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Abstract
Control theory applied to multirotor aerial systems (MAS) has gained attention with the recent increase on the power
computation for embedded systems. These systems are now able to perform the calculations needed for a variety of control
techniques, with lower cost of sensors and actuators. These types of control algorithms are applied to the position and the
attitude of MAS. In this paper, a brief overview evaluation of popular control algorithms for multirotor aerial systems,
especially for VTOL - Vertical Take-Off and Landing aircraft, is presented. The main objective is to provide a unified and
accessible analysis, placing the classical model of the VTOL vehicle and the studied control methods into a proper context.
In addition, to provide the basis for beginner users working in aerial vehicles. In addition, this work contributes in presenting
a comprehensive analysis of the implementation for the Nonlinear and Linear Backstepping, Nested Saturation and the
Hyperbolic Bounded Controllers. These techniques are selected and compared to evaluate the performance of the aircraft,
by simulations and experimental studies.

Keywords Multirotor aerial systems · Classical approach · Virtual appraoch · Nonlinear/Linear backstepping · Nested
saturation · Hyperbolic bounded control

1 Introduction

Unmanned Aerial Vehicles systems (UAVs) have been
studied extensively in recent years [23, 40], due to their
high mobility and capacity to perform tasks with complete
autonomy. Besides, these vehicles present an ideal test-
bed for innovative theoretical approaches to the problem
of controlling mechanical systems. They are characterized
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by their under-actuation, low computational power, high
working frequency, and high autonomy [22]. Out of all
UAVs, multirotors stand out for their good manoeuvrability,
stability and payload. The first studies of these multirotors
vehicles were based on stabilizing their attitude because
it represents the main challenge before flying the vehicle.
VTOL vehicles, specially the PVTOL -Planar Vertical Take-
Off and Landing - or the Quadrotor configurations, are
taken as particular cases of study and several control
methodologies have been used to stabilize them, we can
cite for example; Backstepping [17, 47, 55], Sliding Mode
Control [27, 36, 51], PID [1, 19, 32, 33, 41], optimal control
[10, 26, 28, 45], robust control [8, 12, 54], learning-based
control [35], and others [3, 31, 53].

1.1 RelatedWork

In control systems for multirotor aerial vehicles there are two
different types of control, depending on the loop to which the
controller is applied; the position controller and the attitude
controller. In fact, there is no direct actuation control per se.
Attitude control is the concept of pointing a craft in the
desired direction. More specifically, it involves controlling
the orientation of the robot on its three Euler angles (θ, φ, ψ)
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and controlling the robot’s thrust in the Z-axis of the robot
frame of reference. This is performed due to the underactu-
ation characteristics of the robot. Then, the outputs of this
control are sent to a mixing-of-motors algorithm to generate
the reference signals for the actuators of the MAVs. In these
cases, the attitude control algorithm must take into account
the number of motors and their respective control signal.
In contrast, position control is the controller that gives the
Euler angles as references to the attitude controller in order
for the MAV to move in a desired trajectory [25].

For the last 10 years, attitude and position were
popularly controlled by monitoring the altitude (z-axis)
using feedback linearization followed by a linear/nonlinear
controller to achieve the desired altitude. The values
of the control torque can be found by replacing the
controlled altitude in the attitude expression. This method
for designing the control torque will be denoted classical
approach in this paper. In addition, adaptive control has
been studied to solve the problems of stabilization and
tracking of the dynamics. Hossein et al. proposed in [6]
a novel trajectory tracking scheme by combining two
inner feedback linearization loops to stabilize the nominal
quadrotor. Moreover, Wenchao presented in [24] a robust
adaptive tracking control scheme based on a self-tuning
regulator. This tracking method is implemented in the
inner loop and a classical proportional integrator (PI)
controller is to be employed in the outer loop. In this way,
Wenchao verified that the robustness of the whole system is
guaranteed. Similarly, Tomashevich introduced the altitude
and attitude control laws for the quadrotor based on the
passivity method [44]; The simulation results demonstrate
high efficiency and robustness with respect to the plant
parametric uncertainty.

Furthermore, a time-varying backstepping technique is
presented by Santiaguillo-Salinas et al. [39], where a 3D

control tracking law is studied and applied experimen-
tally on a quadrotor. This control law is implemented by
assuming that only the position and orientation parameters
of the vehicles are known; whereas the linear and angu-
lar velocities are estimated using Luenberger observers.
Rolsado-Serrano in [37] improved the work developed
by Santiaguillo-Salinas by considering a non-linear time-
varying version of the backstepping technique. This work
takes all the non-linearities of the dynamics into account;
resulting in a higher stability validated theoretically with
numerical simulations.

Moreover, dynamic inversion is a new control technique
developed in [4, 9] for the stabilization and dynamics
tracking of a quadrotor vehicle. The tracking controller
is composed of two loops; The dynamic inversion is
implemented in the inner loop, where an internal dynamics
stabilization is applied to the outer loop. The control
objectives are enclosed in the form of constraint differential

equation, and the resultant control law is obtained by
inverting the constraint dynamics using Moore-Penrose
Generalized Inverse (MPGI). Computer simulations were
performed to exhibit the performance of the offered control
technique in nominal and perturbed conditions. In addition
to the dynamic inversion controllers, Antonio-Toledo et al.
proposed in [5] an integral backstepping controller with
sliding mode control approach for a quadrotor. In this
approach the control of the UAV is performed in the
altitude and position control. The altitude control produces
translational force, which is used to calculate virtual
controls for the X and Y movements and desired angles
for pitch and roll. The proposed controller was tested
in a Qball-X4 prototype. In the same sense, J. Escareño
and S. Salazar addressed a hierarchical control in [11],
based on sliding-mode and adaptative control techniques,
to deal with slow and fast time-varying wind conditions
respectively. A backstepping technique is used to stabilize
the inner-loop heading dynamics. Simulations results show
the validity of the proposed control strategy while tracking
a time-parametrized straight-line and sinusoidal trajectory.
In addition, Ibarra-Jimenez and Castillo designed in [18]
a controller that ensures the quick convergence in the
dynamics of the quadrotor in order to catch a ball before
it touches the ground. The algorithm is based on the
sliding mode approach to assure robustness and finite time
convergence. Simulations results verifies the performance
of the controller to catch the ball even in presence of
unknown and external disturbances.

