
https://doi.org/10.1007/s10846-020-01279-w

Solving the Inverse Kinematics Problem of Multiple Redundant
Manipulators with Collision Avoidance in Dynamic Environments

Liangliang Zhao1 · Jingdong Zhao1 ·Hong Liu1

Received: 13 June 2020 / Accepted: 21 October 2020
© Springer Nature B.V. 2021

Abstract
This article presents an approach for collision-free kinematics of multiple redundant manipulators in complex environments.
The approach describes a representation of task space and joint limit constraints for redundant manipulators and handles
collision-free constraints by micromanipulator dynamic model and velocity obstacles. A new algorithm based on Newton-
based and first-order techniques is proposed to generate collision-free inverse kinematics solutions. The present approach
is applied in simulation for the redundant manipulators in a various working environments with dynamic obstacles. The
physical experiments using a Baxter robot in a various working environments with dynamic obstacles are also performed.
The results demonstrate the effectiveness of the proposed approach compared with existing methods regarding working
environment and computational cost.

Keywords Inverse kinematics · Multiple manipulators · Collision avoidance · Dynamic obstacles

1 Introduction

One current trend in robotics is to use the manipulators
in dynamic environments for different tasks. Moreover,
the need for spatial and temporal coordination of multiple
manipulators work cooperatively in complex environments
arises in industrial and service robotics alike. For instance,
many complex tasks in industrial processes that cannot be
accomplished by a single manipulator are still performed
in cooperation with human workers or other robots. Fur-
thermore, cooperative human-robot and multi-robot work-
ing environments have been extensively applied in various
related fields [1, 2]. In such systems, collision avoidance is
a major problem in the application of the manipulators. To
enhance human safety and work efficiency, the manipulator
must compute an inverse kinematics (IK) solution based on
the desired pose of its end-effector and local observations of
the workspace, such that it stays free of collisions with the
human workers or other moving robots.

� Jingdong Zhao
zhaojingdong@hit.edu.cn

1 Harbin Institute of Technology, 92 West Dazhi Street, Nan
Gang District, Harbin, Heilongjiang Province, 150001, China

The redundant manipulators are designed with more
degrees of freedom (DOF) that have been used in many
complex environments to achieve the tasks. However, the
complex environments provide significant challenges in
inverse kinematics problem of the redundant manipulates:

1. Task Space Constraints: Computing the joint coordi-
nates that satisfy kinematics constraints based on the
given each end-effector pose [3, 4].

2. Collision-free Constraints: A redundant manipulator
should not collide with other manipulators and/or mov-
ing obstacles [5].

3. Joint Limits Constraints: Joints have limited range of
movement so the manipulator cannot move if a joint
move to a position outside its limits [6, 7].

To compute efficient IK solutions for redundant manip-
ulators, the numerical and optimization methods have been
used in several approaches in literature [8–12]. However,
most methods do not focus on collisions with other manip-
ulators and/or moving obstacles in a shared working envi-
ronment. Moreover, there are many studies work on the
problem of collision-avoidance for multi-robot systems or
moving obstacles [25–35]. The limitations of these studies
though are that the robots are assumed to rigid bodies and
only take dynamics constraints into account; they can not be
directly applied to redundant manipulators.

/ Published online: 22 January 2021

Journal of Intelligent & Robotic Systems (2021) 101: 30

In this paper, a real-time collision-free IK (CFIK) algo-
rithm is presented to compute efficient IK solutions for a
redundant manipulator, which operates in a three-dimensional
(3-D) working environment with other manipulators and/or
moving obstacles. The algorithm uses a novel combination
of the Jacobian matrix and velocity obstacles (VO). In such
a case, the formulation of the VO is extended to redun-
dant manipulators and the IK problem is defined as a new
high dimensional optimization problem by task constraints.
Our algorithm initially relates IK solutions to task space
and joint limit constraints for each redundant manipulator
and updates joint state at each iteration to reduce the task
error by a Newton-based method. In contrast to existing
IK algorithm, the CFIK algorithm continues to search for
the collision-free IK solutions using a first-order method.
The basic idea is that the movements of each joint are
guided by collision-free constraints, which are formulated
using linear inequalities and taken into account to compute
the constraint factor of the VO in the given time window.
Based on a brief analysis of convergence rate and stabil-
ity of the collision-free constraints, it can be concluded that
the proposed algorithm provides collision-avoidance guar-
antee for all redundant manipulators when working in a
shared space.

The CFIK algorithm has been implemented in simulation
and experiment for a variety of working environments with
a Baxter robot and computes IK solutions that satisfy the
task space, joint limit and collision-free constraints. The
algorithm also considers the dynamic obstacles moving in
the environments. To guarantee that there is no collision,
the simulations use Gazebo simulator, which supports
physics engines and offers the ability to efficiently and
accurately simulate robots in dynamic environments. In
general, the run time to generate an IK solution depends on
the kinematic solver and the number of manipulators and
dynamic obstacles. In our benchmarks, it takes less than a
millisecond for a 7-DOF arm on a single CPU core.

The rest of this paper is organized as follows. Section 2
reviews the related work in IK and VO algorithms. In
Section 3, the formulation of task space, joint limit and
collision-free constraints are applied to the redundant
manipulators. In Section 4, we relate IK solutions to all three
constraints, present a novel CFIK algorithm and discuss
how to address the problem of collision avoidance with
static obstacles in this framework. Section 5 presents a
convergence rate and stability analysis for the collision-
free constraints. Section 6 highlights the performance on
both arms of Baxter robot in dynamic environments with
the human model and the Kuka LBR iiwa articulated robot
arm. Our method solves a broader class of problems and
performs much faster than existing methods. Finally, the
paper is concluded in Section 7.

2 PreviousWork

In this section, the overview of prior work on inverse
kinematics of redundant manipulators and collision-free
navigation of multiple robots will be given.

The most popular way to generate valid IK solutions
is to use closed-loop algorithms based on the Inverse
Jacobian matrix [8, 9]. As in [10], the relevant closed-
loop IK (CLIK) methods for redundant robots are compared
based on the main points of kinematic issue and two
enhancements are proposed. In [11], the problem of false-
negative failures of Kinematics and Dynamics Library
(KDL)’s IK implementation is considered. An IK method
with a variety of open source algorithms is presented
to generate a better IK solution, without those failures.
In [12], the authors present a method to find accurate
solutions for high DOF robots using a hybrid evolutionary
approach. A variety of shape trajectory control methods can
be used to find an analytical IK solution of the redundant
or hyper-redundant manipulators. These methods include
the classical planar curve called tractrix [13], the shape
trajectory of rattlesnakes [14], the mechanics-based model
[15], the plain and extended spline [16], the elastic backbone
[17], the physical curves [18], the backbone curves [19], and
the inchworm steps [20].

To find collision-free IK solutions of redundant and
soft manipulators, the method proposed in [21] is based
on the natural cyclic coordinate descent (CCD) to solve
this problem. In [22], the authors explore three algorithms
for task space constrained of redundant robots by Tangent
Space Sampling and First-Order Retraction. The algorithm
described in [23] combines the closed-loop pseudo-inverse
(CLP) method with a multi-objective genetic algorithm
(GA) for the trajectory planning of redundant robots.
Other techniques are based on algebraic solvers [24]. None
of these methods consider collision-free constraints or
dynamic obstacles.

Many researches have been focused on effective methods
to compute collision-free IK solutions for multiple robots
in a shared workspace. One of the early developments to
solve this issue is the VO [25–27]. In [28], a new concept
named reciprocal velocity obstacle (RVO) is proposed
for collision-free and oscillation-free navigation among
dynamic obstacles in the same environment. Besides, the
RVO algorithm has been extended to deal with bounds on
acceleration [29] or flying robots in 3-D workspace [30].
Other VO-based methods have been generalized to apply
to handle the dynamic constraints. These include multiple
differential-drive robots [31], double or arbitrary integrator
[32, 33], car-like robots [34], linear quadratic regulator
(LQR) controllers [35], non-linear equations of motion [36],
etc. As in [32], a n-vehicle collision avoidance strategy

J Intell Robot Syst (2021) 101: 30Page 2 of 1830

is presented that can account for delays and higher order
dynamics. However, these methods also did not consider
the IK problem for redundant manipulators in a dynamic
environment.

