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Abstract
This paper proposes a system framework for solving the problem of multi-UAV cooperative task assignment and track
planning for ground moving targets. For the combinatorial optimization model, it is solved by a new particle swarm
optimization algorithm based on guidance mechanism. In order to plan an effective track for the target more rapidly, a new ant
colony optimization algorithm based on adaptive parameter adjustment and bidirectional search is proposed. Furthermore,
in the case of target movement, a method of the predicted meeting point is proposed to solve the problem that the moving
point cannot be used as the target point of the track planning algorithm. In addition, the track planning problem in the UAV
tracking mode is also considered. An online re-planning method is proposed for time-sensitive uncertainties. Finally,the
simulation results show that compared with other algorithms, the proposed method can not only effectively plan a reasonable
track, but also solve the uncertainty problem, and obtain the optimal task allocation plan, which improves the multi-UAV
cooperative combat capability.

Keywords Moving target · Cooperative task assignment · Track planning · Ant colony optimization ·
Particle swarm optimization

1 Introduction

Multiple unmanned aerial vehicles(Multi-UAV) cooper-
ative task assignment and track planning helps to make
a mission execution plan for the targets within a certain
decision-making time, so as to obtain the maximummission
benefit at the minimum system cost. UAVs are gradually
replacing manned aerial vehicles to perform various com-
plex tasks, including response, tracking and attack.For the
multi-UAV cooperative track planning and task assignment,
the optimal feasible track of each UAV should be consid-
ered, as well as space and time coordination, so that the
final assignment scheme meets the requirements of global
optimization.

The multi-UAV cooperative task assignment problem
can be reduced to a complex combinatorial optimization
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problem [1] considering task sequence, time constraints,
environmental changes and track feasibility. Multi-UAV
collaborative task assignment does not have a fixed for-
mation structure, but aims at achieving optimal efficiency,
which is different from formation control [2]. Different
combinations of UAVs will affect the final mission comple-
tion effect. Therefore, the increase of the number of targets
and UAVs will expand the scale of the problem. When
the target is in a moving state at all times, the uncertainty
of this problem will make the battlefield situation more
complex. It is very difficult to establish an accurate math-
ematical model and find an appropriate algorithm for this
problem, which is one of the most challenging problems in
multi-UAV cooperative task assignment.

Mixed integer linear programming model(MILP) [4]
and Dynamic network flow optimization model [5] are
widely used to solve UAV task assignment problem. In
addition, Alighanbari and How described this problem as
a dynamic programming problem, which is more simple in
calculation than the MILP model [6]. There is no absolute
distinction of advantages and disadvantages between the
different models, but the MILP model adopted in this
paper has certain versatility.From the perspective of model
solving, it is difficult to find the optimal solution for
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the discrete combinatorial optimization problem. However,
some scholars have proposed some algorithms to solve
such problems.The main solving algorithms are divided
into two categories, distributed algorithms and centralized
algorithms. The distributed algorithm has good robustness.
When there is a failure with a UAV, it does not affect
the actions of other UAVs.This kind of algorithms include
Negotiation scheme based on the contract net [7] and
Market mechanism [8]. However, the optimization of
the results cannot be guaranteed while avoiding conflicts
between UAVs. Classical centralized algorithms include
Hungarian algorithm[3], genetic algorithm [9], particle
swarm optimization algorithm [10], ant colony algorithm
[11]and state space priority algorithm [12]. This kind
of algorithm has the ability to find the global optimal
solution, it is suitable for solving small and medium-sized
problems.

Track planning is an important part of task assign-
ment.The least cost path between UAVs and targets can be
planned, which affects the result of task assignment. It is
possible to quickly plan a reasonable track in a complex
environment or even a target movement, which determines
the quality of the task. The track planning algorithm for
UAVs has also been extensively studied [13–15]. Literature
[13] proposed a two-stage optimization iterative algorithm
to solve the problem of decentralized cooperative track
planning for multiple UAVs. Literature [14] introduces the
concepts of “virtual velocity rigid body” and “virtual target
point” for path planning problems of multiple UAV forma-
tions in known and realistic environments. Literature [15]
proposed a two-layer planning scheme, which divides the
UAV collaborative attack path planning into a path planning
layer and a collaborative planning layer, and determined the
candidate path through the ant colony optimization algo-
rithm (ACO). The UAV is also used to perform tracking
tasks [16–18]. Literature [16] proposed a method of plan-
ning the tracking path according to the target moving state,
and finally keeping the UAV in the circle centered on the
target. In [17], a UAV online track planning algorithm
based on the Pythagoras Hodograph curve was proposed.
The position and cross heading error equations are estab-
lished to improve the tracking accuracy. In [18], the task
assignment and the track planning are considered compre-
hensively, and a cross-based path generation algorithm and
a negotiation-based task assignment algorithm were pro-
posed. These algorithms are capable of regenerating a viable
path online at a small computational cost to enable the UAV
to perform update tasks in literature [18].

Inspired by all mentioned above, this paper concentrates
on the cooperative task assignment and track planning prob-
lem of multi-UAV attack ground moving targets. Firstly, a
multi-UAV cooperative task assignment optimization model
for moving targets is established. Then, a new ant colony

optimization algorithm based on adaptive parameter adjust-
ment and bidirectional search (BSAP-ACO) is proposed,
which can quickly plan the feasible track of UAV. On this
basis, two methods for calculating the predicted meeting
point and on-line track re-planning are proposed. The meth-
ods solve the problem that the moving point cannot be
directly used as the target point of the track planning algo-
rithm. In addition, the flight path in the tracking mode
is also planned according to the speed ratio. An online
task reassignment method is proposed to solve the problem
of time-sensitive uncertainty. Finally, an improved particle
swarm optimization algorithm based on guidance mecha-
nism (GMPSO) is proposed to solve the task assignment
optimization model. The algorithm adds a guiding mech-
anism in the iterative process, which greatly improves the
ability to obtain an optimal solution.

