
https://doi.org/10.1007/s10846-020-01284-z

Deep Learning-based Monocular Obstacle Avoidance
for Unmanned Aerial Vehicle Navigation in Tree Plantations

Faster Region-based Convolutional Neural Network Approach

H. Y. Lee1 ·H. W. Ho1,2 · Y. Zhou1,2

Received: 17 February 2020 / Accepted: 28 October 2020
© Springer Nature B.V. 2020

Abstract
In recent years, Unmanned Aerial Vehicles (UAVs) are widely utilized in precision agriculture, such as tree plantations. Due
to limited intelligence, these UAVs can only operate at high altitudes, leading to the use of expensive and heavy sensors
for obtaining important health information of the plants. To fly at low altitudes, these UAVs must possess the capability
of obstacle avoidance to prevent crashes. However, most current obstacle avoidance systems with active sensors are not
applicable to small aerial vehicles due to the cost, weight, and power consumption constraints. To this end, this paper
presents a novel approach to the autonomous navigation of a small UAV in tree plantations only using a single camera. As
the monocular vision does not provide depth information, a machine learning model, Faster Region-based Convolutional
Neural Network (Faster R-CNN), was trained for the tree trunk detection. A control strategy was implemented to avoid the
collision with trees. The detection model uses image heights of detected trees to indicate their distances from the UAV and
image widths between trees to find the widest obstacle-free space. The control strategy allows the UAV to navigate until
any approaching obstacle is detected and to turn to the safest area before continuing its flight. This paper demonstrates the
feasibility and performance of the proposed algorithms by carrying out 11 flight tests in real tree plantation environments at
two different locations, one of which is a new place. All the successful results indicate that the proposed method is accurate
and robust for autonomous navigation in tree plantations.

Keywords Autonomous UAVs · Tree avoidance · Faster R-CNN · Monocular vision · Smart farming

1 Introduction

Unmanned Aerial Vehicles (UAVs) are defined as aircraft
without a human pilot on-board for navigation and control.
These flying vehicles are controlled either remotely by a
ground crew or navigated automatically by a pre-programmed
control system. UAVs have been applied in precision

� H. W. Ho
aehannwoei@usm.my

Y. Zhou
Y.Zhou-6@tudelft.nl

1 School of Aerospace Engineering, Universiti Sains Malaysia,
14300 Nibong Tebal, Pulau Pinang, Malaysia

2 Faculty of Aerospace Engineering, Delft University
of Technology, 2629HS Delft, The Netherlands

agriculture due to their higher flexibility and capability
compared to labor-dependent techniques.

UAVs have been used to collect aerial images and other
important information with the on-board sensors. A mission
can be performed efficiently and effectively by processing
the data obtained from UAVs. These data support the
farmers to carry out several essential tasks in plantations,
such as the farming analysis and planning [8], plantation
surveillance [19], and the subsequent monitoring of fields to
ascertain health and growth, including crop monitoring [30]
and soil sampling analysis [23].

With current technological advancements, UAVs accom-
plish precision agriculture tasks, such as tree counting and
monitoring [9], by flying at a high altitude. At this height,
they have a wide field of view for a better observation and
an ample flying space without any obstacle. However, it
requires more expensive sensors or equipment to obtain a
reasonable quality of data. It is also difficult to perform

Journal of Intelligent & Robotic Systems (2021) 101: 5

/ Published online: 8 December 2020

http://crossmark.crossref.org/dialog/?doi=10.1007/s10846-020-01284-z&domain=pdf
http://orcid.org/0000-0002-6846-9900
mailto: aehannwoei@usm.my
mailto: Y.Zhou-6@tudelft.nl


certain tasks from a distance. On the other hand, UAVs that
are capable of operating at low altitudes can perform many
other missions with more affordable solutions. For instance,
they can closely monitor crops and spray fertilizer with a
suitable quantity based on the soil condition. These UAVs
can use a tiny camera to capture images at a near distance to
the target objects, such as the soil or crop, for further data
processing and analysis. The applications of UAVs at low
altitudes offer more cost-effective and efficient solutions
compared to the labor in a vast field.

However, the greatest challenge to overcome in a low-
altitude flight is to prevent UAV crashes in the cluttered
environment while navigating. Experienced human pilots
are able to recognize and avoid obstacles from line-of-sight
operations or live-stream videos. However, the plantation
environment poses a daunting challenge to human pilots
due to the heavy workload. Additionally, the recruitment
of experienced pilots is exceptionally costly. To this end,
autonomous navigation with the capability of detecting and
avoiding obstacles is needed. Obstacle detection methods
can be used to identify objects in the surroundings. Based on
the surrounding information, the flight controller produces
a motion command to avoid the detected obstacles. Thus,
it requires on-board sensors and control algorithms, for the
detection and the motion control, respectively.

Many existing methods for obstacle avoidance use active
sensors, such as Light Detection and Ranging (LiDAR)
[38], inertial sensors, ultrasonic and infrared range finders
[10], or passive sensors, such as the RGB-D camera
[24] and multiple cameras [43]. While these methods
can provide accurate measurements, they have a limited
perception range. Additionally, the cost, weight, and power
consumption of these instruments impose a significant
constraint on the UAV mission. Therefore, a single camera
is preferable for obstacle avoidance, as it is small, light-
weight, and power-efficient.

Generally, monocular obstacle detection methods can be
divided into two categories: motion-based and knowledge-
based methods. Optical flow is a typical motion-based
approach used to detect and estimate the depth with motion
information [12]. The motion information can be obtained
by tracking pixel-by-pixel between two consecutive image
frames, or the so-called dense optical flow. The dense
optical flow requires heavy computational loads and mem-
ory sizes. Another approach is to detect feature points in
one image and track them in the next image. This approach
is called sparse optical flow and is preferable, especially for
small UAVs. However, the obstacle may be missed due to
the noisy features in the image. Since monocular vision does
not allow accurate and robust distance geometric measure-
ment, knowledge-based solutions have been proposed using

machine learning or the approaches which are combined
with the optical flow methods [20].

Since Alexnet [28] won ImageNet competition in 2012,
Convolutional Neural Network (CNN) has become the
benchmark for image classification. CNN approaches
have outperformed humans in the ImageNet challenge.
Lately, CNN has been applied with great success to the
detection, segmentation, and recognition of objects in
images. For instance, CNN-based methods were used in
vehicle detection [39], medical image detection [21], and
fruit detection [42].

Faster Region-based CNN (Faster R-CNN) [40] is a
network that uses a CNN network to perform both region
proposal generation and object classification, or the so-
called region-based object detection task. The Faster R-
CNN model has demonstrated an outstanding performance
in the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) and Common Object in Context (COCO) 2015
competitions. From the other side, the Faster R-CNN
algorithm is publicly available in the open sources in
TensorFlow and MATLAB. The users can either construct
the network from scratch or import a pre-trained network
to be re-trained as a detector. Hence, this paper proposed
to use the Faster R-CNN as the obstacle detector in the
UAV obstacle avoidance system. To the best of the authors’
knowledge, this study is the first approach to adapt Faster
R-CNN to UAV navigation in tree plantation.

The contributions of this paper are three-fold: 1) Faster
R-CNN model is trained to recognize features of tree
trunks in images, rather than the whole trees. This approach
enables accurate tree detection, especially those closer
to the UAV, as they are partly visible when navigating
at low altitudes. This paper analyzes and compares
the performance between the Faster R-CNN networks
constructed from scratch and pre-trained to find the most
suitable one. 2) A control strategy is proposed to identify
obstacles that endanger the UAV during navigation by
predicting the depth information of obstacles based on their
size. It also determines the desire heading of the UAV, which
has the widest flight path. 3) The obstacle avoidance (i.e.,
the detection and control strategy) has been successfully
implemented on a Parrot Bebop 2 and tested in real-world
environments.