3 Specifying Constraints

3.1 Mathematical Statement

A redundant manipulator is considered as consisting of a
finite number of rigid-links, which is a concatenation of
n identical modules. Let ξ ∈ R

c represents the constraint
variable to be handled. Let q = [q1, . . . , qn] be the
joint configuration refer to a vector of the joint variable.
Moreover, it can be assumed that the constraint ξ can be
derived from the joint configuration q by function

ξ = f (q). (1)

For redundant systems (i.e., when n > c), it is especially
useful to add other constraints, which can be used
to keep the manipulator from restricted region of the
joint configuration. For simplicity, an additional constraint
function can be expressed as

ψ � ψ (q) ≤ 0. (2)

Now considering the functional form of those constraints for
the manipulator, one must solve the problem with equality
constraints, gives

Given constraint functions ξ and ψ

Compute q subject to:
ξ = f (q) and

ψ ≤ 0.

(3)

The following subsections will describe the definition of
many common constraints including task space, joint limit
and collision-free constraints.

3.2 Task Space and Joint Limit Constraints

The forward kinematics of a redundant manipulator is
described by the equation

ξE = fE(q), (4)

where ξE ∈ R
6 is the end-effector frame. Let T represents

the rigid transformation between two frames. Then, the
matrix Ti−1

i is the transformation from link coordinate
frame ξ i to frame ξ i−1(i = 1, . . . , n). The matrix T0

E is also
employed for translations and rotations of the end-effector
frame ξE with respect to the base frame ξ0. For any joint
configuration q, the homogeneous transformations can be

used to compute the individual link transformation matrices
of an n-DOF manipulator:

ξE ∼ T0
E(q) = T0

1T
1
2 · · ·Tn−1

n Tn
E . (5)

The task constraints of a manipulator can be described by
a restriction on the motion freedom of the end-effector
[37]. Giving the desired position and orientation of the end-
effector T0

t (transformation from the task frame ξ t to the
base frame ξ0), the algorithm needs to compute a joint
configuration q, which satisfies task constraints based on
the forward kinematics. The functional form of the task
constraints is given by

Tt
E(q) = (T0

t)
−1T0

E(q), (6)

where the matrix Tt
E is the transformation from frame ξ t to

frame ξE . Then, the positioning error e ∈ R
6 between frame

ξ t and frame ξE is defined as

e ≡ Tt
E(q). (7)

In addition, the joint limit constraints for the joint position
qi can be defined as

qi,min ≤ qi ≤ qi,max . (8)

3.3 Collision-free Constraints

The collision-free constraints begin with decomposing each
movable link of the kinematic chain into a series of spheres.
The number of spheres and their relative frames and radii are
dynamically determined by the size of the links to make sure
that there are no collisions. The bounding sphere is used to
generate a micromanipulator dynamic model based on the
specifications of the manipulator. Moreover, each dynamic
obstacle in the environment is also assumed to be a sphere
or a series of spheres. In practice, our collision avoidance
method tends to be conservative because of these bounding
sphere approximations.

In the Cartesian space, let Sm (m = 1, . . . , M , where
M is the number of spheres used for this manipulator’s
decomposition) be one of the spheres on link i with radius
rm, and let A be an obstacle with radii rA. The sphere
frame ξSm and the obstacle frame ξA are derived from the
base frame ξ0, based on the rigid transformations of the
base axes. The matrixes T0

Sm
and T0

A specify the position

and orientation of ξSm and ξA, with respect to ξ0. In a
micromanipulator dynamic model, all spheres are rigidly
attached to the manipulator after motion. Let Ti

Sm
represents

the position and orientation of ξSm with respect to ξ i , the
transform T0

Sm
is given as follows:

T0
Sm

= T0
i T

i
Sm

= T0
1 · · ·Ti−1

i Ti
Sm

. (9)

During the iteration process (Algorithms 1 and 2 in Section 4),
the matrix T0

Sm
transforms into a new matrix T0

Sm′ , which

J Intell Robot Syst (2021) 101: 30 Page 3 of 18 30

represents the position and orientation of frame ξ0 with

respect to frame ξSm′ . The transform T
Sm′
Sm

is given as
follows:

T
Sm′
Sm

= T
Sm′
0 T0

Sm
=

(
T0

Sm′

)−1
T0

Sm
. (10)

As shown in Fig. 1, the distance dAm specifies the
Euclidean distance between the obstacle frame ξA and the
sphere frame ξSm . If dAm ≤ rm + rA, it can be deduced that
sphere Sm and sphere A are colliding. The Minkowski sum
of these spheres Sm and A can be described by the equation

Sm ⊕ A = {sm + a|sm ∈ CH(Sm), a ∈ CH(A)}, (11)

where CH(Sm) and CH(A) are the convex hulls of sphere
Sm and sphere A, respectively. The VO for sphere Sm

induced by sphere A for time window τ is shown in Fig. 2.
It can be given as

V Oτ
Sm|A = {v|λτ (pm, v − vA) ∩ A ⊕ −Sm 	= ∅}, (12)

where −Sm = {−sm|sm ∈ CH(Sm)}, vA is the velocity
vector of sphere A, and λτ (pm, v − vA) is a ray starting at
the position of T0

Sm
with direction v,

λτ (pm, v − vA) = {pm + t (v − vA)|t ∈ [0, τ]}. (13)

As shown in Fig. 3, if sphere Sm has velocity vm, it
can be observed that sphere Sm may collide with sphere A

during the time interval [0, τ] if the relative velocity vector
of vm −vA is inside the region V Oτ

Sm|A. To avoid a possible
collision before time τ , vm−vA must be outside V Oτ

Sm|A. To

Fig. 1 In the XYZ-dimensional, one of the spheres on the link i and
a dynamic obstacle are bounded by spheres whose transforms are T0

Sm

and T0
A and radii are rm and rA, respectively

Fig. 2 In the vXvY vZ-dimensional, the shaded area represents the
velocity obstacles for sphere A induced by sphere Sm in time window
τ

select a velocity vm, we use a constraint defined with respect
to vm − vA and V Oτ

Sm|A. The vector, ωm, from vm − vA to
the closest point of the boundary of V Oτ

Sm|A is defined as
follows:

ωm =(arg min ||v−(vm−vA)||2)−(vm−vA), v ∈ ∂V Oτ
Sm|A,

(14)

where ∂V Oτ
Sm|A is the boundary of V Oτ

Sm|A. Let ϕm

represents the vector from point (pm − pA)/τ to vm − vA.

Fig. 3 In the vXvY vZ-dimensional, the vector ϕm determines if there
is a collision, and the vector ωm informally represents the amount of
load the sphere takes to avoid collisions

J Intell Robot Syst (2021) 101: 30Page 4 of 1830

As with previous formulations, the constraint factor ψm is
defined as follows:

ψm = ϕm∥∥ϕm

∥∥ · ωm. (15)

If ψm > 0, then sphere Sm will collide with sphere A. If
ψm ≤ 0, there will be no such collision between those two
spheres during the time interval [0, τ].

4 Algorithmic Solution

4.1 Relating IK Solutions to Task Space and Joint
Limit Constraints

As introduced in Section 3.2, the positioning error e is
computed using the forward kinematics of a redundant
manipulator.

For each given task frame ξ t (i.e., the task space
constraints), the analytical solution to IK problem

arg min ‖e‖2
2 (16)

is the set defined as

Q �
{
q∗ ∈ R

n : ξ t = fE

(
q∗)} . (17)

Due to kinematic redundancy, let us consider a numerical
method to generate valid IK solutions. We use the Newton-
based convergence algorithm, which applying a singular
value decomposition (SVD) to compute the pseudoinverse
of the Jacobian J† and reducing the task space constraints
by iterating the function

qk+1 = qk + Δqk, (18)

where qk+1 is the joint configuration at step k + 1, qk is the
previous joint configuration. The most common values of a
seed joint configuration q0 for this algorithm are the current
joint values. Δqk is the joint state variation that can be used
to map ‖e‖2

2 into a stopping criteria ε, and it is defined as

Δqk = J†e. (19)

Using the SVD method, J† ∈ R
6×n can be expressed as

follow:

J† = U�†VT . (20)

More specifically, U and V are the n × n and 6 × 6 unitary
orthogonal matrix, respectively. � is an 6 × n rectangular
diagonal matrix [38]. When the redundant manipulator gets
close to singularities, the joint state variation Δqk will be
very large. To prevent the redundant manipulator getting
stuck in this situation, we discard the joint configuration qk

and find a better initial joint configuration through a random
joint values over a standard uniform distribution number on
the open interval (qi,min, qi,max).

In addition to keep joint values with in the valid range
(i.e., joint limits) in each iteration, it is recommended to add
a second adjustment to Problem 16.