Recently, a new fashion to design the torque control of
the vehicle is considering the vehicle model fully actu-
ated by means of a virtual input. In this paper, we will
call the aforementioned as virtual approach. In this con-
text, there are some works exploiting the differential flat-
ness of the quadrotor model and then, with a trajectory
generation algorithm, compute high-performance flight tra-
jectories that are capable of moving a quadrotor from a
large class of initial states to a given target point that
will be reached at rest [13, 16, 29]. The algorithm can
compute a feasible trajectory within tens of microsec-
onds; the remaining computation time is used to iteratively
improve the trajectory. For example, Riu Wang proposed
in [48] a control scheme based on a virtual control input
using a backstepping approach with Nussbaum function,
a priori-bounded control torque for the rotational subsys-
tem was designed to track the desired orientations generated
by the translational subsystem. In the same sense, Xu et
al. addressed in [50] a robust cost controller derived by
Lyapunov stability theorem. The designed robust guaran-
teed cost controller ensures that the closed-loop system
asymptotically stable and the robustness with respect to all
admissible parameter uncertainties. Besides, Warier et al.
solved in [49] the tracking control problem in two-step
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approach. First, a translational control scheme that tracks
the desired position trajectory is constructed assuming the
translational dynamics to be fully actuated. The magnitude
of the translational control input is used as the magnitude
of the control thrust. Second, the unit vector representing
the direction of the translational control input used as the
desired thrust direction.

This paper gives an overview focused on the two existing
methods to design attitude and position controllers to solve
the stabilization and tracking problems that have been
proposed in the time span from the first works in MAV
control in 2002 to date. Our research has identified more
than two hundred works, most of which are conference
papers. We have selected for this document only journal
papers and the most prominent recent conferences, so
that the reader can understand the evolution of the state-
of-the-art in multirotor control. Therefore, four of these
control algorithms have been chosen to be implemented
and compared. These control algorithms are described in
detail and applied to a simulation model and validated
through a series of experimental tests. To the best of the
authors’ knowledge, this is the first time that the virtual
control algorithm based on hyperbolic bounded functions is
implemented in real time experiments.

The remainder of the paper is structured as follows:
The simplified dynamic model of a PVTOL vehicle is
given in Section 2. We use this configuration because
most multirotors with parallel motors can be seen as
a generalization of the PVTOL vehicle. The control
algorithms are introduced in Section 3, details in their
conception are given using the Lyapunov theory. Section 4
reports the numerical and experimental validation and
Section 5 a discussion of the control schemes and their
performances are given. Finally, Section 6 details the
conclusions of this work.

2 The PVTOL Aircraft

As previously explained, the PVTOL aircraft is the most
simple VTOL configuration (see Fig. 1), it represents
the longitudinal model of the helicopter, the simplified
model of a plane moving in the horizontal plane and the
quadcopter can be seen as two PVTOL interconnected.
It is an underactuated system and is composed of two
independent motors that produce a force and a torque on the
plane. Therefore, this configuration will be used to better
illustrate the stability analysis of the algorithms. Moreover,
the results can be expanded for other VTOL configurations.

The dynamical model is presented following these
assumptions

– The vehicle structure is rigid and symmetrical,

Fig. 1 Classical configuration of the PVTOL aircraft

– Its center of mass and the origin of OB coincides,
– The pitch moment creates a force that is perpendicular

to z axis,

Let us consider I = {OI , xI , zI } an inertial frame and
B = {OB, xB, zB} a rigid frame attached to center of mass
of the vehicle.

The dynamics of a rigid body under external forces using
the Newton-Euler formalism can be expressed as

ξ̇ (t) = v(t), mv̇(t) = R(t)F (t),

Ṙ(t) = R(t)Ω̂(t), J
˙̂

Ω =−Ω(t) × JΩ(t)+ τ(t)
(1)

where ξ(t) denotes the position of the vehicle with respect
to the frame I , v(t) ∈ I describes the linear velocity, Ω(t)

represents the angular velocity of the body defined in B,
and m is the total mass of the vehicle. The constant moment
of inertia is denoted by J expressed in B, τ(t) expresses the
torques applied in the rigid body, Ω̂(t) introduces the skew-
symmetric matrix of Ω(t), R(t) means the rotation matrix
from B to I , and F(t) are the forces applied to the rigid
body.

From Eq. 1 and Fig. 1, the nonlinear dynamic model of a
PVTOL aircraft can be represented as

m ẍ = −u1 sin θ + εu2 cos θ (2)

m z̈ = u1 cos θ + εu2 sin θ − mg (3)

J θ̈ = u2 (4)

where x and z are respectively the lateral and vertical
coordinates of the aircraft center of mass, θ denotes the pitch
angle with respect to the horizon, u1 describes the main
thrust composed by the forces produced by each motor fi ,
u2 represents the pitching moment and g corresponds to the
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acceleration due to gravity. ε represents the coupling value
between the torque and the lateral force, in general, it is
not well known and in several cases neglected. Thus, the
simplified nonlinear model for the PVTOL with ε = 0 can
be described in the following form

m ẍ = −u1 sin θ (5)

m z̈ = u1 cos θ − mg (6)

J θ̈ = u2 (7)

Note that in [34], it was proved that by an appropriate
change of coordinates, Eqs. 2–4 can be represented as
Eqs. 5–7 without neglecting the term ε. From the above, the
input vector can be defined as

u =
[
u1(t)

u2(t)

]
=

[
1 1
l −l

] [
f1(t)

f2(t)

]
. (8)

where l denotes the distance between one rotor to the center
of mass of the vehicle and f1 and f2 are the forces produced
by motor 1 and 2 respectively.

