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Abstract
This paper discusses a novel approach to evaluate the real-time performance of computing platforms embedded in robotic
systems. The motivation behind this work is the need for the robotic systems to meet their timing constraints, thus requiring
time predictable real-time systems. We proposed a benchmark, named the Robotstone, which is an adaptation of a traditional
real-time performance benchmark widely known in the real-time systems community. Thus, the presented work makes it
easier for a robotic engineer to apply the benchmark in the modern robotics context by filtering out issues that do not matter
on the robotics applications and adapting the benchmark’s relevant portions. The Robotstone has a set of experiments related
to time-constrained application scenarios usually found in robotic systems. Each experiment defines an application-specific
parameter that increases at every iteration until the system overloads. The real-time performance is then evaluated through
the breakdown point, i.e., the system configuration in the application scenario when any functional or timing constraint is not
met. The proposed toolset has been evaluated on two distinct platforms representing a class of embedded computing systems
usually employed in robotic systems. Obtained results demonstrate the applicability of the Robotstone benchmark for a quick
assessment of computing systems’ real-time performance often required on initial development stages of a robotic system.
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1 Introduction

Real-time systems (RTS) are computing systems used in
applications that impose timing constraints that are often
strict [36, 56]. In the software domain, RTSes are comprised
of a set of tasks that perform application-specific activities.

Task execution must be time-predictable, i.e., the task
execution time must be known at the design stage; this
includes not only the execution of the algorithm, but
the execution time of the RTS application programming
interfaces (APIs) and libraries used in the implementation.
The execution time is an important parameter for ensuring
that the system tasks finish processing before their deadline,
which are derived from the application time constraints.
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Another necessary software component is the real-time
scheduler, which is responsible for controlling access to
the processing units, and also for sharing processing time
among multiple periodic and aperiodic tasks that run
concurrently. Operations performed by the scheduler must
also be time-predictable, e.g., evaluating the scheduling
policy and releasing the tasks at the exact moment
that each task is ready to be executed. The real-time
operating system (RTOS) provides the services required
by the RTS, which include not only real-time task-related
services, i.e., task primitives and the scheduler, but real-time
inter-process communication (IPC) and synchronization
services (e.g., communication queues, mutexes, and others)
as well.

Commercial off-the-shelf (COTS) hardware and other
state-of-the-art computing platforms introduce sources of
indeterminism that impact the task execution times [7],
e.g., cache memories, pipelines, bus arbitration schema, and
many other features of superscalar architectures. Because of
such hardware complexity, in practice, some stress testing
is required on the hardware platform to assess the timing
predictability of the software. These tests should be used
to obtain the upper limits of task code execution times
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and RTOS services. Moreover, in order to meet the time-
to-market constraints, a quick evaluation of the real-time
performance of the hardware/software platform can be
done when the system target platform is chosen. The real-
time performance can be evaluated using several metrics,
such as the number of concurrent tasks the target platform
can support, the system workload (i.e., the amount of
code or information processed within the time interval),
the task frequency, the maximum message length to be
transported, etc. The performance is affected by factors
such as scheduling overheads, priority inversions, inter-
task dependencies and interference, timing anomalies, and
domino effects [7, 36]. Thus, if two platform configurations
have similar real-time performance, the engineer can choose
the one that presents the best trade-off between cost and
performance.

One application domain that requires the use of RTS is
robotics, because a robotic system usually interacts with
the physical environment. An example of a robot that has
hard real-time constraints is the autonomous car [29, 58]:
if the sensor input data is not processed within an usually
strict timeframe, the system fails to meet its deadlines,
which may lead to catastrophic consequences such as an
accident with loss of human life. Therefore, it is necessary to
choose appropriate hardware and software tools to develop
a computational platform configuration that processes
information under real-time constraints. Moreover, robotics
engineers (as well as other computing systems engineers)
usually face challenges when creating a robot that presents
timing constraints, mainly due to a lack of knowledge about
the meaning of “real-time concepts” [56]. According to the
current literature, it seems that for a great portion of the
robotics community, “real-time” means the processing of
information while the robot is operating, which gives to
the operator a sense of instantaneous response (e.g., [5, 6,
25, 33, 51, 60, 64]). A somewhat dated discussion [56]
has already highlighted this common misunderstanding.
The correct term for this sort of robot operation is “online
processing”. Another misconception for many robotics
engineers relates to end-to-end response latency: the faster
the response, the greater “real-time” compliance the system
is considered to have (e.g., [6, 8, 27, 42, 44]). In this sense,
performance in a robotic system is generally related to the
average response time. However, real-time analysis is about
predicting the exact time, or at least the upper-bound limit,
at which operations are performed so task deadlines are
met [17, 36, 40].

In this study, we consider that robotic systems are
structured in a scheme such as the diagram presented
in Fig. 1. The computing system serves to control robot
operations by means of its perceptual and actuator
subsystems. This computing system may be composed of
one or many devices, where each is responsible for a

Fig. 1 A generic robotic system structure diagram

specific type of processing. These devices may be connected
by simple communication interfaces – such as an I2C or
SPI interface – or by means of network infrastructure to
form a distributed system. A device may have a single
processing core, or multiple cores (multicore). All of these
characteristics are determined by the complexity of the
application.

The software that runs on the computing control
system, i.e., the robotic application software, also varies
in complexity according to the hardware or the level of
abstraction of the control task. As one can see from several
works [11, 15, 43, 44, 49], the tools usually adopted for
the development of this application provide abstractions in
which the system is seen, even if indirectly, as a set of nodes
that communicate by some specific mechanism. A node can
represent a device, a core, or even an operating system (OS)
process, depending on the abstraction being used. The nodes
generally use the publisher/subscriber paradigm [16, 59]
to communicate with each other. Nodes called publishers
send messages through abstractions called topics. To receive
messages from a topic, the node must be subscribed to it.
The Robot Operating System (ROS) framework [49] adopts
the concept of nodes and is widely used by the community.
It provides, among several software tools, a middleware
for communication between the different modules that
compose a robotic system. In the ROS, nodes are created
as OS processes and communicate primarily through the
TCP protocol managed by the tool. If the robot’s control
system is just a device, then some nodes will be processes
that will compute the internal data, while others will be
responsible for communicating with the software device
drivers to control the robot’s peripherals. In case the system
is distributed, each computational device will see the other
through one or more processes/nodes. These nodes will
receive/send messages through the topics and will interface
between devices.

The ROS, like various middleware for robotics, was
not initially created for real-time computing [22, 41].
This is due to the fact that it does not provide the
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necessary services, such as task creation, scheduling, and
QoS management. In addition, because it makes extensive
use of indeterministic libraries of the C++ language (e.g.,
dynamic memory allocation), it is not possible to integrate
its services within real-time software tools and libraries,
such as an RTOS. A discussion related to this topic can
be explored in [23, 46]. In this case, the ROS developer
usually mitigates indeterminism by increasing the operating
frequencies of the nodes, so that the software can meet
the application requirements. However, as already covered
in this chapter, this does not guarantee that all imposed
deadlines will be met.