The functional form of Problem 16 with joint limit
constraints is

arg min ‖e‖2
2

s.t . qi,min ≤ qi ≤ qi,max .
(21)

Furthermore, the set of the analytical solution to Problem 21
can be defined similar to before as

Q �
{
q∗ ∈ R

n : ξ t = fE

(
q∗) , qi,min ≤ q∗

i ≤ qi,max

}
.

(22)

The approach of adjust the joint values by the joint limit
constraints is summarized in Table 1.

As a baseline, the Pseudo-code for the Newton-
based convergence algorithm is presented in Algorithm 1.
Moreover, Algorithm 1 terminates after ‖e‖2

2 ≤ ε or
a maximum computation time tmax , see line 3. If the
transforms T0

t and T0
E(q) are found, e can be computed

using Eq. 7 within function COMPUTE ERROR(), see lines
2 and 9. J† can be computed using Eq. 20 within function
JACOBIAN INVERSE(), see line 5.

4.2 Relating IK Solutions to Collision-free
Constraints

Algorithm 1 can compute the joint configuration qk+1 and
positioning error e after each iteration. To find a collision-
free IK solution, our method continues to update the joint
configuration if ψm(qk) > 0. The constraint factor ψm

can be computed using the joint configuration qk+1 and q0.

Table 1 Joint limit constraints

JOINT LIMIT CONSTRAINT (q);

1 for i = 1 to n

2 if qi ≤ qi,min

3 qr
i ← ∗REMAINDER ∗ (

qi−qi,min

2π)

4 qi = qi,min − qr
i + 2π

5 if qi ≥ qi,max

6 then qi = qi,min

7 else if qi ≥ qi,max

8 qr
i ← REMAINDER(

qi,max−qi

2π)

9 qi = qi,max + qr
i − 2π

10 if qi ≤ qi,min

11 then qi = qi,max

12 return q

1The word ∗REMAINDER∗ represents it will
return the floating-point remainder of division

J Intell Robot Syst (2021) 101: 30 Page 5 of 18 30

Algorithm 1 Newton-based convergence.

Input: q0 = currentjoint , k = 0, tlef t = 0.
Output: IK solution of the redundant manipulator.

1: Initialize: tmax ← GET MAXTIME().
2: Initialize: e ← COMPUTE ERROR(Tt

E(q0)).
3: while tlef t ≤ tmax and ‖e‖2

2 > ε do
4: k ← k + 1
5: J† ← JACOBIAN INVERSE(qk)

6: Δqk = J†e

7: qk+1 = qk + Δqk

8: qk+1 ← JOINT LIMIT CONSTRAINT(qk+1)

9: e ← COMPUTE ERROR(Tt
E(qk+1))

10: if ‖e‖2
2 ≤ ε then

11: return qk+1

12: else
13: tlef t ← tlef t + GET DURATION()
14: end if
15: end while
16: return q0

Then, a secondary constraint is formulated as a gradient of
ψm, which is used to find a better joint configuration for the
IK algorithm to perform obstacle avoidance.

Now, Problem 21 can be rewritten as

arg min ‖e‖2
2

s.t .

{
qi,min ≤ qi ≤ qi,max

ψm ≤ 0

(23)

With this definition, it is possible to generate the set of the
analytical solution, which is the deterministic function of
Problem 23, gives

Q �
{
q∗ ∈ R

n : ξ t = fE

(
q∗) , qi,min ≤ q∗

i

≤ qi,max, ψm

(
q∗) ≤ 0

}
. (24)

Since the relationship between ψm and q is nonlinear,
the first-order iterative optimization algorithm is used to
make ψm converges to the minimum. Let ∂ψm

∂xm
represents the

function of differentials of xm. Then, an associate function
is given as

G(pm) =
[

∂ψm

∂xm
,

∂ψm

∂ym
,

∂ψm

∂zm

]T

. (25)

Note that pm = [xm, ym, xm]T presents the position vector
of frame ξSm , which is the translation vector in homoge-
neous transform T0

Sm
(qI), where qI = [q1, · · · , qi]. Let

Jm
p ∈ R

3×i represents the linear velocity Jacobian of the

frame ξSm , which can be computed as follow:

Jm
p =

⎡
⎢⎢⎣

∂xm

∂q1
· · · ∂xm

∂qi

∂ym

∂q1
· · · ∂ym

∂qi

∂zm

∂q1
· · · ∂zm

∂qi

⎤
⎥⎥⎦ . (26)

Given the definitions of Eqs, 25 and 26, the equation of
gradient ∇ψm(qI) is given as follows:

∇ψm(qI)=
[
∂ψm

∂q1
, ...,

∂ψm

∂qi

]T

=
(
Jm
p (qI)

)T

G(pm). (27)

Then, the first-order iterative optimization algorithm is
applied by iterating the function

qk+1
I = qk

I − γ k∇ψm(qk
I), (28)

where γ k is the step size. In the spirit of Eq. 18, a
transformation from γ k∇ψm(qk

I) ∈ R
i to γ k∇ψ̂m(qk

I) ∈
R

n is provided as

γ k∇ψm(qk
I) =̂ γ k∇ψ̂m(qk

I) (29)

= [γ k∇ψm(qk
1), . . . , γ k∇ψm(qk

i)︸ ︷︷ ︸
i

, 0, . . . , 0︸ ︷︷ ︸
n−i

].

For this transformation, the gradient direction
γ k∇ψ̂m(qk

I) and the joint configuration q have the same
dimensional Rn. Then Eq. 18 can be rewritten as

qk+1 = qk + Δqk − γ k∇ψ̂m(qk
I). (30)

4.3 CFIK Algorithm

Given the Eq. 30, the Pseudo-code for our CFIK algorithm
can be given as Algorithm 2. Similar to Algorithm 1, CFIK
algorithm terminates after ‖e‖2

2 ≤ ε and ψm ≤ 0 or
a maximum computation time tmax , see lines 4 and 17.
ψm is computed using Eq. 15 within function COLLISION-
FREE CONSTRAINT(), see lines 3 and 16. The gradient
direction γ k∇ψ̂m(qk

I) can be computed using Eq. 29 within
function COMPUTE GRADIENT DIRECTION(), see line 11.

4.4 Avoiding Collisions with Static Obstacles

A typical robot working environment also contain static
obstacles, such as wall. Therefore, the same method as
above will be applied to this situation, it would compute
the velocity obstacle for sphere to avoid collisions with
static obstacles. The geometric shape of the static obstacle
is assumed to be a regularly shaped body, in terms of the
cylinder and cuboid. As can be seen in Fig. 4a, the wall
obstacle is modeled as a cuboid. Let A be the cuboid, and Sm

is a sphere centered at pm with radius rm. Then, the velocity
obstacle V Oτ

Sm|A can be defined as

V Oτ
Sm|A = {v|λτ (pm, v) ∩ A ⊕ −Sm 	= ∅}, (31)

as shown in Fig. 4b and c. If the velocity vm is inside, sphere
Sm will collide with the cuboid A within time τ . The vector
ωm is redefined as

ωm = (arg min ||v − vm||2) − vm, v ∈ ∂V Oτ
Sm|A, (32)

J Intell Robot Syst (2021) 101: 30Page 6 of 1830

Fig. 4 a In the
XYZ-dimensional, a sphere Sm

and a static obstacle A. b-c The
shaded areas represent the
geometric construction of
V Oτ

Sm|A. The vector ωm is the
amount of load the sphere Sm

takes to avoid static obstacle A

with respect to vm

then this vector will be used in the collision avoidance
approach of the CFIK algorithm to redundant manipulators.

5 Convergence Rate and Stability Analysis

5.1 Convergence Rate

In this section, the convergence rate of the collision-free
constraints is illustrated to ensure convergence of the defined
scenarios when using our method. Equation 28 shows the
update rule of the joint configuration q at each iteration
to keep ψm moving towards the minimum. To demonstrate
the function ψm has a convergence rate, we first show that
ψm is Lipschitz continuous and β smooth [39]. For sake of
simplicity, the convergence rate analysis will be discussed
with respect to the condition of ψm as shown in Fig. 3.

Lemma 5.1 The function ψm is Lipschitz continuous.

Proof Equation 15 defines the function ψm. For any two
joint configuration q1

I and q2
I , we define

∣∣∣ψm(q1
I) − ψm(q2

I)

∣∣∣

=
∣∣∣∣∣

ϕm(q1
I)∥∥ϕm(q1
I)

∥∥ωm(q1
I) − ϕm(q2

I)∥∥ϕm(q2
I)

∥∥ωm(q2
I)

∣∣∣∣∣ . (33)

The values of ϕm and ωm, can be computed according to
Eq. 11–14.