3 Control Architectures

Typically in the literature when controlling a VTOL vehicle
is assumed the z−axis can be controlled by some linear
or nonlinear controller using specifically u1. Usually, this
controller is based on a feedback linearization technique as
presented in [14, 15, 30, 42]. This classical procedure is
often used because the idea is to guarantee the vehicle keeps
at hover, and later control their displacement in the plane x

or y making an under-actuated subsystem.
Following these ideas, the controller for Eq. 6 is very

often proposed as

u1 = m

cos θ
(g + r1) (9)

where r1 is always designed to achieve z → zd , for instance
r1 = −k1(z − zd) − k2ż, where k1, k2 represent positive
constants and zd denotes the desired altitude. Introducing
Eq. 9 into Eqs. 5–6, it follows

mẍ = −(−k2ż − k1(z − zd) + g)m tan θ (10)

z̈ = −k2ż − k1(z − zd) (11)

Note from Eq. 11, ∃ a time T large enough such that for
t > T , the altitude error z − zd is small enough such that
z ≈ zd can be considered the equilibrium state of Eq. 11.
Thus, Eq. 10 can be rewritten as follows

ẍ ≈ −g tan θ (12)

For simplifying further analysis, consider J = 1. Then
rewriting Eq. 12 and Eq. 7, it yields

ẋ1 = x2

ẋ2 = −g tan θ1

θ̇1 = θ2

θ̇2 = u2 (13)

where x1 = x, x2 = ẋ, θ1 = θ , θ2 = θ̇ .
Notice that Eq. 13 describes an under-actuated subsystem

representing the longitudinal dynamics of a VTOL vehicle.
These dynamics will be used for conceiving three control
algorithms using two different techniques; the backstepping
and the saturation functions. These methodologies will be
referred in the following as classical control inputs.

3.1 Nonlinear Backstepping Algorithm

Backstepping is suitable for strict-feedback systems that are
also known as lower triangular and it does not require that
the resulting input-output dynamics be linear. The main idea
is to use some of the state variables as “virtual controls” or
“pseudo controls”, and depending on the dynamics of each
state, design intermediate control laws. The Backstepping
design is a recursive procedure where a Lyapunov function
is derived for the entire system.

Define the error e1 as e1 = x1 − xd
1 , where xd

1 is the
reference. Let us propose the following positive function
V1 = k1

2 e2
1, with k1 > 0 denoting a constant, then taking the

derivative with respect to time and proposing xv
2 = xd

2 − e1

as a virtual control input, it follows that

V̇1 = k1e1(x2 − xv
2 − e1) = −k1e

2
1 + k1e1(x2 − xv

2 )

where ẋd
1 = xd

2 . Define the error e2 = x2 − xv
2 thus,

the previous yields V̇1 = −k1e
2
1 + k1e1e2. Propose the

second positive function V2 = k2
2 e2

2 with k2 > 0 constant.
Taking its derivative with respect to time and proposing
δv

1 = −ẋv
2 + k1

k2
e1 + e2 representing a second virtual control

input, implies that

V̇2 = −k2e
2
2 − k1e1e2 + k2e2(δ

v
1 − g tan θ1)

Defining the error e3 = δv
1 − g tan θ1, V̇2 yields

V̇2 = −k2e
2
2 − k1e1e2 + k2e2e3

Propose the third positive function V3 = k3
2 e2

3, with
k3 > 0 constant. Differentiating V3 and defining δv

2 =
δ̇v

1 + k2
k3

e2 + e3, it follows that

V̇3 = k3e
2
3 − k2e3e2 + k3e3(δ

v
2 − g(1 + tan2 θ1)θ2)

Defining the error e4 = δv
2 −g(1+tan2 θ1)θ2, then the above

yields

V̇3 = −k3e
2
3 − k2e3e2 + k3e3e4
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Proposing V4 = k4
2 e2

4 as positive function, with k4 > 0
defining a constant, and taking its derivative, it appears that

V̇4 = k4e4(δ̇
v
2 − g(1 + tan2 θ1)(u2 + 2θ2

2 tan θ1))

Proposing a control law given by

u2 = 1

g(1 + tan2 θ1)
(δ̇v

2 + k3

k4
e3 + e4) − 2θ2

2 tan θ1 (14)

implies that V̇4 = −k4e
2
4 − k3e4e3.

Finally, define the following candidate Lyapunov func-
tion with the form VT = V1 + V2 + V3 + V4. Therefore

V̇T = −k1e
2
1 − k2e

2
2 − k3e

2
3 − k4e

2
4 ≤ 0.

Expressing Eq. 14 with respect to the state variables, it
follows that

u2 = 1
g(1+tan2 θ1)

(...
x d

2 − 4ẍd
2 − k̄1ẋ

d
2 + k̄2(x2 − xd

2 )

+k̄3(x1 − xd
1 ) − k̄4g tan θ1

−4g(1 + tan2 θ1)θ2
) − 2θ2θ1

(15)

where

k̄1 = k̄4 = kθ + 6, k̄2 = 2kθ + 4
k̄3 = kθ + k3k1

k4k2
+ 1, kθ = k1

k2
+ k2

k3
+ k3

k4

(16)

3.2 Control Algorithm Based on Nested Saturation

The goal for controllers based on saturation functions is to
impose a bound in the control input. The control algorithm
is conceived for stabilizing linear systems, nevertheless, it
was also demonstrated that it can be applied for nonlinear
systems. Their procedure, in contrast to the backstepping
approach, starts in the last state (where the control input is
located) until the first one. The stability analysis is assured
using a series of positive functions.

