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Abstract
High-dimensional configuration space is usually searched using sampling-based motion planning methods. The well-known
issue of sampling-based planners is the narrow passage problem caused by small regions of the configuration space that
are difficult to cover by random samples. Practically, the presence of narrow passages decreases the probability of finding
a solution, and to cope with it, the number of random samples has to be significantly increased, which also increases the
planning time. By dilating the free space, e.g., by scaling-down or thinning the robot (or obstacles), narrow passages become
wider, which allows us to compute an approximate solution. Then, the configuration space can be sampled densely around
the approximate solution to find the solution of the original problem. However, this process may fail if the final solution is too
far from the approximate one. In this paper, we propose a method to find multiple approximate solutions in the configuration
space to increase the chance of finding the final solution. The approximate solutions are computed by repeated search of
the configuration space while avoiding, if possible, the already discovered solutions. This enables us to search for distinct
solutions leading through different parts of the configuration space. The number of approximate solutions is automatically
determined based on their similarity. All approximate solutions are then used to guide the sampling of the configuration
space. The performance of the proposed approach is verified in scenarios with multiple narrow passages and the benefits of
the method are demonstrated by comparing the results with the state-of-the-art planners.
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Foundation (GAČR) under research project No. 19-22555Y.
Computational resources were supplied by the project “e-
Infrastruktura CZ” (e-INFRA LM2018140) provided within
the program Projects of Large Research, Development and
Innovations Infrastructures.
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1 Introduction

The task of motion planning is to find a collision-
free path of an object between two configurations in
a given environment. In this paper, we consider the
planning for 3D solid objects. Besides robotics, applications
of this task can be found in computer-aided design
for assembly/disassembly solvers [12], in computational
biology [1], for example, to study ligand unbinding
pathways [23] and for protein folding [3].

Finding paths for 3D solid objects requires to search
the six-dimensional configuration space. High-dimensional
configuration spaces are usually searched by sampling-
based planning that explores the space using randomly
generated samples [21]. The narrow passage problem is
the well-known issue of the sampling-based planners [21,
22]. Collision-free regions with a low volume have a low
probability of being sampled. Consequently, significantly
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more random samples need to be generated to construct a
path through the passage, which also increases the planning
time.

A possible approach to cope with the narrow passage
problem is to utilize the guided sampling, where the random
samples are generated along a guiding path. Computing
the guiding paths in the workspace is suitable only for
low-dimensional configuration spaces, where the path in
the workspace correlates with the path in the configuration
space. Guiding the sampling in the high-dimensional
configuration space requires to compute the guiding path
also in the configuration space.

However, computing a guiding path in the configuration
space requires solving the same planning problem and it
would be time-consuming. Instead, the guiding path can be
computed as a solution of a similar, yet simpler problem.
For example, the robot or obstacles can be scaled-down [4,
15, 31], which effectively widens the narrow passages and,
in consequence, makes the sampling-based search easier.
The result of this search is an approximate solution that
is valid for the reduced robot, but possibly invalid for
the original problem. The solution of the original problem
is then computed by dense search in the vicinity of this
approximate solution. Using only one guiding path may,
however, fail, if the desired solution, i.e., the path for the
non-scaled object, cannot be found in the vicinity of the
approximate solution.

In this paper, we propose a method for motion planning
in the six-dimensional configuration space using multiple

approximate solutions. Ideally, the approximate solutions
should belong to different homotopy classes to increase the
probability of finding the desired solution. The computation
of homotopy classes in configuration space is still a
challenging problem [6]. Therefore, we propose a novel
heuristic approach to obtain diverse approximate solutions
in the configuration space.

The principle of our approach is illustrated on the prob-
lem of finding a path for an L-shaped robot (Fig. 1a). First,
several approximate solutions are constructed considering
a smaller version of the robot (Fig. 1b). Then, the config-
uration space is sampled densely along these approximate
solutions to find a solution for the original robot (Fig. 1c).
The approximate solutions are found iteratively. After an
approximate solution (path) is found (Fig. 1d), it defines the
inhibited regions that are temporarily prohibited from ran-
dom sampling (Fig. 1e, f). This ensures that the subsequent
search prefers to explore a different part of the configura-
tion space. The sampling of the inhibited regions may be
allowed if it would block the finding of new solutions. This
typically happens when multiple solutions lead through the
same narrow passage (Fig. 1e, f).

The idea of inhibited regions was introduced in our
previous work [32] where the number of approximate
solutions and the probability of penetrating the inhibited
regions were defined by the user. Therefore, the work [32]
required some a priori knowledge of the configuration
space to correctly estimate the number of approximate
solutions and the probability of sampling the inhibited

Fig. 1 Illustrated overview of the proposed method in case of motion
planning of the L-shaped robot (gray). To solve the planning problem
(a), several approximate solutions are found first (b) and the configura-
tion space is sampled more densely around them (c). The approximate

solutions are found using a scaled-down robot (d, e, f); after an approx-
imate solution is found, it defines an inhibited region (red) that the next
search tries to avoid if possible (e, f)
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regions. This paper is motivated by the practical usage
where such a priori knowledge is not always known and
where methods requiring minimal user input are preferred.
The contribution of this paper is a) the extension of [32]
to automatically determine the number of approximate
solutions based on their similarity; b) the method to estimate
the speed of exploration of the configuration space; c) the
novel approach for enabling/disabling sampling of inhibited
regions based on the expected speed of exploration; and d)
extended experiments on challenging scenarios.

2 RelatedWork

The Probabilistic Roadmaps (PRM) [19] and Rapidly-
exploring Random Trees (RRT) [20] are the most used
sampling-based planners. RRT incrementally builds a tree
of collision-free configurations. In each iteration, a random
sample is generated and the nearest node in the tree is found.
The node is then expanded towards the random sample.
PRM first generates the random samples and stores only
the collision-free ones. Then, the close free samples are
connected to make the roadmap.

