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Abstract
This paper presents deployment strategies to achieve full visibility of 1.5D and 2.5D polyhedral environments for a team of
mobile robots. Agents may only communicate if they are within line-of-sight. In 1.5D polyhedral terrains we achieve this
by algorithmically determining a set of locations that the robots can occupy in a distributed fashion. We characterize the
time of completion of the resulting algorithm, which is dependent on the number of peaks and the initial condition. In 2.5D
polyhedral terrains we achieve full visibility by asynchronously deploying groups of agents who utilize graph coloring and
may start from differential initial conditions. We characterize the total number of agents needed for deployment as a function
of the environment properties and allow the algorithm to activate additional agents if necessary. We provide lower and upper
bounds for the time of completion as a function of the number of vertices in a planar graph representing the environment.
We illustrate our results in simulation and an implementation on a multi-agent robotics platform.

Keywords Multi-agent deployment · 2.5 terrain · 1.5 terrain · Visibility · Surveillance · Algorithms · distributed · Planar
graphs · Graph coloring · Guarding · Face-spanning subgraph

1 Introduction

With growing interest in autonomous vehicles to aid in
complex tasks, including surveillance, disaster response
and exploration, this paper considers scenarios where
mobile agents are constrained to moving on the ground
in 1.5D and 2.5D polyhedral terrains. We consider a fleet
of agents who are tasked with guarding these terrains
and are constrained by visibility-based communication.
Guarding a terrain or region is of particular interest in
military applications where mobile or stationary sensors
can provide valuable visual feedback regarding activity
in the area. The distributed deployment of agents to
find guarding locations to collectively maintain complete
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visibility of a region is well-studied and is known as the
‘art gallery’ problem. We extend this idea, most commonly
studied in 2D environments, to 1.5D and 2.5D terrain
environments, where agents determine their respective
locations and remain stationary to save battery and focus
on surveillance. The autonomous deployment of vehicles
to guard environments is becoming an increasingly relevant
topic as hardware capabilities and interest in military
applications increase. In particular, the emergence of cheap
autonomous vehicles make the robust distributed multi-
agent deployment approach more attractive.

Consider, for instance, scenarios where agents operate in
GPS-denied and unknown environments. In this situation,
it is imperative that agents maintain communication
connectivity and efficiently explore the environment in
a robust manner in case one or more agents fail their
mission. It is important that the deployment of vehicles
is quick, autonomous, and distributed in order to alleviate
user burden. Because of the unknown nature of the
environment and the potential presence of adversaries, we
are interested RF-quiet missions to avoid the possibility
of interception of radio communication. Because of
this, we consider line-of-sight communication based on
optics. Our objective is to design distributed strategies
for deploying robots in polyhedral terrains that achieve
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complete visibility endowed with explicit guarantees on
time completion.

1.0.1 Literature Review

We are inspired by research on distributed algorithms for
multi-agent networks [1, 7, 18] addressing computational
geometric and optimization problems and, in particular,
the classical art-gallery problem [5, 19], which seeks
to find the optimum number of guards in a nonconvex
environment so that each point is visible to at least
one guard. In general, n/3 guards are sufficient and
sometimes necessary to guard the inside of any polygon
with n vertices [9, 24]. The work [11] designs distributed
algorithms for teams of robots to guard 2D art gallery
environments where agents are constrained to line of
sight communication. We extend notions from distributed
robotics constrained by line of sight communication as well
as work from art-gallery problems to develop deployment
for complete visibility in 1.5D and 2.5D environments.
In [3], a centralized algorithm is presented for guarding
1.5D terrains in both discrete and continuous domains.
The work [15] introduces the terrain guard range as a
new geometric parameter by discretizing the definition of
range for agents with limited visibility in 1.5D terrains,
and proposes a centralized algorithm that solves the 1.5D
terrain guarding problem in a tractable fashion with respect
to the introduced parameter. In contrast to these methods,
we are interested in the distributed deployment of multiple
agents to achieve complete visibility in these environments.
The work [14] addresses the guarding of polyhedral terrains
and proposes methods for calculating and analyzing their
visibility. [10] discusses a polynomial-time approximation
scheme for guarding of 1.5-dimensional terrains. [13]
introduces a centralized, locally optimal, polynomial-time
approximation scheme (PTAS) for guarding a terrain. The
work [17] explores dynamic and integer linear programming
approaches to guard 1.5D and 2.5D terrains also in a
centralized setting. Our treatment here builds on ideas from
graph coloring and shares commonalities in particular with
distributed graph coloring, cf. [4], a problem where each
of the nodes on the graph is a static agent with local
information consisting of its neighboring nodes. In contrast,
in the setting considered here, agents and nodes are two
separate entities: agents are deployed starting from a subset
of the nodes, eventually all nodes will not be occupied by an
agent, and the color of nodes is determined by the agents.
The work [25] explores the use of distributed simulated
annealing as a technique for 2.5D terrain visibility, where
each agent moves to another node with probability based on
a temperature function and marginal gain. Similarly, [12]
presents a probabilistic algorithm that yields near-optimal
results with high probability. In contrast, our proposed

