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Abstract
Robot localisation is predominantly resolved via parametric or non-parametric probabilistic methods. The particle filter,
the most common non-parametric approach, is a Monte Carlo Localisation (MCL) method that is extensively used in robot
localisation, as it can represent arbitrary probabilistic distributions, in contrast to Kalman filters, which is the standard
parametric representation. In particle filters, a weight is internally assigned to each particle, and this weight serves as an
indicator of a particle’s estimation certainty. Their output, the tracked object’s pose estimate, is implicitly assumed to be the
weighted average pose of all particles; however, we argue that disregarding low-weight particles from this averaging process
may yield an increase in accuracy. Furthermore, we argue that scan-matching, treated as a prosthesis of (or, put differently,
fit in tandem with) a particle filter, can also lead to better accuracy. Moreover, we study the effect of feeding back this
improved estimate to MCL, and introduce a feedback method that outperforms current state-of-the-art feedback approaches
in accuracy and robustness, while alleviating their drawbacks. In the process of formulating these hypotheses we construct a
localisation pipeline that admits configurations that are a superset of state-of-the-art configurations of tandem combinations
of particle filters with scan-matching. The above hypotheses are tested in two simulated environments and results support
our argumentation.

Keywords Robot Localisation · Particle Filters · Scan-matching

1 Introduction

Mobile robot localisation is a well-studied field in robotics,
and several diverse approaches to localisation have been
proposed in the past. Probabilistic methods [1] have been
applied to the task of localisation and proved their success

� Alexandros Filotheou
alexandros.filotheou@issel.ee.auth.gr

Emmanouil Tsardoulias
etsardou@eng.auth.gr

Antonis Dimitriou
antodimi@auth.gr

Andreas Symeonidis
asymeon@eng.auth.gr

Loukas Petrou
loukas@eng.auth.gr

1 Department of Electrical and Computer Engineering, Aristotle
University of Thessaloniki, Thessaloniki, 54124, Greece

and robustness to sensor noise, map discrepancies with
regard to a robot’s operating environment, motion model
discrepancies with regard to the true kinematics of the robot,
and pose uncertainty. As for sensors, laser range finders are
popular devices employed in robot localisation due to their
measurement accuracy, real-time operability, and virtually
no need for preprocessing.

Particle filters [2] comprise a probabilistic method for
tackling the robot localisation problem, arising from the
need for a robot to be more flexible in its pose and
orientation belief. Instead of representing a robot’s pose
probability distribution within a map in a parametric form−
similar to the widely-employed Kalman filter [3] −, particle
filters represent this distribution by a set of samples. Their
ability to incorporate motion commands and fuse them
with measurements from environmental perception sensors,
coupled with their above-mentioned flexibility, make them
ideal for solving not only the pose tracking problem, but
also the problem of global localisation.

Anotherway of estimating a robot’s pose is scan-matching,
a technique used for obtaining the relative translation and
rotation between sensor poses, having the previous and the
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current measurements as inputs. In our context, these
measurements are derived from a 2D laser range finder, and
the transformation between two sensor poses is essentially
the relative motion between robot poses. Scan-matching
techniques have been popular with the robotics community,
as they have been used in a range of applications as a form
of ameliorated odometry in simultaneous localisation and
mapping [4–6], local map construction [7–9], or people-
tracking systems [10].

Since the pose-output of a particle filter is an estimate
of its true pose and scan-matching can be used to infer the
relative motion between robot poses, the two have been used
in tandem so that the latter improves the former’s estimate
[13, 14]: range-finder measurements are used to match
virtual range measurements taken from the estimated robot
pose within the map of the robot’s operating environment.
The result of this operation may or may not be fed
back to the particle filter, according to the implementation
at hand.

Within the context of work, we use MCL in order to
track the pose of a mobile robot over time in 2D, combined
in tandem with scan-matching in order to further reduce
the localisation estimate error. Scan-matching is performed
after the particle filter has estimated the current robot pose,
selected as the weight-averaged pose of a subset of all
available particles, and used only for this purpose (i.e. it
is not used to ameliorate the odometry or for any other
purpose).

Whereas similar pose selection methods [11, 12] and
tandem combinations of particle filters with scan-matching
[13–15] have been explored and used in the past, our
approach differs with respect to two aspects, and therefore
our contribution is two-fold:

• Within the context of extracting the collective pose
estimate from the set of particles from a particle
filter: instead of taking its pose output to be the
center of mass of the whole particle population, we
study the effect that weight-averaging the pose of
high-weight particles (equivalent to disregarding low-
weight particles) from the total particle set has on the
accuracy of the filter’s estimate. This is motivated by
the fact that a particle’s weight is the indicator of a
particle’s pose estimate certainty. Our findings support
our argumentation, namely that accuracy increases
when low-weight particles are not considered during
weight-averaging. However, and, seemingly counter-
intuitively, this hypothesis collapses when the particle
selection set features only one particle.

• Within the context of feeding back the (improved)
pose estimate that is the result of the application of
the roto-translation extracted through scan-matching a
range scan from the robot’s true pose and a virtual

scan taken from the robot’s estimated pose within the
map of its environment to the filter’s estimate: we
study the effect that feeding back this improved pose
estimate into the particle population as a collection of
particles has, and juxtapose it against current state-
of-the-art feedback methods. Our findings support our
argumentation, namely that this method of feedback
results in increased accuracy compared to all state-of-
the-art feedback methods and compared also to the
filter’s performance when feedback is absent, and in
increased robustness compared to one state-of-the-art
feedback method.

The rest of this paper is structured as follows: Section 2
covers a brief review of the fundamentals of the proposed
system, that is, MCL with Kullback-Leibler Divergence
(KLD) sampling and scan-matching in two dimensions.
Section 3 offers a comprehensive review of scan-matching
techniques and their applications in assisting robot local-
isation. Section 4 introduces and justifies the method of
selecting heavy-weight particles so as to obtain a better
weight-averaged estimate from MCL. Section 5 describes
how scan-matching can further assist localisation, if fitted
in tandem with a localisation method. Section 6 reviews the
state-of-the-art forms of feedback in tandem combinations
of particle filters and scan-matching, and then introduces
and justifies a method which bypasses their shortcomings.
In Section 7 we formulate each one of our three claims as
they were argued and justified in Sections 4, 5, and 6 in the
form of hypotheses, test them by conducting simulations in
two discrete environments, and present the results. Section 8
features commentary on the results, and, finally, Section 9
concludes this study.

2 Preliminaries

This section offers a brief review of the fundamental
components our approach utilises towards improving the
performance of particle filters via scan-matching: MCL
with KLD sampling is reviewed in Section 2.1, while scan-
matching in two dimensions via range scan sensors is
reviewed in Section 2.2.

Before moving on to the components description, it is
useful to state a classification of the localisation problems,
based on their difficulty. The first and easiest problem to
solve is pose-tracking, i.e. the robot’s initial pose is a priori
known and the algorithm tries to maintain a good hypothesis
about the robot’s pose while moving in the environment.
The second problem is global localisation, where the initial
robot’s pose is unknown, and thus the algorithm has to first
identify the pose and then perform pose-tracking. Finally,
the third and most difficult problem is that of the kidnapped
robot, where at some point in time of its operation the robot
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is “kidnapped” − teleported elsewhere from where it was.
While in global localisation the robot knows that it doesn’t
know where it is, in this problem the robot might think it
knows where it is, while it actually doesn’t; therefore it must
first detect and understand this fact, and then reinitiate the
global localisation algorithm.

2.1 Monte Carlo Localisation with KLD Sampling

Probabilistic approaches to the problem of robot localisation
have increased accuracy and robustness compared to non-
probabilistic approaches, but, depending on their nature,
suffer from or solve various problems in pose estimation.
For instance, Kalman filters [3] are known to be robust
and accurate in the pose-tracking problem (the pose is its
location and bearing within a given map), but lack the ability
to represent ambiguities and to localise the robot in the case
of an unknown initial pose (global localisation or kidnapped
robot problems). The nature of MCL techniques [2], on
the other hand, allows them to represent the uncertainty
in the robot’s pose by maintaining a set of hypotheses
(called particles) not bound to a unimodal probability
density function as in Kalman filters. Among others, this
representation allowsMCL approaches to globally localise a
robot and keep track of pose ambiguities until being able to
resolve them, by virtue of being able to represent arbitrarily
complex probability densities.