The original PRM and RRT assume the uniform
distribution of random samples, which leads to the well-
known narrow passage problem [11, 17, 22]. The narrow
passages have a low volume (in comparison to the volume
of the whole configuration space), and therefore, the
probability of placing uniformly-distributed samples into
them is low. As the removal of narrow passages leads
to changes of connectivity of the configuration space,
the inability to sample the narrow passages consequently
prevents the planners from finding a solution.

PRM can cope with the narrow passage problem e.g.
by generating more random samples near obstacles [2, 16,
24]. Alternatively, medial axis of the workspace can be
used to generate the random samples [33]. Increasing the
probability of sampling does not necessarily help in the case
of RRT-based planners, as they extend the tree iteratively by
small steps, and the expansion can be blocked by obstacles.
The RRT-based planners need to improve also the expansion
step to cope with the narrow passage problem. In [35],
the collision-free random samples are retracted towards a
more desirable region, usually towards the boundary of
the obstacles, which increases the probability of expanding
the tree. The method [34] limits the selection of nodes
for the expansion by maintaining a distance threshold
for each node. Random sample can select a node for
expansion only if the distance towards the node is less
than the threshold. Initially, the threshold is set to infinity
and it is decreased to a finite value after the expansion
fails.

The growth of the tree can be “steered” by changing the
distribution of the random samples. This is used in the well-
known goal-bias modification, where the random sample is
generated around the goal configuration with a predefined
probability. In [28], the tree is attracted towards multiple
key-configurations that are supposed to be placed near the
narrow passages. The work [28], however, does not specify
how to find these key-configurations.

The generalization of the goal-bias is the guided
sampling, where a sequence of waypoints (a guiding
path) is used to generate the random samples [9, 10, 29,
30]. They are generated with the increased probability
around a given waypoint of the guiding path until the
tree approaches the waypoint close enough. The sampling
then continues around the next waypoint [10, 30, 31].
In [30], the guiding path is computed using Voronoi
diagram or Visibility graph. The work [10] utilize Reeb
graph. Alternatively, the workspace can be discretized,
and the guiding path is found using a graph-search
method [5, 25] In Exploration/Exploitation Tree [26],
the workspace connectivity is estimated using a sphere-
based wavefront expansion [7]. The space is then sampled
along the wavefront decomposition of the workspace. The
guiding principle can be further augmented by using local
information about the guiding path, e.g., the density of
obstacles [29].

Generating the random samples along paths computed in
workspace is not sufficient for searching high-dimensional
configuration spaces due to the low correlation between
a low-dimensional motion in the workspace and a high-
dimensional motion in the configuration space. To make the
construction of high-dimensional guiding paths practically
possible, we can compute them as approximate solutions of
the original problem by relaxing some constraints [4, 15,
31]. For example, the collision constraints can be relaxed
by reducing the volume of the robot (or obstacles), e.g., by
scaling-down the geometry of the robot [4, 31] or by its
thinning [15]. The reduction of the robot volume increases
the relative volume of the narrow passages, which also
increases the probability of sampling the passage. A similar
effect can be achieved by allowing a little penetration
between the robot and the obstacles.

The first idea of searching the configuration space
along a solution of the relaxed problem was proposed
form PRM planner in [4]. First, the PRM builds the
roadmap considering the relaxed problem and the solution
is iteratively repaired until it is valid also the original
problem. In [15], the geometry of the robot and obstacles
are adaptively thinned, and PRM is used to find the
approximate solutions. In [31], RRT-based planner utilizes
a single approximate solution to guide the search in the
configuration space. The robot volume is reduced by an
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iterative removal of the surface triangles which allows us to
find the approximate solutions.

Sampling of the configuration space along only a single
approximate solution is proposed in several works [4, 15,
31]. The performance of these planners is sensitive to
the computation of the approximate solutions. As only
the vicinity of the approximate solution is sampled to
find the desired solution, this approach may fail if the
desired solution is located far away from the approximate
one. To increase the probability of finding the desired
solutions, multiple approximate solutions are needed.
Ideally, the should be located in different homotopy classes.
The homotopy classes has been studied only for low-
dimensional spaces [13]. The structure of R2 environment
is captured using the Constrained Delaunay Triangulation
in [8]. The path finding is then simplified to a graph search
over the triangles such that the homotopy class of each
path is different. Authors of [14] propose an algorithm for
finding the shortest path with a certain homotopy class for
R
2 workspace with polygonal obstacles. For semi-algebraic

obstacles in the R2 workspace, [13] proposes an algorithm
for the shortest path in a given homotopy class. The PRM-
based method for 2D workspace is used in [27] to find the
homotopy classes. This method creates roadmap vertices
that cover the free part of the configuration space such that
each point of the free part can be connected to the roadmap
without collision. The roadmap nodes are then connected
in such a way that only one path exists in each homotopy.
The authors of [6] propose a discretization-based method
for computing trajectories in different homotopy class in
two, three, and four dimensional Euclidean space. It uses
the H-signature augmented graph that stores homotopy class
information for a trajectory leading from start to each node.
This is based on the discretization of the configuration
space, which practically limits the usage to low-dimensional
spaces.

The method proposed in this paper copes with the narrow
passage problem by guided-sampling along approximate
solutions. In comparison with the most relevant works [4,

15, 31], we propose to utilize several approximate solutions.
The approximate solutions should be mutually different,
i.e., leading through various parts of the configuration
space and ideally belonging to different homotopy classes.
However, the determination of homotopy classes in the
high-dimensional configuration space with narrow passages
is very challenging. Therefore, we propose a method to
compute an approximate solution iteratively, ensuring that
a newly computed solution is different from the previously
detected ones.