The first methodology was proposed by [43] designing
the controller with nested saturation functions for linear
systems and applied to nonlinear systems. Nevertheless
after analysis, it can be observed that the controller structure
using saturation functions imposes bounds in each state,
such that, the following inequality can be applied tan θ ≈ θ ,
see [7, 38]. From this assumption, Eq. 13 can be rewritten
as follows

ẋ1 = x2

ẋ2 ≈ −gθ1

θ̇1 = θ2

θ̇2 = u2 (17)

A controller stabilizing Eq. 17 can be denoted by

u2 = −σa(θ2 + σb(·)) (18)

where σi defines a generalized saturation function such that
|σi(·)| ≤ i for positive constant i : a, b, c, d . The argument
in σb(·) will be defined later to assure convergence of the

states. Let us define a positive function V1 = 1
2θ2

2 , then its
derivative is defined by

V̇1 = θ2θ̇2 = θ2u2 = −θ2σa(θ2 + σb(·)) (19)

if |θ2| ≥ b ⇒ V̇1 ≤ 0. Then, ∃ t1 such that for t ≥ t1
|θ2(t)| ≤ b, implying that |θ2 + σb(·)| ≤ 2b. Choosing
a ≥ 2b, then Eq. 18 can be rewritten ∀ t > t1 as

u2 = −θ2 − σb(·). (20)

Define ν1 = θ1 + θ2, then, ν̇1 = −σb(·). Propose a positive
function V2 = 1

2ν2
1 and imposing σb(·) = σb(ν1 + σc(·))

then, its derivative is determined by

V̇2 = ν1ν̇1 = −ν1σb(ν1 + σc(·)) (21)

if |ν1| ≥ c ⇒ V̇2 ≤ 0. Then, ∃ t2 ≥ t1 such that for t ≥ t2
|ν1(t)| ≤ c and |ν1 + σc(·)| ≤ 2c. Choosing b ≥ 2c, then
Eq. 20 can be rewritten ∀ t > t2 as

u2 = −θ2 − ν1 − σc(·). (22)

Define ν2 = ν1 + θ1 − x2/g = θ2 + 2θ1 − x2/g, thus
ν̇2 = −σc(·). Propose the positive function V3 = 1

2ν2
2 with

σc(·) = σc(ν2 + σd(·)), then its derivative is described by

V̇3 = ν2ν̇2 = −ν2σc(ν2 + σd(·)) (23)

if |ν2| ≥ d ⇒ V̇3 ≤ 0. Then, ∃ t3 ≥ t2 such that ∀t ≥ t3
|ν2(t)| ≤ d and |ν2 + σd(·)| ≤ 2d . Choosing c ≥ 2d , then
Eq. 22 can be rewritten ∀ t > t3 as

u2 = −θ2 − ν1 − ν2 − σd(·). (24)

Define ν3 = θ2 +3θ1 −3 x2
g

− x1
g

then ν̇3 = −σd(·). Propose

V4 = 1
2ν2

3 and σd(·) = σd(ν3), taking the derivative of V4,
it follows that

V̇4 = ν3ν̇3 = −ν3σd(ν3) ≤ 0 (25)

The previous implies that ν3 → 0, then from Eq. 23 it
follows that ν2 → 0. From Eq. 21 implies that ν1 → 0,
similarly from Eq. 19, θ2 → 0. From definition of ν1 it
follows that θ1 → 0. From definition of ν2 this implies that
x2 → 0. And finally, from definition of ν3 it can be deduced
that x1 → 0.

Rewriting u2, it yields

uθ = −σa

(
θ2 + σb

(
θ1 + θ2 + σc

(
θ2 + 2θ1 + x2

+ σd

(
φ2 + 3φ1 − 3

x2

g
− x1

g

))))
(26)

3.3 Linear Backstepping Controller

This controller is conceived using the same procedure
proposed in the nonlinear backstepping methodology, but
instead of using the nonlinear system, a linear system is
required. This methodology is useful for beginners with
the goal to better understand their procedure. The obtained
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control law is quite different to the one obtained with the
nonlinear system. For our study, it is assumed that the
vehicle is moving with small angles, therefore the nonlinear
system (13) can be represented as Eq. 17.

Rewriting first equation in Eq. 17

ẋ1 = x2 (27)

propose V1 = 1
2x2

1 , then V̇1 = x1x2. if x2 → −k1x1 with
k1 is a positive constant, then V̇1 = −k1x

2
1 . Define the

following error with the form

ζ2 = x2 − xv
2 (28)

with xv
2 = −k1x1 = α1 defining the first virtual input.

Rewriting Eq. 27 and the second equation of Eq. 17 with
Eq. 28 and using x1 = ζ1

ζ̇1 = ζ2 + α1

ζ̇2 = −gθ1 − α̇1 (29)

Define a positive definite function V2 = V1 + ζ2
2

2
, then

V̇2 = V̇1 + ζ2ζ̇2 = V̇1 + ζ2(−gθ1 − α̇1) (30)

if (−gθ1−α̇1) → −k2ζ2 with k2 is a positive constant, then,
V̇2 = V̇1 − k2ζ

2
2 . Define the error

ζ3 = −gθ1 − α2 (31)

with α2 = k2ζ2 − α̇1 denoting the second virtual input.
Rewriting Eq. 29 with the previous equation, it follows that

ζ̇1 = ζ2 + α1

ζ̇2 = −gθ1 − α̇1

ζ̇3 = −gθ2 − α̇2 (32)

Define the positive definite function V3 = V2 + ζ 2
3
2 , then

V̇3 = V̇2 + ζ3ζ̇3 = V̇2 + ζ3(−gθ2 − α̇2) (33)

if (−gθ2−α̇2) → −k3ζ3, with k3 is a positive constant, then
V̇3 = V̇2 − k3ζ

2
3 . Define the error

ζ4 = −gθ2 − α3 (34)

where α3 = (gθ2)
v = k3ζ3 − α̇2 is the third virtual input.