The main contributions of this paper include: A proposed
new BSAP-ACO algorithm, predicted meeting point and
online track re-planning method, online task reassignment
method based on time-sensitive uncertainty problem, a new
GMPSO algorithm. Compare with the previous literature,
this paper proposes a new, effective, systematic framework
for solving cooperative task assignment and track planning
problems.

Inspired by all the above factors, this paper focuses on the
problem of multiple UAVs attacking ground moving targets.
The main contributions of this paper include:

1) The problem of multi-UAVs cooperative task assign-
ment and path planning based on ground moving
target is solved in this paper, which includes multi-
UAVs cooperative path planning, multi-UAVs coop-
erative task assignment and online re-planning under
uncertainty.

2) A new BSAP-ACO algorithm is proposed for coop-
erative path planning. On this basis, the method for
calculating the predicted meeting point is proposed. It
solves the problem that the moving point cannot be
directly used as the end point of the track planning algo-
rithm. In addition, the flight path in the tracking mode
is also planned according to the speed ratio.

3) The optimization model of multi-UAVs attacking
moving targets is established according to the cost and
benefit of UAV in different modes, and considering that
the maximum flight range, the maximum number of
attack tasks, and the continuity of all UAV paths as
constraints and so on. The improved GMPSO algorithm
is used to solve the problem.

4) An online task re-planning method for multi-UAVs in
uncertain environment is proposed. This method can
ensure that when the moving state of the target changes,
the track of multi-UAVs can be re-planned and the
reasonable task assignment scheme can be achieved.
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As far as we know, there is no research on attacking
moving targets on the ground for the cooperative task
assignment and track planning of multi-UAVs.

2 ProblemDescription and Formulation

The problem considered in this paper is to assign Mv UAVs
to complete the task of response, tracking and attack to
Mt moving targets, where Mv > Mt . There are sequential
requirements for Mt targets, first response, then tracking,
and finally attack. The response task is the process of the
UAV flying to the target position. The tracking mode is
that when multiple UAVs cooperate to perform the task,
the first arriving UAV needs to track the moving target and
wait for other UAVs to arrive. When the UAV performs the
mission independently, the range cost of tracking mode is
0. In attack mode, the UAV will destroy the moving target.
Referring to the target mirror method [19], each target is
mirrored into three points. The UAV flies from the initial
position to the first mirror point of the target to complete
the response task, and the first mirror point to the second
mirror point to complete the tracking task, and the second
mirror point to the third mirror point to perform the attack
task. In this way, the problem of UAV performing three
tasks at one target point can be transformed into a problem
of performing only one task at one target point. That is,
each UAV performs different tasks at three positions of
each target. The set of all target mission points and UAV
location points is V = {1, 2, 3, ..., Mv + 3Mt }. The first
Mv elements in the set V are the position points of the Mv

UAVs, and the other 3Mt elements are the mirror points of
all the targets. In order to avoid the collision problem of
the unmanned aerial vehicle, the unmanned aerial vehicle
is caused to fly at different heights. The completion effect
of the task is related to two factors, the first is the total
range of all UAVs. Assume that fixed-wing UAVs flying at
a constant speed are used to perform the task, so the shorter
total range also reduces the average time to complete the
task. The second is the gain from attacking enemy targets. It
determines, to a certain extent, the necessity of performing
tasks. Therefore, before task assignment, it is necessary to
carry out track planning for the UAVs, obtain the flight cost
between each target and the UAVs, and use the flight cost
and attack income as inputs to establish the task assignment
model. The cooperative task assignment problem of
the UAV can be reduced to combinatorial optimization
problem.

min
xk
i,j

Mv+3Mt∑

i=1

Mv+3Mt∑

j=1

Mv∑

k=1

(Lk
i,j ·P k

1,l+lki,j ({xk
i,j })·P k

2,l−Gk
i,j ·P k

0,l )·xk
i,j

(1)

s.t .
Mv+3Mt∑

j=1

Mv∑
k=1

xk
i,j = 1 ∀i

Mv+3Mt∑
i=1

Mv∑
k=1

xk
i,j = 1 ∀j

(2)

Mv+3Mt∑

j=1

xk
i,j = 1. if

Mv+3Mt∑

j1=1

xk
j1,i

= 1 ∀i, j (3)

xk
i,j = 0.if (i ≤ Mv ∩ i �= k)or(j ≤ Mv ∩ j �= k)or

(i ≤ Mv ∩ j ≤ Mv) ∀i, j, k (4)

Mv+3Mt∑

i=1

Mv+3Mt∑

j=1

(Lk
i,j + lki,j ({xk

i,j }) < Lk
Max ∀k (5)

Mv+3Mt∑

i=1

Mv+3Mt∑

j=1

xk
i,j < Nk

Max ∀k (6)

where i and j are two points in the set V, xk
i,j is a decision

variable of 0 / 1, indicating whether the k-th UAV flies from
point i to point j ;Lk

i,j is the range from point i to point

j in the response mode of UAV. lki,j ({xk
i,j }) is a function,

it is the range of the k-th UAV in tracking mode, and
Gk

i,j is the benefit of the k-th UAV in attack model,The

calculation methods of lki,j ({xk
i,j }) and Gk

i,j are respectively

given in Formulas 7 and 8. P k
s,l is a 0-1 mode selection

variable, where s = {1, 2, 0} corresponds to the three modes
of response, tracking and attack of the UAV. When s =
l, P k

s,l = 1, when s �= l, P k
s,l = 0. l = mod((j − Mv), 3),

where mod(�, a) is a function, it represents the remainder
after � removes a. For example, suppose that (j −Mv) = 8,
l = mod(8, 3) = 2. And when s = 2, P k

s,2 = 1, that is,
the UAV performs the tracking task at the (Mv + 8) point.
Lk

Max is the largest range limit for the UAV, and Nk
Max is the

maximum number of tasks that UAVs can do. Equation 1
consists of two parts, namely the range cost and the attack
gain. Constraint (2) ensures that each task point is accessed
at least once. Constraint (3) limits the UAV to reach one
point and leave from the same point. Constraint (4) ensures
that the k-th UAV can only take off and land in its own
position, and limits that the UAV can not fly from the i

point to the same point. In the constraint, when j ≤ Mv , the
UAV is used for landing at the take-off point. Constraints (5)
and (6) are respectively flight distance and mission number
limits.