The remainder of the article is set up as follows: In
Section 2, related work on monocular obstacle avoidance
is discussed in details. Section 3 presents the proposed
Faster R-CNN networks to learn the visual features of
tree trunks. In Section 4, the control strategy for obstacle
avoidance is explained. Section 5 shows and describes the
performance results of different Faster R-CNN networks.
Then, Section 6 demonstrates flight experiments where the

J Intell Robot SystPage 2 of 185 (2021) 101: 5



proposed algorithms detect and avoid obstacles with a UAV.
Finally, we draw conclusions in Section 7.

2 RelatedWork

There are several remarkable achievements using monocu-
lar images as inputs to control UAVs in autonomous navi-
gation [5, 26]. However, with monocular vision, the depth
information is not directly available. Few approaches were
proposed to overcome this limitation for UAV autonomous
navigation.

Structure from Motion (SfM) approaches reconstruct the
scenes using the UAV movement. A regularized depth map
was computed and subsequently used for the waypoint
generation from a small set of consecutive images [3]. A
direct depth estimation approach was proposed by enabling
real-time computation of dense depth maps and navigation
in a cluttered outdoor environment [11]. However, in the
SfM-based obstacle avoidance scheme, the UAV cannot
avoid dynamic obstacles that move during mapping or
between mapping cycles. Moreover, the mapping cycles
require an enormous amount of computational memory to
store and compare the consecutive frames of the scene to
obtain the depth information.

Optical flow-based methods are also used to predict
depth measurements. This method was proposed to extract
image’s depth in a 3D environment based on the gradient
method of Lukas-Kanade [17]. By comparing the sequential
images, the model found out whether the obstacle was
getting closer. With this information, the UAV movement
was navigated using a steering command, which is inversely
proportional to the optical flow difference between the two
sides of the image [1].

Moreover, a variety of bio-inspired optical flow naviga-
tion methods have also been proposed [49]. For instance,
the translational optical flow method inspired by insect nav-
igation for the collision-free flight was demonstrated [44].
However, the optical flow-based methods cannot acquire
precise distances, which may limit their usages in some
specific missions.

By contrast, Simultaneous Localization and Mapping
(SLAM) methods were proposed to provide precise
metric maps with a sophisticated algorithm. This method
allows the UAVs to navigate and avoid obstacles with
more environment information. The information is usually
obtained from ultrasonic sensors or infrared range finders
[14]. For instance, a LiDAR-based SLAM for UAV
navigation was demonstrated successfully in the indoor
environments [4].

To achieve real-time obstacle avoidance, an Oriented fast
and Rotated Brief SLAM (ORB-SLAM) was introduced
to process the frontal camera’s video stream [13]. First, it

computed the 3D locations of the UAV and generated a
sparse point cloud map. Then, it enriched the spare map to
denser. Lastly, it created a collision-free roadmap by apply-
ing the potential field method and Rapidly exploring Ran-
dom Tree (RRT) algorithms. These SLAM-based obstacle
avoidance methods can perform much more complex tasks
but usually fail at high speeds since they reconstructed the
environment from frame to frame triangulation.

Some approaches detect the presence of the frontal obsta-
cles and then generate the motion control to avoid them.
These approaches are commonly known as the sense-and-
avoid mechanism. A strategy used a classification algorithm
to identify the types of environment and determine the UAV
flight direction based on its known perspective cues [6].
However, this approach was limited to the simple indoor
environment. To this end, motion planning techniques were
used to determine the optimal path in more complex scenar-
ios [31]. A method combined local trajectory optimisation
with learning from demonstrations was proposed to improve
the initial solutions for the local optimization [45]. Besides
reducing poor local minima, the learned model generated a
smooth trajectory. Another approach used an adaptive con-
trol scheme to deal with uncertainties of the trajectory due
to external disturbances [32].

There are some methods using the change of the feature
size for obstacle avoidance. Speeded Up Robust Features
(SURF) was proposed to detect, describe, and match
features in images with the obstacles’ database [2]. The
position and orientation of the UAV with respect to the
obstacles were estimated and fed into a controller to achieve
fast obstacle avoidance. Another method reconstructed the
3D information of the obstacles by merging the outline of
the obstacles with their feature points’ spatial coordinates
[29]. The outline of the obstacles was approximated using
Multi-Scale Oriented Patches (MSOP), while the spatial
coordinates of the feature points were calculated using the
Scale Invariant Feature Transformation (SIFT). However,
the drawback of these algorithms is that they only work for
the obstacles stored in the database.

Several approaches have been applied to a similar envi-
ronment as our study. The Dagger algorithm was presented
to learn and predict the human expert’s control through
dense forest environments [41]. Furthermore, a hybrid col-
lision avoidance scheme consisting of an RRT algorithm as
the global path planner and a fuzzy logic method as the local
collision avoidance mechanism. An extended Kalman filter
was also utilized for improving the cross-track error of the
flight in the hazardous environment [33].

Recently, deep learning solutions have been proposed
to improve real-time performance in a complex unknown
environment [46]. Convolutional Neural Network (CNN)
was used to learn a control strategy that mimics an expert
pilot’s choice of action to navigate autonomously in the

J Intell Robot Syst Page 3 of 18 5(2021) 101: 5



indoor [27] and outdoor environment [16]. For instance,
in a navigation approach demonstrated in the outdoor
environment, the camera orientation estimation was framed
as a three-class motion classification: Left, Front, and Right.
A set of forest trail images was captured with three head-
mounted cameras, each pointing in one direction. Given one
frame input, the model decided the next optimal move. This
work was demonstrated to follow a specific path, but this
study focuses on general navigation.

There have been a few researchers who presented deep
learning solutions to predict the depth of the scenes. A fully
convolutional network which is fed with both images and
optical flow was designed to obtain fast and robust depth
estimation [35]. Another algorithm combines fully convo-
lutional network and color classification to extract Regions
of Interest (RoI) in images and quickly identify the des-
ignated moving targets [48]. The position and direction
of the moving targets were then estimated using coordi-
nate transformation and Kalman filter. Besides, a two-stage
obstacle avoidance deep reinforcement learning system was
proposed. It was composed of a fully convolutional neu-
ral network followed by a Double-Q Network (D3QN). The
CNN acts as a depth predictor, while the D3QN uses a con-
volutional network and a dueling network to predict the Q-
value of angular actions and linear actions in parallel [47].

Recently, a novel CNN architecture, Joint Monocular
Obstacle Detection (J-MOD2.), was proposed to learn the
depth estimation and the obstacle detection from the image
features extracted by the fine-tuned VGG19 network [36].
This approach was tested and evaluated in a virtual forest
scenario on the Unreal Engine software environment. Also,
a saliency detection algorithm was developed using a
deep CNN to extract monocular visual cues. A Radial
Basis Function (RBF) neural network in an actor-critic
reinforcement learning module was then used to control the
motion of the UAV [34].

To our knowledge, there is only one other study that also
used Faster R-CNN on a UAV to perform obstacle detection.
The study in [22] used a strategy that combines Faster R-
CNN and Kernelized Correlation Filters (KCF) to detect
and track electric towers. The Faster R-CNN uses a ZF-
Net model [37] to perform tower detection. The real-time
inspection performance was improved using the KCF.