Particle filters recursively estimate the posterior of a
robot’s pose as follows:

p(xt |z1:t , u0,t−1, M) ∝ (1)

p(zt |xt )

∫

x′
p(xt |x′, ut−1) · p(x′|z1:t−1, u0:t−2, M)dx′

Here, the pose of the robot (also called the state) at
time t is denoted by xt ; u0:t−1 is the sequence of motion
commands executed by the robot, and z0:t is the sequence
of observations made by the robot, typically obtained
in contemporary robotic practices by 2D range scanners,
cameras, sonars or other sensors; M is the map representing
the environment in which the robot moves. The motion
model p(xt |xt−1, ut−1) denotes the probability that, at time
t , the robot ends up in state xt given that it executes
the motion command ut−1 while being in state xt−1 at
time t − 1. Typically, in wheeled mobile robots, motion
commands are obtained via encoder sensors, and commonly
referred to as odometry. The observation model p(zt |xt , M)

denotes the likelihood of making the observation zt while
posed at xt . Since particle filters maintain a set of different
hypotheses as to the state of the robot, each is weighed
according to the likelihood that the robot measured zt under
a particle’s specific pose hypothesis xi

t , where i denotes the
index of particle i.

In vanilla MCL, the number of particles is fixed. To
avoid divergence due to particle depletion, a large number
of samples is needed so that the robot can successfully
address both the global localisation and the position tracking
problems [1]. This can be a severe waste of computational
resources after the initial stages of localisation. KLD
sampling [16] is usually employed in order for the filter to
adapt the number of particles needed over time, by limiting
the error introduced by the sample-based representation.
The error is computed based on the Kullback-Leibler
divergence between the sampled distribution and a discrete
distribution computed over the whole map M . For instance,
at the initial stages of localisation (when the filter is
tasked to globally localise the robot) new particles are
generated with larger spread, so as to cover a larger
hypothesis space in M . By contrast, after the robot has
successfully localised itself and the error between the
above two distributions has decreased, the particle filter
can maintain a smaller set of particles for tracking the
robot’s pose.

2.2 Scan-Matching in 2D

Scan-matching via range sensors is usually at the heart
of most mapping, localisation and navigation systems, due
to its ability to extract the relation between poses where
distinct scans were taken. Consider a mobile robot equipped
with a 2D range scan sensor, capturing two scans, z and z′,
the first one while the sensor is posed at x(x, y, θ), and the
second one while posed at x′(x′, y′, θ ′), in some reference
frame. These scans capture a horizontal cross-section of
the environment the robot operates in. Provided that some
parts of the environment are visible from both x and x′, it
is generally possible to find a rigid-body transformation q

(also called a roto-translation) that projects the end-points
of z′ so that they align with those of z. This process of
matching scans z and z′ is called scan-matching (here in
two dimensions). The solution q to a 2D scan-matching
problem is comprised of two translational components, �x

and �y, and one rotational component, �θ . This solution
corresponds to the exact reverse motion of the robot as it
travelled from x to x′, or, mathematically: x = R(�θ) ·
x′ + [�x, �y]�, where R(·) is the rotation matrix operator
in two dimensions. Figure 1 depicts two robot states x and
x′ in a rectangular environment, their corresponding range
scans and the translational component of the roto-translation
solution q.

The operation of scan-matching (either in 2D, where
its inputs are two range-scans, or in 3D, where its inputs
are two 3D point-clouds) is predominantly used in robotics
in inferring or correcting a robot’s odometry. However, in
practice, the application of q to x does not yield exactly x′,
due to (a) the presence of sensor noise in the input, (b) the
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Fig. 1 The robot is initially posed at time t = t0 at x(x, y, θ),
and captures a range scan z. Then, at time t1 > t0, it is posed at
x′(x′, y′, θ ′), from where it captures a second range scan z′. Scan-
matching between z (the reference scan) and z′ (the input, or “data”
scan) produces the rigid-body transform q(�x, �y, �θ). Information
pertaining to the first scan is denoted with red, while that pertaining
to the second with blue. The red and blue arrows denote the robot’s
pose and orientation. Dashed lines depict the angular range of the
scans, while dotted lines depict the parts of the environment that are
visible by each scan. The colour orange is used to denote parts of the
environment that are visible from both poses. The green vector depicts
the translational part of q, the result of scan-matching z and z′

fact that a scan-matcher is not necessarily a perfect operator,
and (c) the fact that a scan-matcher usually requires the
tuning of several parameters, chiefs among which are the
those that govern the rejection of outliers and the handling
of NaN values.

For the exact mathematical expressions of the problem of
2D scan matching, and the more general problem of point
registration in 3D, we refer to Censi’s [17] and Besl and
McKay’s [18] works, respectively.

3 Literature Review

This section provides a broad review of scan-matching
techniques formulated over the years (Section 3.1) and
a selection of relevant applications in robot localisation
(Section 3.2).

3.1 Scan-MatchingMethods

Scan-matching emerged from the needs of the computer
vision community with the seminal article of Besl and

McKay [18], where they introduced ICP − the Iterative
Closest Point algorithm, a method that determines the full
six-degree spatial transformation that best aligns a free-
form set of 3D points to a reference free-form point-set,
according to the mean-square distance metric. In ICP, each
query scan point is associated with the reference scan by
identifying its closest reference scan point by means of
the Euclidean distance. Once this set of correspondences is
identified, ICP computes the transformation that minimises
the mean-square error between the paired points. In its last
step, it applies this transformation to the query scan points
and updates the mean-square error. This process is iterated
until the change in mean-square error falls below a preset
threshold.

Lu and Milios were the first to formulate and employ
scan-matching methods in order to estimate the relative
translation and rotation between two robot poses by utilising
2D range sensor measurements. Although a range scan
represents a 2D shape (a contour of the visible world
from the robot’s perspective), this shape is represented by
noisy discrete points instead of a high-quality model, which
makes reliably defining or extracting features difficult and
possibly inaccurate [19]. In [20], two distinct algorithms
are formulated that handle sensor noise and do not
rely on distinguishable features in the robot’s operating
environment (such as lines or corners), thus avoiding the
process of feature extraction and correspondence. The first
method, dubbed IMPR (Iterative Matching Range to Point),
considers the rotational and translational components
separately, alternately fixing one and optimising the other.
It is formulated as searching over a distance function
to estimate the relative rotation between the input scans
and using a least-squares procedure to solve for the
relative translation. The second method, dubbed IDC
(Iterative Dual Correspondence), yields significantly more
accurate estimates of rotation than IMPR, and is based
on iterative least-squares solutions, using point-to-point
correspondences, similar to the ICP algorithm. Essentially,
IDC combines ICP and IMPR by using ICP to calculate the
translation between the two scans, and IMPR to calculate
their relative rotation.

The authors of [21] were the first to extend the inclusion
of uncertainty sources by developing models that account
for the effects of measurement noise, sensor incidence
angle and correspondence error between the environment’s
sensed boundary points. While they do not account for the
uncertainty of the range sensor location, they incorporate
the robot’s odometry. A weighted range sensor matching
algorithm is introduced to estimate a robot’s displacement
between the configurations where two-dimensional range
scans are obtained, outperforming non-weighted methods,
such as the algorithms of [20]. In addition, by computing the
actual displacements’ covariance, the weighted matching
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algorithm provides the basis for optimal fusion of these
estimates with odometric and/or inertial measurements,
thus making it a candidate for supporting localisation and
mapping tasks.

In [22] a robustified extension of ICP is introduced,
dubbed TrICP (Trimmed ICP). This algorithm lifts ICP’s
assumption on the equality of the two input scans’ sizes
and, assuming knowledge of (or the ability to obtain) the
minimum number of guaranteed correspondences between
the two sets, it makes extensive use of the Least Trimmed
Squares method [23] in order to enhance ICP’s loop of
execution. ICP is found to be a special case of TrICP if both
sets have the same size and all points from both sets can be
paired with one-another.

Biber and Strasser introduced the Normal Distributions
Transform (NDT) in [24], in an effort to support the task
of robot map-building. Assuming 2D range scans as inputs,
NDT regularly subdivides the 2D plane, similar to an
occupancy grid; but where the occupancy grid represents
the probability of a cell being occupied, NDT represents
the probability of measuring a sample point of a range
scan for each position within the cell itself. The result of
the transform is a piecewise continuous and differentiable
probability density that can be used to match another scan,
here using Newton’s algorithm [25]. The advantages of this
way of representation are that (a) all involved derivatives
can be analytically, quickly and correctly calculated, and,
most importantly, (b) that no explicit correspondences
(either between features or points) between any two scans
have to be established, thereby reducing the degree to
which all scan-matching methods are prone to error. The
relative translation and rotation between an input and a
reference scan are iteratively computed by maximising
(via performing one step of Newton’s algorithm) a score
function, being the sum of evaluation of all distributions of
the input scan mapped to the frame of reference of the first
scan, based on an initial estimation of them (for example
taken from odometric readings).