lki,j ({xk
i,j }) =

{
vk · (t

k1
i1,j

− tki,j ), t
k1
i1,j

> tki,j

0, t
k1
i1,j

< tki,j

(7)

Gk
i,j = Probk,m · V alm m ∈ (1, 2, ..., Mt) (8)

where vk is the speed of the UAV, tki,j = Lk
i,j /vk represents

the time when the UAV flies from point i to point j .
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Specifically, when two UAVs cooperate to carry out the task,
the UAV that reaching the mission point first executes the
tracking mode, so as to wait for the another UAV to arrive at
the same time to execute the attack task. Probk,m represents
the effectiveness of the k-th UAV attack the target m. V alm
is the economic value of the m-th target.

3 NewModified BSAP-ACO Algorithm

In order to speed up the solving time of track planning
and ensure that a feasible track can be planned, the ACO
algorithm is used to carry out track planning for UAVs. In
the case of target movement, the battlefield environment
becomes more complex than hitting a fixed target. The
traditional algorithm often solves slowly. Although the
convergence speed of the method can be accelerated by
giving a good initial value, there is still the phenomenon of
falling into the local extreme value [20], and there may even
be no solution, which does not meet the needs of the actual
air combat.

3.1 Establishment of The Fitness Function

Due to the diversity of ant colony algorithms, more feasible
solutions are generated.UAVs are not only constrained by
the cost of burning oil, but also affected by some obstacles.
Therefore, this paper proposes an fitness function to satisfy
the flight track of UAVs:

Jk = w1Lk + w2dk (9)

where Lk is the cost of the voyage consumed by the k-th ant
under the current iteration. dk is the safe replacement price
of the k-th ant under the current iteration.

dk = K/N (10)

N =
n∑

p=1

rp (11)

where rp is the distance between the p-th track point and
its nearest obstacle, K is a constant and n is the number of
track points.

3.2 Adaptive Parameter Adjustment

There are three ways to select the path points of the
traditional ant colony algorithm:

(1) For a given parameter q0, if the random parameter Q0

satisfies Q0 > q0,the pheromone between path point i
and path point j is computed to make the track point
corresponding to the maximum heuristic product as the
next path point.

(2) If Q0 < q0, a new random number Q1 is generated,
and if Q1 > q0, the path point is selected by roulette.

(3) If Q0 < q0 andQ1 < q0, the next path point is
randomly selected from the feasible path point.

Because the fixed parameters are easy to make the path
selection fall into the local extreme value, especially in the
face of the more complex moving target problem.Therefore,
in this paper, the shortcomings of ant colony algorithm
in solving dynamic problems are improved, and the UAV
track planning based on BSAP-ACO algorithm is given.
After each ant searches, the current ant’s search state is
utilized, and the current ant’s path fitness value is compared
with the current best fitness value. Then the parameters
are dynamically adjusted according to their differences.
The parameter q0 is dynamically adjusted as shown in the
formula:

qt+1
0 = qt

0 − qt
0(lt − lbest )

lbest

(12)

where lbest is the adaptability value of the optimal path
searched globally at t time. lt is the fitness value of the
current ant path.When lt > lbest , it is proved that the
adaptability value of the current ant path is greater than the
optimal path, then the search intensity should be reduced in
this area, that is, qt+1

0 < qt
0. Whenlt < lbest ,it is proved that

the fitness value of the current ant’s path is smaller than the
optimal path, and that the current path is a better solution,
then the search force should be increased in this area, that
is, qt+1

0 > qt
0. In order to prevent ants from falling into local

extremum, or the diversity of solutions is too large, the range
of q0 adjustment should be limited:
{

qt+1
0 = qmax if qt+1

0 > qmax

qt+1
0 = qmin if qt+1

0 < qmin

(13)

When the ant is lost in the search process, that is, the
solution can not be found, the parameter value should be
quickly adjusted to qt+1

0 = qmin, to ensure that the next ant
is in the region where the current optimal solution is located.

The initial pheromone of ant colony algorithm is random,
the first search process is greatly affected by the heuristic
value, and the update of pheromone also has a great
influence on the ants behind it, so it is easy to fall into the
local extreme value.In order to avoid falling into the local
extreme value, the jump-out mechanism of the algorithm is
set as follows:

when an ant finds the current optimal solution, if there is
a subsequent ant’s search result equal to the current optimal
solution, in order to avoid the search result being locally
optimal instead of global optimal, set the enhancement
coefficient σ to the subsequent ants. Make the parameters
satisfy

qt+1
0 = q0(1 + σ) (14)
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Use this method to update the q0 value, increase the
diversity of feasible solutions, and avoid the algorithm
falling into the suboptimal solution.

3.3 Bidirectional SearchMechanism

With the increase of search randomness, ant colony algo-
rithm will also lead to an extension of the optimiza-
tion time while getting a better solution. In order to
speed up the search for the optimal solution, the bidi-
rectional search mechanism is used to optimize the algo-
rithm. The traditional ant colony algorithm search mech-
anism starts from the starting point to the end of the
target point, and the communication ability between ant
colony individuals has not been fully developed, which
affects the convergence speed of the algorithm. The bidi-
rectional search mechanism can solve this problem very
well.

The GroupA and GroupB of the two groups of ants
are placed at the starting point and the ending point
respectively. When the algorithm begins, the two groups
of ants start at the same time, and take each other as
the starting point to search for the shortest path.The two
groups of ants carry the own path information, and when
each travels to the next node, it is necessary to judge
whether to meet ants of another group, if it is determined
that it is not, proceed to the next node until the other
point of departure is reached.∀p1p2, p1 ∈ GroupA, p2 ∈
GroupB. p1p2 are represented by coordinates (x1, y1) and
(x2, y2) respectively in the map.The end condition of the
path is

(1) if p1(x1, y1) = targetpoint , it can be judged that the
ant in the GroupA group reaches the target point.