In this article, we investigate the performance of using
scratch models and pre-trained models (e.g., Inception
v2 [25] and Resnet-50 [18]) in Faster R-CNN for tree
detection. From the analysis, the model achieving the best
accuracy and fastest speed is chosen and used in the UAV
navigation. Compared to [22], the pre-trained models we
propose achieve much higher accuracy than the ZF-Net
model [7]. Furthermore, this study takes on new challenges
with complex, real-world environment cluttered with many

obstacles. This leads to a significant extension of the
autonomous flight capabilities of UAVs.

3 Obstacle Detection

3.1 Network Architecture and Training

Encouraged by the outstanding performance of current
detection methods, Faster R-CNN [40] is adopted as the
tree detector. Faster R-CNN merges two modules: 1) a deep
fully convolutional network that proposes regions, and 2) a
Fast R-CNN detector [15] that uses the proposed regions.
The use of deep fully convolutional network significantly
improves the computational time for the region proposal and
enables real-time object detection. In this section, the Faster
R-CNN networks are constructed from scratch and pre-
trained models. Their performances in terms of detection
accuracy and speed are analyzed and compared to finalize
one detector for the obstacle avoidance mission.

3.1.1 Scratch Model

A total of four different detectors were created to investigate
the effect of the number of training data and the number
of convolutional layers on the detection performance. These
four detectors, namely Detectors A, B, C, and D, were
trained with different specifications. The first manipulated
parameter was the number of training images. Detector A
was trained with more than 4,000 images, whereas the other
three detectors were trained with 1,500 images only. The
images in the training dataset of the other three detectors
were extracted from the training dataset of Detector A. In
other words, the training data of Detectors B, C, and D are
the subset of training data of Detector A.

The second manipulated parameter was the number of
repeated blocks consisting of convolutional and Rectified
Linear Unit (ReLU) activation layers. The convolutional
layer extracts the features and generates a feature map. This
map is fed into the last layer to identify the presence of the
tree trunks and their locations in the image. Detectors B, C,
and D were trained with a different number of the repeated
convolutional blocks in the range of 2 to 5 layers. Table 1
and Fig. 1 show the architecture of CNN of Detectors A
and B. Table 2 summarizes the differences between the
detectors.

After the network architecture was defined, the Faster
R-CNN detectors were trained to update the parameters
in both Region Proposal Network (RPN) and CNN. The
algorithm used in the training was Stochastic Gradient
Descent with Momentum (SGDM) optimizer with 0.001 as
the learning rate.

Page 4 of 185 J Intell Robot Syst (2021) 101: 5



Table 1 The description of
each layer in the CNN
architecture of Detectors A and
B

No. Layer Name Description

1 Image Input 32x32x3 images with ‘zero-center’ normalization

2 Convolutional 32 3x3 convolutions with stride [1 1] and padding [1 1 1 1]

3 ReLU ReLU activation layer

4 Convolutional 32 3x3 convolutions with stride [1 1] and padding [1 1 1 1]

5 ReLU ReLU activation layer

6 Max Pooling 3x3 max pooling with stride [2 2] and padding [0 0 0 0]

7 Fully Connected 64 fully connected layer

8 ReLU ReLU activation layer

9 Fully Connected 2 fully connected layer

10 Softmax Softmax Activation Layer

11 Output Classification Output

3.1.2 Pre-trained Model

In addition to the scratch models, two existing pre-trained
models were selected to be re-trained for the tree trunk
detection. Both models were trained previously on the
COCO dataset.

The first network chosen is Inception v2 [25], the second
machine learning model that surpasses human-level per-
formance in ILSVRC in the image classification history.
The unique, wide architecture of Inception model shows
excellent performance at a relatively low computational
cost.

The second pre-trained model is Resnet-50 [18] as the
CNN base in the Faster R-CNN configuration. Resnet
achieved state-of-the-art results in image classification and
detection and won the first place in ILSVRC 2015 and
Common Object in Context (COCO) 2015 competitions
on the tasks of classification, detection, localization, and
segmentation.

Similar to the trained scratch model, the reconstructed
Resnet-50 and Inception network were fine-tuned with
Stochastic Gradient Descent with Momentum (SGDM)
optimizer. However, the learning rate in the training was
set to be 0.0002, which is much smaller than the one in

Fig. 1 The CNN architecture of Detectors A and B. ‘Conv.’ represents convolutional layers, whereas ‘FC’ represents fully connected layers

Page 5 of 18 5J Intell Robot Syst (2021) 101: 5



Table 2 The specifications of the four detectors

Parameter Detector

A B C D

Number of training images 4000 1500 1500 1500

Number of Conv. layers 2 2 3 5

the scratch model (0.001). This is to reduce the risk of
losing the previously extracted features without severely
distorting the weight of the layers. The performance of these
models was compared with the optimum designed scratch
model. The one with the best performance was selected to
be implemented on the UAV platform.

3.2 Collection and Annotation of Flight Data

In order to train and validate a detection model, it requires
a large dataset consisting of the images of the target
environment. In this study, a Parrot Bebop 2 is used as
the airborne platform to record the flight videos in an oil
palm plantation. Note that the proposed methodology can
be applied to other targets, such as pine trees or banana
trees. The location where the exact dataset is collected is
shown in Fig. 2. The dataset consists of the videos of the
UAV random flights among oil palm trees for training the
detector with a real flight scenario. The data collection is
conducted in three different blocks of time within a day (i.e.,
morning, afternoon, and evening) in the same environment
to ensure the model can detect the obstacles in different
lighting conditions.

The videos recorded by the UAV are originally in size
of 1920 × 1080 pixels. The videos are resized to 426 ×

Fig. 2 The location map in which the dataset is collected. The red box
shows the area of the location where the dataset is collected, while
the blue boxes indicate the test flight locations, which are labelled as
Location 1 (L1) and Location 2 (L2), respectively

240 pixels before proceeding to the object annotation
to save the computational power during training. The
dataset is labelled manually in Video Labeler application in
MATLAB. All the tree trunks are labelled with rectangular
Regions of Interest (RoI) in every frame of the videos
with the aids of the built-in automated algorithm. Figure 3
shows the example images with the rectangular RoI labelled
around the object of interest, i.e., the tree trunk.

4 AvoidanceMotion

4.1 Localization of Detected Obstacles

The detection result is used to decide the motion control in
the UAV autonomous navigation. Each raw image is resized
to match the input layer size of the detection model and
then fed into the trained model to detect the obstacles and
their locations. The detection model outputs the coordinates
of the bounding boxes of obstacles by referring the origin
at the top left corner of an image. The image coordination
system (xi, yi) is shown in Fig. 4. The top left and bottom
right coordinates of the bounding boxes are defined as
(xij,min

, yij,min
) and (xij,max

, yij,max
), respectively.

In our obstacle avoidance system, the detection model
detects the presence of the tree trunks and localizes them
in the images. Only the tree trunks detected with the
confidence score more than 0.7 are visualized in the output
images and recognized as the obstacles in the frames.
Most bounding boxes with low confidence scores are false-
positive results, or the tree trunks that are very thin and small
in the image, which indicates that the objects are far away.
These results can be neglected as they do not endanger the
current navigation of the UAV. This can eliminate the excess
amount of the bounding boxes with low confidence scores
and save the computation in the avoidance control stage.