ϕm = (vm − vA) −
(

pm + pA

τ

)
, (34)

ωm =
(

rm + rA

τ
− ∥∥ϕm

∥∥
)

ϕm∥∥ϕm

∥∥ . (35)

Substituting (34) and (35) into Eq. 33 gives
∣∣ψm(q1

I) − ψm(q2
I)

∣∣
=

∣∣∣∣
ϕm(q1

I)∥∥ϕm(q1
I)

∥∥
(

rm+rA
τ

− ∥∥ϕm(q1
I)

∥∥) ϕm(q1
I)∥∥ϕm(q1
I)

∥∥

− ϕm(q2
I)∥∥ϕm(q2
I)

∥∥
(

rm+rA
τ

− ∥∥ϕm(q2
I)

∥∥) ϕm(q2
I)∥∥ϕm(q2
I)

∥∥

∣∣∣∣
= ∣∣∥∥ϕm(q2

I)
∥∥ − ∥∥ϕm(q1

I)
∥∥∣∣

≤
∥∥∥∥
(

v
q2

I
m − vA

)
−

(
pm(q2

I)+pA

τ

)
−

[(
v

q1
I

m − vA

)

−
(

pm(q1
I)+pA

τ

)]∥∥∥∥
=

∥∥∥∥v
q2

I
m − v

q1
I

m − pm(q2
I)−pm(q1

I)

τ

∥∥∥∥ .

(36)

To construct the VO, the sphere velocity vector is
obtained in each iteration, as a function of time Δt , through
the translation vector pm(qI) in transform T0

Sm
(qI)

vk+1
m =

⎡
⎢⎢⎣

vk+1
mx

vk+1
my

vk+1
mz

⎤
⎥⎥⎦= pm(qk+1

I) − pm(q0
I)

Δt
=

⎡
⎢⎢⎣

xk+1
m −x0

m

Δt
yk+1
m −y0

m

Δt
zk+1
m −z0

m

Δt

⎤
⎥⎥⎦ .

(37)

Consider Δt is the time duration of the end-effector moving
between the two Cartesian poses ξE and ξ t at one movement
step. For simplicity, it can be assumed that the end-effector
moves at constant velocity in our experiments. Substituting
the velocity of sphere Sm in Eq. 37 into Eq. 36, can be
rearranged as
∣∣ψm(q1

I) − ψm(q2
I)

∣∣
≤

∥∥∥∥
pm(q2

I)−pm(q0
I)

Δt
− pm(q1

I)−pm(q0
I)

Δt
− pm(q2

I)−pm(q1
I)

τ

∥∥∥∥
=

(
1
Δt

− 1
τ

) ∥∥pm(q2
I) − pm(q1

I)
∥∥ .

(38)

Let us assume the transformation between joint configu-
rations qI and the position vector pm of frame ξm is locally

J Intell Robot Syst (2021) 101: 30 Page 7 of 18 30

Algorithm 2 Collision-Free IK Solution Generator (our
novel CFIK algorithm that accounts for task space, joint
limit and collision avoidance constraints).

Input: q0 = currentjoint , k = 0, tlef t = 0.
Output: Collision-Free IK solution of the redundant

manipulator.
1: Initialize: tmax ← GET MAXTIME().
2: Initialize: e ← COMPUTE ERROR(Tt

E(q0)).
3: Initialize: ψm(q0) ←COLLISION-FREE CONSTRAINT

q0.
4: while tlef t ≤ tmax do
5: k ← k + 1
6: if ‖e‖2

2 > ε then
7: J† ← JACOBIAN INVERSE(qk)

8: Δqk = J†e

9: end if
10: if ψm(qk) > 0 then
11: γ k∇ψ̂m(qk

I) ← COM-
PUTE GRADIENT DIRECTION(qk

I)

12: end if
13: qk+1 = qk + Δqk − γ k∇ψ̂m(qk

I)

14: qk+1 ← JOINT LIMIT CONSTRAINT(qk+1)

15: e ← COMPUTE ERROR(Tt
E(qk+1))

16: ψm(qk+1) ← COLLISION-FREE CONSTRAINT(qk+1)

17: if ‖e‖2
2 ≤ ε and ψm(qk+1) ≤ 0 then

18: return qk+1

19: else
20: tlef t ← tlef t + GET DURATION()
21: end if
22: end while
23: return q0

linear; in other words, the Jacobian Jm
p is a constant for

those two configurations q1
I and q2

I , leading to the following
linear relationship

pm(q1
I) = Jm

p q1
I (39)

and

pm(q2
I) = Jm

p q2
I . (40)

Equation 38 can be rewritten as

∣∣ψm(q1
I) − ψm(q2

I)
∣∣ ≤

(
1
Δt

− 1
τ

) ∥∥∥Jm
p

(
q2

I − q1
I

)∥∥∥
≤

(
1
Δt

− 1
τ

) ∥∥∥Jm
p

∥∥∥ ∥∥q2
I − q1

I

∥∥ .
(41)

This proves that the function ψm is Lipschitz continuous
[40].

Lemma 5.2 The function ψm is β smooth.

Proof Equation 27 defines the equation of gradient
∇ψm(q1

I). For any two joint configuration q1
I and q2

I , gives
∥∥∥∇ψm(q1

I) − ∇ψm(q2
I)

∥∥∥ (42)

=
∥∥∥∥
(
Jm
p (q1

I)
)T

G
(
pm(q1

I)
)
−

(
Jm
p (q2

I)
)T

G
(
pm(q2

I)
)∥∥∥∥ .

According to Eq. 25 we have

G
(
pm

) =
[

∂ψm

∂xm
,

∂ψm

∂ym
,

∂ψm

∂zm

]T = ϕm∥∥ϕm

∥∥Δt
. (43)

Then, in the linear case, Eq. 42 can be rewritten as
∥∥∇ψm(q1

I) − ∇ψm(q2
I)

∥∥
=

∥∥∥∥Jm
p

(
ϕm(q1

I)∥∥ϕm(q1
I)

∥∥Δt
− ϕm(q2

I)∥∥ϕm(q2
I)

∥∥Δt

)∥∥∥∥
≤

∥∥∥Jm
p

∥∥∥
∥∥∥∥

ϕm(q1
I)∥∥ϕm(q1

I)
∥∥Δt

− ϕm(q2
I)∥∥ϕm(q2

I)
∥∥Δt

∥∥∥∥ .

(44)

Now let ϕm,min = min(‖ ϕm(q1
I) ‖, ‖ ϕm(q2

I) ‖).
Substituting this in the previous result gives
∥∥∇ψm(q1

I) − ∇ψm(q2
I)

∥∥

≤
∥∥∥Jm

p

∥∥∥
ϕm,minΔt

∥∥ϕm(q1
I) − ϕm(q2

I)
∥∥

=
∥∥∥Jm

p

∥∥∥
ϕm,minΔt

∥∥∥∥v
q1

I
m − v

q2
I

m − pm(q1
I)−pm(q2

I)

τ

∥∥∥∥

=
∥∥∥Jm

p

∥∥∥
ϕm,minΔt

(
1
Δt

− 1
τ

) ∥∥pm(q1
I) − pm(q2

I)
∥∥

=
∥∥∥Jm

p

∥∥∥2

ϕm,minΔt

(
1
Δt

− 1
τ

) ∥∥q1
I − q2

I

∥∥ ,

(45)

and it can be concluded that ψm is a β-smooth function,

where β =
∥∥∥Jm

p

∥∥∥2

ϕm,minΔt

(
1
Δt

− 1
τ

)
.

Theorem 5.3 Let ψm be a convex and β-smooth function
with qI as the current joint configuration and q∗

I as
the optimal joint configuration on R

I . Then ‖qk
I − q∗

I‖
decreases with k if γ k ≤ 1/β.

Proof: For the two joint configuration q1
I and q2

I , we
define
∥∥∥qk+1

I − q∗
I

∥∥∥
2 =

∥∥∥qk
I − γ k∇ψm(qk

I) − q∗
I

∥∥∥
2

=
∥∥∥qk

I − q∗
I

∥∥∥
2 − 2γ k∇ψm(qk

I)
T

(
qk

I − q∗
I

)

+
(
γ k

∥∥∥∇ψm(qk
I)

∥∥∥
)2

. (46)

As derived in Lemma 5.2, gives

ψm(qk
I)−ψm(q∗

I)≤∇ψm(qk
I)

T
(
qk

I − q∗
I

)
−

∥∥∇ψm(qk
I)

∥∥2

2β
.