Scan-matching for global robot localisation has been
explored in [26]. Assuming that a robot’s operating
environment is structured and that line segments are
prevalent in it, the authors’ algorithm, dubbed CLS
(Complete Line Segments), matches complete line segments
extracted from input range scans to complete line segments
extracted from the map representing the robot’s operating
environment, thus providing an accurate way of extracting
the robot’s global position in the map.

In [27], the authors extend the applicability of scan-
matching to global and local localisation (position tracking).
By transferring the problem of scan-matching to the Hough
domain, they exploit several of its properties: namely that
no information is lost in the process and that invariance
allows them to decouple the problem into initially finding

the orientation error, followed by the translation error.
The HSM (Hough Scan Matching) algorithm is a global,
multi-modal, non-iterative scan-matcher that can operate in
unstructured environments. Contrary to CLS, HSM does
not rely on features’ extraction, but matches dense data,
i.e. range scan measurements that can be interpreted as
distributions of features in a different convenient parameter
space, allowing HSM to match non-linear surfaces while
making the process robust to sensor noise.

In [28], the authors present a probabilistic method
for matching 2D range scans obtained in unstructured
environments. While their algorithm, pIC (probabilistic
Iterative Correspondence), is designed to handle the input
sensor’s noise, in contrast to [21], it is also able to
handle the range sensor pose uncertainty. pIC follows a
two-step process, whereby it probabilistically identifies
correspondences between two input scans and then it
simultaneously captures their relative translation and
rotation. Experiments against ICP and IDC indicate a faster
convergence in the task of localisation, while improving
on ICP and, in the task of mapping, it is shown that
pIC outperforms both in terms of robustness, accuracy and
convergence.

Contrary to the aforementioned methods, the authors
of [29] advocate that it is advantageous for a matching
algorithm to operate in the laser scan’s native polar
coordinate system. Their method, Polar Scan Matching
(PSM), belongs to the family of point-to-point matching
approaches. It avoids the search of point associations by
matching similar bearing points, by alternating between
scan projection followed by translation estimation and
scan projection followed by orientation estimation. In
experiments, PSM is shown to be computationally faster
than ICP, both in terms of iterations and processing time, as
well as in terms of accuracy.

A new distance function is introduced in [30], suitable for
robot poses in the (x, y, θ) space: the distance between two
poses is the smallest rigid body transformation that leads
one pose to the other. This distance measure is employed
in both steps of their algorithm, dubbed MB-ICP (Metric-
Based Iterative Closest Point): points from an input 2D
range scan are initially matched to those of a reference
scan, and then the relative translation and rotation between
the two scans is concurrently computed, thanks to the
distance measure’s incorporation of displacement in terms
of spatial and angular distance, by iteratively minimising
the least-square error of this new measure with respect to
matched points. With this formulation, the authors are able
to improve on IDC in terms of robustness, convergence
speed and precision.

Censi, motivated by the fact that reasonable correspon-
dences between the two input 2D range scans may not exist
− since the range sensor sparsely samples the environment
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and hence different scans may sample different parts of it
−, instead of using a point-to-point metric for distance, uses
a point-to-line one in [17], where PL-ICP (Point to Line
Iterative Closest Point) is introduced. The upside of using
a point-to-line distance metric is that a closed form for the
minimisation of this metric can be found, thereby increasing
the accuracy and speed of convergence of matching. Indeed,
the resulting algorithm converges quadratically (whereas
ICP converges linearly) and in a finite number of steps. PL-
ICP is compared against ICP, IDC andMB-ICP and is found
to be superior in accuracy, number of iterations required
to converge (more than three times as low), and execution
time (more than 40 times as low). The intuitive explana-
tion behind this increase in accuracy is that the point-to-line
metric approximates the real surface distance better than
the point-to-point metric. However, especially opposed to
MB-ICP, PL-ICP is susceptible to large initial displacement
errors and, in particular, in large angular errors.

Olson [31] advocates that modern computing machinery
is computationally fast enough for scan-matching methods
to move on from heuristic methods to more exact ones.
Indeed, the bulk of scan-matching methods use imperfect
and susceptible to initial weak priors heuristics to quickly
compute the optimum alignment of two input scans, rather
than focus on quality first and then execution speed. He
argues that scan-matching is rarely convex when viewed
as an optimisation problem, with the surface of the cost
function involved having many local minima, thus making
a local optimiser susceptible to being trapped therein, while
making it harder to locate its global minimum. In [31]
a probabilistic scan-matching algorithm is formulated that
produces higher-quality results at the cost of additional
computation time, although this method is able to run in
real-time. Rather than trusting a local search algorithm to
find the global maximum (the rigid-body transformation
that maximises the probability of having observed the input
2D scan), the proposed algorithm performs a search over
the entire space of plausible rigid-body transformations.
This region is derived from a prior which in turn can
be derived from odometric measurements. The correlation-
based method presented is shown to be very accurate and
robust to uncertainty in the sensor’s location.

Perimeter-based polar scan matching (PB-PSM) [32]
is a technique based on [29] that favors matches with
a larger perimeter overlap between the two input scans,
while using a robust cost minimisation process, namely an
adaptive direct search method, made possible due to a linear
complexity data association technique. Contrary to other
methods, an initial guess is not required as input, although,
if one is provided, it results in increase of robustness and
decrease of computational requirements. The input scans are
first filtered, then searched for data associations, and finally
a cost function is built from the associated point pairs. The

cost is proportional to the overlap between the scans and the
best solution is found by minimising the cost using a form of
exhaustive search. The minimisation process is performed
for rotation first, followed by translation, and the process is
iterated until adequate convergence is achieved.

Finally, the authors of [33] developed a method to
extract the roto-translation between two input range scans
by building a correlation function that reflects the degree
of their alignment according to some argument roto-
translation. The latter is naturally extracted by maximising
the said function. Their method has low computational
requirements and is targeted at the embedded low-
power devices typically found in mobile robot platforms.
Compared to ICP, it is approximately 10 times faster,
and it has a wider operating range; however, the obtained
transformation vectors suffer from a relatively rough
resolution and slightly higher relative errors.

3.2 Scan-Matching in Robot Localisation

A localisation method based on 2D range scan matching
is described in [34], where a simple stochastic search
algorithm is employed to correct the robot’s pose due to
its inevitable odometric drift. This auxiliary localisation
behaviour is activated whenever an error measure is found
to be above a preset threshold. This error measure is in
turn based on the relative deviation in detected distances
between rays of the robot-mounted range scan and a virtual
scan − essentially the output of ray-casting on the map
of the robot’s operating environment from the estimated
laser sensor’s pose across the same number of rays as those
of the physical range sensor. To avoid having to correct
for the motion of the robot while scan-matching, the robot
is assumed to be standing still for the whole duration of
its pose correction. Therefore, whenever the error measure
is found to be above its preset threshold, the algorithm
halts the robot’s motion, and picks a random pose in the
neighbourhood of its estimated pose. It then takes a virtual
range scan from that pose, and computes the new error.
If the error is lower than the one found for the previous
estimated pose, a new iteration starts, this time centered
around the newly found pose; if not, the algorithm keeps
guessing poses until it finds one whose error is lower than
the previous one. The final pose is then taken as the true
pose of the robot, allowing a correction of the odometry.

The authors of [35] use scan-matching to improve
the solution of the global localisation problem. For
identifying the robot’s global pose, and assuming that the
robot’s environment is structured and without any sort of
symmetries, they employ HSM [27] to obtain the robot’s
heading by matching the lines in the map of the environment
with the lines from the 2D range scan taken at the robot’s
initial pose. Having found the robot’s orientation, they
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estimate the robot’s location by calculating the likelihood
that each location on the map’s grid produced the input laser
scan using the beam endpoint model [1], and extract the
one with the maximum probability. As for pose tracking,
just like in [36], they replace the robot’s odometry − due
to its noisy nature and the particle filter’s need of large
particle population to adequately sample from the proposal
distribution (which is based on odometric readings) − with
motion estimates extracted from consecutive range scans
using ICP, due to their range sensor’s superior accuracy and
resolution compared to odometry.