3 AlgorithmOverview

We consider the classical motion planning problem where
the task is to find a collision-free path for a robot starting at
qstart ∈ Cf ree and ending at qgoal ∈ Cf ree, where Cf ree ⊆ C
is the collision-free region of the configuration space C.

The proposed planning method, referred as RRT-IR (RRT
with Inhibited Regions) in the rest of the paper, consists
of two procedures: a) sampling of the configuration space
(Algorithm 1); and b) maintenance of the approximate
solutions (Algorithm 2). The workflow of the RRT-
IR planner is depicted in Fig. 2. First, Algorithm 2
repeatedly employs the sampling procedure (Algorithm 1)
to find approximate solutions. After a new approximate
solution is found, it extends the set of inhibited regions,
so it is avoided in the next search realized again by
Algorithm 1. The number of approximate solutions to be
found is determined based on their similarity. After enough
approximate solutions are found, the configuration space is
densely sampled around these approximate solutions.

As already stated, the sampling of C is realized by
Algorithm 1. This algorithm is presented in a versatile form
implementing the sampling that avoids the inhibited regions,
and also the guided sampling along approximate solutions.
The particular behavior of Algorithm 1 depends on the
parameter settings, which will be described in the following
text.

Fig. 2 Overview of the RRT-IR planner. First, Algorithm 1 samples
the space to find an approximate solution (path) P . The path P then
extends the inhibited region R, so the next search by Algorithm 1

will avoid it. After enough approximate solutions G are found, the
configuration space is sampled again around G
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Algorithm 1: findPath(qstart, qgoal,G,R, pbias).

Input: start/goal: qstart, qgoal, guiding paths
G = {P1, . . . , Pm}, inhibited region R, guiding bias
pbias

Data: size of inhibited region dinh, distance to goal dgoal,
maximal number of samples Nmax, blocking level B

Output: path from qstart to qgoal or ∅ (Failure)
Result: behavior as basic RRT: G = ∅ or pbias = 0;

sampling while avoiding inhibited regions: pbias = 0
and R �= ∅; guided sampling: G �= ∅ and pbias > 0

1 T .addNode((qstart, 0)) // tree is rooted at qstart

2 vi = 1, i = 1, . . . , m // active waypoints for
guided sampling

3 for nsamples = 1, . . . , Nmax do
4 if random(0,1) < pbias and |G| > 0 then // guided

sampling along paths G
5 i = random 1 ≤ i ≤ m // select random

path
6 qvi

= vi -th point of path Pi

7 qrand = random configuration around qvi

8 else
9 qrand = random configuration from C

// uniform sampling

10 qnear = T .nearestNeighbor(qrand) // KD-tree
search

11 qnew = straightLineExpansion(qnear, qrand)
12 if isFree(qnew) then
13 enterInhibited = T rue

14 if |R| > 0 then // can qnew enter
inhibited region R?

15 enterInhibited = False

16 q ′ = R.nearestWaypoint(qnew) // KD-tree
search

17 d = �(qnew, q ′) // distance towards
the region R

18 if d > dinh or nsamples > ns(q
′) · B then

// attempt to enter R
19 enterInhibited = T rue

20 if |R| = 0 or enterInhibited = T rue then
21 T .add((qnew, nsamples))

// ns(qnew) = nsamples

22 T .addEdge(qnear, qnew)
23 for i = 1, . . . , m do // update active

waypoints
24 if �(qvi

, qnew) ≤ dgoal then // is
active waypoint reached?

25 vi = vi + 1 // next guiding
waypoint

26 if �(qnew, qgoal) ≤ dgoal then // is goal
reached?

27 return path in T from qstart to qgoal

28 return ∅

3.1 Construction of Multiple Approximate Solutions

The configuration space is sampled in Algorithm 1 using the
RRT principle. The tree T of collision-free configurations
rooted at qstart ∈ Cf ree is iteratively built. In each iteration,
a random sample qrand is generated and its nearest neighbor
qnear ∈ T is found. The tree is expanded from qnear towards
qrand using the straight-line expansion [20], which results in
a new configuration qnew that can be eventually added to the
tree if it is collision-free. The sampling process is repeated
until the goal is reached to the predefined distance dgoal, or
until the number of planning iterations Nmax is reached.

Each node in the tree contains, besides a configuration q,
also the value ns(q) which denotes the number of random
samples (variable nsamples in Algorithm 1, line 21) that were
generated before q was added to the tree. If ns(q) < ns(q

′)
we consider the configuration q to be reached “before” the
configuration q ′. The property ns() estimates how fast the
tree explores the configuration space.

Finding multiple diverse approximate solutions is
achieved using the concept of inhibited regions. The inhib-
ited regions are defined around the waypoints of already
known solutions (paths). Let q ′

1, . . . , q
′
k ∈ C be k way-

points and let R ⊆ C denote the inhibited region: R =
{q ∈ C|�(q, q ′) ≤ dinh, q

′ ∈ q ′
1, . . . , q

′
k}, where �(·, ·) is

the distance between two configurations and dinh determines
the size of the inhibited region. We denote the waypoints
q ′
1, . . . , q

′
k as the waypoints forming R, and by notation

q ′ ∈ R, we refer to these waypoints. The waypoints form-
ing R are made of nodes of the trees built in the previous
runs of Algorithm 1. The property ns(q

′), q ′ ∈ R is there-
fore known also for the waypoints of the inhibited region
and it estimates the expected number of samples required to
reach the waypoint q ′.