algorithm contains rules for agent movement to maintain
communication and guarantee complete visibility. The
work [6] describes the number of agents required to guard
a 2.5D terrain which utilizes a colored planar graph. Recent
work [23] employs aerial drones to occupy guarding points
in a 2.5D terrain which are determined using graph coloring
techniques. In our work here, however, agents are deployed
in a distributed fashion under constraints of maintaining
visibility-based communication. In order to analyze a 2.5D
polyhedral terrain for guarding, we use results from 4-
coloring of a planar graph [2]. [22] provides an algorithm
for 4-coloring a planar graph which, however, is centralized.
Algorithms for 5-coloring a planar graph that are amenable
to distributed implementation are found in [8, 26]. A face-
spanning subgraph of the 2.5D environment is created as
a result of our deployment strategy. Although research in
face-spanning subgraphs is sparse, [20] provides results
on the minimum number of vertices in a face-spanning
subgraph which we use for our results.

1.0.2 Statement of Contributions

We design distributed algorithms for robotic teams to
achieve full visibility of polyhedral terrains. Our contribu-
tions are structured in two blocks corresponding to 1.5D and
2.5D environments, respectively. The strategies for deploy-
ment we propose are iterative processes where the agents
communicate through vision, compute, move, and detect
where they are in their environment.

For 1.5D environments, we begin by characterizing a
guarding set to achieve full visibility of the terrain based on
identifying alternate peaks. This allows us to determine a
number of agents that are always sufficient and some times
necessary to guard any 1.5D environment. Building on this
result, we design two deployment strategies and determine
closed-form expressions for the time it takes each strategy
to finish. The first strategy allows for more flexible initial
conditions, while the second strategy completes in less time.

For 2.5D environments, we synthesize a distributed
2.5D deployment strategy that yields complete visibility by
utilizing planar graph coloring and redundant locations. We
start by identifying locations that are redundant in terms of
guarding and visibility. We determine the maximum number
of locations that are not redundant (removing an agent that
guards a redundant location does not change the collective
visibility) and use this result as the sufficient number of
agents to guard any 2.5D terrain. Agents are initialized at
random nodes in the environment and follow a set of rules
to identify, occupy and explore vertices with the objective of
achieving complete visibility and connectivity. Agents can
be deployed asynchronously at any location and execute the
algorithm unaware of other agents other than those which
they are connected to via visibility. When one group of
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connected agents discovers another group, they merge the
information collected about the environment so far and will
not break communication in the ensuing evolution. Finally,
we provide lower and upper bounds on the time completion
of the proposed algorithm.

2 Preliminaries

This section introduces basic notation and concepts on
planar graphs, coloring, and polyhedral terrains.