(47)

J Intell Robot Syst (2021) 101: 30Page 8 of 1830

And knowing that

ψm(qk
I) − ψm(q∗

I) ≥ 0 (48)

and

−∇ψm(qk
I)

T
(
qk

I − q∗
I

)
≤ −

∥∥∇ψm(qk
I)

∥∥2

2β
(49)

in Eq. 47, it can be rewritten as

∥∥∥qk+1
I − q∗

I

∥∥∥
2 ≤

∥∥∥qk
I − q∗

I

∥∥∥
2 − γ k

∥∥∇ψm(qk
I)

∥∥2

β

+
(
γ k

∥∥∥∇ψm(qk
I)

∥∥∥
)2 ≤

∥∥∥qk
I − q∗

I

∥∥∥
2

−γ k

(
1

β
− γ k

)∥∥∥∇ψm(qk
I)

∥∥∥
2
. (50)

This means that if γ k ≤ 1/β, then
∥∥∥qk+1

I − q∗
I

∥∥∥
2 ≤

∥∥∥qk
I − q∗

I

∥∥∥
2
. (51)

5.2 Stability Analysis

The stability analysis of our CFIK algorithm will be
discussed based on solely three tasks of a redundant
manipulator(the DH parameters are listed in Appendix A):

1. The position of the end-effector ξ t
p ∈ R

3 .

2. The position of the wrist ξ5
y ∈ R, along the y axis of the

base frame ξ0.
3. The position of the elbow ξ4

x ∈ R, along the x axis of
the base frame ξ0.

The task errors e ∈ R
3+1+1 is

e =
[(

eE
p

)T (
e5
y

)T (
e4
x

)T

]T

, (52)

where eE
p ∈ R

3, e5
y ∈ R and e4

x ∈ R are the task error of
three tasks, respectively. There is a dynamic obstacle in the
working environment with the position of [0.35, -0.67, 0.7]
(in meters), the velocity of [0, 0.05, 0] (in m/s) and the radii
of 0.1m. The initial joint configuration of the manipulator is
given as

q = [−0.18, −1.0, 1.19, 1.94, −0.67, 1.03, 0.50] (in rads),

(53)

The desired positions of three tasks are assigned:

ξE
p =[0.168867, −0.010499, 0.784523]T (in meters), (54)

ξ5
y = [−0.14] (in meters), (55)

ξ4
x = [0.078] (in meters). (56)

Then, the Lyapunov function candidate is defined as

V (e) = 1

2
eT e (57)

whose time derivative is

V̇ = −eT

⎡
⎢⎢⎣
JE
p

J5
y

J4
x

⎤
⎥⎥⎦ q̇. (58)

With Eq, 26 and 30, the corresponding Jacobian JE
p ∈ R

3×n

of the primary task is given by

JE
p = J†

p − γ∇ψ̂m(qI)

eE
p

. (59)

The Jacobians J5
y ∈ R

1×n and J4
x ∈ R

1×n can be easily
computed using Eq. 26.

Based on our CFIK algorithm, the Lyapunov function V

and the norm error of those three tasks versus the motion
time are shown in Fig. 5. It can be seen that the Lyapunov
function and the norm errors decrease to zero with the value
of the time horizon increases. More specifically, we can take
into account some parameters similar to the approach in
[41], gives

λ22 = σmin

(
J5
yN

E
p

(
J5
y

)†
)

, (60)

λ33 = σmin

(
J4
xN

(
J4
x

)†
)

, (61)

λ5
y = σmin

(

5

y

)
, (62)

λ4
x = σmin

(

4

x

)
, (63)

in which

NE
p = I −

(
JE
p

)†
JE
p , N = NE

p

(
I −

(
J5
y

)†
J5
y

)
, (64)

σmin (σmax) is the smallest (largest) singular value of the
matrix, I is the identity matrix of proper size,
5

y and
4
x

are the gain matrices of the tasks ξ5
y and ξ4

x , respectively. In

0 1 2 3 4 5
time(s)

0

0.1

0.2

0.3

0.4

0.5

Fig. 5 Time history of the Lyapunov function and the norm error of
three tasks

J Intell Robot Syst (2021) 101: 30 Page 9 of 18 30

Fig. 6 Time history of λ22, λ33,
λ5

y and λ4
x

this work, the values of λ5
y and λ4

x are obtained using the
estimates

λ5
y >

λ
2
21

4λ22
, (65)

λ4
x > max

{
λ

2
31

4λ33
,

λ
2
32

4λ22λ33

}
, (66)

where λ21 = σmax

(
J5
y

(
JE
p

)†
)

, λ31 = σmax

(
J4
x

(
JE
p

)†
)

,

and λ32 = σmax

(
J4
xN

E
p

(
J5
y

)†
)

. Given the definitions of

Eqs. 60–66, the values of λ22, λ33, λ5
y and λ4

x with respect
to time are shown in Fig. 6.

6 Results

6.1 Implementation and Performance

This section presents the results from various simulation and
physical experiments that highlight the performance of our
CFIK algorithm in a various working environments, which
include multiple redundant manipulators and dynamic
obstacles. The experiments are initialized by decomposing
the right arm of Baxter robot into a series of spheres to
generate a micromanipulator dynamic model. As shown in
Fig. 7, the micromanipulator dynamic model contains five
spheres from sphere S1 (with frame ξS1) to sphere S5 (with
frame ξS5), and the base coordinate system with frame ξ0

is fixed to the ground. In addition, the seven revolute joints
of the Baxter arm are represented in the following manner:
q = [q1, . . . , q7], which parametrize the rotation about axis
zi (i = 1, . . . , 7) in link coordinate frame ξ i respectively.
The DH parameters of those spheres and the right arm
model are listed in Appendix A, which can be used to
describe the rigid transforms between successive coordinate
systems.

The CFIK algorithm does not take all sphere obstacles
into account, as the constraint factor ψm is always a negative
real number when the distance between two spheres is
sufficiently large. Therefore, a neighboring region NRm

around the current position of sphere Sm is defined and
we only consider the sphere obstacle Ah inside this region.
Furthermore, the size of NRm is determined by the velocity
of each obstacle and the size of time-step τ . Unless
otherwise noted, a neighboring region of NRm = 5rm is
used during the experiments. The choice of τ must be big
enough to make sure that there are no collisions in each
movement step. However, a big value of τ may lead to
oscillations in the joint trajectory. In these experiments, the
time window is τ = 2, which resulted in good solutions.

Then, the desired position and orientation of the end-
effector are used to compute positioning error and use
the VO to define the constraint factor for all spheres in
each manipulator. A new joint configuration is computed
by iterating the Eq. 30. The loop terminates as soon as
the constraints of positioning error and constraint factors

Fig. 7 The general method of combined the micromanipulator
dynamic model and the VO for the right arm of Baxter robot. The 3-D
environment contains two dynamic obstacles A1 and A2. V Oτ

S3|A1
and

V Oτ
S3|A2

represent the velocity obstacle for sphere S3 (orange sphere)
induced by the obstacles A1 and A2 in the time window τ . The green
sphere represents the neighbor region NR3 of sphere S3

J Intell Robot Syst (2021) 101: 30Page 10 of 1830

Table 2 A schematic overview of our approach for finding collision-
free IK solutions

Input:R: List of redundant manipulators, A: List of obstacles,

Ξ :Inverse kinematics query.

loop

for all Rj ∈ R and Ah ∈ A
Construct micromanipulator dynamic models

end for

for all Sj,m ∈ Rj such that Sl,m ∈ Rland j 	= ldo

Construct V Oτ
Sj,m|Sl,m

and V Oτ
Sj,m|Ah

Compute gradient direction γ k∇ψ̂j,m(qk
I)

end for

for all Rj ∈ R do

Compute joint state variation Δqk
j

Compute new joint configuration qk+1
j

Compute positioning error ej

Compute collision-free constraint factor ψj = (ψj,1, . . . ψj,M)

if qk+1
j fulfils stopping criterion in Algorithm 2 then

Apply joint configuration qk+1
j to Rj as a collision-free IK

solution

end if

end for

end loop

are satisfied. The general CFIK algorithm for multiple
redundant manipulators is shown in Table 2.

Our approach is implemented and evaluated in three chal-
lenging scenarios of experimented redundant manipulators
to demonstrate the avoidance behavior. In our experiments,
a path planner of the end-effector is needed, which is out of
the scope of our current formulation. The end-effector paths
using this method are given by user. The joint configura-
tion q0 and end-effector starts from a known position. The
desired Cartesian error is 10−6 m in any of the dimensions,
the step size γ k = 0.5 and the timeout tmax = 5 ms.