Focusing on industrial applications of mobile robotics,
the authors of [15] achieve millimeter accuracy at prede-
fined taught-in locations using a combination of particle
filters [2], KLD sampling [16] and scan-matching. They
argue that the limited number of particles typically used
in particle filters and the relatively coarse resolution of the
occupancy grid map used to represent a robot’s operating
environment results in pose estimates that do not satisfy the
needs of industrial applications and, in order to improve
them at specific a priori known locations, they store local
range scan measurements as reference observations in the
map, and use these at runtime for scan-matching. This
method, contrary to [34], has the advantage of not being
limited by the map’s limited fidelity and resolution. They
use Censi’s PL-ICP [17] to match the scans obtained at
runtime to the reference scans, and MCL’s estimate as its
initial guess input. The whole localisation regime operates
in open-loop, meaning that the result of scan-matching is
not integrated or fed-back in any way to MCL.

Scan-matching has been also employed in appearance-
based navigation tasks [37, 38], which do not necessarily
need to rely on a map of the environment and can directly
operate in the space of sensor data. In [39], the authors use
PL-ICP to perform localisation relative to a pre-recorded
taught trajectory, represented as a sequence of anchor
points, consisting of raw odometry readings and 2D range
data. Bypassing the limited fidelity and resolution of a map
of the environment, they also achieve millimeter accuracy,
but, contrary to [15], across precomputed anchor points on
the taught-in trajectory, outperforming MCL in the task of
teach-and-repeat.

In [13], the authors make use of a pipeline scheme,
combining MCL, KLD, PL-ICP and the concept of virtual
scanning similarly to [34]: every time the particle filter
outputs its estimate of the robot’s pose, a virtual 2D range
map scan is taken from that pose and fed to PL-ICP
together with the latest real 2D range scan. The roto-
translation of the former with regard to the latter is applied
to the pose estimated by MCL, and this pose is in turn
used to re-initialise MCL, therefore forming a closed loop.
Although this form of loop-closure is very strict, as any
significant error in scan-matching will result in severe error

in pose estimation, the authors do not report such errors
arising, and record a mean location error with a 2-norm
around 1.6 cm and a mean orientation error of 0.13◦. This
localisation regime is evaluated in industrial settings and
its performance is rigorously and repeatedly evaluated at
specific and predetermined locations.

The authors of [14] employ a similar pipeline: they use
a 2D range scan matching method to align a virtual map
scan measurement to a physical range sensor measurement
using the Gauss-Newton method during their optimisation
of scan-alignment, but do so layer-by-layer in increasing
map resolution. The resulting improved pose is fed-back to
MCL, not as its initial condition this time, but as a new
particle in its population. They experimentally evaluated
their method with a real robot and show that their method is
able to achieve a mean location error with a 2-norm around
1.1 cm and a mean orientation error of 1.1◦ throughout the
robot’s navigation.

4 Pose Selection in Particle Filters

Assuming a mobile robot operating in the 2D plane, particle
filters maintain the estimate of a robot’s pose at every
time step t , x̂t (x, y, θ), within a map M , in the form of
a set of “particles”, i.e. randomly drawn samples from the
probability distribution p(xt |zt , M), where zt is a vector of
observations, sensed at time t by the robot through the use of
its sensor(s), which, for simplification reasons, is comprised
solely of one 2D range scanner. The representation of the
distribution p(xt |zt , M) by a set of samples is due to the
essential duality between the former and the latter [40].

This quality of particle filters allows them to be able
to represent multi-modal distributions − a precondition for
global localisation − but, by the same token, providing
a definitive answer to the question of combining all
possible hypotheses (each particle expresses a discrete
hypothesis about the robot’s state within M) and computing
a unified estimate of the robot’s pose is made ambiguous:
in Kalman filters for instance, which are strictly unimodal
estimators, by contrast, the filter’s mean estimate of the
pose vector and covariance matrix suffice to compute the
estimate of xt [3], whereas in particle filters there is no
single closed-form solution to this problem. The prevailing
approach to computing the estimated pose and its variance is
implicit, and it assumes identifying within the distribution of
particles the mode with the highest total weight, calculating
its center of mass, and then calculating the variance around
it. In the case where the estimate has converged and
the distribution has become unimodal, this approach is
equivalent to averaging all particles’ estimates according to
their individual weight.

The literature on extracting or surmising the final pose
off of a particle filter based on some particular particle

931J Intell Robot Syst (2020) 100:925–944



characteristics is rather thin: [11] and [12] focus on
humanoid robots in the context of robotic soccer; first, at
time t they identify the particle within certain translational
and rotational distance bounds to the estimate of the
pose at time t − 1 with the highest weight. The authors
perform selection in this fashion in order to mitigate pose
discontinuity. Then, if the weight of the cluster of the
identified particles is not small, the end pose is calculated
as the centroid of all particles within a preset radius of this
particle; however, if it is “small”, only the particle with the
highest weight is reported. In what follows we demonstrate
that this latter decision, while intuitive, is actually not wise,
and therefore not a viable candidate for extension to other
conditions and situations other than in the context of these
two works.

In particle filters, each particle is associated with an
importance factor, or weight. The weightwi

t of a particle i at
time t quantifies a robot’s probability of having observed the
actual measurements zt from that particle’s estimated pose
x̂

i
t (xi, yi, θi). This means that, given a map M of fidelity

to the robot’s operating environment, the more accurate the
estimate of the robot’s pose is, the more close x̂

i
t (xi, yi, θi)

is to the robot’s true pose xt (x, y, θ), and therefore the
higher the probability that the actual measurements zt

and the predicted measurements ẑi
t agree with each other

is. Therefore, in theory, a direct disproportionality exists
between the estimate error (the deviation of the estimated
pose from its true value) of a particle and the value of its
weight: the lower its pose estimation error, the higher its
weight, and vice-versa.

This final inference, juxtaposed against the dominant
approach in inferring the filter’s estimate, served as our
motivation behind exploring pose-extraction methods other
than the prevailing one. Theoretically then, we would expect
that selecting high-weighted particles (which is equivalent
to discarding low-weight particles − particles whose pose
estimate explains measurements zt in a more unsatisfactory
manner compared to other particles in the population) for
calculating the compound estimate of the filter, would
result in better pose estimates, that is, pose estimates closer
to the true value of the robot’s pose at every time step.
Since the weight of a particle is a defined, quantifiable
and definitive measure of alignment of sensor inputs and
expected sensor inputs conditioned on the particle’s pose
estimate, and value is bestowed upon a particle’s weight
in a proportional manner, all selection methods we shall
cover are weight-based methods. We confine our selection
methods to weight-based approaches since in the context of
particle filters the weight of a particle is the sole indicator
of its quality of estimate.

Let us denote by P t the entirety of the population
of particles at time t . Then P t ≡ {(x̂i

t , w
i
t )}, i =

0, 1, . . . , |P t | − 1, where x̂
i
t is the estimate of the i-th

particle of the robot’s pose at time t , and wi
t is the weight

associated with particle i at time t . Furthermore we denote

by Wt = 1

|P t |
|P t |−1∑

i=0
wi

t the mean weight of particles in

P t . Then we distinguish two discrete selection methods:
(a) absolute and (b) relative selection methods. In absolute
selection methods, an absolute percentage or number of
particles of the population P t is called to vote for the pose
estimate at time t . The prevailing pose calculation method
is a special case of absolute selection, where the percentage
of selected particles is 100%. In relative selection methods,
particles are chosen to vote conditioned on the relation of
wi

t and Wt : for example, only particles whose wi
t > Wt

are chosen to have a say in the filter’s overall pose estimate.
Algorithm 1 illustrates the process of particle selection.

In Algorithm 1, if absolute selection is chosen, the
particle population is first sorted by weight (line 4) in a
descending order. Then the first �fraction · |P ′

t |� particles
are chosen to be carried forward, where fraction ∈ [0, 1]
expresses the proportion of particles to be considered (line
6); the convention fraction = 0 is reserved for selecting
the particle with the highest weight among those of P t .
The notation P ′

t [a] for particle set P ′
t denotes the particle

of P ′
t at index a; the notation P ′

t [a:b] denotes the set of
particles constituted by the elements of P ′

t from index a up
to index b. On the other hand, if relative selection is chosen,
the population’s mean weight is calculated first (line 12),
and then all particles whose weight exceed this threshold
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are included in the particle set carried forward (line 13). In
both cases the pose hypotheses of the particle set holding
selected particles, P ′′

t , are then weight-averaged (line 17)
and the resulting pose is considered the output of particle
selection. The notation P ′′

t [j ].x for particle set P ′′
t denotes

the x component of the element of P ′′
t at index j .