(2) if p2(x2, y2) = startpoint , it can be judged that the
ant in the GroupB group reaches the starting point.

(3) if p1(x1, y1) = p2(x2, y2), it can be judged that the
two groups of ants meet and integrate into a new path.

In the early stage of BSAP-ACO algorithm, by dynam-
ically adjusting the adaptive parameter q0, the ants can
quickly approach to the optimal solution and affect the
search speed of the subsequent ants. The increase of the
speed of finding the optimal solution in the initial stage
increases the convergence speed of the whole algorithm.
Through the given enhancement coefficient method, the
development of the algorithm is increased when the algo-
rithm converges, the diversity of the solution is increased,
and the condition of falling into the local extreme value
is avoided. By adding the bidirectional search mechanism,
the optimization speed is reduced due to the jump out
mechanism, and the optimal path is quickly found, which
effectively accelerates the speed of finding the optimal
solution.

4 Track PlanningMethod Based on Target
Movement

4.1 The PredictedMeeting Point

Before the task is assigned to the mobile target, it can be
seen from the Formula 1 that it is necessary to determine
the flight distance of each UAV to each target. Because
the target points of ACO algorithm must be fixed, the first
problem to be solved is how to plan the track of moving
target.In this part, a simple and effective pursuit method of
calculating the predicted meeting point is proposed to solve
the problem of the moving target.

When the target is in a moving state, the target position is
constantly changing. The optimal track can not only greatly
shorten the additional range caused by the uncertainty of
the moving target, but also saving fuel, and can speed up
the completion time of the whole task. The idea of this
method is to calculate the predicted meeting point through
the speed of the UAV and the target in the heading direction
of the target. This predicted meeting point is a fixed point,
so BSAP-ACO can take the predicted meeting point as the
target point for track planning. This problem can be solved
with a simple mathematical method, and then the predicted
meeting point is taken as the target point of the ant colony
algorithm. The part of the code for the geometric model is
shown in Fig. 1. F is a function, which can calculate the
coordinate point where the UAV meets the target according
to the coordinate and speed of the UAV, the coordinate,
moving direction and speed of the target.

The UAV determines whether the target direction
changes by a time step. When the target direction changes,
the predicted meeting point is recalculated according to the
current UAV and target information. The principle of UAV
chasing moving target in two cases is given.

In Fig. 2, the moving target travels along a straight line.
After calculating the coordinates of the predicted meeting
point, the UAV flies directly from the starting point to the
predicted meeting point to perform the task.In Fig. 3, the
driving direction of the target continuously changes. The
UAV obtains the moving target state with a uniform time
step. When the driving direction of the target changes, the
UAV recalculates the predicted meeting point and adjusts
the course and continues to chase the target along the re-
planned track until it meets the target. It is important to note
that the speed of the UAVs must be faster than the target
speed in order to enable the UAV to successfully pursue the
target.

4.2 On-line Track Replanning

In fact, in a real battlefield environment, due to the need
to avoid threats such as obstacles and radar, and the
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Fig. 1 Codes for obtaining
predicted encounter points

Fig. 2 The target moves along a
straight line
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Fig. 3 The target moves along a
non-linear line
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shortcomings of the track planning algorithm itself, the
track between the UAV and the target will not always be
straight. This means that when the target travels to the
forecast point, the UAVs do not arrive at the same time.
In order to solve this problem, we propose an online re-
planning method in this part. The UAV and the target are
synchronized, and when the target reaches the predicted
meeting point after the t-hour, the UAV also flies at t-hour.
Since the flight path of the UAV not be a straight line, it does
not reach the predicted meeting point. The flight distance of
the UAV is vk · t , which is the straight-line distance between
the UAV and the predicted meeting point. Therefore, the
UAV needs to recalculate the predicted encounter point with
the current position coordinates and the target dynamically,
and carry on the secondary planning track. The UAV flies to
the new predicted meeting point and repeat the process until
the target enters the attack range of UAV.

Figure 4 is the principle of online track planning. In the
figure, theMeeting point 1 is the first predictedmeet point of
the UAV and the target, and when the target line is set to the
Meeting point 1, the UAV only flies to the S position due
to the need to avoid the obstacle, and then calculates the
Meeting point 2 with the current UAVs and the target posi-
tion as the start coordinate, and the UAV carries out track
planning on the target point with the new predicted meeting
point as the target point, until the target enters the UAV
attack range and begins to perform the next task. Figure 5
shows the chase moving target flow based on BSAPA-ACO
algorithm for track planning and online re-planning.

5 TheMethod of UAV Cooperative Attack

5.1 Track Planning in UAV TrackingMode

If two UAVs cooperate to perform an attack mission, one
UAV always waits for another.Therefore, the time cost of
a UAV tracking mode is not independent, but based on the
time when other UAVs arrive at the mission point. The
key to calculating the tracking time and distance cost is to
put all UAVs on a unified time line. In order to complete
the tracking task, the UAV and the target motion must
be synchronized, which means that the speed of the UAV
must be guaranteed not less than the target speed, which
is similar to the constraint of the pursuit problem in the
previous chapter. The difference is that when the UAV is
at the same speed as the tracked target, the UAV can fly
above the target and track it. In order to satisfy all the
constraints of the problem, we assume that the speed of the
UAV is faster than the target speed. In this part, a tracking
path planning method based on Dubin’s paths [21] is
proposed.

Assume that the target moves along a straight path or
an approximate straight path in a certain time interval.In
order to maintain the synchronous movement between the
UAV and the target, a path planning method based on the
velocity ratio between UAV and target is proposed in this
paper. Using vk andvm to represent the speed of the UAV
and the target respectively, we can define the speed ratio
r0 = vk/vm, where r0 is greater than 1.
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Fig. 4 The process of online
re-tracking planning
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Assuming r0 is not equal to positive infinity, that is,
the target is not static relative to the UAV, the horizontal
distance between UAV and target in moving direction of the
target should be the same at all times. Considering that the
speed of the UAV is greater than the speed of the target,
the motion of the UAV should be the curve motion with the
minimum turning radius. The combination of these curves

around the target driving path constitutes the tracking flight
path of the UAV. The more common and easily calculated
curve is the arc, and the arc-based tracking path method is
given in Fig. 6.