Let q ′ ∈ q ′
1, . . . , q

′
k be the nearest point towards the

configuration qnew ∈ C that is the candidate for expanding
the tree. The candidate qnew is added to the tree if it is
outside the inhibited region, i.e., if �(qnew, q ′) > dinh (lines
18–19 in Algorithm 1). If qnew is inside the inhibited region,
it can be added to the tree only if the tree is blocked too
much by the inhibited regions. The level of blocking is
determined based on the actual number of samples ns(qnew)

required to reach qnew and the number of samples ns(q
′)

required to reach the waypoint of the inhibited region. If
the two values are similar, we can consider the actual tree
not to be blocked by the inhibited region and therefore,
qnew is not added to the tree. The candidate qnew is added
to the tree only if ns(qnew) > B · ns(q

′), B > 0, i.e.,
when the tree grows B times slower than is expected by the
waypoints ofR (lines 18–19 in Algorithm 1). The parameter
B controls the ratio of random samples (relatively to ns(q

′))
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Fig. 3 Sampling of C while avoiding the inhibited region R located
around waypoints q ′

1, . . . q
′
7 ∈ R. Let assume ns(q

′
1) < . . . < ns(q

′
7).

The inhibited regionR is avoided by the tree if the number of random
samples nsamples ≤ D ·ns(q

′
1) (a). When nsamples > D ·ns(q

′
4), the tree

can expand towards the inhibited region around waypoints q ′
1, . . . , q

′
4

(blue) (b). The inhibited regions are not defined around start and goal,
respectively (c)

that have to be generated before the waypoint q ′ ∈ R can
be approached by the tree.

The advantage of using ns() to determine if R can be
entered is that it respects the speed of growth of the tree,
because the property is derived from the number of samples
required to reach the particular configuration in the previous
runs of Algorithm 1. For example, quickly growing trees
(i.e., when the goal is reached using a small number of
samples), would result in low values of ns(). Similarly, a
slow growth (e.g., due to presence of narrow passages or
because of a small expansion step) would result in large
values of ns(). By comparing the actual number of samples
(nsamples in Algorithm 1) to ns(), the subsequent attempt
to find approximate solution is “calibrated” to the speed
of growth in the given configuration space. The tree is
therefore forced to explore other regions of C than R, but
allows the tree to enter R if needed, e.g., if two solutions
have to lead through the same narrow passage (Fig. 3).

The search for approximate solution requires the
generation of uniformly distributed random samples.
Therefore, the approximate solutions are found using
Algorithm 1 with pbias = 0 and G = ∅. The sampling along
the approximate solutions is described in the next section.

3.2 Guided Sampling AlongMultiple Guiding Paths

In the guided sampling, random samples qrand are generated
around the approximate solutions G = {P1, . . . , Pm} of m

paths, where each path P = (qi), qi ∈ Cf ree is a sequence
of waypoints. The guided sampling along m guiding paths
is realized using active waypoints vi, i = 1, . . . , m, that
denote the index of a waypoint of i-th guiding path, 1 ≤
vi ≤ |Pi |.

The random samples qrand are generated from a randomly
chosen path 1 ≤ i ≤ m around its active waypoint qvi

∈
Pi (lines 4–7 in Algorithm 1) with the probability pbias .
Otherwise, qrand is generated uniformly in C. The active
waypoints are shifted forward on the guiding path if the tree
approaches them to a predefined distance dgoal (lines 23–25
in Algorithm 1).

By drawing the random samples qrand around the active
waypoint of a randomly chosen path, the tree attempts to
grow along all guiding paths simultaneously. Yet, if some
of the paths cannot be followed, e.g., due to an obstacle,
the tree can still follow the other paths, because the active
waypoints are adapted independently. The update of the
active waypoints vi is depicted in Fig. 4.

Fig. 4 Guided sampling along two guiding paths P1 and P2. The ran-
dom samples (red) are generated around the active waypoints v1 and
v2, respectively (green) (a). When the tree reaches an active waypoint

in the distance dgoal (v1 in this case) (b), the particular active waypoint
is moved forward along the guiding path (c)
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3.3 TheMain Procedure of the RRT-IR Planner

The main loop of the planner is described in this section and
listed in Algorithm 2. In the first phase, initial approximate
solutions are found considering the scaled-down robot
(lines 6–13 in Algorithm 2). These approximate solutions
are stored in the set G. For each found solution, its
waypoints are added to the inhibited region R (line 10 in
Algorithm 2), so the next sampling of the configuration
space will avoid the previously found solutions. Waypoints
in the distance dsafe from qstart and qgoal, respectively, are
omitted when defining R. This is necessary in order to
enable the tree growth from qstart and also to enable the tree
to reach qgoal. The effect of the parameter dsafe is illustrated
in Fig. 3c.

The construction of approximate solutions is terminated
based on their mutual diversity. The similarity between two
paths is the average distance between waypoints of P1 and
their nearest waypoints in P2:

s(P1, P2) = 1

|P1|
∑

q∈P1

�(q, q∗),

q∗ ∈ P2 is the nearest waypoint towards q,(1)

and the diversity d(G) of paths G is

d(G) = min
P1,P2∈G,P1 �=P2

max (s(P1, P2), s(P2, P1)) . (2)

The search for approximate solutions continues while the
diversity of the path is changing (Algorithm 2 line 6), which
means, that each new approximate solution is different from
the previously found ones. The progress of diversity with

Algorithm 2:Main loop of the RRT-IR planner.
Input: qstart, qgoal ∈ Cf ree

Output: feasible solution (path) or ∅ if no solution is found
1 R = ∅ // inhibited regions
2 G = ∅ // guiding paths
3 robot .scaleDown()
4 dprev = −1
5 dactual = 0
6 while dprev �= dactual do // search for
approximate solutions

7 P = findPath(qstart, qgoal, ∅,R, pbias = 0) // Alg. 1
8 if P �= ∅ then
9 G = G ∪ {P } // new approximate

solution
10 R = R ∪ {qi ∈ P |�(qi, qstart) >

dsafe ∧ �(qi, qgoal) > dsafe} // extend R
11 dprev = dactual

12 dactual = d(G) // path diversity (2)
13

14 R = ∅ // inhibited regions are not used
now

15 robot .originalScale()
16 P = findPath(qstart, qgoal,G,R, pbias �= 0) // Alg. 1
17 return P // solution (path)

the increasing number of approximate solutions is depicted
in Figs. 5 and 6.