4.2 Identification of Critical Obstacles

After the coordinates of the detected obstacles are obtained,
the approaching obstacles along the forward path of the
UAV need to be identified. In this paper, they are called
“critical obstacles”. The heights of the bounding boxes are
used as the depth clues in the algorithm. In the controller,
the UAV is commanded to move forward with a constant
velocity until it is triggered to stop when a critical obstacle
is detected.

Based on the above scenario, the critical obstacles can be
identified with two conditions:

Condition 1. it is approaching to the UAV, and
Condition 2. it is inside a safety boundary blocking the
flight path.

Page 6 of 185 J Intell Robot Syst (2021) 101: 5



Fig. 3 Examples of the ground truth labelled in the images. The yellow boxes are the labelled bounding boxes to represent the tree trunks in the
images

The safety boundary is set to be 0.5 m from the UAV
camera, as shown in Fig. 5. It is to ensure that the UAV
is free from collisions while navigating forward. It covers
the size of UAV and some accepted spaces for the UAV
to navigate safely. Also, the algorithm should allow the
UAV to detect obstacles at least 1 m away. This safety
precaution can solve some practical issues which may be
encountered during the flight, such as the delay caused
by the transmission of the image data and motion control
commands via Wi-Fi.

As mentioned above, the heights of the detected
bounding boxes in images are used as the depth clues.
This parameter can be affected by the height of the UAV.
Although the UAV height can be controlled using the sonar
measurement feedback, the UAV hardly maintains at an
exact constant height in real flights. This is due to the
external environmental factors, such as soft and uneven
ground, side wind, or gust, which affect the measurement
and UAV stability.

To this end, a parameter called height ratio, hratio, which
is the ratio of an obstacle height in the image to the image
height, is introduced. It is used to decide whether the
obstacle is critical at a measured height. Hence, the height
ratio of the obstacle when it is 1 m ahead from the camera
at different flying heights, Z in meters, is determined using
Eq. 1:

hratio =
[
Z + tan

(
V FOV

2

)] · f

himg

, (1)

Fig. 4 The image axis with the coordinates of a bounding box
surrounding a detected obstacle, Box 1

where V FOV is the Vertical Field of View in degrees, himg

is the image height in pixels, and f is the focal length of
the camera in pixels which can be obtained from camera
calibration.

To examine Condition 1, yij,max
of the bounding box, as

shown in Fig. 4, is used to represent the height of the object
in the image. When the ratio of yij,max

to himg is greater
than or equal to hratio according to Eq. 2, the detected
obstacle fulfills Condition 2, which means that the obstacle
is approaching to the UAV.

yij,max
/himg ≥ hratio. (2)

Note that yij,max
is used, instead of the actual obstacles

height in the image, because the bounding boxes may not
fully cover the obstacle from the top boundary of the image,
yi = 0, e.g., the upper part of the tree trunk may be covered
by the tree leaves.

Fig. 5 The UAV body reference axis from the top view. The shaded
area represents the safety boundary of the UAV with a radius of 0.5 m.
The horizontal field of view of the on-board camera is 80o. The length
of the actual horizontal view when the scene is 1 m ahead of the camera
is determined as 1.678 m by using the trigonometry method

Page 7 of 18 5J Intell Robot Syst (2021) 101: 5



To test Condition 2, the locations of the obstacles in
the x-axis of the image frame are calculated. The xij -
coordinates of the bounding boxes, as presented in Fig. 4,
are used to analyze whether the locations of obstacles are
inside the safety boundary of the UAV. In this study, the
on-board camera is assumed to be a pinhole camera as
the distortion has been corrected by camera calibration and
ROS framework. Hence, the range of xij -coordinates of the
obstacle in the safety boundary can be defined as:

(0.5 · wimg − wobj ) ≤ (xij ,min or xij ,max or xij ,c)

≤ (0.5 · wimg + wobj ), (3)

where xij ,min, xij ,max , and xij ,c are the minimum,
maximum, and center of x−coordinates of the bounding
box, respectively. When the object is 1 m ahead from the
camera, wobj can be calculated using Eq. 4:

wobj = wimg

4tan(HFOV
2 )

, (4)

where HFOV is the Horizontal Field of View of the camera
in degrees and wimg is the width of the image in pixels. By
using these two conditions stated in Eqs. 2 and 3, the critical
obstacles can be identified.

4.3 Estimation of the Desired Heading Reference

After a critical obstacle is detected, the UAV is steered to
the desired heading angle. The desired heading reference
is determined by also considering the approaching but not
yet critical obstacles. This type of obstacle is known as
the “warning obstacle” in this paper. For these obstacles,
the height of their bounding box is more than 1

3 of the
image height. By taking these obstacles into account, the
new desired heading angle can guide the UAV to a smoother
path. This reduces the excessive steering in the navigation
and makes the route more relaxed than the approaches that
only sense and avoid the critical obstacles.

The desired heading reference is determined by finding
the largest obstacle-free region in the image x-axis. Figure 6
shows an example of the desired heading reference with
the bounding boxes representing the detected obstacles. The
symbol wi represents the horizontal distances between the
bounding boxes of the warning and critical obstacles and
between the obstacles and image borders. The subscript i is
the number of free spaces in the image along x-axis. The
section with the highest value of wi represents the largest
obstacle-free region, indicated as a green vertical line in
Fig. 6. The center of the largest obstacle-free region, x∗, is
calculated to determine the desired heading reference.

In case, when the highest value of wi is less than
80 pixels, which is equivalent to 0.32 m width when the
UAV is 1 m ahead, the free space is too small for the UAV
to pass through. For this situation, x∗ is set to be the right

Fig. 6 An example of the desired heading reference that is represented
by the green vertical line in the field of view of the camera. w1 and
w4 are the horizontal distances between the detected obstacles and
image borders, while w2 and w3 are the horizontal distances between
obstacles (both warning and critical)

border of the image wimg . This is to steer the UAV away
from the current scene as there is insufficient spaces for the
UAV to move through safely.

After x∗ is calculated, the steering angle, ψ∗, is
determined using Eq. 5. The steering angle is positive in
the clockwise direction, and vice versa. The desired heading
reference, ψdesired can be obtained by adding ψ∗ to the
current heading angle of the UAV, ψheading as shown in
Eq. 6. Algorithm 1 presents the framework of the algorithm
to stop the UAV and identify the steering angle.

ψ∗ = x∗ − 1
2wimg

1
2wimg

× HFOV

2
. (5)

ψdesired = ψheading + ψ∗. (6)

4.4 Motion Control of the UAV

In this study, a straightforward approach in motion control is
implemented to the flight controller to validate the proposed
strategy. The UAV is programmed to move forward with
a constant velocity from the starting position until the
detection model triggers the UAV to stop. The height of the
UAV is regulated to a constant height of 1.5 m during the
flight using the feedback of sonar measurement. When a
critical obstacle is detected, the UAV is commanded to turn
to the desired heading angle. The angular velocity about the
zb axis, ωψ , is controlled using Eq. 7:

ωψ = Kp(ψheading − ψdesired), (7)

where the value of Kp is obtained to be 0.5 to achieve the
desired heading angle in the shortest period. The zb axis
is perpendicular to the xbyb-coordinate plane and pointing
downward, as presented in Fig. 5. Before the UAV can

Page 8 of 185 J Intell Robot Syst (2021) 101: 5



Algorithm 1 UAV steering decision framework.