2.0.3 Notation

We let R and Z denote the set of real and integer numbers,
respectively. We denote by |S| the cardinality of the set S.
The map ceil : R → Z rounds its argument to the
next highest integer. We denote by p1p2 the line segment
between points p1, p2 ∈ R

d . A set C ⊂ R
d is convex if the

line segment between any pair of its points is contained in C.
In R

3, we use xp, yp, and zp to denote the components of
the point p ∈ R

3. Given p1, p2 ∈ R
3, the slope of p1p2 is

sp1p2 = zp2 − zp1

√
(xp2 − xp1)2 + (yp2 − yp1)2

.

When convenient, we embed the Euclidean plane R
2 into

the Euclidean space R
3 through the map i defined by

i(a1, a2) = (a1, 0, a2). With this embedding, we have yp =
0 for any point p ∈ i(R2) ≡ R

2.

2.0.4 Planar Graphs and Coloring

An undirected graph G = (V , E) is a pair composed of a
vertex set V and an edge set E consisting of bidirectional
edges between vertices. The degree of a vertex is the number
of edges connected to it. Planar graphs are undirected graphs
with vertices in R

2 and whose edges can be drawn on R
2

in such a way that no edges cross each other. A planar
graph is colored when its vertices are labeled so that no two
neighboring vertices share the same label. Planar graphs can
be colored with no more than 4 colors, cf. [2]. Centralized
algorithms can color planar graphs with no more than 4
colors in O(n2) time, cf. [22], and with no more than 5
colors in O(n) time, cf. [8]. A face-spanning subgraph is
a connected subgraph of G that contains at least one vertex
on every planar face of the graph. A triangulated planar is
a planar graph such that the addition of any edge results
in a non-planar graph. All bounded faces on a triangulated
planar graph are bounded by three edges.

2.0.5 Polyhedral Environments

Polyhedral environments in 1.5D and 2.5D correspond to
the graphs of continuous piecewise affine functions on
R and R

2, respectively. Formally, a continuous piecewise
affine function f : I ⊂ R → R, with I an interval,
defines the 1.5D terrain S1.5 (f ) = {(x, f (x)) : x ∈ I } ⊂
R

2. Similarly, a continuous piecewise affine function f :
I ⊂ R

2 → R, with I a polygon, defines the 2.5D terrain
S2.5 (f ) = {(x, y, f (x, y)) : (x, y) ∈ I } ⊂ R

3. When
convenient, we drop the dependence on f and simply denote
Sd.5 ⊂ R

d+1, with d ∈ {1, 2}, to refer to either of these two
cases.

Alternatively, a polyhedral terrain Sd.5 can be seen as an
undirected graph with vertices in R

d+1. In the case d = 1,
these vertices correspond to the points in R

2 where the graph
of two affine components of f intersect. In the case d = 2,
these vertices correspond to the points in R

3 where the graph
of three affine components of f intersect. The set of edges
connecting vertices in S1.5 and S2.5 are denoted E1.5 and
E2.5, respectively. For an arbitrary environment, Sd.5 we
specify the respective set of vertices as VSd.5 . All vertices
vi ∈ VS1.5 , except for the extreme ones v1 and v|V |, have
degree 2, with neighbors, vi−1 and vi+1. It follows that v ∈
VS1.5 are ordered monotonically with respect to the x-axis,
such that xv

i−1 < xv
i < xv

i+1 for i ∈ {2, . . . , |V |−1}. In S1.5,
we define J(v1,v2) (resp. J[v1,v2]) to be the set of all vertices
v ∈ VS1.5 such that min(xv1 , xv2) < xv < max(xv1 , xv2)

(resp. min(xv1 , xv2) ≤ xv ≤ max(xv1 , xv2)). A vertex vi in
S1.5 is a peak if svi−1,vi

> svi ,vi+1 . Conversely, vi is a valley
if it is not a peak. We denote by P ⊂ VS1.5 and V ⊂ VS1.5 the
collection of peaks and valleys, respectively, in increasing
order with respect to their x-coordinate. Given a vertex v we
denote its adjacent peak to the right by p+(v) and to the left
by p−(v).

In our treatment of 2.5D terrains we find it convenient to
use triangulated planar graphs. Denote by pr : R3 → R

2 the
projection map onto the first two components, pr(x, y, z) =
(x, y). This map projects S2.5 onto a planar graph, which
we denote by S∗

2.5. Figure 1 shows a 2.5D terrain S2.5

transformed into its planar graph equivalent S∗
2.5.