One justifiable question/censure that can be raised is why
not keep the total population size to the selection fraction
and dispense with the selection mechanism altogether.
This would potentially be catastrophic, as keeping a lower
number of particles would increase the risk of particle
deprivation [1]: as the population size increases, so does
the fidelity of the posterior (1) to the true pose; conversely,
the lower the number of particles in the filter the larger the
probability of the filter’s divergence. Thus, it is reasonable
to guard against particle deprivation with an increased
population size and employ a selection regime so that the
system increases its accuracy without sacrificing posterior
quality/accuracy or the stability of MCL.

Although in theory the above selection methods are
sound (in that selecting heavier particles, thus discarding
poor-estimate particles, improves the quality of the overall
estimate), in practice (Section 8.1) we observe varying or
adverse results, which may be attributed to (a) the loss
of overall information, (b) the higher degree of influence
particles obtain when the cardinality of the voting set is
decreased, and/or (c) the removal of near-symmetrically-
posed particles, present in the population due to the
randomness introduced during the filter’s prediction phase.

In the next section we reason how the gap between the
estimated pose of MCL and the true pose can be further
reduced by means of scan-matching.

5 Improving the Localisation Estimate Via
Prosthetic Scan-Matching

In the current study we seek to improve the estimate of a
particle filter by various means: in the previous section we
theoretically reasoned about how selecting heavy-weighted
particles for determining the filter’s output pose poises
the filter into calculating more accurate estimates. In this
section we will review how scan-matching can be employed
as a prosthesis of particle filters (or any other localisation
technique in fact) so that the final system’s estimates
fall closer to the truth. This technique is inspired from
[13] and is covered in greater detail here for purposes of
thoroughness and completeness.

Suppose that a robot equipped with a 2D range scanner
operates in a set environment which is represented via an
occupancy grid map M . Suppose also that at time t the
particle filter outputs an estimated pose x̂t (x, y, θ) using
some selection method, and that a range scan, captured from

the true pose of the robot, LR
t , is also available at time t .

Then, if we construct a virtual scan LV
t , which is the output

of a ray-casting operation originating at x̂t that simulates the
operating principle of the real range scanner but this time on
the map M across the same angular range, it is possible by
scan-matching the two range scans (Section 2.2) to obtain
the roto-translation q t which, if applied to the estimate x̂t ,
will make it coincide with the true pose xt . In this context,
LR

t is considered to be the reference scan, and LV
t the input,

or data, scan.
However, due to (a) the presence of sensor noise in

LR
t , (b) the inevitable mismatch between the operating

environment and its map M , (c) its discrete nature (M is
assumed to be a grid map of finite resolution), and (d)
the fact that the scan-matcher employed is not necessarily
perfect, we expect that what actually happens is that the
application of q t to the pose estimate x̂t will move this
estimate in a vicinity of the true pose rather than exactly to it.
This estimation error depends on a multitude of parameters,
among others, namely the quality of the robot’s odometry,
the match of its kinematic model with its actual dynamics,
the amount of sensor noise, the map’s resolution, the scan-
matchers accuracy in translation and rotation estimation, the
size of the particle population, the layout of the map coupled
with the scan-matcher’s ability to reject outliers, and the
maximum range of the range scan sensor.

Depending on the configuration of MCL, we would like
to employ a scan-matcher that is able to keep up with
the frequency of pose updates, that is, to operate in real
time. The scan-matching technique of our choice is PL-
ICP [17] due to the following reasons: (a) it surpasses the
de facto state-of-the-art in precision, number of iterations
until convergence and average execution time, and (b) it
requires less tuning parameters, as it requires neither error
thresholds for halting convergence nor maximum estimates
of the initial guess.

6 Improving the Overall System’s Estimate
Via Feedback

Although the localisation estimate output by the scan-
matching technique x̂

′ suffers from the above sources of
error, it is, in principle, more accurate than that output by
MCL, x̂. What this means is that the overall tandem system
holds an estimate of which MCL is not informed. Thus, it
would be advantageous to input x̂

′ into MCL and, in the
literature, this is accomplished by two methods:

• The first way of feeding back x̂
′ to MCL is to initialise

it with this estimate. This means that the particle
population maintained by the filter is created anew,
with particles being dispersed around x̂

′ with a preset
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variance. This is the approach followed in [13], and
will be referred to in the rest of this work as hard
loop-closure.

• The second way is to inject the particle population with
one particle, representing the estimate x̂

′, serving as one
discrete hypothesis among the current population. This
is the approach followed in [14], and will be referred to
as soft-1 loop-closure.

One of the concerns that can be raised about hard loop-
closure is that it is not robust to localisation failures: if the
pose output by scan-matching is erroneous, then the entirety
of MCL’s population will be initialised around that pose,
with a catastrophic effect on localisation. Furthermore, with
regard to soft-1 loop-closure, injecting one particle over
a minimum population of several hundred takes longer
times to have an effect than if a larger portion of the
population was substituted for the improved estimate. Thus,
the more particles are inserted into the population the
more accelerated and improved its convergence would
be (with reservation for the case where all particles are
substituted for multiple copies of the same pose estimate;
the precariousness of this approach lies in the absence of the
filter’s variance).

Motivated by the above facts, we introduce a hybrid
loop-closure strategy, where the estimate x̂

′ is injected into
the particle population as a plethora of particles. Their
proportion to the total final population is fixed and set
beforehand. Here, supposing that the maximum population
size is Nmax , that the desired injected population size
compared to the population size after its injection is q ∈
(0, 1), and that at time t the population size is Nt , we
distinguish three cases:

• Nt = Nmax

When the population is at its maximum capacity,
particles are sorted by descending weight, and the
lower �qNmax� particles are deleted, giving way to the
introduction of an equal number of particles, all clones
of x̂

′. It is obvious that qNmax/Nmax = q.
• Nt ≤ (1 − q)Nmax

In this case, no particles are deleted, and
q

1 − q
Nt

particles are added. It is easy to see that

q

1 − q
Nt

q

1 − q
Nt + Nt

= qNt

qNt + (1 − q)Nt

= qNt

Nt

= q

• (1 − q)Nmax < Nt < Nmax

In this case, the population of particles Nt is
sorted by descending weight, the lower �Nt − (1 −
q)Nmax� particles are deleted, and �qNmax� copies
of the hypothesis extracted from scan-matching are
introduced into the population. Again the population

introduced is, as a proportion, q times the final
population size:

qNmax

Nt − (Nt − (1 − q)Nmax) + qNmax

= qNmax

Nmax

= q

The proposed feedback strategy (a) can steer the system
away from the pitfall of faulty pose estimates output by
scan-matching − something unavoidable by the approach of
hard loop-closure − by not replacing the totality of particles
in MCL’s population, but instead keeping a portion of its
best estimates (best in the sense of higher-weighted) from
one filter iteration to the next so that, even if scan-matching
outputs a spurious estimate, the filter can recover by virtue
of maintaining past estimates residing in the vicinity of the
true pose, and (b) accelerates convergence by inserting not
one particle − as in the case of soft-1 loop-closure method
−, but a multitude of better-estimate particles.

The proposed feedback strategy will be referred to
hereafter as soft-p loop-closure, where p is expressed in
percentage terms (e.g. in the regime of soft-50 loop-closure,
every time MCL outputs a result to PL-ICP, the latter
improves its estimate and introduces − and possibly deletes
− as many particles as needed so that the final proportion of
copies of its output is 50% of the particle filter’s final total
population; the term soft-1 loop-closure will be reserved for
reference to the original idea of inserting only one particle
to the filter’s population).