Require: Raw Image received from the UAV
Ensure: Corresponding steering angle

1: Resize the image into 426 × 240 pixels

2: Detect the presence of tree trunks in the images
3: Output the bounding boxes coordinates

(xij,min
, yij,min

, xij,max
, yij,max

)
4: Determine the centroid coordinates for each bounding

box
5: for Each obstacle detected do
6: if An obstacle is a critical obstacle then
7: Command the UAV to stop and hover at the

same position
8: Determine the largest obstacle-free space
9: Calculate the corresponding steering angle

10: end if
11: end for

continue to move forward, the current scene is examined
to ensure there is no critical obstacle ahead. Note that, for
safety reasons, there are some precaution steps taken during
the real-world experiments. The UAV is controlled to move
forward at a slow constant speed of 0.1 m/s to ensure that
the expected image transmission delay does not affect the
flight. Furthermore, when a critical obstacle is detected, the
UAV first hovers and then turns according to the desired
heading reference. It is to ensure that the image of the
current scene is used in the computation of the heading
reference for achieving precise navigation. In this paper, the
experiments are carried out to validate the proposed obstacle
avoidance strategy. The flight performance can be further
enhanced using a more advanced platform in our future
applications.

5 Result of the Obstacle Detection

5.1 Performance of the Different ScratchModels

This paper trained four scratch models as detectors with
different specifications, as described in Section 3.1.1. This
is to investigate the effect of the total number of training
images and the number of convolutional layers on the
performance of the detection models. The performance
of each detector was tested using 60 images, which are
not included in the training dataset of all the detectors.
To evaluate the overall performance of the detectors,
the precision-recall curve of each detector was plotted
in Fig. 7.

From the result, Detector A achieves the best perfor-
mance in terms of the average precision value among all the
detectors. The maximum recall value of Detector A is up

to 0.76, which is the highest among the detectors. In other
words, Detector A could detect more actual tree trunks in the
test images, which can increase the success rate of detecting
the critical obstacles in the image.

Hence, this shows that extensive training data can
improve the performance of the network in the detection
mission. Theoretically, the more training data, the better the
detector performs. It is because the detector can learn more
different features of the object of interest in the training
process. Based on the training outcome, the detector is able
to predict, localize, and categorize the object of interest
accurately. Therefore, a detection model should be trained
with more quantity, and better quality data as the noisy or
blurry training image data will affect the training process
and performance.

Besides, the effect of the number of convolutional layers
on tree detection was investigated by comparing Detectors
B, C, and D. The average precision of Detector B is the
highest, followed by Detectors D and C. From the test
results, Detector C has the lowest maximum recall, which
indicates that it has the most inadequate tree trunk detection
performance in terms of sensitivity. This shows that the
additional convolutional layers do not increase the average
precision of the detector. The model with two convolutional
layers is the best choice in the tree trunk detection task,
among other shallow architecture models.

Therefore, one model with the best performance among
the scratch models is selected and trained as the tree trunk
detector for the next step. Based on the outcome of the
results, the model with two convolutional layers is suggested
to be trained with more image data to further improve its
detection performance.

5.2 Comparison between the ScratchModel
and Pre-trainedModels

The scratch model selected in Section 5.1 and two pre-
trained models, i.e., Resnet-50 and Inception v2, were
trained with the same dataset. The dataset consists of images
in different lighting conditions. The training dataset is a 12-
minute flight video, which consists of 4689 images. These
images contain a total of 23866 tree trunk annotations.
After training, the models were tested with a 2-minute flight
video, composed of 514 images in sequence recorded in the
same field.

Figure 8 shows some random examples of the detection
results on the test images. In this figure, the output images
show that both pre-trained models are able to detect almost
all the tree trunks, even with dense shadows or different
lighting conditions. The majority of the output boxes cover
the full size of the tree trunks in the test images shown in
Fig. 8. There is also no obvious false positive in the result
of both pre-trained models.

Page 9 of 18 5J Intell Robot Syst (2021) 101: 5



Fig. 7 Precision-recall curves of the test results

On the other hand, the scratch model outputs false-
positive boxes with high confidence scores around the
background in the test images. Some of the bounding boxes
from the scratch model did not cover the full size of a
tree trunk as visualized with the blue boxes in Fig. 8.
Furthermore, most of the large obstacles in the images were
bounded with two separate bounding boxes marked with
orange boxes.

The bounding accuracy is crucial as the obstacle avoid-
ance strategy uses its height as the depth clue of the obstacle
from the UAV. If an approaching obstacle is bounded with
two separate boxes or not fully covered, the strategy will not

identify it as a critical obstacle. As a result, the UAV will
collide with the obstacle. Hence, it may not be practical to
adopt this scratch model in the proposed strategy due to its
output quality.

Figure 9 presents the precision-recall curve of the scratch
model and pre-trained models. Both pre-trained models
achieved a higher maximum recall compared to the scratch
model. In other words, the pre-trained models are able
to predict bounding boxes around the tree trunks more
accurately and will not miss any approaching obstacles.
Table 3 shows the average precision and detection speed
of the scratch model and pre-trained models. The average

Page 10 of 185 J Intell Robot Syst (2021) 101: 5



Fig. 8 Random examples of the tree trunk detection results on the test
images. Each output box is indicated by a green box with the category
label and confidence score. The blue boxes represent the bounding

boxes that did not fully cover the obstacle, whereas the orange boxes
indicate that the model detects an obstacle as two separate ones

Fig. 9 Precision- Recall Curve plotted to evaluate the performance of the scratch model and pre-trained models

Table 3 Differences in
parameters among four
detectors trained

Parameters Pre-trained Models Scratch model

Resnet-50 Inception V2

Average Precision 0.77 0.79 0.56

Detection Speed
per Frame (s)

2.02 0.36 1.3

Page 11 of 18 5J Intell Robot Syst (2021) 101: 5



Fig. 10 Examples of safe condition that the UAV is allowed to move forward. The white line represents the direction of the optimum heading and
remains in the center of the image as there is no critical obstacle ahead and the UAV is safe to continue its forward motion

precision values of Resnet-50 and Inception V2 are 27% and
29% higher than the scratch model, respectively.

Although Resnet-50 performed better than Inception v2
on ImageNet validation, the average precision of the Faster
R-CNN with Inception v2 is slightly higher than that of
Resnet-50 on the tree trunk detection. Furthermore, by using
the same hardware resources, due to the wide architecture
of Inception v2, the detection speed of Inception is 9.5 times
faster than Resnet-50.

Therefore, Faster R-CNN with Inception v2 is selected
to be implemented as the detector in our obstacle avoidance
system because the model can output detection boxes
accurately and rapidly. In addition, this setup outputs
bounding boxes, which fully cover the obstacles, especially
the critical obstacles along the UAV path.

6 Obstacle Avoidance Result

6.1 Flight Test Setup

To evaluate the system performance, the proposed method
is implemented to control a Parrot Bebop 2. The Bebop 2 is
equipped with an Inertial Measurement Unit (IMU), a sonar,
an altimeter, a magnetometer, a Global Positioning System

(GPS), and two cameras facing forward and downward.
The forward-looking camera is of particular interest to us
for the obstacle avoidance purpose. It is activated during
the flight tests to capture images at 60 FPS. The sonar is
used to maintain a constant height of 1.5 m throughout
the trajectory. The attitude angles and GPS coordinates of
the Bebop 2 are logged during the flights for validation
purposes.

Bebop autonomy driver1 in the Robot Operating System
(ROS) is used to communicate with the Software Develop-
ment Kit (SDK)2 of the Bebop 2. The communication of
the UAV is based on a 2.4 GHz or 5 GHz Wi-Fi signal.
This system is run within the ROS Kinetic environment on
the Ubuntu 16.04. The ground control station uses an Intel
Core i7-7500U MB CPU with a 32GB RAM and an Nvidia
940MX to perform extensive mathematical computations in
the detection algorithm.