The result of the first phase of the algorithm is the set G of
guiding paths— each representing an approximate solution.
In the second phase, the configuration space is sampled
along the guiding paths G while considering the original
size of the robot. The disabled regions are not considered in
this case (line 14 in Algorithm 2). The result of the second

Fig. 5 The progress of diversity of approximate solutions with the
increasing number of the solutions for an L-shaped robot. The lowest
number of approximate solutions where the diversity does not change

determines the number of approximate solutions that will be used for
guiding. In (a), three solutions will be used, whereas in (b) and (c) we
operate with four solutions
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Fig. 6 The progress of the diversity of the approximate solutions in
3D workspace for the yellow cylinder object. The lowest number of
approximate solutions where the diversity does not change determines
the number of approximate solutions that will be used for guiding.
The searched configuration space is six-dimensional. The approximate
solutions are found for the scaled-down cylinder that can pass through
red and green holes. The original robot can fit only into the green

passages. Five approximate solutions are found in (a), two of them
leading through the desired green narrow passage. In scenario (b), six
approximate solutions are found through all feasible (green) passages,
four of them lead through the shared narrow passage of the middle
wall. In scenario (c), six approximate solutions are found through both
shared and non-shared narrow passages

sampling is the final solution of the original, non-relaxed
problem.

3.4 Discussion

The RRT-IR planner relies on the concept of inhibited
regions to ensure the diversity of the approximate solutions.
It is worth to note that the approximate solutions cannot
be computed by a naı̈ve repeated RRT search. The classic
RRT tends to find similar paths in each trial. Due to
the narrow passage problem, the classic RRT more likely
reaches the goal configuration via the easily accessible
regions (e.g., widely open regions) rather than through the
narrow passages. In environments with several different
narrow passages, the repeated RRT search likely finds paths
through the most easiest one and therefore, the diversity of
the found paths would be low. This effect is illustrated in
Fig. 7.

The computationally most intensive part of the RRT-IR
algorithm is the configuration space sampling (Algorithm 1)
because of the frequent usage of collision detection and
the nearest-neighbor search. Algorithm 1 performs two
searches: sampling with inhibited regions and guided
sampling along multiple approximate solutions.

In the former case, time complexity of one iteration
of Algorithm 1 is O(log n + log c + log |R|), where
the first term is the complexity of the nearest-neighbor
search in the tree of n nodes realized by KD-tree,

the second term represents hierarchical collision-detection
between c objects, and log |R| represents the nearest-
neighbor search with inhibited region that are made of |R|
waypoints. Practically, the number of waypoints forming
R is significantly smaller than the number of nodes in the
configuration tree, therefore, the term log |R| is negligible
to other two terms.

In the latter case, where Algorithm 1 performs guided
sampling, the time complexity isO(log n+log c+m), where
the first and the second terms represent the nearest-neighbor
search and collision-detection, respectively, and m is the

Fig. 7 Computing multiple paths in an environment with three narrow
passages, where the passage A is the widest (i.e., easy to access by the
robot) and the passage C is the smallest (i.e., difficult to traverse). The
paths computed by repeated basic RRT search tends to lead through the
easy narrow passage and the resulting paths are similar (a). Contrary,
paths computed via the concept of inhibited regions are more diverse
and lead through all narrow passages (b)
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Fig. 8 Reducing the volume of
the object (robot) for finding
approximate solutions should
preserve the necessary geometric
details. Thinning applied to the
Hedgehog puzzle (a) reduces
the spikes more than the
spherical core of the object (b,
c). The approximate solutions
should be computed using the
slightly thinned version (b)

complexity of updating the active waypoints of m guiding
paths. Practically, the number of approximate solutions is in
order of units, therefore, the update of active waypoints is
negligible with respect to other two procedures.

We can assume that the sampling process (Algorithm 1)
is therefore comparable to the basic RRT which has
time complexity O(log n + log c). Nevertheless, RRT-IR
planner searches the configuration space several times,
while RRT searches it only once. From this point of view,
RRT-IR is |G| times slower, where |G| is the number of
approximate solutions. However, as RRT-IR searches for
the approximate solutions using the scaled-down robot, the
number of iterations needed to find an approximate solution
is significantly lower than the time needed to solve the
problem with basic RRT, which makes the RRT-IR planner
fast from the runtime point of view. This is shown in the
experimental verification.

The strength of the guided sampling is controlled by
the parameter pbias , and we suggest to use values in the
range 0.8 ≤ pbias < 1. The parameter dinh determines
the volume of the inhibited region. More diverse paths can
be achieved with higher value of dinh. We suggest to set
dinh according to the average thickness of the robot. The
parameter B controls how likely the inhibited regions can be
entered by the tree. The low values 0 ≤ B ≤ 1 suppress the
effect of the inhibited regions which results in approximate
solutions with low diversity. Higher values B > 2 make the
inhibited regions less accessible, which results in paths with
a higher diversity. However, too high B requires the tree
to enter the inhibited region with a relatively high number
of samples, which increases the runtime requires to find
diverse approximate solutions. Our preliminary experiments
have shown that value B = 3 is a good trade-off between
the diversity of paths and planning time. The ability of the
RRT-IR planner to find the approximate solutions depends
on the amount of reducing the volume of the robot, which
also depends on the technique used to reduce the volume.
In [15], the robot is thinned even to 0.5 (50%) of its original
size. Alternatively, the robot geometry can be scaled-down.
We recommend to reduce the volume of the robot in such
a way that the necessary geometric details are preserved.