Real-time software development, including that of robot
software, comprises several stages of a process that is
often iterative [9, 52, 61], e.g., requirements engineering,
analysis, design, implementation, verification, validation,
and several other activities. In this study, we focus on the
evaluation of the real-time aspects of a robot’s software
system under development. Such a workflow is presented in
Fig. 2. Firstly, the potential target computing platforms need
to be evaluated regarding their real-time capabilities, i.e.,
the real-time services and predictable execution times for
the task set that implements the robot software controller.
Characteristics such as real-time performance, cost, and
the complexity of the system must be considered when
the execution platform is chosen. The second step is
the development of the real-time tasks that implement
specific robot services and algorithms. The tasks are
generally developed using some task model imposed by
the selected scheduler. The next step is to specify the task
execution time. As mentioned, the whole system usually
presents many sources of indeterminism that impact the task
execution time. Thus, execution time is often obtained by
running the task set on the target platform and measuring the
upper-bound value that represents the worst-case execution
time (WCET) [1, 63]. After determining the measured
WCET of the tasks, it is possible to perform a scheduling
test to verify the task set schedulability in the design phase,
i.e., the verification that the timing constraints of all tasks
can be met [17, 36, 40]. However, it is essential to highlight
that, although this is a common practice, measuring the
upper-bound does not provide any guarantee that the correct
WCET of a task has been determined and, hence, used in
the scheduling test [24, 28]. Finally, all tasks must be run
concurrently, to check if any deadline will be missed in the
robot operation. For a safety-critical robot, some kind of
fault-tolerance system must be integrated to maintain the
correct operation of the application, even in the presence

of timing violations and the indeterminism of the execution
platform [7].

We consider that there is a lack of well-established
methods or tools to determine the computing controller
platform, based on its real-time capabilities, for a robot
(corresponding to the first step in Fig. 2). We also
consider the possibility to create a solution to the
problems mentioned, based on the knowledge in the RTS
community. In that manner, this work proposes a novel
approach to evaluating computing platforms for a robotic
systems controller in terms of real-time performance. The
application-oriented benchmark Robotstone was developed
for this reason. It provides a set of experiments that
represent possible robotic applications, with the goal
of capturing specific parameters and evaluating system
real-time capabilities without considering the details of
the underlying software and hardware. The experiments
comprise synthetic applications that do not perform the
useful work of working robots (there are no perceptual
or actuator systems). However, these applications overload
the computing platform like a real application by using
synthetic code and synthetic messages. The Robotstone is
an adaptation of the original Hartstone benchmark [32, 62],
which proposes a synthetic code that, we believe, represents
the processing patterns of robotic applications. Robotstone
also adapts some procedures in the Hartstone model
by considering the publisher/subscriber communication
paradigm in experiments related to message exchange,
becoming more compatible with the evaluation of robotic
applications.

The proposed Robotstone delimits the breakdown point
of the system as its configuration (number of tasks, fre-
quencies, etc.) when one or more deadlines were not met.
This result gives the figure of merit for how well the system
achieves real-time capabilities in an application scenario –
that is, the real-time performance evaluation based on the
Robotstone benchmark. Seven experiments are proposed to
evaluate the real-time performance of a system in differ-
ent application scenarios. Unlike Hartstone, it is easy to
change the task parameters and perform tests with a con-
figuration closer to the expected load of a real robotic
system being designed. The benchmark also provides fined-
grained measurements of some task parameters so that the
developer can see the more in-depth system behavior. To
verify the applicability of the benchmark, two embedded
platforms were analyzed as case studies. We conducted a case
study on systems with RTOS without using a know real-time
robotic middleware. The reason for this is that we believe

Fig. 2 A workflow for RTS
development

J Intell Robot Syst (2021) 101: 37 Page 3 of 20 37



that the RTOS will return better results for system evalua-
tion. That’s because there are fewer software layers to insert
unpredictability into the application. Furthermore, RTOSes
already have a well-defined interface and are well known by
the real-time developer community. In any case, we advise that
in future studies, real-time robotic middleware [3, 12, 13,
44] to be tested. The obtained results showed that the Robot-
stone was suitable for evaluating computing platforms for
robotics, as the resources expected for RTS were verified on
both platforms, corroborating the suitability of the bench-
mark for real-time robotic applications. This paper is orga-
nized as follows. Section 2 presents related works; Section 3
describes the Robotstone benchmark; Section 4 discusses
the embedded system platforms used in the experiments as
well as the justification of their choice for real-time perfor-
mance evaluation of a robotic application; Section 5 ana-
lyzes the results of executing the Robotstone benchmark on
the selected embedded platforms; finally, Section 6 draws
the conclusions and points to future research directions.

2 RelatedWorks

As mentioned, this study intends to provide a means
to evaluate the real-time performance of the computing
platforms, i.e., hardware and software, that are used to
implement robotic systems. One can see that, although
some works in the literature discuss the evaluation of
robotic systems performance, very few works are concerned
with the real-time performance of the employed computing
platform.

Related to robotic middleware survey, we analyze two
works about the subject [22, 41]. The authors on both works
discuss and provide a similar qualitative assessment of
the middleware currently available for robotic applications,
including real-time capabilities. They assess real-time
capability in terms of a binary “yes/no”, which indicates the
presence of real-time modules. According to [22] and [41],
the evaluated qualitative attributes are relevant to robotic
software development. One can cite the following examples
of robotic middleware that propose real-time capabilities:
Orocos [12, 13], RT-middleware [3], and XBotCore [44].
However, relying on a “yes/no” assessment, as presented
in [22] and [41], is not sufficient for a well-supported
decision-making process in robotic systems development.

In [42], the publisher/subscriber system implemented in
the ROS [49] framework was evaluated in terms of the
end-to-end latency of the message sending mechanism. Var-
ious combinations of ROS1 and ROS2 have been tested in
order to measure the latency and its determinism for data
exchange between ROS nodes. Another work [27] proposed
a robotic software framework named aRDx. According to
those authors, aRDx provides a communication layer that

is able to exchange data under real-time constraints. The
real-time performance of aRDx was evaluated and com-
pared with other software frameworks, namely, ROS [49],
Orocos [13], YARP [43] and aRD [15]. The evaluation con-
sidered the round-trip time and communication bandwidth
for data exchange between nodes within distinct distribution
domains. The main goal was to assess the scalability of the
frameworks in terms of the number of communicating nodes
and how this impacts the predictability of the data exchange.
Although both works employed benchmarks, schedulabil-
ity analysis was not performed in order to assure that the
communicating nodes did not miss any deadline for sending
or receiving the messages. Also, there was no evaluation of
whether or not the task set was actually schedulable within
the context of each computing unit.

Many works published in the last few years intended
to evaluate the predictability of RTSes, running on
modern hardware platforms, that aim to improve average
performance, i.e., predictability is usually sacrificed in
favor of better average performance [63]. In [8], a set of
performance metrics were analyzed for a control system
of a toroidal device used for studies on thermonuclear
fusion. In this kind of application, it is quite important
to know the time predictability of the stimuli/responses
of the controllers. Various configurations of a software
stack were evaluated, including the performance of some
services provided by distinct RTOSes, namely, VxWorks,
Xenomai, RTAI for Linux, and regular Linux. The I/O
signals were measured with an oscilloscope, and thus,
the latency and jitter of those signals were determined.
In addition, in [4], the use of RTOSes in low-footprint
microcontrollers (MCUs), i.e., an MCU constrained to a
maximum of 4 KB of RAM and 128 KB of ROM, was
studied. The goal was to evaluate how predictable the
RTOS services running in such computing systems were.
According to the authors, two approaches were possible:
application-based benchmarks or benchmarks that evaluate
the most frequently used RTOS services. However, the
authors claimed that the former approach was not suitable
for evaluating RTOS behavior, but was suitable for the
application behavior. Distinct benchmarks were discussed
and their metrics were evaluated in terms of how well
they could measure RTOS features, including the time
predictability of the service execution. Although these
works present contributions relevant to the evaluation of the
real-time capabilities of a computing system, the proposed
methods are based of empirical measurements, i.e., they
lack the more formal and analytical approach based on the
body of knowledge of the real-time community.