The exact locations of the two tested fields are shown
in Fig. 2. The first location is the field where the training
data was collected previously. After obtaining the success
in Location 1, flight tests will be performed by the same
UAV in another tree field. This scene is different from the

1ROS Bebop Driver: https://bebop-autonomy.readthedocs.io/en/latest/
2Parrot Bebop SDK: https://developer.parrot.com/docs/SDK3/

Page 12 of 185 J Intell Robot Syst (2021) 101: 5

https://bebop-autonomy.readthedocs.io/en/latest/
https://developer.parrot.com/docs/SDK3/


Fig. 11 Examples of the detection result when a critical obstacle was detected. The white line shows the desired heading direction for the UAV
with the widest free space in the image

training dataset to validate the robustness of the obstacle
avoidance system. The background of the area is different
from the training images, which is surrounded by corridors
and buildings. In both locations, the distances among the
trees are sparse enough to provide an obstacle-free space for
the UAV.

6.2 Detection Results during Flight Tests

The height ratio of each bounding box is used to indicate
whether the detected obstacles are identified as critical
obstacles. In the flight tests, three different colors, i.e.,
green, yellow, and red, represent whether the obstacles

Fig. 12 The GPS routes of the UAV travelled in each autonomous navigation experiment

Page 13 of 18 5J Intell Robot Syst (2021) 101: 5



Fig. 13 The pitch and heading angles of the UAV in one of the experiments, indicated by the blue and red lines, respectively. The images that
triggered the system to stop in each case are also attached. The red bounding boxes in the images represent the detected critical obstacles

Fig. 14 The detection result at
the starting point. The desired
heading reference indicated with
the white line is at the center of
the image allowing the UAV to
navigate forward. The yellow
boxes represent the warning
obstacles that are approaching
but not critical to stop the UAV

Page 14 of 185 J Intell Robot Syst (2021) 101: 5



Fig. 15 The images on the top show the detection result, and the images on the bottom show the UAV from an observer’s view a before and b
after the UAV steered when the system detected a critical obstacle at 50.5 s

are far, near, or approaching to the UAV, respectively. For
example, the green bounding boxes means the obstacles are
far away. The yellow bounding boxes appears when the
UAV is approaching trees but are still outside the 1 m safety
boundary. They are so-called warning obstacles.

The purpose of introducing warning obstacles is to serve
as an alert that an obstacle is near to the UAV. This factor is
considered when the system calculates the heading direction
after a critical obstacle is detected. However, it is not used
to trigger the system to stop the UAV or change its heading.
If it is free from critical obstacles, the heading remains,
indicated by a white line at the center of the image. This
shows that the UAV is safe for the forward motion in those
scenarios, as shown in Fig. 10.

When the critical obstacle is detected, the obstacle is
bounded with a red box in the image. Then, the system
determines a new desired heading direction by calculating
the widest free space. Figure 11 shows the desired heading
determined in each frame where both red and yellow boxes
are detected. The updated position of the white line in
this figure shows that the system successfully identifies
the critical obstacle and determines a new direction that is
free from obstacles. This strategy not only steers the UAV

away from the critical obstacle but also guides the UAV
navigating to the direction with the least number of frontal
obstacles.

6.3 Avoidance Control during Flight Tests

Figure 12 shows the trajectory routes of the UAV plotted
on the map with the GPS coordinates collected in 11
experiments at two different locations. The distances
travelled in each experiment are also shown in this figure.

In all the experiments, the UAV successfully avoided all
the frontal critical obstacles without any accident during
the flight.3 Although Location 2 is a new environment
for the detector, the UAV could still safely avoid all the
critical obstacles encountered during the flights. This shows
that the system is robust and able to be adopted in the
autonomous navigation of the UAV in other oil palm fields
with different backgrounds and characteristics. The UAV
was able to safely navigate in all the flight experiments until
the program was stopped manually by the user.

3An introductory video with flight tests: https://youtu.be/-3LuxDCJ5jk

Page 15 of 18 5J Intell Robot Syst (2021) 101: 5

https://youtu.be/-3LuxDCJ5jk


Besides, its heading and pitch angles were logged to
investigate the UAV motion during the experiments, as
shown in Fig. 13. In this graph, the sudden peaks of the pitch
angle indicate that the UAV was stopped at that particular
moment. This is because the UAV tends to pitch up at
the instant when it is stopped. The corresponding images
are also attached in Fig. 13. After the sudden peaks, the
heading angles of the UAV changes in the figure as the UAV
was steered to a new desired heading to avoid the critical
obstacle. It can be clearly seen that the detection model can
identify the critical obstacles and determine the new desired
headings, even in the presence of dense shadows.

In this experiment, the UAV travelled 113 m autonomously
in 5 minutes and 46 seconds. During the flight, the UAV made
a total of 5 steering actions to avoid obstacles. After each
stop, the system determined the new heading direction based
on the space containing the least obstacle. This made the
UAV navigation smoother without spending excessive time
to stop at the position before making the steering decision.

Figure 14 shows the detection result at the starting posi-
tion. There were two warning obstacles identified and
marked with yellow boxes but they did not trigger the UAV
to stop. The desired heading reference remained at the cen-
ter, which indicates that the forward motion was allowed.
The UAV was navigated forward to begin the autonomous
operation.

At time 50.5 s, a critical obstacle was detected, as shown
in Fig. 15. The system stopped the UAV and decided to turn

7 deg counterclockwise based on the desired heading angle,
corresponding to the direction with the widest obstacle-free
space. Similarly, in the case at time 84.89 s and 128.2 s, the
UAV was triggered to stop and turned to a new direction as
the critical obstacle was detected in front. The steering angle
was calculated by finding the maximum obstacle-free space.

At 276.8 s, the UAV navigated at a much lower height,
even though its height was controlled at a constant desired
value using sonar measurement feedback. This is due to
the fact that the height measurement was affected by the
soft mud area, causing the sensor to measure a distance
larger than its actual value. Thus, the controller descended
the UAV to a lower height. Figure 16 shows the obstacle
detection and avoidance results at that time during the flight.
The tree trunk appeared to be short in the image due to the
current UAV height. This caused the UAV to stop when the
tree trunk was very close to the UAV. However, the UAV was
able to stop in front of the obstacle at around 0.7 m, which
is still outside of the safety boundary.

Additionally, the UAV also adjusted its heading angle
twice, due to its limited field of view, to successfully avoid
obstacle collisions, as can be seen in Fig. 16. After the first
yawing of -19 deg, the obstacle was still identified as the
critical obstacle blocking its forward motion. Hence, the
UAV was commended for steering another -13 deg. After
the second yawing, the detection result showed that the
obstacle was away from the UAV heading direction. Hence,
the UAV was allowed to continue its forward motion.

Fig. 16 The images on the top show the detection result after the UAV
stopped at 276.8 s, and the images on the bottom show the UAV from
an observer’s view a before steering, b after the first and c the second

steering of the UAV, respectively. In the image c, there is no critical
obstacle in the image. Thus, the desired heading direction is at the
center of the image

Page 16 of 185 J Intell Robot Syst (2021) 101: 5



7 Conclusion

In this paper, a novel approach for autonomous navigation
of UAV in the tree plantation environment was presented.
This approach eliminates the dependency of the external
sensors for detecting the presence of obstacles. The system
utilizes the on-board camera to obtain the frontal images and
predicts the location of the obstacles on a frame-to-frame
basis. The model outputs the coordinates of the detected
obstacles in the images to control the UAV.

