction used 103 images of
size 640x480 taking a total time of 22:18 minutes, on the
other hand the Visual-SLAM spent 59±41 ms per frame
or 763±200 ms per keyframe. The LiDAR SLAM took
715±69 ms to process a sensor scan and generate the map
update.

7.2.2 Autonomous Navigation in a Subterranean Mine

The navigation and inspection experiment results inside the
Mina du Veloso gold mine can be observed in Fig. 26, where
the robot performed mapping over ≈55 m of connected
cave tunnels, autonomously. Figure 26a depicts the sequen-
tial point clouds generated by the LiDAR-SLAM algorithm,
including a picture of the current scenario taken from the
frontal RGB camera of the robot. Figure 26b shows the
sequential mesh generation used for navigation and path
planning. An overview of the complete map, including
odometry, can be observed in Fig. 26c. Only the combined
metric path (solid green line) was estimated in this experi-
ment, given the previous validations’ results. This scenario
was particularly challenging as the terrain was rugged and
slippery, with narrow corridors including multiple small
bumps, holes, and rocks. In this sense, the planning algo-
rithm’s weights were defined to prioritize straighter collision-
free paths to prevent any extra in-place rotations. The

Fig. 25 Point cloud error
analysis. Comparison between
the ground truth map and partial
maps obtained with: a
Photogrammetry, and b
Visual-SLAM in the Mina du
Veloso, using LiDAR SLAM
map as reference

a  Generated 3D maps (left to right): LiDAR-SLAM, Photogrammetry, and Visual-SLAM.

b  Photogrammetry. c  Visual-SLAM.
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a  Sequential process of mapping and navigation, including an RGB image of the robot environment.

b Resulting map meshes for path planning at the previous steps.

c Top and side view of the complete map, depicting one instance of path planing (green line). Odometry is signalized as white dots.

Fig. 26 Inspection pipeline real experiment at the Mina du Veloso
gold mine. Top: sequential coverage (a) and the correspondings map
meshes, (b) used to calculate the paths, with corresponding RGB
images of the environment. Bottom (c): final point cloud of the

exploration pipeline (top and lateral view). In c the LiDAR odometry
of the robot for the entire inspection mission is depicted in a white dot-
ted line, and the navigation path for the combined metric is shown in
green

increased cloud resolution (5 cm) used in this experiment
helped detect and reconstruct the complex terrain more
reliably, at the cost of an increased point cloud size.

7.2.3 Autonomous Navigation in an Indoor Multi-level
Scenario

The inspection and navigation results in an indoor scenario
can be observed in Fig. 27. In this scenario, the robot

explored two floors joined by an inclined corridor. The
robot performed over ≈80 m of autonomous navigation.
This scenario was challenging due to the small and inclined
corridor the robot must take to reach another floor, which
validates the capacities of the 3D navigation of the proposed
pipeline. The scenario presented flat and shiny surfaces
with multiple windows and glass doors, which generated
noise in the LiDAR sensor readings; however, the meshing
algorithm correctly reconstructed the navigable areas.
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a  Sequential process of mapping and navigation, including an RGB image of the robot environment.

b  Resulting map meshes for path planning at the previous steps.

c  Top and lateral view of the final map, depicting one instance of path planing 
returning to the home base (green line). Odometry is signalized as white dots.

Fig. 27 Mapping, navigation, and control pipeline real experiment
at an indoor multilevel scenario. Top: sequential coverage (a) and
the corresponding map meshes (b) used to calculate the paths, with
corresponding RGB images of the environment. Bottom (c): final

point cloud of the exploration pipeline (top and lateral view). In (c)
the LiDAR odometry of the robot for the entire inspection mission
is depicted in a white dotted line, and the navigation path for the
combined metrics is shown in green

7.3 Planning Performance Analysis

To evaluate the navigation pipeline’s performance, we
measured the mesh reconstruction time for multiple
point clouds extracted iteratively from the LiDAR-SLAM
algorithm when performing an exploration mission using
a laptop with an Intel i7-4810MQ CPU with 16GB of
RAM. Figure 28 shows the mesh generation times for an
indoor scenario that extends to over ≈80 meters. Every data
point is the mean of 3 reconstructions, and the standard
deviation is depicted as a light blue shadow. It is possible
to observe that the first meshes are generated relatively fast

in less than 20 seconds. The largest cloud takes 96 seconds,
allowing the algorithm’s execution directly on the robot’s
embedded computer online. The results show a near-linear
relationship between the cloud size and the time to perform
the reconstruction.