Two vertices, v1 and v2, are visible to each other if v1v2

does not intersect Sd.5 . We use the following visibility test
to determine if two vertices v1, v2 are visible,

sv1v2 > sv1w, ∀w ∈ Kv1v2 , (1)

where, in S1.5, Kv1v2 = J(v1,v2) is the set of vertices
between v1 and v2 and, in S2.5, Kv1v2 is the set of points
on S2.5 that share x and y-coordinates with v1v2. If v1 is
visible to v2 in S2.5, we also refer to the respective vertices
in the planar graph S∗

2.5 as visible. Let R ⊂ VS∗
2.5

such that
all vertices in R are visible to each other. Let Rhull be the
set of vertices that contribute to the convex hull of R and
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Fig. 1 A 2.5D terrain converted
into a planar graph

R∗ = R\Rhull. We refer to R∗ as a reducible set. We create
a new planar graph S∗∗

2.5 as a modification of S∗
2.5, where

every reducible set in S∗
2.5 is contracted into a vertex, see

Fig. 2 for an illustration. The vertices in V corresponding to
those in S∗∗

2.5 are then VS∗∗
2.5

.
The visibility set of a vertex v in S∗∗

2.5, denoted Q(v), is
the set of all vertices visible to v. Given Vw ⊂ VS∗∗

2.5
, the

collective visibility set,

Q(Vw) =
⋃

v∈Vw

Q(v),

is the set of all vertices visible to them. Finally, S∗∗
2.5 is fully

visible from Vw if Q(Vw) = VS∗∗
2.5

.

3 Problem Statement

We consider scenarios where a team of robots, deployed
on an unknown polyhedral terrain Sd.5, d ∈ {1, 2}, seek
to achieve full visibility of it. In our treatment, we assume
small obstructions such as small rocks and shrubs can be
ignored because of their relative minor impact on effective
visibility. Instead, we assume that large obstructions such
as buildings, large trees, and boulders have already been
incorporated in the environment description.

We first describe the model for the robotic network and
its capabilities, and then formulate their objective. There
are two sets of agents that can be used for deployment.
The active agent set, Aa , indicates agents that are actively
exploring and guarding the environment. The reserve agent
set, Ar , contains agents that are inactive for purposes
of saving energy and resources. Each individual agent

Fig. 2 Contraction of a reducible set in S∗
2.5. Vertices in R∗ are

represented by . |R∗| = 7 is reduced to 1

has a unique identifier i ∈ {1, . . . , |Aa| + |Ar |}. This
provides a sense of priority when two agents decide to
execute conflicting actions. The agents are capable of
omni-directional vision and can localize vertices at infinite
distance. Only agents visible to each other are able to
communicate and share information. The agents have the
capability to share attributes about vertices such as their
local coordinates and color assignments. In S2.5, we let
agents place relays on a vertex of their choosing to allow
communication between any two agents occupying vertices
that are neighbors of it. In S1.5, agents are able to traverse
between two adjacent peaks at every time step. In S2.5,
agents are able to traverse between vertices connected by
an edge at every time step. We consider the motion of
the robots slow in comparison to the time required for
computation.

We refer to the guarding set, G ⊂ V , as the set of vertices
that the agents decide to occupy. This set is determined
in a dynamic fashion by the agents as they explore
the environment. Our objective is to design coordinated
strategies for the robotic team to distributively explore the
polyhedral terrain Sd.5 and determine the guarding set to
achieve full visibility. We also seek to characterize both the
number of agents and the execution time required by the
proposed coordination strategies to achieve this objective.

4DistributedDeployment over 1.5D Terrains

This section studies the distributed deployment problem
over 1.5D polyhedral terrains. We identify a guarding set
that guarantees full visibility and study its size. This allows
us to obtain a characterization of a sufficient and sometimes
necessary number of agents required to complete the task.
Building on this characterization, we design strategies to
place agents in the identified guarding set.