For example, the level of thinning for the Hedgehog object
should preserve its spikes (Fig. 8).

4 Experiments

The performance of the RRT-IR planner was verified
in scenarios with narrow passages and compared to the
state-of-the-art RRT-based planners Retraction-RRT [35],
ADD-RRT [18], and also the original RRT [20]. See the
animations of the planning process and the results.1

All planners detect collisions with resolutions ε = 0.2
map units and expand the tree by the straight-line expansion
with the same expansion step ε. The approximate solutions
of RRT-IR are found for the scale 0.6 (60% of the original
robot). ADD-RRT uses the initial radius of 1.0 map unit
and the adaptation rate 0.1 (these parameters lead to the
best performance of ADD-RRT in the tested scenarios).
Retraction-RRT can utilize up to 10 retraction steps.

Two variants of RRT-IR were tested: RRT-IR where
the number of approximate solutions is determined auto-
matically, and RRT-IRc where the number of approximate
solutions is given by the user. All planners terminate their
search if they approach the goal to the distance dgoal =
1 map unit. The other parameters of RRT-IR are dinh =
dsafe = dgoal, B = 3, and pbias = 0.8. The guided sam-
pling in RRT-IR (Algorithm 1) is realized by drawing the
translation part of qrand from N(qvi

, �), where qvi
is the

active waypoint of the guiding path i, � is the 3 × 3 matrix
with diagonal entries dgoal. The rotational part of qrand (yaw,
pitch, roll) is generated from U(r −π, r +π), where r is the
corresponding yaw/pitch/roll of the qvi

. All planners employ
the 6D Euclidean metric to measure the distance � in the
configuration space.

All planners are run 100 times in each tested scenario
and the cumulative probability of finding a solution is
computed. The solution is found if the planners reaches the
goal configuration to the distance dgoal = 1 map unit or less.

1https://www.youtube.com/watch?v=3VprfBISAX8&list=PLPjuFI-
2rxweQC6dUrmMvEEePo250-8h
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Fig. 9 Success rate in the
Windows scenarios

We refer to this probability as the success rate in the rest of
the paper. Example of the success rate is depicted in Fig. 9.
The runtime at which each planner achieved its best success
rate is identified and the related measures are computed.
Besides the success rate and runtime, nsamples shows the
average number of random samples required to find a
solution. For the RRT-IR and RRT-IRc planners, n1stsamples
is the average number of random samples required to find
an approximate solution, and |G| shows the number of
discovered approximate solutions. Note that |G| is defined
by the user in the case of RRT-IRc.

4.1Windows Scenario

The task is to find a collision-free path for the L-shape and
LL-shape robots (Fig. 10a) in rooms separated by small
windows (scenarios W1, W2 and W3 in Fig. 10a,b,c). The
results are summarized in Table 1.

In all Windows scenarios, both RRT-IR and RRT-IRc

planners achieve 100% success rate in the shortest time.
The variant RRT-IRc is faster than RRT-IR, which is due
to the lower number of found approximate solutions (RRT-
IRc uses only three approximate solutions as was predefined
by the user, while RRT-IR automatically finds between four
and five approximate solutions). Planners Ret-RRT, RRT-
IR, and RRT-IRc use tens of thousands of random samples
to find a solution, while RRT and ADD-RRT need hundreds
of samples.

Comparison of nsamples of RRT and n1stsamples of RRT-
IR shows that finding an approximate solution requires

significantly less random samples than finding the full
solution. For example, in W3, RRT needs in average 144 ×
103 samples to find a solution for the L-shape robot, while
one approximate solution is found by RRT-IR with 18×103

samples.

4.2 Cylindrical Scenario

In the second experiment, a cylindrical robot had to pass
several cylindrical holes in walls (scenarios C1–C4 in
Fig. 11). The radius of the cylindrical robot is 95% of the
radius of the wall holes, which form the narrow passages.
The maximal allowed runtime is 800 seconds. The results
are summarized in Table 2.

Except for Ret-RRT in C2, the RRT, Ret-RRT, and ADD-
RRT fail to deliver a solution within the given time limit,
which is indicated by their low success rate. Contrary,
RRT-IR and RRT-IRc deliver plans in all cases. RRT-
IR automatically detects between 4 and 5 approximate
solutions, while RRT-IRc was run with three approximate
solutions.