S1: Fig. 6a shows the case of 1 < r0 < pi/2. Path is
the target moving route, the UAV and the target both
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Fig. 5 Online track re-planning flow chart based on BSAP-ACO algorithm
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Fig. 6 Flight path planning in tracking mode

start from point A, and the target moves to point B.
In order to ensure the smoothing of the tracking path
of the UAV, a part of the circumference of radius R

is selected as the flight path of the UAV, where R

represents the minimum turning radius of the fixed-
wing UAV. The tracking track of the UAV is ̂ACEDB,
which is composed of two circular arcs of a circle. The
two arcs are symmetrical, which means that during
the same time interval, the distance that the UAV
flies on these two tracks is the same in the target
moving path. ϕ is the angle between the target and
the initial speed direction of the UAV at the starting
point. Above and below the target moving path, there
are two parallel lines L+ and L−. Their distance from
the path is d = CF . These two lines are the tangent
of two circles, which is also the turning tangent of the
UAV. The simulation diagram in this case is shown
in Fig. 7.

S2: Fig. 6b shows the case of r0 = pi/2. In this special
case, the tracking flight path of the UAV is ̂ACDEB,
which consists of two semicircular ̂ACD and ̂DEB.
The angle between the UAV and the initial motion
direction of the target is a right angle.

S3: Fig. 6c shows the case of pi/2 < r0 ≤ r∗. Contrary
to the case of S1, the angle between the UAV and
the initial motion direction of the target is an obtuse
angle. The UAV tracking flight path is ̂ACEDB, and
the distance between the circumferential tangent and
the target moving path is d = CF > R.

S4: r∗ < r0. When the speed ratio r0 is a large value,
the path of Fig. 6a, b and c no longer meets the
requirements. First consider an extreme situation:
r0 −→ ∞. Compared with the UAV, the target
is stationary at the center o position, and the UAV
only needs to perform circular motion around the
center with any radius greater than or equal to R to
successfully track the target. After extending this idea
to the general situation, a new tracking path can be
designed.

In Fig. 6d, the target moves along the path from point
A to point B at a relatively slow speed, and the tracking
path of the UAV is ̂EFGFH . The movement of the
UAV in each cycle can consist of three parts: a complete
circle, two segments parallel to the Path. The UAV and
the target respectively start from point A and point E
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Fig. 7 Processing in sudden
situations
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with the same abscissa value, and arrive at point B and
point H respectively. During the tracking process, the
positions corresponding to the target and the UAV are
{A, E}, {C, F }, {O, G}{D, F }{B, H }.

The critical value r∗ is given in the literature [22].
Because of this paper only considers tracking a moving
target with uniform velocity, when using the track planning
method of this paper to track non-uniform targets, the
relevant calculations and proofs can be found in the
literature [22].

5.2 UAV Coordinated Attack Under Uncertainty

In Chapter 4, we solve the problem of track planning for
UAV pursuing non-linear moving targets. In this part, we
consider a special case: According to the initial moving state
of the target, the ideal distribution solution is obtained, that
is, the scheme with the minimum value of the function in
Formula 1, the target suddenly changes direction at time t .
In this case, according to the previous moving state, the task
assignment is no longer the optimal distribution solution.
The UAV needs to re-determine the task through the current
new state of each target. Assign the plan and restart the
task. This process is similar to the previous chapter in
dealing with non-linear moving targets and solving online
redistribution problems. In Fig. 7, a schematic diagram is
given in combination with the track planning in the tracking
mode of Fig. 6a.

In the Fig. 7, U1 and U2 cooperate to perform tasks
according to the allocated scheme. The UAV U1 pursues
the target and enters the tracking mode to wait for U2. The
waiting time depends on the distance between U2 and the
target. At a certain moment, the target suddenly changes the
moving direction, it means that the target will not appear
at the predicted meeting point between U2 and the target.
After recalculating the distance information between UAV
and target and using it as the input of Formula 1, a new
task assignment scheme is obtained. U2 performs a new
task, and U1 switches from the tracking mode to the attack
mode.

6 A New Algorithm of Particle Swarm
Optimization Based on GuidanceMechanism

In this part, we try to propose a new particle swarm
optimization algorithm. The algorithm ensures that the
system can effectively solve the task assignment problem of
moving targets.

6.1 Coding Strategy

Suppose we haveMv VAUs to cooperate attack theMt mov-
ing targets. Our fleet is set to Mv = {Vk, k = 1, 2, ..., K},
where Vk represents k-th UAV. The set of enemy targets
is Mt = {Tj , j = 1, 2, ..., T }, and Tj represents the j -th
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moving target of the enemy. Cooperative operation scheme
can be described as finding a suitable target attack scheme
S for our UAVs to maximize the cooperative operation effi-
ciency of our fleet. Because it is a multi-UAV coordination
problem, this paper uses matrix form to represent an alter-
native target decision scheme. In order to better solve the
problem of multi-UAV cooperative task assignment, binary
coding is adopted. And in order to make each particle can
represent all the blow information, the dimension of the
particle matrix should be MvMt , and its coding form is as
shown in formula (15) and (16).

Sm×n =

⎡

⎢⎢⎢⎣

s11 s12 · · · s1n
s21 s22 · · · s2n
...

...
...

...
sm1 sm2 · · · smn

⎤

⎥⎥⎥⎦ skj = 0 or 1 (15)

When skj = 0, it means that the k-th UAV does not
attacks the j -th moving target. When skj = 1, it represents
that the k-th UAV attacks the j -th moving target alone or
cooperates with other UAVs. For example, the decoding of a
particle is

Sf =

⎡

⎢⎢⎣

1 0 0
0 0 1
1 0 0
0 1 0

⎤

⎥⎥⎦ (16)

The particles indicate that the first target is coordinated
attack by the UAV1 and the UAV3, the second target is
struck by the UAV4, and the third target is attacked by the
UAV2 alone.