A pre-trained model, Faster R-CNN with Inception v2,
as the convolutional base is selected. This is because the
model is the best detection model for this application in
terms of average precision and processing period, compared
to Resnet-50 and a scratch detection model under the limited
training data. The height of the bounding box is used to
indicate the distance of the UAV from the detected obstacle.
In addition to the sense-and-avoid approach, the system
determines the desired heading direction with the widest
obstacle-free space to continue the flight.

The ability and performance of the autonomous naviga-
tion system for the UAV in tree plantations were verified in
the real flight tests in two different locations. In all 11 flight
tests, the UAV successfully detected all the tree trunks that
were dangerous to its navigation and performed the avoid-
ance manoeuvre autonomously, even when the flying height
did not remain the same during flights.

Acknowledgements The corresponding author would like to thank
Universiti Sains Malaysia (USM) for providing the Short Term
Research Grant Scheme (304/PAERO/6315113).

Compliance with Ethical Standards

Conflict of interests The authors declare that they have no conflict of
interest.

References

1. Agrawal, P., Ratnoo, A., Ghose, D.: Inverse optical flow based
guidance for UAV navigation through urban canyons. Aerosp. Sci.
Technol. 68, 163–178 (2017)

2. Aguilar, W.G., Casaliglla, V.P., Pólit, J.L.: Obstacle avoidance
based-visual navigation for micro aerial vehicles. Electronics 6(1),
10 (2017)

3. Alvarez, H., Paz, L.M., Sturm, J., Cremers, D.: Collision avoid-
ance for quadrotors with a monocular camera. In: Experimental
Robotics, pp. 195–209. Springer (2016)

4. Bachrach, A., He, R., Roy, N.: Autonomous flight in unknown
indoor environments. Int. J. Micro Air Veh. 1(4), 217–228 (2009)

5. Bauer, P., Hiba, A., Bokor, J., Zarandy, A.: Three dimensional
intruder closest point of approach estimation based-on monocular
image parameters in aircraft sense and avoid. J. Intell. Robot. Syst.
93(1-2), 261–276 (2019)

6. Bills, C., Chen, J., Saxena, A.: Autonomous MAV flight in indoor
environments using single image perspective cues. In: Robotics

and automation (ICRA), 2011 IEEE international conference,
pp. 5776–5783. IEEE (2011)

7. Canziani, A., Paszke, A., Culurciello, E.: An analysis of deep neu-
ral network models for practical applications. arXiv:1605.07678
(2016)

8. Chebrolu, N., Läbe, T., Stachniss, C.: Robust long-term registra-
tion of UAV images of crop fields for precision agriculture. IEEE
Robot. Autom. Lett. 3(4), 3097–3104 (2018)

9. Chong, K.L., Kanniah, K.D., Pohl, C., Tan, K.P.: A review of
remote sensing applications for oil palm studies. Geo. Spat. Inf.
Sci. 20(2), 184–200 (2017)

10. Cui, J.Q., Lai, S., Dong, X., Chen, B.M.: Autonomous navigation
of UAV in foliage environment. J. Intell. Robot. Syst. 84(1-4),
259–276 (2016)

11. Daftry, S., Zeng, S., Khan, A., Dey, D., Melik-Barkhudarov, N.,
Bagnell, J.A., Hebert, M.: Robust monocular flight in cluttered
outdoor environments. arXiv:1604.04779 (2016)

12. Eresen, A., Mamolu, N., Efe, M.N.: Autonomous quadrotor flight
with vision-based obstacle avoidance in virtual environment.
Expert Sys. Appl. 39(1), 894–905 (2012)

13. Esrafilian, O., Taghirad, H.D.: Autonomous flight and obstacle
avoidance of a quadrotor by monocular SLAM. In: Robotics and
Mechatronics (ICROM), 2016 4th International Conference, pp.
240–245. IEEE (2016)

14. Gageik, N., Benz, P., Montenegro, S.: Obstacle detection and
collision avoidance for a UAV with complementary low-cost
sensors. IEEE Access 3, 599–609 (2015)

15. Girshick, R.: Fast r-cnn. In: Proceedings of the IEEE International
Conference on Computer Vision, pp. 1440–1448 (2015)

16. Giusti, A., Guzzi, J., Ciresan, D.C., He, F.L., Rodrı́guez, J.P.,
Fontana, F., Faessler, M., Forster, C., Schmidhuber, J., Di Caro,
G.: A machine learning approach to visual perception of forest
trails for mobile robots. IEEE Robot. Autom. Lett. 1(2), 661–667
(2016)

17. Gosiewski, Z., Ciesluk, J., Ambroziak, L.: Vision-based obstacle
avoidance for unmanned aerial vehicles. In: 2011 4th International
Congress on Image and Signal Processing (CISP), vol. 4,
pp. 2020–2025. IEEE (2011)

18. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for
image recognition. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 770–778 (2016)

19. Herwitz, S., Johnson, L., Dunagan, S., Higgins, R., Sullivan,
D., Zheng, J., Lobitz, B., Leung, J., Gallmeyer, B., Aoyagi,
M.: Imaging from an unmanned aerial vehicle: agricultural
surveillance and decision support. Comput. Electron. Agric. 44(1),
49–61 (2004)

20. Ho, H., De Wagter, C., Remes, B., De Croon, G.: Optical-flow
based self-supervised learning of obstacle appearance applied to
MAV landing. Robot. Auton. Syst. 100, 78–94 (2018)

21. Hoo-Chang, S., Roth, H.R., Gao, M., Lu, L., Xu, Z., Nogues, I.,
Yao, J., Mollura, D., Summers, R.M.: Deep convolutional neural
networks for computer-aided detection: Cnn architectures, dataset
characteristics and transfer learning. IEEE Trans. Med. Imaging
35(5), 1285 (2016)

22. Hui, X., Bian, J., Yu, Y., Zhao, X., Tan, M.: A novel autonomous
navigation approach for UAV power line inspection. In: 2017
IEEE International Conference on Robotics and Biomimetics
(ROBIO), pp. 634–639. IEEE (2017)

23. Huuskonen, J., Oksanen, T.: Soil sampling with drones and
augmented reality in precision agriculture. Comput. Electron.
Agric. 154, 25–35 (2018)

24. Iacono, M., Sgorbissa, A.: Path following and obstacle avoidance
for an autonomous UAV using a depth camera. Robot. Auton. Syst.
106, 38–46 (2018)

Page 17 of 18 5J Intell Robot Syst (2021) 101: 5

http://arxiv.org/abs/1605.07678
http://arxiv.org/abs/1604.04779


25. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating
deep network training by reducing internal covariate shift.
arXiv:1502.03167 (2015)

26. Kanellakis, C., Nikolakopoulos, G.: Survey on computer vision
for UAVs: Current developments and trends. J. Intell. Robot. Syst.
87(1), 141–168 (2017)

27. Kim, D.K., Chen, T.: Deep neural network for real-time
autonomous indoor navigation. arXiv:1511.04668 (2015)

28. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classifi-
cation with deep convolutional neural networks. In: Advances
in Neural Information Processing Systems, pp. 1097–1105
(2012)

29. Lee, J.O., Lee, K.H., Park, S.H., Im, S.G., Park, J.: Obstacle
avoidance for small UAVs using monocular vision. Aircr. Eng.
Aerosp. Technol. 83(6), 397–406 (2011)