Due to the similar size of the robots and holes to be
passed, the resulting narrow passages are more challenging
than in the Windows scenario. The RRT-IR planner has a
significant advantage over other planners. For example, the
scenario C4 is solved by RRT with 1% success rate, i.e.,
only one case out of tested 100 trials. That case required
nsamples = 398 × 103 random samples, while RRT-IR finds
its first approximate solution with only n1stsamples = 13 ×
103 samples. In average, RRT-IR needs in total 39 × 103

Fig. 10 Windows scenarios
W1–W3 (a, b, c) and the
L-shape (yellow) and LL-shape
robots (red). The green cube in
the bottom left corner illustrates
the size of one map unit
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Table 1 Comparison of the planners in the Windows scenario

RRT Ret-RRT ADD-RRT RRT-IR RRT-IRc

W1 and L-shape

Runtime [s] 498 58 590 26 24

Cum. prob. 100% 100% 99% 100% 100%

nsamples × 103 40 16 34 12 10

|G| |n1stsamples × 103 4.4 | 9 3.0 | 7

W1 and LL-shape

Runtime [s] 52 54 214 28 26

Cum. prob. 100% 100% 100% 100% 100%

nsamples × 103 5 16 9 11 8

|G| |n1stsamples × 103 4.2 | 8 3.0 | 6

W2 and L-shape

Runtime [s] 560 68 718 64 46

Cum. prob. 99% 100% 88% 100% 100%

nsamples × 103 89 17 69 31 24

|G| |n1stsamples × 103 4.3 | 13 3.0 | 9

W2 and LL-shape

Runtime [s] 30 54 418 32 30

Cum. prob. 100% 100% 100% 100% 100%

nsamples × 103 9 15 20 19 14

|G| |n1stsamples × 103 4.3 | 9 3.0 | 6

W3 and L-shape

Runtime [s] 728 136 788 152 98

Cum. prob. 89% 100% 82% 100% 100%

nsamples × 103 144 18 83 48 47

|G| |n1stsamples × 103 4.2 | 18 3.0 | 17

W3 and LL-shape

Runtime [s] 206 68 278 48 46

Cum. prob. 100% 100% 100% 100% 100%

nsamples × 103 23 16 31 28 29

|G| |n1stsamples × 103 4.2 | 13 3.0 | 13

samples to solve this problem. The process of computing the
approximate solutions is illustrated in Fig. 12.

4.3 Puzzle Robots

The task is to find paths for the Cross, Gear, and Hedgehog
robots (Fig. 13). The Cross and Gear robots are only 10%
smaller than their matching windows which leads to long
narrow passages. Similarly, the radius of the Hedgehog
robot is 10% smaller than the width of each cage’s
window. The maximal allowed runtime is 1500 seconds.
The comparison of the planners is summarized in Table 3
and the success rate is shown in Fig. 14.

While all planners provide solution for the Cross robot
with almost 100% success rate, planning for the Gear robot
is more challenging for the RRT, ADD-RRT, and Ret-RRT
as their success rate is significantly smaller than the success
rate of RRT-IR and RRT-IRc. Finding one approximate
solution requires in average a significantly less number of
planning iterations than finding the solution for the original
problem. For example, for the Gear robot, RRT needs up to
nsamples = 3400 × 103 iterations to find the solution, while
RRT-IR needs in average n1stsamples = 79 × 103 iterations
to find one approximate solution and the total number of
planning iterations of RRT-IR is nsamples = 221×103, which
is still in order of magnitude less than RRT needs.

1537J Intell Robot Syst (2020) 100:1527–1543



Fig. 11 Scenarios with multiple
round passages C1–C4 (a–d) for
the Cylinder robot (e). Robots
reduced to 60% of their size can
pass through all passages
(green/red), so the approximate
solutions can lead through all
the holes. The original robot can
fit only to the green passages

4.4 Tunnels

The performance in long narrow passages is investigated
in the last experiment. Rooms with the start and goal are
connected with one long (T1) or two long tunnels (T2). In
the scenarios T1O and T2O, an additional window allows
the robot to access the middle room, where neither start nor
goal is located. The scenarios are depicted in Fig. 15.

The maximum allowed runtime was 800 seconds. The
results are summarized in Table 4. In scenarios T1 and T2,
all planners except Ret-RRT, found a solution in few tens of
seconds with 100% success rate.

The performance of all planners is significantly worse
in the scenarios with the accessible middle room (T1O
and T2O). The success rate in these scenarios is shown
in Fig. 16. While the success rate of RRT-IR, RRT-IRc,

Table 2 Comparison of the planners in the Cylindrical scenarios

RRT Ret-RRT ADD-RRT RRT-IR RRT-IRc

C1

Runtime [s] 693 800 731 462 482

Cum. prob. 14% 0% 18% 98% 100%

nsamples × 103 517 296 263 28 26

|G| |n1stsamples × 103 4.0 | 12 3.0 | 10

C2

Runtime [s] 671 70 722 94 288

Cum. prob. 25% 100% 14% 100% 100%

nsamples × 103 316 11 229 13 11

|G| |n1stsamples × 103 4.3 | 8 3.0 | 6

C3

Runtime [s] 800 800 800 288 196

Cum. prob. 3% 0% 3% 100% 100%

nsamples × 103 435 365 227 31 21

|G| |n1stsamples × 103 4.2 | 13 3.0 | 8

C4

Runtime [s] 800 800 800 240 430

Cum. prob. 1% 1% 0% 100% 99%

nsamples × 103 398 293 253 39 30

|G| |n1stsamples × 103 4.5 | 13 3.0 | 8
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Fig. 12 Example of computing the approximate solutions in scenario
C3. The tree is depicted in green. Gray spheres highlight the inhib-
ited region made of the previously found solution. Red spheres are the
inhibited regions that cannot be entered (c, d, e), green spheres are

inhibited regions that can be entered (d). Result of this process is a set
of five approximate solutions (f). Animations are available at http://
mrs.felk.cvut.cz/jint2020rrt-ir

and Ret-RRT increases with the allows computing time,
the success rate of RRT and ADD-RRT does not increase.
For example, in T1O, RRT and ADD-RRT finds solution
relatively quickly in 50% and 32% cases, respectively, but
this success rate is not increased even with larger allowed
runtimes.