4.1 Guarding set via Alternate Peaks

We begin our analysis with a simple fact about the visibility
regions of adjacent peaks.

Lemma 1 (Visibility from adjacent peaks): Given two
adjacent peaks, v1 and v2 ∈ P , all intermediate vertices of
S1.5 are visible to them, i.e., J[v1,v2] ⊂ Q(v1) ∩ Q(v2).
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Proof Since v1 and v2 are adjacent peaks, all vertices vi ∈
J(v1,v2) are valleys and have the property, svi−1,vi

≤ svi ,vi+1 .
Therefore the slope between adjacent vertices, vi and vi+1 ∈
J(v1,v2), monotonically increases with increasing x along
the interval xv1 to xv2 , implying sv1v > sv1k for all v ∈
J(v1,v2) and k ∈ Kv1v = J(v1,v). Hence, all vertices between
v1 and v2 are visible from either v1 or v2.

As a consequence of Lemma 1, we deduce that
J[p−(v),p+(v)] is visible from v. Inspired by this observation,
we consider the subset of alternating peaks, denoted Gap ⊂
P , corresponding to all peaks with odd indices. Note that
if |P| is even, then one can alternatively consider the set
of peaks with even indices. The set Gap is the largest set
of peaks in S1.5 such that every other peak is skipped. This
results in |Gap| = ceil(|P|/2). We order the indices of Gap

in increasing order with respect to their x-coordinate.

Lemma 2 (Visibility set from alternating peaks): The
visibility set of Gap is

Q(Gap) =
{

V if |P| odd,
J[v1,p|P|] if |P| even.

Proof From Lemma 1, if v1 and v2 are two peaks with
a single peak v between them (e.g., p+(v1) = v =
p−(v2)), then Q(v1∪v2) contains J[p−(v1),p+(v2)]. It follows
that, if Gap = {g1, . . . , g|Gap |}, then Q(Gap) is equal to
J[p−(g1),p+(g|Gap |)], and the result follows.

As a consequence of this result, we identify Gap ∪{p|P |}
as a sufficient set of vertices to achieve full visibility.

Theorem 1 (Full visibility): The 1.5D environment S1.5 is
fully visible from G = Gap ∪ {p|P |}. Furthermore, |G| =
floor(|P|/2) + 1 is sufficient and sometimes necessary to
achieve full visibility of S1.5.

Proof The fact that Q(G) = V readily follows from
Lemma 2. If |P| is odd, then G = Gap and therefore
|G| = ceil(|P|/2) = floor((|P|/2) + 1. If |P| is even,
|G| = ceil(|P|/2) + 1 = floor((|P|/2) + 1. To show that
|G| agents are sometimes necessary, we provide a specific
example. Consider an environment where all vertices are
peaks. Then, the visibility set of any vertex v is exactly
Q(v) = J[p−(v),p+(v)], which implies that any guarding set
must contain at least every other vertex in order to achieve
full visibility.

We specify environments with ratio of peaks to valleys to
be 1 : 1, as an average case scenario. In what follows, we
allocate resources for this average case scenario, but allow
for flexibility if needed.

4.2 1.5D alternate peak strategy

Given our analysis in Section 4.1, here we design distributed
strategies to deploy agents on G = Gap∪{p|P |}. We initially
begin with |Aa| = floor(|VS1.5 |/4)+1 as this is sufficient for
average case scenarios, and |Ar | = floor(|P|/2) + 1 − |Aa|
in case the ratio of peaks to valleys is worse than expected.
We begin with an informal algorithm description.