Fig. 2 The overall system in block structure. Blocks indicate sub-
systems, while ellipses indicate their inputs. The colour red is used
to identify the contributions of our approach to the state-of-the-art
in tandem systems of particle filters and scan-matching. Here, scan-
matching is treated as a prosthesis of MCL. MCL’s population P t is
subject to weight-based selection at time t > 0. The selected particles
are weight-averaged and the resulting pose is used as the origin of a
virtual scan across the map. The real and virtual scans are then matched
using PL-ICP. The output of scan-matching x̂

′
t is, in principle, more

accurate than that of MCL, x̂t , which means that it could be used
to serve in assistance to MCL’s localisation by feeding it back to it.
See text for the three ways that feedback can be introduced in particle
filters
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The structure of the compound system is depicted in
Fig. 2. The algorithmic form of the feedback mechanism is
illustrated in Algorithm 2 and the mechanism’s conceptual
content is depicted in block form in Fig. 3.

In Algorithm 2, if hard-closed-loop is selected as the
method of feedback, the particle set is filled with Nmax

copies of the system’s output at the previous timestep and
then each component of each particle’s pose hypothesis
is subject to minor disturbance according to parameters

Fig. 3 Internal to the modified version of MCL, there are 4 distinct
and mutually exclusive modes of feedback. Denoting by x̂

′ the output
of the scan-matching process, by P the filter’s population at the
time of feedback execution, and by P ′ the population output by
feedback: (a) hard loop-closure, where the population of MCL is
initialised anew, with P ′ comprised of particles spread around x̂

′,
(b) soft-1 loop-closure, where x̂

′ is introduced into P in the form
of one discrete particle, (c) soft-p loop-closure, where p% of P ′
is comprised of clones of one particle with pose equal to x̂

′ and
(100− p)% is comprised by the corresponding in number heavy-most
particles of P , and (d) no feedback at all. The colour red is used
to identify the contribution of our approach with respect to feedback
methods to the state-of-the-art in tandem systems of particle filters and
scan-matching. Feedback modes are immutable and set a priori

internal to MCL (the same process taking place when
providing vanilla MCL with an estimate of the robot’s
pose). If soft-1 loop-closure is selected, the system’s output
is inserted into the population as one pose hypothesis,
either by replacing its lowest-weighted particle when the
population is at its maximum, or by direct insertion
otherwise. If soft-p loop-closure is selected, particle set
S is filled with as many copies of the system’s output
as needed so that after insertion their proportion over the
entire population is q (or p = 100q%). In open-loop the
population undergoes no modification. Signifiers “HARD”,
“SOFT 1”, “SOFT P”, and “OPEN” are shorthand for the
four admissible modes of feedback, namely hard loop
closure, soft-1 loop closure, soft-p loop closure, and no
feedback, respectively.

The introduced overall system is more flexible than a
tandem combination of vanilla MCL with KLD sampling
and scan-matching, as the latter is a specific case of the
former: selecting 100% of the particles from the population
of MCL for extracting its pose estimate and no feedback
makes the overall system devolve into the simplest case
of configuration of the introduced system, i.e. what is
now considered MCL with KLD sampling. Furthermore,
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both approaches presented in [13] and [14] are special
configurations of the proposed system.

In the following, when we refer to the pose output by
MCLwe refer to x̂t , and when we refer to the pose output by
the system, or the compound system, or the overall system,
we refer to x̂

′
t .

7 Simulations and Results

The content of this section serves the testing of three
discrete hypotheses, as articulated in Sections 4, 5, and 6:

(H1) Selecting high-weighted particles from the popula-
tion of MCL − equivalently: discarding low-weight
particles from it − and averaging their weighted
poses results in increased pose accuracy compared
to selecting all particles from the population and
averaging their weighted poses;

(H2) Scan-matching between (a) a scan obtained through
the physical range-finder sensor of the robot and (b)
a virtual scan obtained through ray-casting the map
in which the robot navigates from its estimated pose
and applying the resulting roto-translation to MCL’s
pose estimate results in increased pose accuracy
compared to vanilla MCL when feedback is absent;

(H3) Feeding back the (hypothesised improved) roto-
translated pose acquired through the application of
the result of the above scan-matching process to
the pose estimate of MCL in the form of a group
of particles comprising p% of the final particle
population, where p is sufficiently lower than 100
and larger than 1, (a) results in increased pose
accuracy compared to vanilla MCL, (b) results in
increased pose accuracy compared to feeding-back
only one particle with such corrected pose, and (c) is
more robust than initialising MCL anew around the
roto-translated pose.

In the third hypothesis we refer to robustness in the
sense of the ability of a system to avoid failure, rather than
recover from failure, referred to as “resilience” [41, 42], as
the latter is a property of a particle filter itself, whereas the
ability to avoid failure (in this case reinitialisation around
a catastrophically erroneous pose) is a property of the
feedback method.

These hypotheses are tested on two discrete simulated
environments. Due to our group’s investigation of the
problem of localisation of RFID-tagged objects [43, 44],
these environments were selected and constructed as such
in order to reflect the conditions in which we expect that
RFID-tagged objects will be placed in the real world.
Naturally, accurate robot localisation is a condition for
accurate localisation of RFID tags: the more accurate the

estimate of the robot’s pose is the more accurate the position
of the tags on the map will be.

The two environments are dubbed CORRIDOR, denoted
by MC and presented in Fig. 4, of size 10 × 7 m2,
and WAREHOUSE, denoted by MW and presented in
Fig. 5, of size 20 × 42 m2. The resolution of both maps
is 0.01m×0.01m/cell. The former is used to illustrate
the efficacy of the proposed system in non-complex
environments, where all of its boundaries are within the
range of the robot’s 2D range sensor at all times. By
contrast, the latter is a large warehouse, −the natural habitat
of RFID-tagged objects in industry− intended to put more
strain on the system and thus its performance: obstacles
are further apart than in CORRIDOR, which means that
either not all rays of the sensor carry valuable and usable
information, or they are more corrupted by noise, as the
range error increases with the sensed distance, or both. The
first challenge affects MCL, in that it has to rely more on
its odometry, which is prone to error accumulation, and
less on precise range measurements, and scan-matching,
as there are less measured scan-points, therefore greater
insufficiency of information in pairing the virtual scan taken
across the map to the reference real laser surface. The
second challenge affects MCL, in that the pose estimate is
disturbed by noise, and scan-matching, in that noise raises
the probability of false correspondences and, in general,
erroneous alignment altogether. To this end, we configured
the virtual range sensor to operate at a maximum range of
10.0 meters.

Fig. 4 The map of environment CORRIDOR, MC . The initial
configuration of the robot is seen in green colour, while its goal one in
red. The size of the environment is 10 × 7m2
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Fig. 5 The map of environment WAREHOUSE, MW . The initial
configuration of the robot is seen in green colour, while its goal one in
red. The size of the environment is 20 × 42m2

In all simulations MCL was used along-side KLD
sampling, with a minimum number of particles Nmin = 200
and with a maximum number of particles Nmax = 500 in
both simulated environments.

The initial and goal poses for each map were
(a) for MC : pi

C ≡ (11.56m, 12.20m, 0.0 rad), and
p

g
C ≡ (5.0m, 6.0m, 0.0 rad), respectively, and (b) for

MW : pi
W ≡ (17.98m, 2.08m, π/2 rad) and pi

W ≡
(6.0m, 40.0m, π/2 rad) respectively. The initial and goal
poses for each map are drawn in green and red colours in
their respective figures.

The robot used is a simulated Turtlebot v.2, equipped
with a range sensor of range rmax = 10.0m, angular
range α = 260◦ and number of rays nr = 640, whose
measurements are corrupted by zero-mean white noise of
standard deviation σ = 0.01m.

In order to test for the first hypothesis, we conducted
simulations with MCL kept in open-loop mode. Denoting
by |P t | the size of the population at time t > 0, we
conducted N = 100 simulations for each particle selection
method, comprised of selecting (a) 100% × |P t |, (b)
particles {i} from P t whose weight wi

t is greater than the
population’s mean weight Wt at time t > 0, (c) 10%×|P t |,

and (d) only the particle with the largest weight among all
those in P t .

In order to test for the third hypothesis we conducted
simulations selecting all |P t | particles for calculating
MCL’s final pose, testing the performance of the compound
system (Figs. 2 and 3) when the feedback mode used
is (a) none (open-loop), (b) soft-1-closed loop, (c) soft-
50-closed loop, and (d) hard-closed-loop, as defined in
Section 6.

In order to test for the second hypothesis, we observe the
results of all 2 × 4 × 100 simulations run in open-loop per
particle selection method.