On the other hand, model-based approaches have also
been employed to evaluate the time predictability of an
RTS. A tool named Oris is presented in [14]. Oris is
based on both preemptive timed Petri nets and stochastic
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Petri nets, in order to enable to qualitative verification and
quantitative evaluation of reactive systems. The evaluation
was done on a set of system parameters informed by the
user, e.g., execution time, activation period, and others.
Although the Oris approach was based on formal analysis,
the critical information of the system tasks was informed
manually by the user. In other words, the user needs
to execute the tasks on real hardware to discover the
execution time, which, in turn, may not represent the
real WCET of the tasks. WCET could be obtained by
using a detailed model of the CPU, which is unlikely
to be achieved for modern superscalar processors [63].
Furthermore, the work presented in [47] advocates the
importance of determining real-time parameters in earlier
design stages. Those authors define a set of benchmarks to
evaluate the performance of distinct system-level analysis
methods employed to assess distributed RTSes. The impact
of various abstractions is discussed in terms of the pitfalls
and the reasons for pessimistic performance predictions.
The results showed that the choice of an appropriate
analysis abstraction matters, and that the analysis accuracy
of different approaches depends highly on the particular
system characteristic. In other words, providing precise
models of the target computing platform and also the system
parameters are important issues for an accurate estimation
in system-level performance analysis.

Robotics engineers must support their designs with
quantitative data in order to choose the most suitable
middleware and computing platform for implementing the
various parts of a robotic system. Therefore, an evaluation
of real-time performance must be based on the analyses
already used in the design of the RTSes [17, 36, 40].
Such an analysis should use benchmarks instead of using
a quantitative method based on empirical intuition and the
average duration of task execution time, as is commonly
found in the literature [4, 8, 27, 42, 44]. Moreover,
studies that employ benchmarks [27, 42] must not neglect
the fact that the underlying computing system impacts
the predictability of software task execution (i.e., the
schedulability of the task set), and hence, the latency and
jitter of the data exchange [63].

This work aims to fill the analysis gap not addressed
by the literature by proposing a reliable benchmark. The
evaluation is performed not only by means of task set
schedulability on robotic systems, but also by the real-
time performance of the communication system based on
the publisher/subscriber paradigm. This work discusses the
Robotstone benchmark that was briefly introduced in [48]
with the name Hart-ROS. We choose to change the name
because Hart-ROS – “Hart” derived from Hartstone, and
“ROS” from the Robot Operating System framework [49]
– seems to be specific to ROS middleware, and not
to the robotic systems in general. Besides that, some

significant changes were performed since Hart-ROS. An
assessment based on new experiments and improvements in
mathematical notation was introduced.

Differently from [48], this study presents an in-depth
description of the Robotstone. The Robotstone follows the
guidelines of the Hartstone benchmark model [32, 62].
For investigations related to the processing domain (PD),
we use the Hartstone PN (periodic tasks, nonharmonic
frequencies) series, because they use a more straightforward
model than other proposed series, in addition to providing
the necessary information about the real-time performance
of a system. For the communication domain evaluation [32],
the experiments on the Robotstone were adapted from
Hartstone to evaluate and support the architectures of
robotic system, from simple RTOS software to complex
real-time middleware. Finally, this work presents the
implementation of the benchmark, rather than simply
presenting the model as it was presented in Hartstone.

3 The Robotstone Benchmark

The Robotstone is an application-oriented benchmark [32,
62] for robotics computing controllers, where real-time
performance is evaluated using a synthetic application
running on the target system. A synthetic application does
not perform any practical work in an operating robot.
However, it applies the same workload to a system as a
similar real application, so that it is possible to capture
observations from the synthetic system. It uses a set of
experiments, each one corresponding to a representative
robotic application, with the goal of exploring a specific
system capability. Synthetic applications are composed of
real-time tasks, called synthetic tasks. A generic task τi ,
where i is a unique identifier is modeled as follows. It runs
recurrently during system operation in instances called jobs
τi,k , {k} = {1, 2, 3, ...}. As observed from the Gantt chart
of Fig. 3, a task is ready to run a job in an activation time
ak . After activation, the execution of task code will begin
at start time stk . The time needed to run the entire code
for the task is given by the execution time parameter, Ci

(corresponding to its WCET). The moment a job completes
the execution of its code is called its completion time,

st1

Ci

a1
ct1

ta2 a3

...

Fig. 3 A Gantt chart that represents the jobs execution from a task τi .
Being {k} = {1, 2, 3, ...}, ak indicates the activation times, stk are the
start times, ctk are the completion times and Ci is the execution time

J Intell Robot Syst (2021) 101: 37 Page 5 of 20 37



ctk . The timing constraints of a task are met when its job
completion time occurs before its deadline.

The evaluated systems are interpreted as nodes in a
benchmark experiment. A node can be an OS process, thus
a machine can be composed of many nodes. A node runs
a set of real-time tasks whose timing constraints must be
met so that the timing constraints of the system are met.
Each node in the Robotstone schedules tasks using a rate-
monotonic (RM) scheduling policy [39]. In an RM policy,
task activation times occur during regular activation periods
Ti . The task deadlines are always at the end of an activation
period, so a job completion time must occur before the next
activation. In this model, the shorter the activation period,
the higher the task priority. An RM policy was chosen
because it is simple to implement using fixed-priority
preemptive (FPP) schedulers [35], which are usually present
in commercial RTOS (e.g., FreeRTOS [2], Xenomai [26],
VxWorks [31], μC/OS-II [31], QNX [37]). In that manner,
the target system must provide an FPP scheduler so the RM
policy can be applied in the benchmark. Furthermore, in
most control applications, which include robotic systems in
general, the sampling period is constant due to the models
of digital control systems used [45]. These samples will be
handled by tasks that will run periodically, justifying the use
of RM.

Each benchmark experiment is performed in test steps.
An application begins with baseline tasks that will increase
its parameters during the testing iterations. The goal is
to overload the system until it reaches the breakdown
point. With this approach, a functional or temporal system
limitation will occur. An example of a functional system
limitation is the lack of memory for more task creation.
A temporal limitation occurs when one or more deadlines
will be missed by the synthetic tasks. Thus, real-time
performance can be evaluated through the scenario obtained
at the breakdown point. For example, if a system takes a
bigger workload than another system, which has similar
processing speed, in an experiment where a breakdown
occurs, it will have a best real-time performance at first
glance, because it can handle a greater load in real time.
Also, if a system reaches the breakdown point in the first
step of a basic scenario, it is not suitable for use as an RTS
in this application scenario.

There are two classes of applications that the Robotstone
applies to. The first one is related to PD experiments,
which are basically the general case on any RTS or
simple robotic system. The system capabilities that directly
affect task schedulability are stressed by increasing
the value of parameters such as activation frequency,
workload, and number of tasks at each step. In this
case, the synthetic tasks execute the synthetic code
referred to as Kilo Whetstone Instructions (KWI) [19, 62],
based on a set of instructions considered representative

in scientific numerical calculation, which are weighted
using floating point arithmetic. Some common operations
on robots include inverse kinematics calculations, route
planning, artificial intelligence algorithms, and point cloud
filtering [21, 54, 55]. These operations use instructions
similar to those that comprise the KWI, which makes the
KWI a synthetic code representative of robotic applications.