[Informal description]: All agents are initially located
at vertex, v0, whose position in S1.5 is unknown to
them. Agents explore S1.5 and incrementally distribute
themselves on G = Gap ∪ {p|P |}. Half of the agents,
Alft ∈ Aa , go left, while the other half, Arght ∈ Aa ,
goes right (if |A| is odd, we let Alft have one extra
agent). Depending on the location of v0 within the
environment, one of these two sets contains too many
agents. Agents keep track of a variable termed “goal”.
Once an agent detects the edge of S1.5 (either v1 or
v|V |), it raises its “goal” flag, which signals visible
neighboring agents that the other group needs more
agents to complete the algorithm. Two strategies are
then possible. Let A− be the group of agents that does
not have enough agents, and A+ be the group that has
too many. In both strategies, A− deploys until they
guard as many alternating peaks as they can. Then,
in the 1.5D alternate peak strategy with wait, agents
in A− wait until they receive a “goal” message from
A+ to continue exploring and finally guarding S1.5.
Instead, in the 1.5D alternate peak strategy w/o wait,
agents in A− make the assumption that the “goal”
flag will eventually come from A+ and continue
deploying towards the boundary of S1.5 (creating a
void in visibility coverage that will eventually be
filled by the agents in A+). If at any time v0 runs
low on active agents without the task having been
completed, this means that the ratio of peaks to valleys
in the environment is higher than expected and 2 more
agents are activated from Ar to provide resources to
the left and right groups.

Algorithm 1 provides a formal description of 1.5D
alternate peak strategy, both with and without wait.
The steps that are only executed under 1.5D alternate peak
strategy w/o waitare marked with the symbol †. All other
steps are common to both strategies.

Remark 1 (Wait versus no wait): The strategies differ in
how the agents react when they determine that there are
not enough agents in their group to reach the boundary of
the environment. While the 1.5D alternate peak strategy
w/o waitcompletes in less time, it requires all agents to
start on the same initial condition (otherwise the use of
the “continue” flag might be detrimental to algorithm
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Algorithm 1 1.5D alternate peak strategy.

Agent a variables:
bool goal=False, continue=False
int direction=-1 | a ∈ Alft or 1 | a ∈ Arght

While Q(G) is not V :
Communicate

if any visible agents to a have goal is True:
a sets goal to True
a sets direction to direction of agent with goal to

True
Move

if any of the following conditions are met:
• Agent a occupies v �∈ P
• a ∈ Alft and J(v,p+(v)] is occupied or a ∈ Arght and

J[p−(v),v) is occupied
• a does not have the greatest ID of all agents that

occupy v

• †: a has goal is False and continue is True
if a is only active agent that occupies v and

inactive agents occupy v:
activate two agents from Ar

a moves one peak dictated by direction
else:

a stays at vertex v

Detect
if v1 or v|V | is visible:

a sets goal to True
a sets direction away from detected v1 or v|V |

†: if the time elapsed is equal to 2|A−|+a.ID−2
a sets continue to True

completion). Instead, the 1.5D alternate peak strategy with
waitrequires in general more time to complete, but agents
can be initialized at multiple locations.

Remark 2 (Ordering of agents): Agents occupy a peak
only if no other agent with lower ID occupies the same
peak. As the algorithm executes, the agents naturally order
themselves within their respective groups of A− and A+
in decreasing order of ID from v0 in the direction they are
initialized. This enables the agents to rationalize when the
“goal” flag should have arrived by (agents in A+ with lower
ID receive the “goal” flag before agents with greater ID).
Due to the speed at which the “goal” flag propagates in A+,
agents in A− rationalize that they are not in A+ if they do
not receive the “goal” flag in 2A−+ ID −2 time steps.

Figure 3 shows an example of agents being deployed
on S1.5 using the 1.5D alternate peak strategy with wait. At
time step: 4, A+ reaches the leftmost boundary and raises
the “goal” flag. At time step: 7, A− runs out of agents and
begins to wait for the “goal” flag. By time step: 15, the

Fig. 3 Execution of 1.5D alternate peak strategy with waiton a 1.5D
environment with 16 peaks. From Theorem 1, |A| = 9 agents are
sufficient to achieve full visibility. All agents begin at the same initial
location, v0, of index 6 with respect to P , and split into two groups.
The location of agents with the “goal” flag not raised are shown by a
red dot where the number states the number of agents on that vertex.
Agents with a raised “goal” flag are denoted with a cross

network has completely deployed achieving full visibility of
the environment.