The criterion on which the evaluation of all tests rests is
the 2-norm of the total pose error:

‖e‖2 = (
(x̂ − x)2 + (ŷ − y)2 + (θ̂ − θ)2

)1/2 (2)

where (x̂, ŷ, θ̂ ) is the estimated pose of the robot (estimated
by MCL or the system after scan-matching, depending
on the context) and (x, y, θ) is its true pose, and was
chosen as such because of its expression of the error of the
system’s state and its ability to provide a centralised locus
that facilitates the direct comparison of the performance
of each variant of the system in terms of pose accuracy.
For every pose output by MCL (denoted by x̂t in
Fig. 2) and the scan-matcher (denoted by x̂

′
t in Fig. 2)

in one simulation, we record its offset from the actual
pose in the form of the 2-norm total error, average it
across one simulation and report the distribution of these
values across all N = 100 simulations of the same
configuration. The unit of measurement of the total pose

error (2) is
√
m2 + rad2, and it is omitted in the figures

of the following subsections for reasons of economy of
space.

Contrary as to the locations where [13] and [15]
evaluated their systems’ performance (both evaluated their
systems’ error only in the vicinity of predefined locations),
we evaluate it along the whole path from pi to pg; this
offers for a more complete view of the configurations in
question.

Simulations were conducted in the Gazebo environ-
ment1 through ROS2 in Ubuntu 16.04, with a pro-
cessor of 12 threads, running at 4.00 GHz, using
up to 32Gb of RAM. For implementing MCL with
KLD sampling we used ROS’s amcl package3, which

1http://gazebosim.org/
2https://www.ros.org/
3http://wiki.ros.org/amcl
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we modified in order to accommodate particle selec-
tion from and particle introduction to the filter’s pop-
ulation. The entire system occupies two CPU pro-
cesses, approximately 300MB of memory, while the scan-
matching process utilises approximately 5.2% of one CPU
core.

7.1 Results of Tests Regarding Particle Selection
Methods

Figures 6 and 7 depict the distributions of the mean 2-norm
pose errors of open-loop MCL and of the compound system
in environments CORRIDOR and WAREHOUSE per
particle selection method respectively. Additional figures
that focus on the disdiscernible differences between results
of the same distributions are provided in Appendix A.

7.2 Results of Tests Regarding FeedbackMethods

Figures 8 and 9 depict the distributions of the mean 2-
norm pose errors of MCL and of the compound system
in environments CORRIDOR and WAREHOUSE per
feedback method respectively. Additional figures that focus
on the disdiscernible differences between results of the same
distributions are provided in Appendix B.

Fig. 6 The distribution of the mean 2-norm total pose error of open-
loop-MCL (to the left of each indicated selection method) and of the
compound system’s (to the right of each indicated selection method)
across N = 100 simulations according to population selection
method in environment CORRIDOR. Signifier “100%” denotes the
configuration where all particles of the population set were chosen
in the process of weight-averaging for extracting the system’s pose
estimate, “> W” that where only those particles whose weight was
greater than the particle population’s mean weight were selected,
“10%” that where only the top 10% of heaviest particles were selected,
and “top” the configuration where only the particle with the highest
weight among all those in the population was selected as the system’s
estimate

Fig. 7 The distribution of the mean 2-norm total pose error of open-
loop-MCL (to the left of each indicated selection method) and of the
compound system’s (to the right of each indicated selection method)
across N = 100 simulations according to population selection
method in environment WAREHOUSE. Signifier “100%” denotes the
configuration where all particles of the population set were chosen
in the process of weight-averaging for extracting the system’s pose
estimate, “> W” that where only those particles whose weight was
greater than the particle population’s mean weight were selected,
“10%” that where only the top 10% of heaviest particles were selected,
and “top” the configuration where only the particle with the highest
weight among all those in the population was selected as the system’s
estimate

8 Discussion

8.1 Particle SelectionMethods

As regards particle selection, we focus on the errors of open-
loop MCL, where the performance of each particle selection

Fig. 8 The distribution of the mean 2-norm total pose error of MCL
(to the left of each indicated feedback method) and of the compound
system’s (to the right of each indicated feedback method) across
N = 100 simulations according to feedback method in environment
CORRIDOR. Signifier “open” is shorthand for open-loop, meaning
that no particle of the overall system is fed back to the particle filter,
“soft-1” for the configuration where the overall system’s output is fed
back to the particle filter in the form of one particle, “soft-50” for that
where it is fed back in the form of as many particles as half of the
population’s size, and “hard” for the configuration where the particle
filter is initialised around the pose calculated after scan-matching
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Fig. 9 The distribution of the mean 2-norm total pose error of MCL
(to the left of each indicated feedback method) and of the compound
system’s (to the right of each indicated feedback method) across
N = 100 simulations according to feedback method in environment
WAREHOUSE. Signifier “open” is shorthand for open-loop, meaning
that no particle of the overall system is fed back to the particle filter,
“soft-1” for the configuration where the overall system’s output is fed
back to the particle filter in the form of one particle, “soft-50” for that
where it is fed back in the form of as many particles as half of the
population’s size, and “hard” for the configuration where the particle
filter is initialised around the pose calculated after scan-matching

method can be discerned with clarity as it is unadulterated
by feedback or the performance of scan-matching. Turning
our attention to Figs. 6 and 7 (more closely: Figs. 11 and 12),
we first of all discern that selecting particles whose weight
is larger than that of the mean population weight at the time
of their selection results in lower pose errors compared to
selecting all particles, in both simulated environments, but
only slightly. This effect is intuitively reasonable since one
expects that particles which contribute to the overall pose
with a weight lower than the mean population weight have
overall negative contribution to the pose accuracy, which,
as it now seems, is near-negligible. Furthermore, in contrast
to the other two selection practices introduced, this one is
less destructive since it anchors its discarding practice on
the varying mean population weight, and therefore selects
particles whose number is dynamic, rather than anchoring
it on the number of heavy-most particles and selecting
particles whose number is static.

That said, selecting the top 10% percent of particles at
each iteration outperforms selecting particles whose weight
is larger than the mean population weight; the improvements
in both environments is measured in millimeters, but the
pattern is the same: selecting the top 10% percent of all
particles at each iteration outperforms selecting particles
whose weight is larger than the population’s mean weight
at the time of their selection, which, in turn, outperforms
vanilla MCL.

What is counter-intuitive is the increased pose errors in
both environments when only the single heaviest particle
is selected as the filter’s pose estimate: what one would

expect is that the particle of the highest weight, that is
the particle whose pose estimate explains the incoming
measurements best within its population and which is then,
in theory, the filter’s best estimate, would exhibit the lowest
pose error, but, in actuality, it is less accurate than the
collective estimate of the filter. This discrepancy indicates
that there is a threshold level at which the tested hypothesis
is confirmed and that, given the evidence, the particle that
accounts for incoming measurements the best does not
hold the best credibility compared to that of the population
as a collective. This essentially is the theory behind not
rejecting low-weighted particles, since the best particle can
be optimal locally (for the last iterations) but not globally.
This behaviour prompts us to consider that a particle
filter may not be viewed as an aggregation of separate
estimates but as a collection of estimate-fragments, where
no one can substitute for the whole without irretrievable
loss of information and estimation quality decrease. This
reversal in estimation quality may be attributed to the
marginalisation of all information that the rest of the
population carries, including the randomness that KLD
sampling introduces as it generates new particles.

This behaviour does not cast a shadow on the method of
selecting the top 10% of heavy-most particles, as, although
it points to the possibility that it would enjoy the same fate
had the minimum population size been significantly lower,
the credibility of the filter would be at stake too with such a
low minimum population size; at any rate, a low minimum
population size is disadvised with regard to both the overall
population’s quality of estimate (particle depletion is the
danger here) and that of a subset of it.

8.2 As Regards the Decrease of the Pose Error
Due to Scan-Matching

In general, the pose output by scan-matching is less
erroneous than that output by MCL across all configurations
of different selection methods in open-loop mode (Figs. 6
and 7), with the error decrease ranging from a few
millimeters (in the case of the simple map CORRIDOR) to
a few centimeters (in the case of the more complex map
WAREHOUSE).

8.3 FeedbackMethods

As regards feedback regimes, the difference in performance
between the soft-50 loop closure method and vanilla MCL
with regard to the MCL output pose is distinguishable:
the former’s pose errors are approximately 43% lower than
those of the latter in open-loop in environment WARE-
HOUSE, and approximately 25% lower in environment
CORRIDOR. However, that between the former and the lat-
ter with regard to the output of scan-matching is very slight
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in both cases, with the pose errors of soft-50 being slightly
less erroneous than the open-loop ones.