Rewriting Eq. 32 with ζ̇4, it follows that

ζ̇1 = ζ2 + α1

ζ̇2 = −gθ1 − α̇1

ζ̇3 = −gθ2 − α̇2

ζ̇4 = −gu2 − α̇3 (35)

Propose the Lyapunov candidate function V4 = V3 + ζ 2
4
2 ,

then

V̇4 = V̇3 + ζ4ζ̇4 = V̇3 + ζ4(−gu2 − α̇3) (36)

Propose the control input

u2 = 1

g
(k4ζ4 − α̇3) (37)

with k4 > 0 is a constant. Then

V̇4 = V̇3 − k4ζ
2
4 = −k1ζ

2
1 − k2ζ

2
2 − k3ζ

2
3 − k4ζ

2
4 < 0 (38)

The above implies system (35) goes to zero implying that
Eq. 17 is globally asymptotically stable. Rewriting Eq. 37
with respect to the state variables, it follows that

u2 = − k̄1

g
x1 − k̄2

g
x2 + k̄3θ1 + k̄4θ2 (39)

where

k̄1 = k1k2k3k4

k̄2 = k1k2(k3 + k4) + k3k4(k1 + k2)

k̄3 = k1(k2 + k3 + k4) + k2(k3 + k4) + k3k4

k̄4 = k1 + k2 + k3 + k4 (40)

3.4 Fully Actuated Approach

In this approach, the goal is to transform the underactuated
system into a virtual fully actuated system. This is done
by means of imposing a desired attitude Rd that will be
related to the virtual control input u1(F1, F2). This allows
us to use the control input u2 to only control the attitude
system, i.e., R → Rd . Motivated by the works developed by
[2, 46], simple smooth bounded controllers that can easily
be implemented in VTOL aircrafts with parallel motors
for tracking set-points and time-varying trajectories are
proposed.

The methodology is explained as follows; propose a
vector control input, F , containing the virtual control laws
to stabilize the translational states in the VTOL vehicle.
These virtual control inputs will be related to the desired
orientation matrix, Rd , of the vehicle and with its main
control input, u, as follows

F = uRd (41)

In our case of study, the virtual control laws will be designed
for the vertical and longitudinal axis of the PVTOL with the
form F = [F1 F2]T , similarly Rd ∈ R

2×1, is defined as

Rd =
[

sin θd

cos θd

]
.

Next step, is to rewrite the original dynamic system, in our
case it is represented by Eqs. 5–7. Thus the new system is
described as

mq̈ = u1R + mge2

J θ̈ = u2 (42)

where q = [x z]T , R = [sin θ cos θ ]T , and e2 = [0 1]T .
Notice that in Eq. 41, u is the main control input, in our case,
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u = u1. Therefore, using Eq. 41 into first equation of Eq. 42

mq̈ = u1R + mge2 + u1Rd − u1Rd

= u1(R − Rd) + mge2 + u1Rd

Define ω = u1(R − Rd), thus

mq̈ = ω + mge2 + F . (43)

The desired orientation can be found using Eq. 41, then

θd = tan

(
F1

F2

)−1

. (44)

Notice from Eq. 41 that Rd is an orthogonal vector, therefore

u1 =
√

F 2
1 + F 2

2 . (45)

Define the control objective

lim
t−→∞‖q(t) − qd(t)‖ = 0. (46)

where qd = [xd yd ]T are the longitudinal and vertical
references. Denoting the tracking error as p = [p1 p2] such
that

p1 = q − qd p2 = q̇ − q̇d (47)

Differentiating Eq. 47 and by means of Eq. 43

ṗ1 = p2

ṗ2 = ω

m
− ge2 + F

m
− q̈d . (48)

where q̈d means the desired acceleration.

3.4.1 Control Based on Hyperbolic Functions

Let us propose F in Eq. 48 as

F = m(−σ1(Ap1 + Bp2) − σ2(Bp2) + ge2 + q̈d ) (49)

where A, B ∈ R
2×2 are diagonal positive matrices constant,

σi signifies a saturation function with the form σ(ς) =
σ̄ tanh(ς) and σ̄ means a bounded constant.

Hence, the bounded control F in Eq. 49 makes system
(48) globally asymptotically stable.

Proof First, to prove the asymptotic convergence of
solution p(t) to the origin, observe from Eq. 41 and Eq. 43
that ‖ω‖ ≤ 2ū. This implies that the closed-loop system
using Eqs. 48 and 49 satisfies the Lipschitz condition,1

and hence has a unique solution over [0, T ] with T ≥ 0.
Moreover, if T is bounded, then p(t) is bounded ∀ t ∈
[0, T ]. This proof is inspired in [52].