A. Dynamics Obstacle (See Figs. 8, 9 and 10) One manip-
ulator (7-DOF) avoid collisions with a human model. The

human model is modeled as a series of spheres. Only
that spheres are considered with respect to collision avoid-
ance. The DH parameters of those spheres are listed in
Appendix B. At this level, the human model takes the role of
a dynamic obstacle, moving toward and against the Baxter
robot with a planned walking path, which can be expressed
by the planar position and orientation r(xH , yH , θH). In
addition, the end-effector of right arm must maintain the
task constraint in the Cartesian space.

B. Dual-Arm Robot Coordination (See Figs. 11 and 12) Two
robot arms (14-DOF) working independently in a shared
environment and do not collide with each other. The left
arm of Baxter robot is modeled as a series of spheres, which
are introduced in the workspace as obstacles that the right
arm has to avoid. At the beginning of the movement, two
arms are in the untucked position. The DH parameters of
sphere obstacles and left arm model are listed in Appendix
C. The joint motion command for the left arm was generated
based on traditional closed-loop IK algorithm, and the joint
motion command for the right arm was generated based on
our CFIK algorithm. The end-effector of both arms must
maintain the task constraint in the Cartesian space. As soon
as the right arm moves three boxes to the new positions on
the table, the left arm can complete its motion.

C. Three Arms Coordination (See Figs. 13 and 14) Three
arms (21-DOF) working independently in a shared envi-
ronment and do not collide with each other. Those three
arms are in the untucked position at the beginning of move-
ment. The Kuka LBR iiwa articulated robot arm has been
considered as obstacles that the Baxter’s two arms have to
avoid. The DH parameters of those spheres and the Kuka
arm model are listed in Appendix D. The joint motion com-
mand for the Kuka arm was generated based on traditional
closed-loop IK algorithm, and the joint motion command
for the Baxter’s two arms was generated based on our CFIK
algorithm. In addition, the end-effector of three arms must
maintain the task constraint in the Cartesian space.

These results show that the proposed algorithm is feasible
for the redundant manipulators to perform tasks with

Fig. 8 a View of the working
environment with a Baxter robot
and a human model. The end-
effector path is also shown. b
The micromanipulator dynamic
model for the right arm of Baxter
robot (orange spheres) and the
human model (red spheres)

J Intell Robot Syst (2021) 101: 30 Page 11 of 18 30

Fig. 9 Simulation of 3-D collision-free motion for picking & plac-
ing use-case by right arm. The right arm is in the untucked position
before the movement. There is a human model walking in the working

environment. Our method can generate collision-free IK solutions for
the right arm and complete the place motion

Fig. 10 Experiment of 3-D collision-free motion for picking & plac-
ing use-case. (a) Paths for right arm joints q1-q7 and human motion
parameters xH , yH and θH . (b-e) The CFIK algorithm has been

successfully performed by the real Baxter robot. The human and the
right arm will meet, and joints q1-q3 diverge significantly to avoid
human

Fig. 11 a View of the simulation
environment with a Baxter
robot. The end-effector paths of
right arm (black curve) and left
arm (blue curve) are also shown.
b The micromanipulator
dynamic model for the left arm
(red spheres) and right arm
(orange spheres)

J Intell Robot Syst (2021) 101: 30Page 12 of 1830

Fig. 12 Experiment of 3-D collision-free motion for moving box use-case of both arms of Baxter robot (b-e). (a) Paths for joints q1-q7 of the left
and right arms. The arms will meet, and right arm joints q2 and q3 diverge significantly to avoid left arm

Fig. 13 a View of the simulation
environment with a Baxter robot
and a Kuka arm. The end-
effector paths of both arms of the
Baxter robot (black curves) and
Kuka arm (blue curve) are also
shown. b The micromanipulator
dynamic model for the Baxter’s
two arms (orange spheres) and
Kuka arm (red spheres)

Fig. 14 Experiment of 3-D collision-free motion for picking & placing use-case of both arms of Baxter robot (b-e). a Paths for joints q1-q7 of
Kuka arm, left arm and right arm. The arms will meet, and left and right arm joints q1-q5 diverge significantly to avoid Kuka arm

J Intell Robot Syst (2021) 101: 30 Page 13 of 18 30

Table 3 A comparison of the
computation time for the six
algorithms tested across
various DOF

Technique DOF e (Position/Rotation, m) Environment Avg Time(ms)

FR-RRT 6 + 2 10−6/10−6 static obstacles ≥ 2.5

TS-RRT 6 + 2 10−4/10−4 static obstacles ≥ 2.5

RGD-RRT 6 + 2 10−5/10−5 static obstacles ≥ 5

PRM 6 / static obstacles < 10

PSO 7 10−6/10−6 dynamic obstacles 2.01

CFIK 7 10−6/10−6 dynamic obstacles < 1.5

collision avoidance in dynamic environments. In these
simulation and physical experiments, there is no collisions
occur during operations. As Fig. 8 shows, consider the right
arm of Baxter robot with seven joints and the task space
constraints with six DOF (i.e., ξ t ∈ R

6). This manipulator
uses the joint q1-q5 to avoid obstacles, i.e., i = 5 in
Eq. 29, as shown in Fig. 10a. Furthermore, all joint angles
are within their specified limit constraints and there is no
sudden activation of each joint, as shown by the joint space
path in Figs. 12a and Fig. 14a.

6.2 Performance Analysis

As introduced in Section 4, the CFIK algorithm uses a
locally optimal collision avoidance scheme, which com-
putes the velocity vector without any collisions for each
sphere independently. If this method produces a valid veloc-
ity vector for each sphere, then this proves by the VO that it
is possible to work in a 3-D workspace among other manip-
ulators and/or moving obstacles. If this method fails, we
assume it is impossible to operate in dynamic environments
and reject this IK solution.

The CFIK algorithm is implemented in C++ based on an
ROS Kinetic Kame. The code runs on a single notebook
CPU i7-7700HQ at 2.81 GHz. The computational time is
a critical variable when multiple redundant manipulators
work cooperatively in a shared workspace with dynamic
obstacles. To compute collision-free IK solutions, some
algorithms, such as RRT [42] and PRM [43], operate by
the randomized motion planning algorithms. Likewise, an
early version of this work using PSO and RVO is presented
in [44]. However, in the case of random selection, these
algorithms make the computational cost grow. Our CFIK
algorithm is a computationally efficient method. The
algorithm creates a gradient of the function ψm(qI) as a
secondary constraint, and projects it to the Newton-based
convergence with the task space and joint limit constraints.
This method is found to be faster than related randomized
motion planning approaches; achieving computational
performance similar to closed-loop IK algorithms with no
avoid collisions. To further demonstrate the efficiency of
our algorithm, Table 3 summarizes the average computation

time of the six algorithms for standard manipulation
chains. Note that our approach can generate collision-
free IK solutions in dynamic environments and can handle
redundant manipulators.

Furthermore, to avoid collisions, the relationship
between the VO and the joint space motion is identified
instead of defining the distance functions for obstacles such
as [45] and [46]. This has been done for the redundant
manipulators with different dynamic environments. To our
knowledge, there is no state-of-the-art IK algorithm that
is capable of the joint space motion planning of multiple
redundant manipulators using the velocity of each sphere in
a shared workspace, which is a huge advantage.

7 Conclusion and FutureWork

In this paper, a new CFIK algorithm for redundant manip-
ulators has been presented. The algorithm can be imple-
mented in real-time for the control of multiple redundant
manipulators in dynamic scenes and is based on an IK solu-
tion that consider task space, joint limit and collision-free
constraints. Moreover, convergence rate and stability anal-
ysis have been discussed to demonstrate the feasibility of
the proposed approach. In simulation and physical experi-
ments, a Baxter robot (each arm has seven DOF) was used
to demonstrate the efficiency of the CFIK algorithm in dif-
ferent dynamic workspaces, which may include the human
worker or other moving robots. The results have shown that
our algorithm requires less computation and is able to com-
pute collision-free, smooth IK solutions for all manipulators
in the workspace.

In future, the research would aim at evaluating the
performance of our method in dynamic environment with
other complex obstacles, that takes into account more
than simply sphere obstacle, and apply them to the
micromanipulator dynamic model formulation. In addition,
our implementation considers only 7-DOF redundant
manipulators, but we would like to adapt the CFIK
algorithm for other kinematic configurations, in particular
snake robots in [14] and hyper-redundant manipulators in
[21] as they have similar kinematic parameters.

J Intell Robot Syst (2021) 101: 30Page 14 of 1830

Acknowledgements This work has been supported by the National
Natural Science Foundation of China [Project Number: 91848101] and
the Foundation for Innovative Research Groups of the National Natural
Science Foundation of China [Grant Number: 51521003].