For PD experiments, a sufficient test [39] can be used to
verify that the tasks at the breakdown point satisfy what is
expected in the RM scheduling. It is an analytical method
to verify whether a set of tasks running concurrently in
a single processing core can meet its timing constraints
when the system is running. Equation 1 was used to apply
this test. The variable U indicates processor utilization,
which is a workload metric. If this value is equal to 1,
the processor is occupied 100% of the time. However, the
RM test requires that processor utilization for n tasks is
always less than n · (

21/n − 1
)
, so the tasks will meet their

deadlines. Otherwise, the timing constraints of the tasks
cannot be verified. To calculate U, the execution time Ci

and activation period Ti of each task τi , i ∈ {0, 1, 2, ..., n},
is considered. The factor Ci/Ti can be referred to as the task
utilization, Ui . This parameter is a workload metric related
to a specific task. In the remainder of this paper, both U and
Ui will be expressed as percentage values.

U =
n∑

i=1

Ci

Ti

≤ n ·
(

21/n − 1
)

(1)

In an indeterministic system, Ui can vary for several
reasons, but it varies mainly because of the variations in the
execution time. However, this value is defined a priori in the
benchmark by means of Eq. 2. A parameter present in the
equation is ωi , which expresses the task τi workload as well
as the Ui parameter. However, the ωi is measured in KWI
per activation period (KWIPP) – the period is related to the
task activation period. We will call this parameter as the task
synthetic workload. The processor speed is determined by
parameter ν, given in KWI per second (KWIPS) obtained by
the Robotstone before an experiment.

Ui = ωi

Ti · ν (2)

Equation 1 can be used to check if the task set should
have met their deadlines based on tasks utilization. It is
worth noting that although there is an exact test to verify
schedulability with RM scheduling [30], it is more complex
than the test presented in Eq. 1. Therefore, for simplicity and
didactic reasons, we decided to use the latter in this work.

The second class of benchmark applications relates to
processing and communication domain (PCD) experiments.
Experiments that use this application have the goal of
exploring the capability of the target system for managing
both message transactions and task code execution while
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the system maintains deadlines. This kind of evaluation is
more complete because it explore more complex application
cases, i.e., when tasks trade messages and process internal
information based on these. In addition to the code being
synthetic, messages are also. These messages are composed
of dummy bytes that stress the communication system by
their length. In this case, in addition to the existence of
baseline tasks, there are also baseline messages. Thus, the
system capabilities are overloaded by increasing the value
of parameters that affect the communication system and
scheduler, e.g., message size, number of messages being
transported, task workload, etc. These experiments use the
node concept directly and consider the publisher/subscriber
communication paradigm [50, 59]. As highlighted in
Section 1, these concepts are used in robotic software
tools. If the system natively has the publisher/subscriber
mechanism, the benchmark test will use the API provided
by the system. If the system does not have it, system services
must be used to implement the paradigm.

In the remainder of this section, we present the developed
experiments and the concepts behind them, and the software
architecture of the Robotstone benchmark.

3.1 Definitions of the Proposed Experiments

The Robotstone is structured as a set of seven experiments:
three are for the PD and four are for the PCD. The system
workload or scheduling load gradually increases with the
execution of the experiment at each step. As suggested
in [20], a test step has a duration of 10 s. System workload
increases when the amount of code executed by the task
set increases within a time interval, or when the length
of the messages increases. The scheduling load in the
PD means the amount of tasks ready to run per time
interval (either by the size of the task set and/or by its
activation frequencies). In the PCD, the scheduling load is
also affected by the number of messages being transported
per period. Therefore, each experiment provides a figure

of merit for how well the system can maintain its real-
time constraints with the increase in system workload and
scheduling load in a synthetic application that represents
robotics applications.

Before executing PD- and PCD-related experiments, the
benchmark must obtain the speed ν of the processor at
the node. The speed is required by Eq. 2. For this, a
synthetic task will run continuously for a predetermined
period, without interruption. Then, ν will be obtained by the
ratio of synthetic code executed to the execution period. The
same value can be used in all experiments. After obtaining
the processor speed, experiments related to either the PD or
PCD can be performed.

In PD experiments, a node named Master runs
the selected experiment, which has five baseline tasks
{τ1, τ2, τ3, τ4, τ5}. This relationship is presented in Fig. 4a.
The task parameters can be adjusted by the user accord-
ing to their project needs. However, here we present default
parameters to evaluate the Robotstone capabilities. It uses
the task frequencies proposed in [62] ({63, 30, 14, 10, 6}
Hertz), as well as the proposed initial processor utilization
U ≈ 15%. This value is divided equally between tasks,
that is, Ui ≈ 15%/5. With this value, the tasks will easily
pass the RM sufficient test. The task workloads are obtained
using Eq. 2.

According to [62], in each testing iteration, the exper-
iment specific parameters are increased, so a processor
utilization between 2% and 3% increases. Therefore, the PD
experiments performed on a Master node are defined as:

– Experiment 1 – At each step, the workloads of the
synthetic tasks are increased by 10% of their initial
value. This experiment stresses system workload by
increasing task workload.

– Experiment 2 – At each step, the activation frequency of
each task increases by 10% of its baseline value. This
experiment stresses the scheduling load by increasing
task frequency.

Fig. 4 Each diagram represents
some experiment scenarios,
being a and b corresponding to
the PD and c and d to the PCD.
Each τi , where i an unique
identifier, represents a task. The
dashed rectangles represent a
node. Arrows represent a topic,
with the arrowhead being the
subscriber side

“Topic 1”

“Topic 2”

“Topic 3”

Master Slave

Master Master

(a)

(b)

(c)

“Topic 1”

“Topic 2”

“Topic 3”

Master Slave

(d)
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– Experiment 3 – At each step, a task enters the
system with the same parameters as τ3 (Fig. 4b). This
experiment stresses the system workload and scheduling
load by increasing the number of running tasks.

The benchmark provides four experiments for the
evaluation of PCD applications. For this, there must be
one node that is considered the Master, and another node
considered the Slave. On the Master side, the experiments
begin with the baseline publisher tasks {τP 1, τP 2, τP 3} that
will send messages on individual topics. On the Slave
side, the baseline subscriber tasks {τS1, τS2, τS3} wait for
messages on their corresponding topics.

The relationship between tasks, topics, and nodes is
shown in the diagram in Fig. 4c. The publisher tasks
execute their workloads, and then send their messages. The
subscriber tasks wait for the messages, and after receiving
them, perform their workloads. As in PD experiments, task
parameters can be defined by the user. However, here we
present the default parameters defined in Robotstone. The
size of a baseline message is defined as the word length
of the target system architecture because it is considered
the minimum load the system can handle, and it also
represents the simpler messages on robotic applications.
The frequencies of the messages were set as indicated
in [32] ({7, 5, 3} Hertz). As in the PD experiments, the
baseline task workloads were set so processor utilization
was approximately 15%, and was equally divided between
tasks (Ui ≈ 15%/3 at each node). Therefore, the PCD-
related experiments performed on the Master and Slave
nodes were defined as:

– Experiment 4 – As in the PD experiments, at each
step, the synthetic task workloads are increased by
10% of their initial value. This experiment stresses
the processing system workload by increasing the task
workloads while maintaining the message size. Thus, it
serves to evaluate how the system maintains deadlines
by increasing the processing of information.

– Experiment 5 – The messages length is increased by
a power of two at each step. This experiment stresses
the communication system workload by increasing
the messages size. Because there are a large number
of robotic applications, a variety of message types
with varying sizes are also present, thus justifying an
experiment that verifies the impact of different sizes.