Furthermore, if lim
t−→∞‖ω(t)‖ = 0 then lim

t−→∞‖p(t)‖ =
0 ∀ p(0), that is, for every ε1, for every p(0), there exists ε2,

1See [20], Theorem 3.1 and page 446

Tε1 , Tε2 > 0 and Tε1 ≥ Tε2 such that

‖ω(t)‖ < ε2, ∀t ≥ Tε2 ⇒ ‖p(t)‖ < ε1, ∀t ≥ Tε1 . (50)

Towards this end, inspired by the work developed by [46],
let us propose the following candidate Lyapunov function

V1(p) =
2∑

i=1

∫ (aip1i+bip2i )

0
σ1i (ςi)dςi + 1

2
pT

2 Ap2 (51)

where ai, p1i , bi, p2i , σ1i and ςi for i = 1, 2 are the
elements of, A, B, p1, p2, σ1 and ς respectively. The time
derivative of V1(p) along Eq. 48 and Eq. 49 is

V̇1 = ṗ1
T Aσ1(Ap1 + Bp2) + ṗ2

T Bσ1(Ap1 + Bp2)

+pT
2 Aṗ2

= −σ1(Ap1 + Bp2)Bσ1(Ap1 + Bp2) − σ2(Bp2)B

σ1(Ap1 + Bp2) + ωT

m
Bσ1(Ap1 + Bp2)

−σ2(Bp2)Ap2 + ωT

m
Ap2

≤ −λmin(B)‖σ1(Ap1 + Bp2)‖2 + λmax(B)

‖σ1(Ap1 + Bp2)‖‖σ2(Bp2)‖ − λmin(A)pT
2 σ2(Bp2)

+ωT

m
(Ap2 + Bσ1(Ap1 + Bp2)) (52)

Using Young’s inequality1, the second term of Eq. 52,
satisfies

λmax(B)‖σ1(Ap1 + Bp2)‖‖σ2(Bp2)‖
≤ λmax(B)

2 ‖σ1(Ap1 + Bp2)‖2

+λmax(B)
2 ‖σ2(Bp2)‖2

(53)

Furthermore, there exists ν > 0 such that ‖‖σ2(Bp2) ≤
νλmax(B)‖p2‖, for all p2, then the third term of Eq. 52
satisfies

‖σ2(Bp2)‖2 ≤ νλmax(B)pT
2 σ2(Bp2) (54)

Substituting Eq. 4 into Eq. 53, yields

‖σ1(Ap1 + Bp2)‖‖σ2(Bp2)‖ ≤ ‖σ1(Ap1+Bp2)‖
2

2

+ νλmax

2 pT
2 σ2(BP2)

(55)

From Eq. 55, the derivative V̇1 in Eq. 52 satisfies

V̇1 ≤ −W1(p, ω) (56)

where

W1(p, ω) = c1‖σ1(Ap1 + Bp2)‖2 + c2p
T
2 σ2(Bp2)

−‖ω‖
m

(λmax(A)‖p2‖ + c3)
(57)

with c1 = 2λmin(B)−λmax(B)
2 , c2 = 2λmin(A)−νλ2

max(B)

2 ,
c3 = λmax(B)σ̄1 with σ̄1 ≥ ‖σ1(·)‖. In order to ensure
c1, c2, c3 > 0, the matrices A, B are chosen as follows:

2λmin(B) > λmaxB; 2λmin(A) > νλmax(B)2 (58)

Equation 56 is used to get Eq. 50. Let the ball Bε1 =
{p ∈ R

3 | ‖p‖ ≤ ε1}, and show that p(t) approaches
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Bε1 after the time Tε1 . Let α1 = min‖p‖=ε1 V1(p), then
α1 > 0. Take β1 ∈ (0, α1) and define the set Ωβ1 = {p ∈
B | V1(p) ≤ β1}, then Ωβ1 is in the interior of Bε1 . As
V1(p) is continuous and V1(0) = 0, there exists γ1 such
that 0 < γ1 < ε1 and β2 = max‖p‖=γ1 V1(p) < β1. Let
the ball βγ1 = {p ∈ Ωβ1 | ‖p‖ ≤ γ1}, and take α2 =
min‖p‖=γ1 V1(p), then we have 0 < α2 < β2 < β1 < α1.
Consequently, let the ball βγ2 = {p ∈ Bγ1 | ‖p‖ ≤ γ2}
where γ2 satisfies 0 < γ2 < γ1 and 0 < min‖p‖=γ2 V1(p) ≤
max‖p‖=γ2 V1(p) < α2, then from the above construction
we have

Bγ2 ⊂ Bγ1 ⊂ Ωβ1 ⊂ Bε1 (59)

and the Lyapunov function V1(p) satisfies

max‖p‖=γ2 V1(p) < min‖p‖=γ1 V1(p)

< max‖p‖=γ1 V1(p) < β1 < α1.
(60)

In view of Eq. 59 it is sufficient to show that p(t)

approches Bγ2 after the finite time Tε1 . Then, the proof is
completed.

As the PVTOL is composed by mechanical and electrical
parts, constraints are needed in order to respect the limits of
its actuators and mechanical movements. Using Eq. 45 and
Eq. 49 it yields

u2 = F 2
1 + F 2

2
u2 ≤ (σ11 + σ21)

2m2 + (σ12 + σ22 + g)2m2.
(61)

In order to ensure u ≤ ū, where ū is a thrust bounded
constant defined by the properties of the actuators, and from
Eq. 61, then the following condition is necessary

(σ11 + σ21)
2 + (σ12 + σ22 + g)2 ≤ u2

m2
. (62)

To guarantee the orientation angle θ tracks its desired value
θd in the sense that limt→∞‖θ(t) − θd(t)‖ = 0, such that

lim
t−→∞‖ω(t)‖ = 0 (63)

Let us propose a Proportional Derivative controller with the
form

u2 = −kθ (θ − θd) − kθ̇ (θ̇ − θ̇d ) (64)

where kθ and kθ̇ are positive constants that must be well
chosen to ensure Eq. 63. θ̇d rate is defined as

θ̇d = Ḟ1F2 − F1Ḟ2

F 2
2 + F 2

1

(65)

with

Ḟ = − 1
m

((1 − σ1 tanh(Ap1 + Bp2)
2)Ap2

+B((1 − σ1 tanh(Ap1 + Bp2)
2)

+(1 − σ2 tanh(Bp2)
2))ṗ2).