Supplementary Information The online version contains supplemen-
tary material available at (10.1007/s10846-020-01279-w)

Compliance with Ethical Standards

Conflict of interests The authors declare that they have no conflict of
interest.

Appendix A: DH Parameters
of Micromanipulator Dynamic Model
and Right ArmModel

i/Sm αi−1/αm−1(rad) ai−1/am−1(m) di/dm(m) θi/θm (rad) joint limit(rad) rm(m)

0 0 0 0 −0.7854 / /

1 0 0.83288 0.129626 q1 (−1.7016, +1.7016) /

2 −1.5708 0.069 0.27053 q2 (−2.147, +1.047) /

3 1.5708 0.102 0 q3 + 1.5708 (−3.0541, +3.0541) /

S1 0 0 0 0 / 0.08

S2 0 0 0.128 0 / 0.07

S3 0 0.069 0.134 0 / 0.085

4 −1.5708 0 0 q4 − 1.5708 (−0.05, +2.618) /

5 1.5708 0.10359 0 q5 + 1.5708 (−3.059, +3.059) /

S4 0 0 0 0 / 0.065

S5 0 0 0.16641 0 / 0.065

6 −1.5708 0.01 0.10359 q6 − 1.5708 (−1.5707, +2.094) /

7 1.5708 0 0.115975 q7 + 1.5708 (−3.059, +3.059) /

Appendix B: DH Parameters of the Human
Model

Ah αh−1(rad) ah−1(m) dh(m) θh (rad) rh(m)

A1 0 0 0.7 0 0.1

A2 0 0 −0.25 0 0.08

A3(A6) +(−)1.5708 0 0.2 −(+)1.5708 0.08

A4(A7) 0 0 0.2 0 0.08

A5(A8) 0 0 0.15 0 0.07

J Intell Robot Syst (2021) 101: 30 Page 15 of 18 30

Appendix C: DH Parameters of Sphere
Obstacles and Left ArmModel

i/Ah αi−1/αh−1(rad) ai−1/ah−1(m) di/dh(m) θi/θh (rad) joint limit(rad) rh(m)

0 0 0 0 0.7854 / /

1 0 0.83288 0.129626 q1 (−1.7016, +1.7016) /

2 −1.5708 0.069 0.27053 q2 (−2.147, +1.047) /

3 1.5708 0.102 0 q3 + 1.5708 (−3.0541, +3.0541) /

A1 0 0 0 0 / 0.08

A2 0 0 0.128 0 / 0.07

A3 0 0.069 0.134 0 / 0.085

4 −1.5708 0 0 q4 − 1.5708 (−0.05, +2.618) /

5 1.5708 0.10359 0 q5 + 1.5708 (−3.059, +3.059) /

A4 0 0 0 0 / 0.065

A5 0 0 0.16641 0 / 0.065

A6 0 0.01 0.10359 0 / 0.075

6 −1.5708 0 0 q6 − 1.5708 (−1.5707, +2.094) /

7 1.5708 0 0.115975 q7 + 1.5708 (−3.059, +3.059) /

A7 0 0 0.015 0 / 0.055

A8 0 0 0.124 0 / 0.055

A9 0 0 0.115 0 / 0.055

Appendix D: DH Parameters of Sphere
Obstacles and Kuka ArmModel

i/Ah αi−1/αh−1(rad) ai−1/ah−1(m) di/dh(m) θi/θh (rad) joint limit(rad) rh(m)

1 1.5708 0 0.36 q1 (−2.967, +2.967) /

2 −1.5708 0 0 q2 (−2.094, +2.094) /

A1 0 0 0 0 / 0.08

A2 0 0 0.21 0 / 0.07

3 −1.5708 0 0.21 q3 (−2.967, +2.967) /

4 1.5708 0 0 q4 (−2.094, +2.094) /

A3 0 0 0 0 / 0.075

A4 0 0 0 0.21 / 0.07

5 1.5708 0 0.19 q5 (−2.967, +2.967) /

6 −1.5708 0 0 q6 (−2.094, +2.094) /

A5 0 0 0 0 / 0.075

7 0 0 0.126 q7 (−2.967, +2.967) /

A6 0 0 0 0.02 / 0.065

J Intell Robot Syst (2021) 101: 30Page 16 of 1830

References

1. Ajoudani, A., Zanchettin, A.M., Ivaldi, S., Albu-Schäffer, A.,
Kosuge, K., Khatib, O.: Progress and prospects of the human–
robot collaboration. Auton. Robot. 42(5), 957–975 (2018)

2. Dogar, M., Spielberg, A., Baker, S., Rus, D.: Multi-robot grasp
planning for sequential assembly operations. Auton. Robot. 43(3),
649–664 (2019)

3. Oriolo, G., Mongillo, C.: Motion planning for mobile manip-
ulators along given end-effector paths. In: Proceedings of the
2005 IEEE International Conference on Robotics and Automation,
pp. 2154–2160. IEEE (2005)

4. Yao, Z., Gupta, K.: Path planning with general end-effector
constraints: Using task space to guide configuration space search.
In: 2005 IEEE/RSJ International Conference on Intelligent Robots
and Systems, pp. 1875–1880. IEEE (2005)

5. Stilman, M., Schamburek, J.U., Kuffner, J., Asfour, T.: Manip-
ulation planning among movable obstacles. In: Proceedings
2007 IEEE international conference on robotics and automation,
pp. 3327–3332. IEEE (2007)

6. Chan, T.F., Dubey, R.V.: A weighted least-norm solution based
scheme for avoiding joint limits for redundant joint manipulators.
IEEE Trans. Robot. Autom. 11(2), 286–292 (1995)

7. Assal, S.F., Watanabe, K., Izumi, K.: Neural network-based kine-
matic inversion of industrial redundant robots using cooperative
fuzzy hint for the joint limits avoidance. IEEE/ASME Trans.
Mech. 11(5), 593–603 (2006)

8. Orin, D.E., Schrader, W.W.: Efficient computation of the jacobian
for robot manipulators. Int. J. Robot. Res. 3(4), 66–75 (1984)

9. Ben-Israel, A., Greville, T.N.: Generalized inverses: theory and
applications, vol. 15. Springer Science & Business Media, New
York (2003)

10. Colomé, A., Torras, C.: Closed-loop inverse kinematics for redun-
dant robots: Comparative assessment and two enhancements.
IEEE/ASME Trans. Mech. 20(2), 944–955 (2014)

11. Beeson, P., Ames, B.: Trac-Ik: an open-source library for
improved solving of generic inverse kinematics. In: 2015
IEEE-RAS 15th International Conference on Humanoid Robots
(Humanoids), pp. 928–935. IEEE (2015)

12. Starke, S., Hendrich, N., Krupke, D., Zhang, J.: Evolutionary
multi-objective inverse kinematics on highly articulated and
humanoid robots. In: 2017 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pp. 6959–6966. IEEE
(2017)

13. Sreenivasan, S., Goel, P., Ghosal, A.: A real-time algorithm for
simulation of flexible objects and hyper-redundant manipulators.
Mech. Mach. Theory 45(3), 454–466 (2010)

14. Gong, C., Travers, M.J., Astley, H.C., Li, L., Mendelson, J.R.,
Goldman, D.I., Choset, H.: Kinematic gait synthesis for snake
robots. Int. J. Robot. Res. 35(1-3), 100–113 (2016)

15. Camarillo, D.B., Milne, C.F., Carlson, C.R., Zinn, M.R.,
Salisbury, J.K.: Mechanics modeling of tendon-driven continuum
manipulators. IEEE Trans. Robot. 24(6), 1262–1273 (2008)

16. Bayram, A., Özgören, M.K.: The position control of a spatial
binary hyper redundant manipulator through its inverse kinemat-
ics. Proc. Inst. Mech. Eng. C 227(2), 359–372 (2013)

17. Ivanescu, M., Popescu, N., Popescu, D.: The shape control of
tentacle arms. Robotica 33(3), 684–703 (2015)

18. Nakagaki, K., Follmer, S., Ishii, H.: Lineform: Actuated curve
interfaces for display, interaction, and constraint. In: Proceedings
of the 28th Annual ACM Symposium on User Interface Software
& Technology, pp. 333–339. ACM (2015)

19. Chirikjian, G.S., Burdick, J.W.: A modal approach to hyper-
redundant manipulator kinematics. IEEE Trans. Robot. Autom.
10(3), 343–354 (1994)

20. Shvalb, N., Moshe, B.B., Medina, O.: A real-time motion planning
algorithm for a hyper-redundant set of mechanisms. Robotica
31(8), 1327–1335 (2013)