– Experiment 6 – As in the PD experiments, at each
step, the task frequencies are increased (and hence
the number of messages sent) by 10% of the baseline
values. This experiment stresses, mainly, the scheduling
load in the PCD by increasing the frequency of
messages sent by the tasks. With a justification similar
to Experiment 5, various robotics applications require
different frequencies. For example, sensors can send
samples in ranges of Hz to kHz.

– Experiment 7 – At each step, the number of tasks with
the same parameters as τS2 is increased, subscribing
to the same topic (Fig. 4d). This experiment stresses
both system workload and scheduling load in the
PCD by increasing the number of subscribers and the
number of messages sent to them in the same topic.
This is a common behavior in robotics when multiple
nodes/tasks read a value published by the same sensor.

As an extra feature, the benchmark also provides the fine-
grained measurement of tasks response times and response
jitters for a more in-depth system view. A response time
Ri,k of a task job τi,k is the difference between its activation
time and its completion time, as presented in the Gantt
chart in Fig. 5. In that figure, the white gaps represent the
interference caused by other tasks and system overheads.
Consider that during a test step of the experiment, m

instances τi,k are executed with the respective response
times Ri,k , {k} = {1, 2, 3, ..., m}. One of the parameters
obtained is the worst-case response time (WCRT) Ri

corresponding to the longest response time achieved by a
task τi (see Eq. 3). If any deadline is missed in a test,
Ri > Ti will occur. Another parameter obtained is the
average-case response time (ACRT) R

avg
i , given by Eq. 4.

Finally, the response jitter JR
i represents the response time

variation. It was calculated using Eq. 5.

Ri = max
(
Ri,1, ..., Ri,m

)
(3)

R
avg
i = 1

m

m∑

k=1

Ri,k (4)

JR
i = 1

m

m∑

k=2

|Ri,k − Ri,k−1| (5)

3.2 Software Architecture

The Robotstone benchmark was developed using API
layers as presented in Fig. 6, where each layer uses
the lower-layer services. The highest software layer
is the Robotstone Application layer, which implements
the synthetic applications that will run as experiments.
The applications require basic real-time services, such
as task management and communication through the
publisher/subscriber paradigm, available through the Real-
Time API. That layer is basically a wrapper API for
the target system services, indicated by System API. The
creation of the Real-Time API is justified by making the
benchmark more portable for different architectures. Both
upper layers were made in C++ language, to be portable
to UNIX-like systems and MCUs.1 The programming

1The projects using the Robotstone, can be downloaded in https://
github.com/MatheusPinto/robotstone
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tRi,k Ri,k+1 Ri,k+2

Fig. 5 A Gantt chart that represents the jobs response times Ri,k , {k} = {1, 2, 3, ...}, from a task τi . The response time begins in activation and
finishes in the completion time. The white gaps on rectangles are caused by interference from other tasks and system overheads

effort required from the user to port Robotstone to a new
architecture is to insert the System API services in the
Real-Time API. These services can be implemented in pure
C language since correct compiler directives are included.
It is important to note that the specific implementation
of Real-Time API layer services depends on System API.
Thus, although Real-Time API provides, for example,
publisher/subscriber communication services, it will be
real-time or not dependent on the implementation of the
system. This implementation could be provided by an
RTOS, as well as real-time middleware services.

At each Master and Slave node, a specific task is used
to manage the experiments: Mτman in the Master and Sτman

in the Slave. The synthetic tasks run the application and are
controlled by the management tasks that have the highest
priorities. In the PCD experiments, Mτman and Sτman must
communicate with each other within specific topics, as
observed in Fig. 7. Synthetic tasks communicate between
topics as well, but this is not presented in the figure.

Figure 8 presents a simplified Unified Modeling Lan-
guage (UML) class diagram of the benchmark. The package
indicated as “Robotstone Application” means the classes
related to the Robotstone Application layer from Fig. 6.
The classes in the same C++ namespace RealTime pre-
sented in Fig. 8 are related to the Real-Time API layer.
Modules with the “wrapper” stereotype indicate that it is
necessary the inclusion of some System API layer services
to operate. The Master node will have an instance from
RobotMaster class, and the Slave will have an instance
from RobotSlave class. These two classes inherit from
the more generic class called Robotstone. The Task
class has basic methods for creation, priority attribution,
destruction, and other task operations. Signal objects are
used to notify about events between tasks in a same node.

Two subsystems were created in the class diagram to
represent internal implementations of the Real-Time API
layer. The “RealTime Subsystem” is related to the generic

Robotstone Application

Real-Time API

System API

Fig. 6 The software API layers present in the Robotstone benchmark

RTS services and configurations (e.g., scheduler starting).
Note in Fig. 8 that the Robotstone Application uses these
services. The “Communication Subsystem” is part of the
Communic namespace. Both are related to classes and
services for real-time communication between tasks using
the publisher/subscriber mechanism. One of the services
provided by “Communication Subsystem” is the action of
inquiring about publishing or subscribing to a topic. As can
be observed, each topic is related to an object, and can have
zero or more Publisher and Subscriber instances.
The use of the Topic class is not required if a system
has the publisher/subscriber paradigm natively. In this case,
only the Publisher and Subscriber instances exist in
the Robotstone Application. These two kinds of objects will
have a relationship with the “Communication Subsystem”
(e.g., by sharing variables or using standard services) that is
represented by the line between the Topic object and the
subsystem.

The RobotTask class, together with the Robotstone
and its subclasses, constitute the Robotstone application
layer in the model presented on Fig. 6. This class provides
a more specific abstraction of the synthetic tasks instead
of simply using the Task class. As can be seen in
Fig. 9, a RobotTask object consists of a task (a Task
object), a Signal, a Publisher, or a Subscriber.
Note that RobotTask does not inherit from Task, but
is composed of it. The Signal object aims to signal
synthetic tasks to their first activations, so that they are

Fig. 7 A diagram that represents the interaction between the
management tasks in the Master node (Mτman) and in the Slave
node (Sτman). The arrows indicate communication topics. In the
“MasterSends” topic, Mτman is the publisher and Sτman is the
subscriber. In the “SlaveSends” topic, Sτman is the publisher and
Mτman is the subscriber. Being i ∈ {1, 2, 3, ...}, τP i indicate the
publisher tasks and τSi indicate the subscriber tasks
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Fig. 8 A simplified UML class
diagram of the Robotstone
Application and Real-Time API
layers. As RobotMaster and
RobotSlave classes have
similar interface, we use a same
block to represent both

Robotstone Application

RealTime

Communic

Robotstone

- manPub

1

<<wrapper>>
Publisher

RobotMaster/RobotSlave

- manTask

1
<<wrapper>>

Task

- robotTasks
*RobotTask

- expSignal

1

- tasksSignal

1

<<wrapper>>
Signal

- manSub

1

0..*0..*
<<wrapper>>
Subscriber

Topic

<<wrapper>>
RealTime Subsystem

<<wrapper>>
Communication Subsystem

all activated at the same time. In PCD experiments,
instances of RobotTask in a Master node will each have
one Publisher for sending messages. However, in a
Slave node, the RobotTask objects have an instance of
Subscriber for receiving messages. In this class, the
task codes are implemented for execution of the synthetic
workload and message transactions.