In the T1O and T2O scenarios, the robot can enter
also the middle room. In the configuration space, the tree
therefore also explores to the regions related to this middle
room. However, to find a solution, the tree has to explore
the regions of the configuration space related to the tunnels.
This requires to generate the random samples inside these
regions (i.e., inside the tunnel) and also to expand the
tree towards them. Even though some random samples
are generated inside the tunnels, the nearest-neighbor rules
more likely selects to expand the tree from the nodes located
inside the room, which would lead to collision with the
walls of the tunnels. In cases where the most of the tree

Fig. 13 Scenarios with puzzle robots

nodes are located in the middle room, the expansion of the
tree inside the tunnel is significantly suppressed. The basic
RRT and ADD-RRT can therefore find a solution only if
the configuration tree fills the tunnel-related regions of the
configuration space faster than filling the regions related to
the middle room. In the case of RRT, this happens in the
50% of cases (in both scenarios).

4.5 Discussion

The experiments have shown the advantage of RRT-IR
planner in scenarios with narrow passages. Finding the
approximate solutions is easier than finding the solutions
of the original problem, which is supported by the
lower values of n1stsamples of RRT-IR, and higher values
of nsamples of other planners. Despite the repeated search
for approximate solutions, RRT-IR is faster than other
planners. In all scenarios, RRT-IRc variant was forced to
find three approximate solutions, while RRT-IR determined
the number of approximate solutions automatically. The
number of automatically detected approximate solutions
was higher than three, therefore the RRT-IR was slower
than RRT-IRc. The exceptions are the Cylindrical scenario
(Table 2), where RRT-IRc is slower due to computing
the approximate solutions through passages that are not
traversable by the larger robot. In this case, the user
incorrectly required to use three approximate solutions,
while it would be better to discover more of them.
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Table 3 Comparison of the planners in the Puzzle scenario

RRT Ret-RRT ADD-RRT RRT-IR RRT-IRc

Cross

Runtime [s] 278 170 328 60 194

Cum. prob. 100% 99% 100% 99% 100%

nsamples × 103 307 9 239 219 131

|G| |n1stsamples × 103 4.3 | 99 3.0 | 52

Gear

Runtime [s] 1500 1500 1396 332 432

Cum. prob. 67% 6% 69% 100% 100%

nsamples × 103 3406 24 1627 221 175

|G| |n1stsamples × 103 3.8 | 79 3.0 | 58

Hedgehog

Runtime [s] 1500 488 1320 316 274

Cum. prob. 64% 82% 76% 96% 98%

nsamples × 104 167 20 111 62 64

|G| |n1stsamples × 104 4.3 | 20 3.0 | 10

Fig. 14 The cumulative
probability of finding a solution
for the Cross and Gear robots

Fig. 15 The Tunnels scenarios
with one (a, b) and two tunnels
(c, d), respectively. The
scenarios (b, d) also contains a
small windows (green) that
leads to the middle room. The
S-robot is depicted in orange (a)
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Table 4 Comparison of the planners in the Tunnels scenario for the S-robot

RRT Ret-RRT ADD-RRT RRT-IR RRT-IRc

T1

Runtime [s] 36 122 54 26 12

Cum. prob. 100% 100% 100% 100% 100%

nsamples × 103 106 8 125 213 94

|G| |n1stsamples × 103 4.1 | 61 2.0 | 25

T1O

Runtime [s] 270 676 40 612 238

Cum. prob. 50% 62% 32% 86% 94%

nsamples × 103 2698 140 1186 2194 902

|G| |n1stsamples × 103 3.7 | 1176 2.0 | 482

T2

Runtime [s] 14 226 32 26 12

Cum. prob. 100% 100% 100% 100% 100%

nsamples × 103 36 10 77 135 73

|G| |n1stsamples × 103 4.5 | 50 2.0 | 23

T2O

Runtime [s] 532 682 12 526 132

Cum. prob. 50% 42% 54% 98% 98%

nsamples × 103 2488 106 1274 2331 748

|G| |n1stsamples × 103 4.4 | 1164 2.0 | 372

Fig. 16 The cumulative
probability of finding solution in
the T1O and T2O scenarios

Fig. 17 Example of RRT growth in the T2O scenario. Finding a solu-
tion requires to connect the side rooms through the tunnels T (a). The
configuration tree can grow to both tunnels and also to the middle room
(R). When the tree enters the room, it quickly fills it by many nodes
(b). In this situation, expanding towards the tunnels is more difficult.

Even though same random samples qrand (red) are generated inside the
tunnels, the tree attempts to expand towards them more like from the
nodes located in the rooms. As this leads to collisions, expansion of
the tree inside the tunnel is significantly more difficult than expanding
the tree inside the room (c)
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This shows the advantage of computing the approximate
solutions based on their diversity. Nevertheless, there
is nothing like a universal planner suitable for each
scenario. The RRT-IR planner is designed for scenarios with
narrow passages, where the repeated search of approximate
solutions is faster than solving the original problem.
Contrary, utilizing RRT-IR in scenarios without a narrow
passage is counterproductive as it would be slower than
basic RRT due to repeated search for approximate solutions
(Fig. 17).

5 Conclusion

Motion planning of 3D objects leads to the search of six-
dimensional configuration space, which can be difficult due
to the presence of narrow passages. The paper presents
a method to solve the motion planning problem using
approximate solutions. The configuration space is first
searched considering a scaled-down version of the robot.
This effectively widens the narrow passages, which makes
the computation of the approximate solutions easier than
solving the original problem. The approximate solutions are
searched iteratively and, when a new solution is found, it
defines an inhibited region that is preferably avoided by
the subsequent search. This ensures the diversity of the
approximate solutions. After the approximate solutions are
found, the configuration space is sampled considering the
non-scaled (full) robot. This sampling is guided by the
approximate solutions. The comparison with state-of-the-art
methods shows that the proposed method has higher success
rate of finding a solution.
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