6.2 Mutation Operation

Particles undergo mutation operations with a certain
probability of variation Pm. The specific implementation
method is to randomly exchange any two columns in
the particle information matrix S. The changed particle
information matrix still satisfies the coding rules. It can
supplement and repair part of the information missing in
the evolution process of the agent. The method enhances
the diversity of the population, and improve the probability
that the algorithm jumps out of the local optimum. Take
the particle Sf as an example, after the information of
the columns 1 and 2 is exchanged, a new particle Sf c is
generated.

Sf c =

⎡

⎢⎢⎣

0 1 0
0 0 1
0 1 0
1 0 0

⎤

⎥⎥⎦ (17)

In the new particle Sf c, since the original particle conforms
to the encoding rule, the mutated particle still satisfies the
encoding rule.

6.3 GuidingMechanism

Set the i-th particle velocity to vi = (vi1, vi2, ..., viD)T ,
The individual extremum and the population extremum are
respectively Pbesti = (pi1, pi2, ..., piD)T and Gbest =
(gi1, gi2, ..., giD)T . The particle swarm optimization algo-
rithm first initializes n particles in the feasible solution
space. Each particle updates its speed and position through
evolutionary process of individual extremum and group
extremum [23]:

vk+1
id = ω ∗ vk

id + c1r1(p
k
id − xk

id) + c2r2(g
k
id − xk

id) (18)

xk+1
id = xk

id + vk+1
id (19)

ω = ωmax − k/kmax · (ωmax − ωmin) (20)

where d = 1, 2, ..., D; i = 1, 2, ..., n; k is the
current iteration number, k = 1, 2, ..., kmax, c1 c2 is the
acceleration factor, which is a non-negative constant;r1, r2
is a random number distributed in the interval [0,1]. ω

is the inertia weight, which linearly decrements from the
maximum weight ωmax to the minimum weight ωmin as the
evolutionary algebra increases.

It can be seen from the iterative formula of the PSO
algorithm that the position and velocity updates of all
particles are guided by Gbest , which is the best particle
in the current iteration. That is, at the beginning of each
iteration of the algorithm, the current optimal particle of
the population is consistent with the previous iteration. The
particles in the population quickly move forward to the
optimal particle position of the population in the previous
iteration. In the process of approaching, if any particle finds
a better position than Gbest , Gbest will be updated to the
particle at the current better solution position, which means
that at the end of each iteration process, the Gbest in this
iteration process is guaranteed to be consistent with the
previous iteration, or the particle at a better position will
be found, thus making the algorithm has fast convergence
performance. But at the same time, if Gbest falls into local
optimum, the whole population will appear “premature”
phenomenon and fall into the trap of local minimum
solution. It’s unable to find the global optimal solution
about the problem. In order to solve the problem, propose a
guiding mechanism to introduce some powerful competitors
when the particle is close to the currentGbest , or the guiding
ability of Gbest is insufficient.The mechanism increases the
diversity of the population and improves the global search
ability of the algorithm.
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Assume that the k-th generation group extremum and
the i-th particle’s individual extremum are Gbest (k) and
Pbesti (k). The algorithm principle is

Qpop∑

i=1

�Pbesti (k) =
Qpop∑

i=1

f (Pbesti (k))

−
Qpop∑

i=1

f (Pbesti (k − 1)) ≤ 0 (21)

�Gbest (k) = f (Gbest (k)) − f (Gbest (k − 1)) ≤ 0 (22)

where
∑Qpop

i=1 �Pbesti (k) characterizes the degree of joint
optimization of individual extremum, Gbest (k) character-
izes the degree of optimization of population extremum. The
larger the value, the stronger the guiding effect of Gbest (k),
and the problem solution develops in a good direction. On
the contrary, the guiding effect ofGbest (k) is weakened, and
the problem solution is close to the global optimum, or the
local optimum. Therefore, it is necessary to introduce com-
petitive new elite individuals, to increase the guiding ability.
The method increases individual diversity and improves the
“premature” phenomenon of the algorithm. The specific
method is as follows:

Setting individual error threshold T hr . If the following
formula is satisfied, the boot mechanism is enabled.

|
Qpop∑

i=1

�Pbesti (k)| < Qpop ∗ T hr ∧ Gbest (k)| < T hr (23)

In the formula,
∑Qpop

i=1 �Pbesti (k) is the sum of the
optimization degree of all individual extremum in Formula
(21), Qpop is the quantity of particles in the population, and
Gbest (k) is the optimization degree of group extremum in
Formula (22). When Formula (23) is satisfied, it is proved
that the current particle has insufficient ability to find a
better position, and the particle needs to be guided.The steps
are as follows:

(1) f1 new individuals are cloned through the current
Gbest (k), and then each individual is mutated accord-
ing to Formula (24).

(2) Re-initialize f2 individuals in the feasible domain of
the problem solution.

(3) Fitness function values of f1 new individuals after
mutations and f2 new individuals were calculated,

and the individual Snew with the best fitness value is
selected for comparison with Gbest .

(4) If Snew < Gbest , Gbest is still the population
extremum, otherwise Snew becomes the new popula-
tion extremum.

Using the polynomial mutation strategy in literature [24],
a new individual z is generated for the individual q in the
replicated f1 Gbest (k) in the following formula:

zc = qc + (xu
c − xl

c) ∗ �c (24)

Among them, zc and qc are the c-th component of z and
q, and xu

c is the upper limit of the c-th component of the
decision variable, where the value is 1. xl

c is the lower limit
of the c-th component of the decision variable, where it is 0.
The polynomial equation for calculating �c is

�c = (2rc)
1

ηn+1 − 1, 0 ≤ rc < 0.5 (25)

�c = 1 − [2(1 − rc)]
1

ηn+1 , 0.5 ≤ rc ≤ 1 (26)

In the formula, rc is a random number distributed in the
interval [0,1], and ηn is a variation parameter to control the
degree of variation.