RobotTask

RealTime

Communic

Signal

Publisher

Subscriber

Task

1

1

0..1

0..1

Fig. 9 A simplified UML class diagram related to RobotTask class.
A RobotTask instance contains a Task object, for running the
synthetic code, and a Signal object reference that indicates the
first job activation. If a PCD-related experiment is chosen, then a
Publisher or a Subscriber instance is created

In Fig. 10, the Robotstone application layer state machine
diagram in UML is presented. The initial state is the
experiment request by the user, made in the Master node.
After the experiment is chosen, the first initialization
parameters are configured. If a PD experiment is chosen
by the user, then the next state will be “Start Uniprocessor
Experiment.” In this case, the baseline tasks are initialized
and synchronized with the use of the Signal object
(Fig. 8), so that the initial activations of all tasks will occur
at the same time. After synchronization, the Mτman enters a
sleep state for the period of the test step. After the test step,
a report is generated and sent to standard output from the
system. If a breakdown occurs, the experiment is finished.
Otherwise, the task parameters are updated according to the
experiment and the tasks are run again in another test step.

If a PCD experiment is chosen, the system will enter the
“Start Distributed Experiment” state. In this case, the Master
initializes the experiment parameters and must wait for a
handshake from the Slave node to start the experiment. The
handshake is performed by the management tasks Mτman

and Sτman. After the tasks in both nodes are initialized and
synchronized, the management tasks go to sleep and the
experiment tasks are run. The cycle is similar to that in
the PD: if a breakdown point is reached in any node, the
experiment finishes; otherwise the tasks are updated and a
new test step is performed.
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Start Distributed Experiment

Update Master 
and Slave 
Experiment
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Period
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Communic 
With Slave
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Experiment

Init Master 
Experiment

user request
Start Uniprocessor Experiment

Start and 
Sincronize 
Master Tasks
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Period

Master 
Report

Update Master 
Experiment

experiment 
evaluation
 [experimet id < 4]

experiment 
evaluation
 [experiment id > 3]

all tasks 
synchronized

test period

handshake 
established

test period

all tasks synchronized

breakdown point

breakdown point

tasks parameters
updated

report generatedreports generated

tasks parameters
updated

Fig. 10 The Robotstone application layer state machine diagram in UML

The generic state machine diagram in the UML of a
synthetic task τi is presented in Fig. 11. A task initiates in
the state “Wait for Signal.” All tasks are together in this
initial state, waiting for a signal from the management task.
A task leaves this state when it receives the start signal, and
it has a chance to use the processor. When this happens, the
task enters the “Workloads State.”

In PD related experiments, each task is attributed to a
synthetic workload, and they do not communicate with each
other, so there is no message transaction. In this case the
tasks go out from “Receive Message” and “Send Message”

states as soon as they enter. They perform work by running
synthetic code only in the “Run Synthetic Code” state.
In PCD experiments, after executing the synthetic code, a
publisher task sends a message in “Send Message”; when
task is subscriber, it waits to receive a complete message
in “Receive Message”, and then it executes the workload.
After a task leaves “Workloads State,” as indicated in
Fig. 11, fine-grained measurements are performed. The
response time Ri,k of the current instance τi,k is obtained
from the difference between the instant the task enters the
state “Get Response Time” and the instant of activation.

Fig. 11 The generic state
machine diagram in the UML of
a synthetic task

Wait for Signal

Get Response 
Time

Get Response 
Jitter

Calculate Next 
Activation Time

Calculate Average 
Response Time and Jitter

Calculate 
Deadlines

Suspend Until Next 
Activation

Workloads State

Receive Message

Send Message

Run Synthetic Code

activation time

start signal

stop condition
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In the same state, the value obtained is inserted in a
summation for the calculation of Eq. 4 and evaluated
for the determination of Ri (3). Soon after, in the “Get
Response Jitter” state, Ri,k is inserted in another summation
to determine JR

i (5).
In the next state, the next activation time of the task

is calculated based on the previous activation and task
period. After the task leaves this state, τi performs the final
calculation of R

avg
i and JR

i for the step if the management
task has sent a stop flag by means of a shared variable, and
then end its execution. Otherwise, τi calculates the number
of deadlines reached, missed, and skipped (the meaning
of the latter is presented in Section 5), based on the next
activation period and the current time. Even if a deadline is
missed, the task continues to run until the end of the step.
Finally, the task goes into a suspended state until the next
activation, so other tasks of lower priority can run. It is
important to note that the time is calculated using the Real-
Time API, made available by the user through some service
of the target system.

4 Embedded System Platforms
for Evaluation

As a benchmark case study, two embedded system platforms
that are generally used in robotic systems were employed.
One of them was the well-known Raspberry PiTM 3
Model B (RPi3), a board that embeds a system-on-chip
(SoC) designed for projects using general-purpose operating
systems (GPOSes). The second board was the NXP FRDM-
K22F platform used in MCU applications. A detailed
discussion of the settings for embedded platforms will be
presented in the remainder of this section.

4.1 RPi3 Configurations

The RPi3 is an embedded system platform used for pro-
totyping general-purpose applications. The main processor
unit is a Broadcom BCM2837 SoC, having a quad-core
ARM Cortex A53 cluster. The cores can run at 1.2 GHz.
This type of system requires the use of external memory for
storing programs and data. For permanent information stor-
age, a removable micro SD card is used (one 32 GB card in
this work). The program is a GPOS (e.g., Linux) and its sys-
tem applications. All the information needed for processor
execution is loaded from the SD card to a RAM chip with
1 GB capacity. The board has basic features, such as GPIO
(general-purpose input/output) pins, as well as some periph-
erals present in MCUs, such as SPI, I2C, I2S, PWM, and
UART. The board also has more complex peripherals not
usually present on MCU platforms, such as HDMI, as well

Table 1 Properties of the baseline tasks for PD-related experiments on
RPi3

Task Frequency Period Workload Processor

(Hertz) (ms) (KWIPP) Utilization (%)

τ1 63 15.90 196 3

τ2 30 33.33 413 3

τ3 14 71.43 886 3

τ4 10 100 1240 3

τ5 6 166.67 2067 3

as the MIPI DSI and MIPI CSI interfaces for high resolution
displays and cameras, respectively.

The Linux distributions available to RPi3 do not provide
services for hard RTS applications. For this purpose, some
kernel patching or modification is required. Of the many
possible ways to make Linux more real-time compliant, one
is by using a real-time co-kernel [57, 65]. The GPOS is
seen as a lower priority task by the co-kernel, so it will only
run if no other real-time tasks are running. In this work,
the Raspbian with Linux kernel 4.9.80 was used, coupled
with the Xenomai co-kernel version 3.0.82. The toolchain
used was the arm-linux-gnueabihf-gcc version 5.4.0. For
time measurement during the benchmark testing, Xenomai
timing services were provided to the Real-Time API layer.
The default resolution of 1 ns was maintained.

Xenomai tasks are created in Linux processes. As many
tasks as possible are created in one process. The moment
a task is started in a process, Linux is preempted by I-pipe
and will resume execution only when no other real-time
task is ready. These tasks may communicate with some
Linux processes (e.g., a GUI), but the services provided by
these processes are not predictable. Although RPi3 has a
32 GB secondary memory, OS swap needs to be disabled
to guarantee system predictability. Thus, the application is
limited by the 1 GB of main memory. When communication
between tasks and peripherals is required, a real-time driver
model (RTDM) [34] interface for device drivers should be
used to ensure timing predictability. Xenomai provides real-
time task management services and an FPP scheduler so RM
can be applied to the benchmark.