21. Martı́n, A., Barrientos, A., del Cerro, J.: The natural-ccd algo-
rithm, a novel method to solve the inverse kinematics of hyper-
redundant and soft robots. Soft robotics 5(3), 242–257 (2018)

22. Stilman, M.: Global manipulation planning in robot joint space
with task constraints. IEEE Trans. Robot. 26(3), 576–584 (2010)

23. da Graċa Marcos, M., Machado, J.T., Azevedo-Perdicoúlis, T.P.:
A multi-objective approach for the motion planning of redundant
manipulators. Appl. Soft Comput. 12(2), 589–599 (2012)

24. Manocha, D., Canny, J.F.: Real time inverse kinematics for
general 6r manipulators. In: Proceedings 1992 IEEE International
Conference on Robotics and Automation, pp. 383–389. IEEE
(1992)

25. Shiller, Z., Large, F., Sekhavat, S.: Motion planning in dynamic
environments: Obstacles moving along arbitrary trajectories.
In: Proceedings 2001 ICRA. IEEE International Conference
on Robotics and Automation (Cat. No. 01CH37164), vol. 4,
pp. 3716–3721. IEEE (2001)

26. Kluge, B., Prassler, E.: Reflective navigation: individual behaviors
and group behaviors. In: IEEE International Conference on
Robotics and Automation, 2004. Proceedings. ICRA’04. 2004,
vol. 4, pp. 4172–4177. IEEE (2004)

27. Abe, Y., Yoshiki, M.: Collision avoidance method for multi-
ple autonomous mobile agents by implicit cooperation. In: Pro-
ceedings 2001 IEEE/RSJ International Conference on Intelligent
Robots and Systems. Expanding the Societal Role of Robotics in
the the Next Millennium (Cat. No. 01CH37180), vol. 3, pp. 1207–
1212. IEEE (2001)

28. Van den Berg, J., Lin, M., Manocha, D.: Reciprocal velocity
obstacles for real-time multi-agent navigation. In: 2008 IEEE
International Conference on Robotics and Automation, pp. 1928–
1935. IEEE (2008)

29. Van Den Berg, J., Snape, J., Guy, S.J., Manocha, D.: Reciprocal
collision avoidance with acceleration-velocity obstacles. In: 2011
IEEE International Conference on Robotics and Automation,
pp. 3475–3482. IEEE (2011)

30. Snape, J., Manocha, D.: Navigating multiple simple-airplanes
in 3D workspace. In: 2010 IEEE International Conference on
Robotics and Automation, pp. 3974–3980. IEEE (2010)

31. Alonso-Mora, J., Breitenmoser, A., Rufli, M., Beardsley, P.,
Siegwart, R.: Optimal reciprocal collision avoidance for multiple
non-holonomic robots. In: Distributed Autonomous Robotic
Systems, pp. 203–216. Springer (2013)

32. Lalish, E., Morgansen, K.A.: Distributed reactive collision
avoidance. Auton. Robot. 32(3), 207–226 (2012)

33. Rufli, M., Alonso-Mora, J., Siegwart, R.: Reciprocal collision
avoidance with motion continuity constraints. IEEE Trans. Robot.
29(4), 899–912 (2013)

34. Alonso-Mora, J., Breitenmoser, A., Beardsley, P., Siegwart, R.:
Reciprocal collision avoidance for multiple car-like robots. In:
2012 IEEE International Conference on Robotics and Automation,
pp. 360–366. IEEE (2012)

35. Bareiss, D., Van den Berg, J.: Reciprocal collision avoidance for
robots with linear dynamics using lqr-obstacles. In: 2013 IEEE
International Conference on Robotics and Automation, pp. 3847–
3853. IEEE (2013)

36. Bareiss, D., van den Berg, J.: Generalized reciprocal collision
avoidance. Int. J. Robot. Res. 34(12), 1501–1514 (2015)

37. Khatib, O.: A unified approach for motion and force control of
robot manipulators: the operational space formulation. IEEE J.
Robot. Autom. 3(1), 43–53 (1987)

38. Aristidou, A., Lasenby, J., Chrysanthou, Y., Shamir, A.: Inverse
kinematics techniques in computer graphics: a survey. In:

J Intell Robot Syst (2021) 101: 30 Page 17 of 18 30

Computer Graphics Forum, vol. 37, pp. 35–58. Wiley Online
Library (2018)

39. Shapiro, A., Wardi, Y.: Convergence analysis of gradient descent
stochastic algorithms. J. Optim. Theory Appl. 91(2), 439–454
(1996)

40. Gass, S.I., Fu, M.C. (eds.): Lipschitz Continuous. Springer,
Boston (2013)

41. Antonelli, G.: Stability analysis for prioritized closed-loop inverse
kinematic algorithms for redundant robotic systems. IEEE Trans.
Robot. 25(5), 985–994 (2009)

42. LaValle, S.M.: Rapidly-Exploring Random Trees: a New Tool for
Path Planning. Technical report, Iowa State University (1998)

43. Kavraki, L.E., Svestka, P., Latombe, J.C., Overmars, M.H.:
Probabilistic roadmaps for path planning in high-dimensional
configuration spaces. IEEE Trans. Robot. Autom. 12(4), 566–580
(1996)

44. Zhao, L., Zhao, J., Liu, H., Manocha, D.: Collision-free kinematics
for redundant manipulators in dynamic scenes using optimal
reciprocal velocity obstacles. arXiv:1811.00600 (2018)

45. Khatib, O., Sentis, L., Park, J., Warren, J.: Whole-body dynamic
behavior and control of human-like robots. Int. J. Human. Robot.
1(01), 29–43 (2004)

46. Mu, Z., Xu, W., Liang, B.: Avoidance of multiple moving
obstacles during active debris removal using a redundant space
manipulator. Int. J. Control Autom. Syst. 15(2), 815–826 (2017)

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Liangliang Zhao was born in 1987. He is currently a Ph.D.
candidate in State Key Laboratory of Robotics and System at Harbin
Institute of Technology in China. He received his B.S. (2010) and
M.S. (2015) degrees in Mechanical Engineering and Automation
at Northeastern University in China. Previously (2018–2019), he
was a Visiting Student at the University of Maryland at College
Park, USA. His research interests include robotics, motion planning
of redundant/hyper-redundant manipulator in dynamic workspace.
E-mail: zhaoliangliang0619@126.com.

Jingdong Zhao received his B.S., M.S. and Ph.D. degrees in
Mechanical Engineering, in 2000, 2002 and 2006, respectively, all
from Harbin Institute of Technology (HIT) in China. Now he is
a professor at the school of Mechanic Engineering in HIT. His
research projects include dexterous robot hands, space robotics
and control of redundant/hyper-redundant manipulator, etc. E-mail:
zhaojingdong@hit.edu.cn.

Hong Liu received his B.S. (1986) and Ph.D. degrees (1993) from the
Harbin Institute of Technology (HIT) in China. During 1991–1993 he
worked as a joint-Ph.D. candidate in the German Aerospace Center
(DLR) in Germany. Since 1993 he has been a Research Fellow in
this institute. He is currently a professor in HIT. His research projects
include the development of a dexterous robot hand, space manipulator,
etc. E-mail: hong.liu@hit.edu.cn.

J Intell Robot Syst (2021) 101: 30Page 18 of 1830

	Collision-Free IK for Multiple Manipulators...
	Abstract
	Introduction
	Previous Work
	Specifying Constraints
	Mathematical Statement
	Task Space and Joint Limit Constraints
	Collision-free Constraints

	Algorithmic Solution
	Relating IK Solutions to Task Space and Joint Limit Constraints
	Relating IK Solutions to Collision-free Constraints
	CFIK Algorithm
	Avoiding Collisions with Static Obstacles

	Convergence Rate and Stability Analysis
	Convergence Rate
	Stability Analysis

	Results
	Implementation and Performance
	A. Dynamics Obstacle
	B. Dual-Arm Robot Coordination
	C. Three Arms Coordination

	Performance Analysis

	Conclusion and Future Work
	Compliance with Ethical Standards
	Appendix A: DH Parameters of Micromanipulator Dynamic Model and Right Arm Model
	Appendix B: DH Parameters of the Human Model
	Appendix B: DH Parameters of the Human Model
	Appendix C: DH Parameters of Sphere Obstacles and Left Arm Model
	Appendix C: DH Parameters of Sphere Obstacles and Left Arm Model
	Appendix D: DH Parameters of Sphere Obstacles and Kuka Arm Model
	Appendix D: DH Parameters of Sphere Obstacles and Kuka Arm Model
	References