The difference in performance of soft-50 loop closure
compared to that of soft-1 loop closure is negligible
in the simple environment CORRIDOR, with the former
achieving slightly better pose errors, regarding both the
output of MCL and that of MCL followed by scan-
matching. However, in the complex map of WAREHOUSE,
the difference in performance in favor of the former is
distinguishable, especially when examining the pose errors
of MCL, where the former’s errors are decreased by almost
60%. The difference in performance between the two with
regard to the errors of the poses output by scan-matching is
again slight (measured in millimeters).

When comparing the difference in performance between
the soft-50 loop closure method and the hard loop closure
method, we observe that, in terms of median values, they are
close, with the former outperforming the latter overall. What
is striking though is the difference in their performance in
environment WAREHOUSE: under the hard loop closure
regime, the system was unable to recover from severe
pose errors, as the filter’s population was initialised anew
on every pose output by scan-matching, regardless of its
accuracy. Conversely, assuming that, statistically, a number
of errors arose too in the simulations where the soft-50
loop closure was employed, this behaviour was absent. The
reason for this robust behaviour is that, in soft-p loop
closure mode, when an erroneous pose is output by scan-
matching, this pose is incorporated into the filter in the
form of particles whose total number is lower than the
population size. After their introduction to the population,
the filter internally assigns a weight to each one (Section 4),
and, as these particles’ poses are severely erroneous, this
is reflected on the values of their weights, as these poses
account for the incoming measurements rather poorly. Since
MCL’s output pose is the weighted average of all the
population’s estimates, these particles participate in the
final voting at a minuscule rate, and, therefore, the filter’s
estimate is largely undisturbed by them, exhibiting the same
robust behaviour as vanilla MCL, but with improved pose
estimates. The advantage of incorporating KLD sampling
to MCL is that these particles, whose weight is minuscule,
are then rejected from the particle population, leaving them
no space to influence its internal estimate cohesion in the
subsequent iterations.

8.4 Conclusions on Combinatory Configurations

With the exception of the sub-hypothesis that selecting
the heaviest particle off MCL would yield improved
results over vanilla MCL, the three hypotheses stated in
Section 7 were proven to be true given the evidence
presented in Sections 7.1 and 7.2. However, caution must

be advised in to that combining any two true hypotheses
would not necessarily prove to be also true. Consider for
instance hypotheses H2 and H3, and let us formulate their
combined hypothesis, H4, that states that under the soft-
50 loop closure regime the output of the overall system
is more accurate than the output of MCL. A close look
in Fig. 13 shows that H4 is clearly false4. Likewise, it
would be precarious to assume that, for instance, the same
conclusions would be drawn for hypothesis H1 if any form
of feedback substituted the open-loop mode, or, in general,
a combination of any hypothesis or sub-hypothesis with any
other would yield the same conclusion.

9 Conclusions and Future Steps

This paper introduced a localisation system that consists of
a particle filter combined with population selection, tandem
scan-matching, and feedback, as a means of improving the
localisation estimate of vanilla particle filters (MCL).

To the best of our knowledge, the contribution to the field
is novel, and consists of two separate components. The first
concerns the inference of a particle filter’s estimated pose,
and argues that, in view of the proportionality of a particle’s
weight and its estimation accuracy, discarding low-weight
particles from the filter’s population yields increased pose
accuracy. Our motivation for research into the topic of
pose selection arises from the apparent insufficiency of
prosthetic measures used to enhance the accuracy of a
particle filter. The second concerns the manner of feeding
back the result of scan-matching the scan captured from
the robot’s physical range scan sensor and a scan captured
from the filter’s estimated pose, derived by means of ray-
casting within the map. Our motivation for research into the
topic of pose feedback in tandem combinations of particle
filters with scan-matching arises from the shortcomings

4The reason for this effect is the following: as aforementioned, the
pose output by the scan-matching block in Fig. 2 is the result of
applying the relative roto-translation between a scan captured from
the robot’s physical range-finder sensor located at its actual pose and
a scan captured from MCL’s estimated pose within the map via the
means of ray-casting to MCL’s estimated pose. Since the map is a grid
of finite resolution, ray-casting can only discern differences in range
of up to one grid size − in our case grid size = 0.01m −, which
means that, if the map represented the physical environment perfectly
and, because the range is computed from the center of the grid, the
maximum range error per ray would be grid size/

√
2 = 0.0071m.

However, since (a) the map is not given in the form of an architect’s
exact floor plan but is constructed via probabilistic means (in this case
ROS’s open karto package), (b) computing the range from a grid
cell’s center introduces orientation errors per ray, (c) the rays of the
scan from the physical range-finder sensor are subject to disturbance,
and (d) the scan-matching method employed is not perfect, the error
introduced inevitably rises, and the performance of the scan-matching
block is therefore inevitably limited to further than if the above sources
of error were absent.
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Fig. 10 Program logo

of the two methods found currently in the literature. The
merits of the newly introduced feedback regime address
these shortcomings, and consist of increased robustness in
comparison to one feedback manner found in the literature,
and increased pose accuracy in comparison to the second
feedback manner of the relevant literature.

More specifically, we formulated hypotheses that (a)
discarding low-weight particles from the filter’s calculation
of its final pose estimate increases its pose accuracy
(in open-loop), (b) applying the roto-translation obtained
through scan-matching a scan captured from the robot’s real
pose and a scan captured via ray-casting the map of the
robot’s environment from MCL’s estimated pose to it yields
decreased pose errors, and (c) introducing the improved
pose to MCL’s population in the form of a multitude
of particles results in increased pose accuracy compared
to open-loop MCL, increased robustness compared to
initialisingMCL anew with this estimate [13], and increased
pose accuracy compared to introducing it in the form of only
one particle [14].

We tested these hypotheses in two disparate environ-
ments in simulation and found that, given the evidence, all
were true except for that which states that picking the heav-
iest particle off of MCL as its estimate results in increased
pose accuracy compared to picking all particles and weight-
averaging their poses. This latter result could be especially
informative to the pose selection methods found today in the
literature [11, 12], which use the highest-weighted particle
as the filter’s pose estimate in fail-safe circumstances.

The resulting augmented system described herein admits
configurations which are a superset of configurations of
state-of-the-art systems.

This study will, in the future, be extended to investigate
means of selecting particles from MCL’s population other
than strictly elementary weight-based ones. For instance,
particles of the highest-weighted mode could be first
clustered by weight, or spatial spread, or both, and
then selected by being conditioned on some static or
varying threshold that is a function of that mode’s statistic
characteristics Fig. 10.
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Appendix A

This section features magnified versions of the figures
found in Sections 7.1 and 7.2 for the use of drawing
clearer comparisons between results of different selection
(Section A) and feedback (Section B) methods.

A Focused Results of Tests on SelectionMethods

Figures 11 and 12 comprise the distributions of the mean
2-norm total pose error of open-loop MCL per selection
method tested across N = 100 simulations, as seen in
Figs. 6 and 7 respectively, focused here for clarity of
comparison purposes.

Fig. 11 The distribution of the mean 2-norm total pose error of open-
loop-MCL (to the left of each indicated selection method) and of the
compound system’s (to the right of each indicated selection method)
across N = 100 simulations according to population selection method
in environment CORRIDOR, focused for clarity of comparison

B Focused Results of Tests on FeedbackMethods

Figures 13 and 14 comprise the distributions of the mean
2-norm total pose error of open-loop MCL per feedback
method tested across N = 100 simulations, as seen in
Figs. 8 and 9 respectively, focused here for clarity of
comparison purposes.
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Fig. 12 The distribution of the mean 2-norm total pose error of open-
loop-MCL (to the left of each indicated selection method) and of the
compound system’s (to the right of each indicated selection method)
across N = 100 simulations according to population selection method
in environment WAREHOUSE, focused for clarity of comparison

Fig. 13 The distribution of the mean 2-norm total pose error of MCL
(to the left of each indicated feedback method) and of the compound
system’s (to the right of each indicated feedback method) across
N = 100 simulations according to feedback method in environment
CORRIDOR, focused for clarity of comparison

Fig. 14 The distribution of the mean 2-norm total pose error of MCL
(to the left of each indicated feedback method) and of the compound
system’s (to the right of each indicated feedback method) across
N = 100 simulations according to feedback method in environment
WAREHOUSE, focused for clarity of comparison
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