On this platform, we wanted to evaluate the capability of
its SoC core to schedule tasks in real time under Xenomai.
For this purpose, PD experiments were used. The speed
of a system processor core, obtained by the benchmark,
was 413,500 KWIPS. In that manner, we could obtain the
parameters of the baseline tasks by means of Eq. 2. These
parameters are summarized in Table 1. The Master node is a
process that starts on the core, and is responsible for creating

2The image was downloaded from http://www.cs.ru.nl/lab/xenomai/
raspberrypi.html.
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the management task, which starts the experiment based on
the terminal user request.

We also wanted to evaluate the predictability of the
system when there is communication between the SoC cores
through the IPC mechanism provided by Xenomai, i.e.,
communication between tasks on different cores. To do
so, PCD experiments were run on the platform. Because
Xenomai, like many RTOSes, does not offer a native
publisher/subscriber mechanism, an implementation from
scratch of this mechanism was required. In that manner,
the Xenomai queue services were handled in a specific
implementation inside the “Communication Subsystem”
(Fig. 8). This implementation intends to be real-time and
can be verified in the article published before the current
work [48]. Partitioning [18] of the cores was performed
using the Linux taskset tool: one core for the Master,
and another for the Slave. The baseline task parameters for
the PCD experiments are presented in Table 2. The task
workloads were obtained with the same processor speed
used in PD (413,500 KWIPS).

4.2 FRDM-K22F Configurations

The FRDM-K22F is an evaluation board for MCU
development. Like RPi3, the FRDM-K22F was made for
general-purpose applications, although it is a less complex
system. It contains a Kinetis MK22FN512VLH12 MCU,
which has an ARM Cortex M4 that runs at up to 120 MHz.
It also has a floating point unit and a digital signal processor
(DSP) module. The memory system bus is a Harvard type,
and it is internal to the chip. It consists of 512 KB flash
memory for the program, and 128 KB SRAM memory
for the data. The program may be firmware made without
any OS support (baremetal design) or using an RTOS. In
addition, it has a variety of peripherals internal to the chip.

In this work, FreeRTOSTM version 9.0.0 was embedded
in the FRDM-K22F MCU as the RTOS, provided by NXP
on the MCUXpresso version 11.0.0 IDE. The toolchain
used was the gcc v. 8-2018-q4-major and the NewlibNano
C library. Like Xenomai on RPi3, FreeRTOS provides
services for task management and an FPP scheduler for
the application of RM policy in benchmark testing. The
system software with this RTOS is like any MCU baremetal

Table 2 Properties of the baseline tasks for PCD-related experiments
on RPi3

Task Frequency Period Message Size Workload Processor

(Hertz) (ms) (Bytes) (KWIPP) Utilization (%)

τP 1 - τS1 7 142.85 4 2953 5

τP 2 - τS2 5 200.00 4 4135 5

τP 3 - τS3 3 333.33 4 6891 5

design: tasks and scheduler are functions in the C language
that are started inside the main function. In same manner,
communication with peripherals is made directly with the
use of registers.

For this platform, we wanted to evaluate the capability of
the MCU to schedule tasks in real-time under FreeRTOS.
For this purpose, we applied the PD experiments. With
a processor speed equal to 3758 KWIPS, the parameters
of the baseline tasks were obtained using Eq. 2, and are
summarized in Table 3. Note that the utilization for the
highest priority tasks is less than the others due to rounding
error. However, this does not affect the use of the benchmark
because accurate values are not required to give the figure
of merit for the system. The Master node is the entire
system application, and it is responsible for creating the
management task, which starts the experiment in response
to a terminal user request in PC by means of serial
communication. For time measurement in the benchmark
test, the FreeRTOS timing service that returns the scheduler
ticks is provided to the Real-Time API layer. The tick period
resolution was set to 1 ms, which is generally the minimum
value recommended by the FreeRTOS community [10].

For this platform, we were not interested in evaluating
capabilities related to the communication system. This is
because for this kind of hardware (MCU with a single core)
and system software (a microkernel), the communication
system is generally implemented using shared variables in
sections protected by race conditions [36, 38]. In this case,
the blocking time of a task, by waiting to be released in
a shared region, can counts as part of the task execution
time [53]. Thus, it is important to analyze the PD aspects in
isolation.

5 Experimental Results and Evaluation

This section presents the experimental results for FRDM-
K22F and RPi3. A comparison between the PD related
experiments from both platforms is also presented. The
system configuration at the breakdown point in each

Table 3 Properties of the baseline tasks for PD-related experiments on
FRDM-K22F

Task Frequency Period Workload Processor

(Hertz) (ms) (KWIPP) Utilization (%)

τ1 63 15.90 1 2

τ2 30 33.33 3 2

τ3 14 71.43 8 3

τ4 10 100 11 3

τ5 6 166.67 18 3
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Table 4 Results of the PD-related experiments for tests in breakdown
point on RPi3

Exp. Test Deadlines Deadlines Deadlines Processor

N◦ Met Miss Skip Utilization

1 52 1174 6 12 93%

2 50 7388 11 22 90%

3 29 5112 20 40 99%

benchmark experiment is discussed, and the analyses are
shown.

5.1 RPi3 Results

Table 4 presents the results obtained at the breakdown
points in the PD experiments. The field “Test N◦” indicates
the number of the test in the experiment at which the
breakdown occurred. In the “Deadlines Met” field, number
of deadlines met is indicated. In “Deadlines Miss”, the
number of deadlines missed by a job that started its
execution is shown. The “Deadlines Skip” field indicates
how many deadlines were “skipped” because jobs were not
created during the corresponding activation periods. Finally,
processor utilization values are presented.

The deadlines missed for all experiments, presented
in Table 4, correspond to the lowest priority tasks. As
these have their executions postponed until no higher
priority task is ready to run, the results are consistent
with what is expected with RM scheduling. Furthermore,
for RM scheduling, regardless of the task workload and
frequency, the scheduling is guaranteed in the design phase
for five tasks only if processor utilization is less than
74% (1). For all the experiments, the tasks passed the
RM test by a wide margin, whether by increasing their
workload, frequency, or number of tasks. Thus, the system
configuration presents excellent real-time performance for
all the proposed scenarios related to PD.

In Tables 5 and 6, the results obtained at the breakdown
point in the PCD experiments are shown for Master and
Slave nodes, respectively. Their fields are similar to those of
Table 4, except for the presence of message size.

Table 5 Results of the PCD-related experiments for tests in breakdown
point of Master node on RPi3

Exp. Test Deadlines Deadlines Deadlines Processor Message

N◦ Met Miss Skip Utilization Length

4 33 165 0 0 64% 4 B

5 20 165 0 0 15% 2 MB

6 38 848 0 0 72% 4 B

7 17 178 0 0 15% 4 B

Table 6 Results of the PCD-related experiments for tests in breakdown
point of Slave node on RPi3