The planning step, performed after the mesh reconstruc-
tion from the point cloud, transforms the mesh on a graph
where the Dijkstra search algorithm finds the more suitable
path from the current robot’s position to the desired end-
point considering multiple terrain metrics. Figure 29 shows
the time spent searching the path over an increasing graph
size at variable path lengths. Results showed that the time
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Fig. 28 Mean reconstruction time for the mesh algorithm over multi-
ple iteratively generated point clouds for a real exploration experiment
on an indoor scenario that extends for over ≈80 meters. Every data
point is the mean time of 3 runs. The standard deviation is depicted by
the shadow in light blue

spent in planning is more related to the graph’s size than the
path size, as shown by the linear time growth despite the
variable path size (color of the dots). This procedure was
relatively fast, at a maximum of ≈18 seconds for the worst-
case on a complete exploration experiment. The time spent
on path planning could be increased or decreased, given the
graph density, original point cloud size, or mesh filtering.

7.4 Discussion

The proper selection of one mapping or SLAM method
over another is particularly relevant in the proposed system.
In this sense, photogrammetry reconstruction in this work’s
context is a computationally intensive procedure that

Fig. 29 Mean planning time for the navigation algorithm over multiple
iteratively generated environment graphs. Every data point is the mean
time of 3 runs. The color bar represents the path size

generates point clouds only from RGB images. This method
is more suitable for offline processing after the exploration
mission is already performed and the robot is back safely
into the base. Since the computational resources embedded
in the robot are limited in terms of speed, space, thermal,
and power consumption, performing intensive and long
computations directly on the embedded computer is not
recommended. Also, the point-cloud generated by the
photogrammetry for this application, does not have a
reference scale, so we need to translate the cloud to match
real-world proportions and position.

On the other hand, Visual-SLAM is a more optimized
method for visual map generation and localization that
could be executed directly on the robot. Visual-SLAM and
the photogrammetry methods use visual features to recreate
a realistic map of the environment in the sense of colored
point clouds. Both methods are highly dependent on good
illumination to be able to extract features and perform
registration. However, Visual-SLAM is not limited to only
RGB images and generally uses RGB-D sensors generating
more dense clouds, including sensors that are less dependent
on external illumination, such as structured light sensors.

The LiDAR-SLAM method uses a 3D 360 depth sensor
that is less affected by illumination changes and has a
significantly increased depth range. Since the LiDAR-
SLAM method is also paired with an IMU, its more robust
to the robot’s rotational motions than the other visual
mapping algorithms. Nevertheless, this method relies only
on 3D structural features to perform the cloud registration,
meaning that very similar structures (such as the ones found
inside pipes and galleries, for example) could not perform
correct registration even in the presence of rich visual
features such as joints, small defects or markings on the
walls.

Generally, the LiDAR-SLAM is preferred in most of the
scenarios studied in this work since the range, precision, and
illumination robustness helps with the path planning and
navigation. In locations where the LiDAR-SLAM is prone
to failure, the Visual-SLAM method could be used given
that the local has enough illumination or visual features
to track. However, in both cases, it is generally desirable
to perform a photogrammetry reconstruction with the RGB
images captured by the robot to improve the structures’
analysis, since the LiDAR alone can not provide colored
point clouds or texture.

Although the path planning successfully generated
collision-safe paths at all of the tested environments, a
particularly critical step of the pipeline is the meshing pro-
cedure. The mesh reconstruction algorithm could generate
unusable mesh results depending on sensory noise or inac-
curate measurements (as in indoor scenarios with glossy
walls and floors). Thus, a filtering step could be necessary
to increase robustness for noisy scenarios where the sensor
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could not perform efficiently. For considerably larger maps,
the pipeline could use only a sub-segment of the point cloud
to allow the visitation of nearby regions quickly and prevent
wasting computing time for parts of the map that are not
intended for visitation in that timestep.

8 Conclusions

This paper describes a mobile robot for inspection ser-
vices in confined areas. The EspeleoRobô has already exe-
cuted several inspections and mapping services in the field
through wireless and wired communication. Despite being
initially designed for inspection of natural caves, Espele-
oRobô proved to be a highly versatile device, inspecting
other confined areas, including drain ducts and dam gal-
leries. Aiming autonomous operations, we proposed a set of
strategies for localization and mapping, path planning, and
navigation control.