7 Simulation Results and Analysis

7.1 Ant Colony Algorithm Simulation

In this part, 10 simulation experiments are carried out
according to the same environment, and the convergence
speed of ACO algorithm, BSAP-ACO algorithm and
Dynamic feedback ant colony optimization algorithm
(DFACO) in reference [20] are compared. Table 1 is the
experiment of 10 simulations.

Before the ant colony algorithm searches, all the
pheromones are fixed values, so the ant colony algorithm
is greatly affected by the heuristic value when searching
for the first time, and the update of pheromones has a
better influence on the subsequent ants. In order to avoid
falling into local extremum, the “Jump out” mechanism of
the algorithm is increased, but the convergence speed is
affected. However, the BSAP-ACO algorithm increases the
dual search mechanism, accelerates the path optimization
speed of ant colony.

Table 1 Comparison between three algorithms

TIMES 1 2 3 4 5 6 7 8 9 10

ACO Number of iterations to reach convergence 14 16 13 13 14 15 13 14 14 15

DFACO Number of iterations to reach convergence 11 12 10 9 12 10 12 9 11 10

BSAP-ACO Number of iterations to reach convergence 9 7 7 9 8 7 7 9 9 8
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Figure 8 shows the relationship between the number
of iterations and the minimum track average of the
three algorithms in 10 simulation experiments. The ACO
algorithm converges when the average number of iterations
is 14, and the average track cost is 48.05. The DFACO
converges at the 11th time, and the track cost is 45.51 when
it converges, while the BSAP-ACO algorithm proposed in
this paper converges when the average number of iterations
is 8, and the average range cost is 43.96.

As can be seen from Table 1 and Fig. 8, compared with
ACO algorithm and DFACO algorithm, the BSAP-ACO
algorithm can speed up the convergence of the algorithm
by improving the speed of initial search optimization
through adaptive parameter adjustment. Through the given
enhancement coefficient method, the condition of falling
into the local extreme value is avoided. By adding a
two-way search mechanism, the speed of finding the
optimal solution is effectively accelerated. Therefore, the
convergence speed of BSAP-ACO algorithm is faster and
the convergence result is better.

The diversity of the three algorithms in this paper is
compared by using the diversity comparison scheme in
reference [20].

DIV (n) =
√∑m

k (Jk(n) − avg(J (n)))2

m
(27)

where Jk(n) represents the fitness value of the k-th ant under
the n-th iteration. avg(J (n)) represents the fitness of all ants

under the n-th iteration, m represents an ant that has found
a feasible solution.

Figure 9 shows the comparison of the diversity results
of the three algorithms, and the red line is the diversity
of the traditional ACO algorithm. It can be seen from the
graph that the diversity of the traditional ACO algorithm
is decreasing in the later iterative period, and it is difficult
for ants to get rid of the guiding effect of pheromones on
ants. Green line is the diversity of DFACO algorithm. The
diversity of this algorithm is the most abundant, but because
of the randomness of particle search position increases,
the algorithm cannot quickly converge to the optimal
solution, which affects the convergence speed. Blue line
is the diversity of BSAP-ACO algorithm in this paper.The
algorithm adjusts the parameters after each ant search, and
the enhancement coefficient is set. When the diversity of the
algorithm is reduced, the partial ant is allowed to break away
from the guide of the pheromone, while the randomness of
the algorithm is increased, the quality of the information
is ensured. The variation of the diversity is relatively
stable.

7.2 Simulation of Task Assignment

Since the UAV range is a very important input in the fitness
function of task assignment, the study of the task assignment
algorithm should be carried out after the study of the track
planning algorithm. In this section, we first compare several
algorithms, and then apply them to the deterministic task
allocation problem in two cases.

Fig. 8 Convergence comparison
of three algorithms
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Fig. 9 Diversity comparison of
three algorithms

7.2.1 Comparison of Several Algorithms

Set the battlefield in the first. Assume that six UAVs are
assigned to four moving targets. UAVs enter the battlefield
area at the same time from six different locations. The
targets position and moving direction are shown in Fig. 10,
and the attack probability is in Table 2.

For simplicity, we set speed of UAVs as 100km/h

without affecting the performance of the algorithm, the

Fig. 10 Position and direction of the targets before the task begins

minimum turning radius is 1km. The speed of targets is
40km/h, and the economic value V alm is 10.

When two UAVs work together to attack a target, the
UAV that arrives first executes the tracking mode, the track
cost is the sum of the range of the response mode and the
range of the tracking mode. The range of the tracking mode
depends on the arrival time of another UAV.

Based on this battlefield setting, GA algorithm, PSO
algorithm and theMulti-objective Particle SwarmOptimiza-
tion (MOPSO) algorithm are introduced to solve the task
assignment problem. In these algorithms, the first solution
is random, and then the root algorithm continues to find
the optimal solution according to their respective optimiza-
tion methods, directly to the final number of iterations. The
parameters of the GMPSO algorithm are set as follows:

The initial population is set as 50, the number of
iterations is set as 100, algorithm acceleration factor is set
as c1 = c2 = 1.3, the number of individuals with replication
variation in the guidance mechanism is set as l1 = 30, the
number of individuals re-initialization that is set as l2 =

Table 2 The probability of the UAV attacking the target

T1 T2 T3 T4

U1 0.71 0.85 0.63 0.65

U2 0.79 0.90 0.75 0.81

U3 0.82 0.78 0.83 0.90

U4 0.63 0.76 0.81 0.84

U5 0.81 0.73 0.77 0.86

U6 0.90 0.84 0.87 0.73
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Fig. 11 Best objective function
curves of these algorithms

30, mutation operator is set as nm=5 (The GA algorithm
intersects and the mutation operator are both set as 20) ,
error threshold is set as T hr=0.03, the weight range of the
algorithm are ωmin = 0.35 and ωmax = 0.9.