30. Lelong, C.C., Burger, P., Jubelin, G., Roux, B., Labbé, S.,
Baret, F.: Assessment of unmanned aerial vehicles imagery for
quantitative monitoring of wheat crop in small plots. Sensors 8(5),
3557–3585 (2008)

31. Liu, P., ElGeneidy, K., Pearson, S., Huda, M.N., Neumann, G.,
et al.: Towards real-time robotic motion planning for grasping in
cluttered and uncertain environments. In: Towards Autonomous
Robotic Systems: 19th Annual Conference, TAROS 2018, Bristol,
UK July 25–27, 2018, Proceedings, vol. 10965, p. 481. Springer
(2018)

32. Liu, P., Yu, H., Cang, S.: Adaptive neural network tracking
control for underactuated systems with matched and mismatched
disturbances. Nonlinear Dyn. 98(2), 1447–1464 (2019)

33. Liu, Z., Zhang, Y., Yuan, C., Ciarletta, L., Theilliol, D.: Collision
avoidance and path following control of unmanned aerial vehicle
in hazardous environment. J. Intell. Robot. Syst., 1–18 (2018)

34. Ma, Z., Wang, C., Niu, Y., Wang, X., Shen, L.: A saliency-
based reinforcement learning approach for a UAV to avoid flying
obstacles. Robot. Auton. Syst. 100, 108–118 (2018)

35. Mancini, M., Costante, G., Valigi, P., Ciarfuglia, T.A.: Fast
robust monocular depth estimation for obstacle detection with
fully convolutional networks. In: Intelligent Robots and Systems
(IROS), 2016 IEEE/RSJ International Conference, pp. 4296–
4303. IEEE (2016)

36. Mancini, M., Costante, G., Valigi, P., Ciarfuglia, T.A.: J-mod 2:
Joint monocular obstacle detection and depth estimation. IEEE
Robot. Autom. Lett. 3(3), 1490–1497 (2018)

37. Matthew, D., Fergus, R.: Visualizing and understanding convo-
lutional neural networks. In: Proceedings of the 13th European
Conference Computer Vision and Pattern Recognition, Zurich,
Switzerland, pp. 6–12 (2014)

38. Nieuwenhuisen, M., Droeschel, D., Beul, M., Behnke, S.: Autono-
mous navigation for micro aerial vehicles in complex gnss-denied
environments. J. Intell. Robot. Sys. 84(1-4), 199–216 (2016)

39. Qu, T., Zhang, Q., Sun, S.: Vehicle detection from high-
resolution aerial images using spatial pyramid pooling-based deep
convolutional neural networks. Multimed. Tools Appl. 76(20),
21651–21663 (2017)

40. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-
time object detection with region proposal networks. In: Advances
in Neural Information Processing Systems, pp. 91–99 (2015)

41. Ross, S., Melik-Barkhudarov, N., Shankar, K.S., Wendel, A., Dey,
D., Bagnell, J.A., Hebert, M.: Learning monocular reactive UAV
control in cluttered natural environments. arXiv:1211.1690 (2012)

42. Sa, I., Ge, Z., Dayoub, F., Upcroft, B., Perez, T., McCool, C.:
Deepfruits: A fruit detection system using deep neural networks.
Sensors 16(8), 1222 (2016)

43. Schauwecker, K., Zell, A.: On-board dual-stereo-vision for the
navigation of an autonomous MAV. J. Intell. Robot. Syst. 74(1-2),
1–16 (2014)

44. Serres, J.R., Ruffier, F.: Optic flow-based collision-free strategies:
From insects to robots. Arthropod Struct. Dev. 46(5), 703–717
(2017)

45. Shyam, R.A., Lightbody, P., Das, G., Liu, P., Gomez-Gonzalez,
S., Neumann, G.: Improving local trajectory optimisation using
probabilistic movement primitives. In: 2019 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), pp.
2666–2671 (2019)

46. Wang, X., Cheng, P., Liu, X., Uzochukwu, B.: Fast and accurate,
convolutional neural network based approach for object detection
from UAV. In: IECON 2018-44th Annual Conference of the IEEE
Industrial Electronics Society, pp. 3171–3175. IEEE (2018)

47. Xie, L., Wang, S., Markham, A., Trigoni, N.: Towards monocular
vision based obstacle avoidance through deep reinforcement
learning. arXiv:1706.09829 (2017)

48. Yao, H., Yu, Q., Xing, X., He, F., Ma, J.: Deep-learning-based
moving target detection for unmanned air vehicles. In: 2017
36th Chinese Control Conference (CCC), pp. 11459–11463. IEEE
(2017)

49. Zufferey, J.C., Floreano, D.: Fly-inspired visual steering of an
ultralight indoor aircraft. IEEE Trans. Robot. 22(1), 137–146
(2006)

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

H. Y. Lee received her B.Eng. degree in Aerospace Engineering from
Universiti Sains Malaysia, Malaysia in 2019. She has obtained Dean’s
List awards for all semesters during her Bachelor studies. Her research
interests are machine learning, robot control, and computer vision. She
is currently an industrial engineer at Globalfoundries in Singapore.

H. W. Ho received his B.Eng. degree in Aerospace Engineering
from Universiti Sains Malaysia, Malaysia in 2009 and M.Sc. degree
in Aerospace Engineering (cum laude), specialized in Control and
Simulation from Delft University of Technology, the Netherlands in
2012. He obtained his Ph.D. degree in Aerospace Engineering at the
Micro Air Vehicle lab (MAV-lab) of Delft University of Technology
in 2017, with the topic of autonomous landing of Micro Air Vehicles
through bio-inspired monocular vision. His research interests include
control of MAVs, vision-based control strategies of MAVs, machine
learning, computer vision, and state estimation. Currently, he is senior
lecturer and UAV lab manager at the School of Aerospace Engineering
of Universiti Sains Malaysia, Malaysia, and guest researcher at the
Faculty of Aerospace Engineering of Delft University of Technology,
the Netherlands.

Y. Zhou obtained her B.S. degree and M.S. degree in School of
Mechanical & Electrical Engineering, Northwestern Polytechnical
University, Xi’an, China, in 2010 and 2013, respectively, and a
Ph.D. degree in Control and Simulation, Aerospace Engineering, Delft
University of Technology in 2018. Her Ph.D. research topic was online
reinforcement learning control for aerospace systems. Her research
interests lie in nonlinear control, adaptive control, Reinforcement
Learning, intelligent control, guidance, and navigation. She was a
lecturer at Faculty of Aerospace Engineering, Delft University of
Technology from 2017 to 2018. She is currently a senior lecturer at
School of Aerospace Engineering of Universiti Sains Malaysia, and
a guest researcher at the Faculty of Aerospace Engineering of Delft
University of Technology.

Page 18 of 185 J Intell Robot Syst (2021) 101: 5

http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1511.04668
http://arxiv.org/abs/1211.1690
http://arxiv.org/abs/1706.09829

	Deep Learning-based Monocular Obstacle Avoidance for UAV Navigation
	Abstract
	Introduction
	Related Work
	Obstacle Detection
	Network Architecture and Training
	Scratch Model
	Pre-trained Model

	Collection and Annotation of Flight Data

	Avoidance Motion
	Localization of Detected Obstacles
	Identification of Critical Obstacles
	Estimation of the Desired Heading Reference
	Motion Control of the UAV

	Result of the Obstacle Detection
	Performance of the Different Scratch Models
	Comparison between the Scratch Model and Pre-trained Models

	Obstacle Avoidance Result
	Flight Test Setup
	Detection Results during Flight Tests
	Avoidance Control during Flight Tests

	Conclusion
	References