Since image data and 3D maps are the main product of
inspections in confined spaces, we proposed both offline
(photogrammetry) and online (RTAB-Map and LeGO-
LOAM) reconstruction methodologies that work in these
types of GPS denied scenarios. We validated our method-
ology in simulated experiments with a virtual cave (Darpa
SubT subterranean mine), in a real subterranean mine sce-
nario (Mina du Veloso), and an indoor multi-level environ-
ment. Results demonstrate the applicability of those solu-
tions showing that adequate reconstruction can be achieved
with proper embedded illumination systems even in poor
illumination conditions. Those realistic maps can also be
used as virtual training scenarios for robot operators or in
simulations. Some novel uses for three-dimensional maps
for inspections include virtual reality immersion devices.

The LiDAR-SLAM experiments showed the most reli-
able and precise maps of the three methods, considering
the shortest steady-state error interval and maximum errors.
This algorithm was also able to give a precise online local-
ization to feedback the navigation strategy with a Vector-
Field control.

Based on the terrain map, we can plan optimal routes
for the robot. We adopt multiple metrics for path genera-
tion such as traveled distance, terrain traversability, energy
consumption, and a trade-off between the conflicting objec-
tives. The proposed navigation method is evaluated through
simulations and real experiments of subterranean mines and
indoor scenarios, corresponding to an initial required step
for autonomous operations. The proposed artificial Vec-
tor field-based control was efficient in guiding the robot
through the planned paths and the LiDAR localization was
used to feedback the system.

The results obtained demonstrated the applicability of
a semi-autonomous pipeline for inspection and mapping

confined spaces with a ground robot. The presented method-
ology and validations allow the robot platform to have an
initial autonomy level by performing a considerable part of
the inspection mission in an automated fashion.

8.1 FutureWork

Future work will focus on the EspeleoRobô autonomous
operation. Exploration is a requirement for autonomous
operation in unknown environments. In this sense, we plan
to adopt autonomous exploration methods for the cur-
rent navigation pipeline, such as using information gain
or other related metrics [59]. Optimization methods could
also be applied to determine the best set of navigation
weights for each particular environment. In this sense, other
optimizations could also be implemented to improve the
pipeline’s processing time. For example, the use of an intel-
ligent selection of which portions of the point cloud are
used for mesh reconstruction. Also, simpler environments
could benefit from using a sparser point cloud without com-
promising the terrain reconstruction faithfulness. An algo-
rithm that dynamically changes the point cloud’s density
given the environment state could also improve process-
ing times. Adaptations could reduce the final navigation
graph size by exploring particular robot architectures and
dynamics.

Robot control in subterranean environments is very
challenging due to wet and slippery terrains. In this sense,
the use of dynamic control methods, which account for the
effects of these terrain features on the robot and compute
the motors’ torque to compensate for these disturbances,
can improve the robot’s locomotion. The robotic platform
could also benefit from hardware improvements such as
selecting the best locomotion mechanism – wheel type
and diameter – for the mission’s expected terrain. Tele-
operation could also benefit from multiple cameras located
carefully to visualize critical areas of the robot prone to
collisions.

Other research lines, such as robotic cooperation, can
also enhance the platform’s current mapping capabilities by
subdividing the inspection tasks among a team of robots.
Heterogeneous cooperation could benefit from using robots
with different capabilities, i.e., aerial and terrestrial, to
explore areas unreachable to one type of robot.
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Federal de Viçosa, Brazil (2017), when he participated in robot
soccer competitions, acquiring experience in image processing and
artificial intelligence. His research interests include computer vision,
digital image processing, mobile robotic, simultaneous localization
and mapping, and artificial intelligence.

VictorMiranda is a Ph.D. student in the graduate program in Electrical
Engineering (PPGEE) of the Federal University of Minas Gerais
(UFMG). He has a bachelor’s in Mechatronics Engineering from
the Federal University of São João Del Rei (UFSJ) in 2017 and
has an M.Sc. in Electrical Engineering from UFMG in 2019. His
main research interests include nonlinear and robust control theory,
mobile robotics, multi-agent systems, motion planning, localization,
and filtering.

Levi Welington de Resende Filho is currently a Researcher Engineer
working in robotics projects by the Federal University of Rio de
Janeiro in Brazil and is finishing his master’s degree in the Instituto
Tecnologico Vale and the Federal University of Ouro Preto. His
research interest includes Mobile Robotics, Computer Vision, Industry
4.0, Remote Sensing and Project Management, with emphasis on
applied research projects for the mining and oil and gas industries.
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