4 Simulations and Experimental Results

This section presents the simulation and experimental
results to validate the control strategies developed in
Eqs. 15, 26, 39, 49. The scenario consists in moving the
longitudinal axis of the vehicle as following: the vehicle
starts at x(0) = −2m and z(0) = 1m, then, three set-points
defined by xr1 = 2, xr2 = 4 and xr3 = 5 in meters are
imposed as desired values.

For better illustrating the graphs obtained in simulation
and experimental results, we denote as LB, NLB, NS, the
Linear/NonLinear Backstepping and the Nested Saturation
controllers, respectively, called also classical approaches.
The HSC means the Hyperbolic Saturation Controller
based on the fully actuated approach, named also virtual
method. Parameters for numerical and practical validation
are shown in Table 1.

4.1 Simulations

The performance of the PVTOL vehicle when using
controllers (15), (26), (39) and (49) tracking the set-
points previously defined is shown in Figs. 2 and 4.
Note from Fig. 2 that, the convergence using controllers
without bounded functions are faster than the others that use

Table 1 Parameters values used in the control laws in Eqs. 15, 26, 39
and 49 used in simulation and experimental validation

Controller Control parameters Sim. Values Exp. Values

LB k1 1 1.31

k2 1.2 1

k3 0.8 0.8

k4 0.1 0.1

NLB k̄1 0.04 0.04

k̄2 0.035 0.0025

k̄3 0.4 0.4

k̄4 0.1 0.1

NS a 0.15 0.15

b 0.22 0.22

c 0.1 0.1

d 0.3 0.3

HSC σ1 0.5 0.5

σ2 0.1 0.2

σ3 0.5 0.5

σ4 0.35 0.4

a11 5 1

a22 0.9 1.3

b11 3 0.3

b22 0.55 0.6
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Fig. 2 Longitudinal position performance when comparing the four
control algorithms

saturation functions. This performance is ‘normal’ because
the saturation functions are chosen so small to guarantee
a convergence from any initial condition. To increase the
speed of convergence of these controllers, the bound of the
saturation functions must be increased. Besides, as depicted
in Fig. 3, the θ angle responses for controllers NS and
HSC are bounded, even if initial conditions are far from
the desired position. In addition, for the controllers LB and
NLB the angular position is bigger than for the NS and HSC
controllers and its magnitude is related to the error position.
Notice that only for the HSC algorithm the angular position
tracks the imposed reference.

Figure 4 is the most important graph to analyze the
performance of the four controllers. In this figure z

performance is depicted showing the advantage of using
virtual controller from the classical one. Observe here
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Fig. 3 θ angle response when applying four controllers into the
PVTOL dynamics. θd denotes the desired angle computed in Eq. 44
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Fig. 4 Vertical position behavior when comparing the four control
algorithms

that the controllers using classical procedure their altitude
performance is degraded when tracking the references.
In practical validation, this is observed as a drop in the
altitude performance (z decreases). This drop is related to
how far the desired value is. Similarly, the performance of
the vehicle comparing the four control algorithms in the
x − z plane is displayed in Fig. 5. In one hand, it can
be verified that when using control algorithms based on
classical method, the behaviour of the vehicle in the z−axis
is compromized. On the other hand, controllers based on
the virtual approach compensate this error by means of the
correction term F2 in the total thrust.

In Figs. 6 and 7 the control input responses for the four
controllers are depicted. Notice from Fig. 6 that u1 response
is different for the HSC controller with respect to the others
that decreases when the desired point is modified. Notice
that for the HSC controller u1 increases to compensate

-4 -2 0 2 4 6 8
0.9
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0.96

0.98

1
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1.04

1.06

1.08

1.1
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x
r1

x
r3

x
r2

Fig. 5 Vehicle’s performance evolution in the x − z plane when
applying the four control algorithms into the PVTOL dynamics. From
figure xri for i : 1, 2, 3 describes the desired way-point
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Fig. 6 u1 behavior when applying the controllers (15), (26), (39) and
(49)

the lateral displacement. Nevertheless, in Fig. 7 the u2

performance is quite different. Notice here that u2 for the
HSC controller is smaller with respect to the others one.

4.2 Experimental Results

The control algorithms (15), (26), (39) and (49) were
validated in real time in a quadcopter vehicle evolving as
a PVTOL vehicle. For this, front motors (fL2 , fR2 ) and
rear motors (fL1, fR1 ) in the aerial vehicle are considered
producing only a force in the front and rear side of the
vehicle, as depicted in Fig. 8.
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Fig. 7 Torque control u2 response when applying the four control
algorithms

Fig. 8 Quadcopter configuration evolving in its longitudinal plane
with the main forces acting in the vehicle
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Fig. 9 Longitudinal behavior when applying experimentally the four
control algorithms into the aerial vehicle

Fig. 10 θ angle response when the four control algorithms where
applied in real time. θd describes the desired angle
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Fig. 11 Vertical position comparing the four control algorithms

From Fig. 8 notice that f1 = fL1 + fR1 and f2 =
fL2 + fR2 . Vertical displacement on the z axis is produced
when increasing or decreasing, by the same magnitude the
speed in the motors, while pitch moment is produced with
the difference between f1 and f2.

This quadcopter vehicle evolving as a PVTOL is an AR
Drone 2. Its firmware was modified to work under the
software Fl-AIR - Framework libre AIR which is open
source and runs a Linux-based operating system, capable of
implementing a wide range of control schemes, see [21]. An
OptiTrack motion capture system was used to estimate the
vehicle’s position, while its internal Inertial Measurement
Unit (IMU) measures its orientation and angular rates.

Conditions for flight tests are the same used in
simulations, i.e. the initial conditions are x(0) = −2m and
z(0) = 1m while xr1 = 2, xr2 = 4 and xr3 = 5 in meters are
the references. In Figs. 9, 10, 11 the state responses when
applying the controllers are illustrated.