In Fig. 11, due to the difference of the initial particles
and the influence of the constraint when calculating the
fitness value, the convergence rate of each algorithm is
quite different in the initial stage. It can be seen that when
the iteration is to the thirty times, the convergence of the
algorithms is similar. Because of the guiding mechanism
of GMPSO algorithm, compared with the other three
algorithms, the ability to find the optimal solution is better.
Due to space constraints, this paper selects MOPSO and
GMPSO, the two best performing algorithms, to compare
the distribution case and the value of fitness function.

Table 3 is the task assignment scheme of MOPSO
algorithm. In the table, the task allocation scheme is that U2

and U3 attack T1, U1 attacks T2, U6 attacks T3, U4 and U5

attack T4. The output final fitness function value is 0.7204.
Table 4 is the task assignment scheme of GMPSO

algorithm. In the table, the task allocation scheme is that

Table 3 Task assignment scheme of MOPSO algorithm

T1 T2 T3 T4

U1 0 1 0 0

U2 1 0 0 0

U3 1 0 0 0

U4 0 0 0 1

U5 0 0 0 1

U6 0 0 1 0

U1 attacks T1, U2 and U3 attack T2, U4 and U5 attack T3,
U6 attacks T4. According to Formula (1), the final fitness
function output from this task allocation scheme is 0.5048.

7.2.2 Task Assignment With Time-sensitive Uncertainty
Problem

In Chapter 4 we propose a method to solve the assignment
problem with time-sensitive uncertainty. In order to verify
the effectiveness of the method, a comparative simulation
experiment is carried out in this paper. Compare according
to the following two cases.

(a) Deterministic off-line problem
UAVs enter the battlefield at the same time from

(1, 30) (1, 20) (1, 10) (10, 1) (20, 1) (30, 1). The task
assignment scheme in Table 4 is the best task scheme
in this case, and the track diagram is given in Fig. 12.

The position of hollow triangle in the picture is the
initial position of the UAV. After the complete mission,
the UAV returns to its respective starting point to land,

Table 4 Task assignment scheme of GMPSO algorithm

T1 T2 T3 T4

U1 1 0 0 0

U2 0 1 0 0

U3 0 1 0 0

U4 0 0 1 0

U5 0 0 1 0

U6 0 0 0 1
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Fig. 12 Planning track of the best task assignment result

the blue circular areas are obstacles, and the solid
triangle position is the coordinates of the UAV carrying
out the strike mission. From the task allocation scheme
in Fig. 12, we can get the following characteristics:

C1: When the attack probability is not the decisive
factor, the farther target is often carried out
by a separate UAV, which can avoid the two
UAVs from cooperating with the extra-long
range mission.

C2: When a target is attacked cooperatively, two
UAVs with a short interval of time to reach the
same target often team up to carry out the task,
which is because the tracking distance depends
on the time difference between the two UAVs.

These characteristics are the same as our prejudgment,
which also proves the rationality of the distribution
scheme.

(b) On-line problem of time-sensitive uncertainty
problem

When the target is on the way, the direction of
the target will be changed, which will cause the
final adaptability of the initial allocation scheme to
become unpredictable. The UAV must be adjusted the
task allocation scheme to obtain the optimal fitness
function again. Under this condition, we set up some
targets to change the direction at different time, and
compare the final task allocation scheme with Table 3.
Make the following changes to the driving situation of
the target:

Table 5 Task allocation scheme based on time-sensitive uncertainty
problem

T1 T2 T3 T4

U1 0 1 0 0

U2 0 1 0 0

U3 1 0 0 0

U4 0 0 0 1

U5 0 0 0 1

U6 0 0 1 0

When the target T2 is driven to coordinate (11, 16), the
direction of the target T2 will be changed to 70o. When the
target T4 reaches the coordinate (18.2, 10.4), change the
direction of the drive to 200o.

The task allocation scheme is shown in Table 5.
In Table 5, the task allocation scheme is that U3 attacks

T1, U1 and U2 attack T2, U6 attacks T3 and U4 and U5

attack T4. Great changes have taken place between this
task allocation scheme and the straight line driving of the
target.The value of fitness function is 0.5389, which value
is slightly larger than the straight line driving condition of
the target.The track diagram is given in Fig. 13.

Compared with the relatively smooth track in Fig. 12,
the UAV flight track in Fig. 13 has obvious orbit change
trace, which indicates that the UAV reallocates the task
after judging the change of the moving state of the target,
and when the target of the mission changes, the UAV flies
to the new target. It is important to note that when the

Fig. 13 Planning track of the best task assignment result under time-
sensitive uncertainty
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target movement state changes, the fitness value of the
recalculated task allocation scheme is not sure whether
it will increase or decrease. The uncertainty of target
movement makes it more possible to change the numerical
value. If the direction of target movement is more beneficial
to the current state of the UAV, the final fitness value may
be smaller than that of the original scheme.

The simulation results show that the task allocation
and track planning method not only reasonably selects the
route to avoid obstacles, but also obtains the minimum
fitness value, determines the global optimal task assignment
scheme, and achieves the best combat effect.

8 Conclusion

In this paper, the problem of multi-UAV cooperative task
allocation and track planning considering multi-ground
moving targets is fully simulated and solved, including
the problem of track planning for moving targets, the
problem of off-line task assignment and the problem of
online task re-assignment with uncertainty. A new BSAP-
ACO algorithm based on adaptive parameter adjustment and
bidirectional search is proposed, which can effectively plan
the optimal track. In the case of target movement, a method
of the predicted meeting point is proposed to solve the
problem that the moving point cannot be used as the target
point of the track planning algorithm. An effective method
to solve the problem of track planning in UAV tracking
mode is presented. A new GMPSO algorithm is proposed,
which can solve the optimization problem under multiple
constraints. Finally, the simulation experiment is carried out
to verify the effectiveness of the method.

Although some research on the cooperative task assign-
ment and track planning of ground moving targets has done
in this paper, there are still some problems that need to
be further studied. For example, in the online re-planning
phase, how to ensure the smoothness of the track switching
part, and how to plan the track of moving target when the
speed of the target is not constant. These problems need to
be further explored in future work.
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