Exp. Test Deadlines Deadlines Deadlines Processor Message

N◦ Met ) Miss Skip Utilization Length

4 33 163 1 2 64% 4 B

5 20 165 0 0 15% 2 MB

6 38 844 2 4 72% 4 B

7 17 1119 1 2 95% 4 B

The results related to behavior of deadlines missed
obtained in the PCD experiments are similar to those of
the PD experiments. The deadlines missed in all PCD
experiments correspond to the lowest priority tasks. In
addition, the deadlines missed and skipped correspond
to Slave only. The presented results indicate good real-
time performance of the system as well. In Experiment 4,
the processor utilization reached 64% on both nodes. By
applying (1), we verified that for three tasks (as present in
each node), the schedulability was guaranteed if processor
utilization was less than 78%. Although there was a margin
of 14% that the system had to fill to attempt what is expected
for RM scheduling, it is understandable that gap because
the communication system would consume processor time
to message transaction. The communication system is
implemented with the Xenomai queuing mechanism, which
runs on the same processors as the benchmark applications.
This time could be considered blocking time in the WCET
estimation (see the workflow presented in Fig. 2). In
Experiment 5, the messages length at the breakdown point
was 2 MB. In this case, there was no deadline missed,
because the system stopped when Xenomai was required
to allocate 4 MB to message queues. Thus, the system
presented timing predictability (tasks completing before the
deadlines) when messages were 2 MB. This feature is used
in a considerable number of robotic applications, such as
that using odometry with encoders, obstacle avoidance with
ultrasonic sensors, and many others that do not use large
message transactions [21, 54, 55]. In Experiment 6, we
observed a behavior similar to Experiment 4. The processor
utilization reached 72% in both nodes. Again, there was
a gap between the 78% expected by RM scheduling for
three tasks (1), but it was expected due to the overhead
inserted by the communication system. Thus, we consider
this to be a good real-time performance of the system
when handling the scheduled load. Finally, in Experiment
7, the Slave node achieved 95% processor utilization when
running 19 tasks, where 16 of them were similar to τS2.
This is excellent real-time performance when the system
handles a scheduling overload by increasing tasks, because
the processor utilization exceeded what was expected by
RM for 19 tasks, i.e, 71% (1).
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Therefore, the system presented considerable real-time
performance in system scenarios that imposed processing
and communication workloads.

5.2 FRDM-K22F Results

The results obtained at the breakdown point in the PD
experiments on FRDM-K22F are presented in Table 7. As
expected with the use of RM scheduling, all the deadlines
not met correspond to the lowest priority tasks, as these
tasks have their execution postponed until no higher priority
task is ready to run. Except for Experiment 2, the other
two experiments present a processor utilization that exceeds
what is expected by RM scheduling, i.e., 74% (1), by a wide
margin. Thus, the system configuration presents excellent
real-time performance for all the scenarios.

5.3 PD Results Comparison

Both platforms achieved the expected results from the PD
experiments when using RM scheduling, thus presenting
significant real-time performance when the system work-
load and scheduling load were stressed in regular applica-
tion scenarios. The RPi3 showed better processor utiliza-
tion. The cause of this may be due to the higher frequency
of Xenomai scheduler switch context compared to FreeR-
TOS. In that manner, FreeRTOS has a bigger gap between
one context switch and another, which ends up releasing a
task ready to run too late.

To do a more in-depth comparison between platforms,
Figs. 12 to 13 present the charts of fine-grained measure-
ments related to Experiment 1 for RPi3 and FRDM-K22F,
respectively. Each graph shows the WCRT, ACRT, and
response jitter of the synthetic task through the test steps
from the experiment. Note that the scales are different for
better visualization of the three parameters for each task.

As can be seen for both platforms, all the response times
are increasing because the workload of the tasks increases.
The higher the task priority, the shorter its response time.
In the beginning, all the jitters are small, but they become
higher for the lowest priority tasks as the system workload
increases. As expected, the highest priority task τ1 has
the smallest jitter, which remains almost the same through

Table 7 Results of the PD-related experiments for tests in breakdown
point on FRDM-K22F

Exp. Test Deadlines Deadlines Deadlines Processor

N◦ Met Miss Skip Utilization

1 58 1267 2 4 85%

2 48 8730 24 48 75%

3 27 4896 16 32 90%

the tests because other tasks do not interfere with it. As
shown, the ACRT and WCRT curves for task τ1 are very
close to each other, and this is an indication of system
predictability [7]. On the other hand, as the task priority
decreases, response time increases more quickly during the
experiment, mainly because it suffers more interference by
the higher priority task workload.

The variations that occur in the WCRT charts for RPi3
may have been caused by many factors, such as task
execution time overloads, or even overloads caused by
system services. On FRDM-K22F we had a larger time
interval unit than on RPi3, which gave more discretized
results.

Another fact that must be noted is that although both
systems showed higher processor utilization in PD-related
experiments, RPi3 had a higher processor speed and was
capable of handling a more significant workload. For
example, in Experiment 1, the system workload reached
378,000 KWIPP, where for FRDM-K22F, this value was
3170 KWIPP. This is two orders of magnitude higher, which
implies that much more code can be executed in real-
time. Therefore, it can be verified that the target systems
presented behaviors that corroborate RTS theory and show
the applicability of the benchmark to present these expected
behaviors.

6 Conclusion

This paper discussed the novel Robotstone benchmark as
a methodology for evaluating the real-time performance of
computing platforms, with a particular focus on robotic
systems. The Robotstone provided seven experiments, each
one focusing on the analysis of a system’s limit for a
specific application scenario. Unlike the original Hartstone
benchmark, it is easy to change the task parameters
and perform tests with a configuration closer to the
expected load of a real robotic system being designed.
The breakdown point offered a figure of merit for how
adequate the system’s real-time capabilities were for the
application scenario. User intervention in the benchmark
code is needed to port the target system. For that, the
target system must provide basic task services and an FPP
scheduler to apply the RM policy. The PD experiments
evaluated the real-time capabilities of the system related
to task scheduling. The PCD experiments considered the
real-time capabilities of the system related to task execution
and message transaction. In this case, the communication
system is seen by the benchmark as a publisher/subscriber
mechanism.

Evaluation using the Robotstone benchmark was per-
formed in two case studies of embedded platforms, the pop-
ular RPi3, and the microcontroller platform FRDM-K22F.
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Fig. 12 Fine-grained
measurements results for
baseline tasks
{τi} = {τ1, τ2, τ3, τ4, τ5} related
to Experiment 1 on RPi3. The
curves present the values of
WCRTs Ri , ACRTs R
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The results showed that both platforms show reasonable
real-time performance in the PD, because most task sets
passed the RM scheduling by a wide margin, i.e., the water-
mark of 74% of processor utilization. In addition, they

presented features that corroborated real-time system theory
and benchmark capability to track these features.

For RPi3, the RTOS IPC mechanism between two cores
of the SoC was evaluated under the publisher/subscriber
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Fig. 13 Fine-grained
measurements results for
baseline tasks
{τi} = {τ1, τ2, τ3, τ4, τ5} related
to Experiment 1 on FRDM-
K22F. The curves present the
values of WCRTs Ri , ACRTs
R
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i and response jitters JR
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paradigm. The system also presented significant real-time
performance when message transactions were involved,
because the system maintained timing constraints with
high processor utilization. The watermark in this case was

78% of processor utilization, which was expected for three
baseline tasks. In Experiment 7, the processor utilization
when increasing subscribers reached 95%. Although there
were gaps between the processor utilization achieved in
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Experiments 4 and 6 compared with the watermark, we
considered that to be acceptable because the load inserted
by the communication system consumed a portion of the
processor time. In Experiment 5, there was no deadline
miss, because system reached the breakdown point after
trying to create topics with 4 MB messages. So, the
benchmark tracked a maximum value of 2 MB for messages
transactions in real-time. This message size limit includes a
great portion of robotics applications.

The proposed benchmark is meant to be used as a starting
point for robotics engineers who are developing applications
with timing requirements, and it offers more evidence for
the correct choice of the embedded platform. Also, as future
research, it would be interesting to evaluate distributed
systems, i.e., platforms that communicate with each other
through network links. Specially, these systems could
use robotic real-time middleware. Furthermore, benchmark
features can be extended to accommodate more experiments
and other kinds of real-time schedulers and communication
paradigms.
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