Notice from Fig. 9, as in the simulation case, the
convergence of controllers based on saturation functions are
quite slower due to the bound of these functions, that helps
to maintain an relative small error with respect to the others
controllers.

The angular performance of the system is depicted in
Fig. 11. Notice here that for the HSC algorithm a desired
angle is imposed that is tracked satisfactory. Similarly in
this figure observe that θ -response is bigger for the other
controllers.

Observe in Fig. 11, that the magnitude of the error in
the z−axis is directly related to the x−axis error. This
means that if the desired x-position is far, then, the error
in the vertical axis increases. And as a consequence, the
magnitude of the θ angle is affected as can be verified
in Fig. 10. Therefore, as can be observed in Fig. 10, it is
possible to use small values for the saturation functions,
nevertheless it will compromise the performance of the
system.

Moreover, a big angle response should increase the
vertical error in the vehicle when using control algorithms
based on classical approach as can be seen in Fig. 12a.
Besides, when using controllers based on the virtual
approach or controllers using bounded functions, this error
is minimized as shown in Fig. 12b.

In Figs. 13 and 14 the control input responses are
illustrated. Notice that they have similar performance
obtained in simulations.

5 Discussion

We have carried out an analysis of the performance of the
four control algorithms. For this purpose, the performance
indices and a qualitative comparison of the controller are
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(a) Vehicle’s performance evolution in the x − z plane when the
four control algorithms are applied in real time.
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(b) xz performance for the NS and HSC control algorithms.

Fig. 12 Vehicle’s performance evolution in the x − z plane comparing the four control algorithms
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Fig. 13 Thrust control u1 response for the four control algorithms
applied to the aerial vehicle

obtained. The performance indices are the Integral Square
Error (ISE), the Integral Absolute Error (IAE), the Integral
time Squared Error (ITSE) and the Integral time Absolute
Error (ITAE). A summary of this analysis is presented in
Tables 2, 3, 4.

From the steady state regime experimental results, in
Table 2 it can be observed that the Nested Saturation
and Hyperbolic Saturation controllers achieve the best
performance in terms of the vertical error. The HSC presents
less error than NS. However, the HSC algorithm includes
a bigger computational effort with respect to the other
algorithms due the derivatives of the desired angle θd . It
can be analyzed from the design of the HSC controller
that it imposes desired angles, therefore, this increases the

Fig. 14 Torque control response, u2, obtained during the flight tests

Table 2 Performance indices of the z−axis

Controllers/Indices IAE ISE ITAE ITSE

LB 2.97 0.48 99.48 17.98

NLB 2.40 0.30 82.38 12.33

NS 1.16 0.03 35.63 1.02

HSC 1.09 0.04 30.04 1.35

time of convergence to the desired translational values.
Nevertheless, it could be an advantage because when
imposing desired angles, we can ensure converge even if the
desired position are far away. Observe also from tables that
the Nested Saturation controller is quite small with respect
to the other approaches due mainly to the values of the
bound of the saturation functions.

The linear backstepping controller presents a small error
in the longitudinal axis and faster convergence time as can
be observed in tables. Nonetheless, according to Table 2
this control algorithm has a bigger vertical error and by
consequence control effort u2 required is also bigger.

Regarding the design, tuning and the implementation
effort, the linear backstepping and nested saturation
algorithms are easier to tune because their structure can
be seen as Proportional Derivative controllers. In contrast,
the NLB and the HSC are tedious to implement since both
present several complex derivatives and they have more
parameters to tune. In this context, Table 4 presents a
behavior comparison between the four algorithms including
numerical and practical validation and other qualitative
indicators.

Concerning the methods to design these control laws, one
of the advantages of the virtual method is the possibility
to design any control law (adaptive control, sliding mode
control, etc) in F1 and F2 that could significantly improve
the performance of the system. Here, the challenge will
be to design control laws capable to provide desired
angles respecting the mechanical constraints of the vehicle
for avoiding singularities in the control input u2. The
disadvantage, as previously mentioned, is the complexity of
the implementation of the algorithms due of the first and
second derivative of F1 and F2.

In contrast, the classical method gives the advantage of
an easy fashion to get the analysis and design of the control

Table 3 Performance indices of the x−axis

Controllers/Indices IAE ISE ITAE ITSE

LB 60.21 221.56 1453 7132

NLB 64.53 241.37 1937 7780

NS 77.96 290.13 2324 10188

HSC 83.51 308.68 266.76 14752
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Table 4 Qualitative comparison of the control algorithms. The best
result is denoted with 1 and the worst with 4

LB NLB NS HSC

Converge to the reference 1 4 3 2

Computational effort 1 3 2 3

Control effort 4 3 1 1

Design & tuning effort 1 4 2 3

Real implementation 1 4 3 3

algorithms based on the assumption that the vertical axis is
controlled. However, the control effort of the inputs u1 and
u2 could be bigger if the desired positions are far from the
initial conditions.

6 Conclusion

This paper deals with a brief overview evaluation of
popular control algorithms for VTOLs vehicles. Our goal
was to provide a unified and accessible analysis, placing
the classical model of a multirotor aerial vehicle and the
proposed control methods (Classical and Virtual) into a
proper context. In this case, four control algorithms were
obtained, explaining the main procedure for their design.
The studied control methodologies were the linear and
nonlinear backsteping and the nested saturation functions
for the well-known underactuated dynamics and the
hyperbolic saturation control for a virtual fully actuated
system. The Lyapunov theory was used to prove the stability
analysis.

Simulation and experimental results revealed that using
the virtual approach for the control design results in a
smoother convergence to the desired reference and a smaller
control effort demand. After analysis, we consider that
virtual approach should be a good solution for some mission
and need to be explored in more detail. Nevertheless, the
choice between the controllers will depend on the problem
requirements.
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