4.3 Time Steps for Algorithm Completion

In this section we characterize the number of time steps
required by the proposed strategies for completion. We
recall that an agent can move between adjacent peaks in one
time step. For the following analysis, let i be the index of v0

in P and define

i∗ =
{

i if i ≤ |P|/2,

|P| − i + 1 if i > |P|/2.
(2)

The following three sets cover all possibilities for the
location of the initial vertex v0,

A = {v0| if |A| even, i ≤ |P|/6 + 1 or i ≥ 5|P|/6 − 1

and if |A| odd, i ≤ |P|/6 or i ≥ 5|P|/6},
B = {v0| if |A| even, |P|/6 + 1 < i < 5|P|/6 − 1

and if |A| odd, |P|/6 < i < 5|P|/6},
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and region C, which only exists if |P| is odd and corresponds
to i = |P |+1

2 . Figure 4 illustrates these three cases.
We are ready to characterize the time complexity of the

strategy with wait.

Theorem 2 (1.5D alternate peak strategy with
waitcompletion time): The number of time steps required by
the 1.5D alternate peak strategy with waitto complete is

T =

⎧
⎪⎨

⎪⎩

|P| − i∗ v0 ∈ A,

|P| + i∗
2 − |A−| − 3

2 v0 ∈ B,
3(|P |−1)

4 v0 ∈ C,

(3)

where i∗ is determined by v0 according to Eq. 2.

Proof For simplicity of exposition, we only consider the
case when i ≤ (|P| + 1)/2 (the case when i >

|P |
2 is

analogous). Consequently, i∗ = i, Alft = A+, and Arght =
A−. We first consider the scenario when both groups of
agents reach the boundary of the environment at the same
time. Note that this is only possible if v0 ∈ C.

Case C: If |P| is odd and v0 is the peak with index |P |+1
2 ,

the agents split up perfectly since there are the same
number of peaks to the left and right. The agents reach
the boundaries and send the “goal” message at the same
time. The algorithm completes when the goal messages
meet at |P |+1

2 . The time to completion is then the sum of
the time to reach the boundaries, and the time that it takes
for the flags to reach the |P |+1

2 , which is

|P| + 1

2
− 1 +

|P |+1
2 − 1

2
= 3(|P| − 1)

4
.

Next, we consider the scenario when both groups of agents
do not reach the boundary of the environment at the
same time. In this scenario, it is A+ which reaches the
boundary first. Agents move one peak at a time, distributing
themselves on every other peak. Because of this, note that
A− runs out of agents after exactly 2|A−| time steps. On the
other hand, it takes exactly i∗ − 1 time steps for agents in
A+ to reach the boundary of S1.5 and raise the “goal” flag.
At this time, the rightmost agents in A− are located at peak

Fig. 4 Illustration of cases A, B, and C for the locations of the
common initial condition of the agents. The 1.5D environment S1.5
has |P | = 17 peaks.

i∗ + (i∗ −1) = 2i∗ −1. Once the “goal” flag is raised, since
agents can communicate with agents at adjacent peaks,
the speed at which the “goal” flag is communicated is
effectively two peaks per time step.

Two things might happen depending on whether the
“goal” flag reaches the rightmost agents in A− before this
group runs out of agents. Let t denote the number of time
steps elapsed since A+ first raised the “goal” flag. After t

time steps, the goal flag is at 1 + 2t . If A− does not run of
agents, its rightmost agents are at 2i∗ −1+ t . Therefore, we
are looking for the solution to 1+2t = 2i∗ −1+ t , which is

t = 2i∗ − 2.

The total elapsed time since the beginning is then i∗ − 1 +
(2i∗ − 2) = 3i∗ − 3. This time must be less than or equal to
than the time it takes A− to run out of agents, i.e.,

i∗ ≤ 2

3
|A−| + 1. (4)

Case A: One can see that Eq. 4 is satisfied if and
only if v0 ∈ A. Because the “goal” flag reaches the
rightmost agent in A− before A− runs out of agents, A−
moves at one time step towards the rightmost boundary
through the entirety of the strategy. Once A− reaches the
boundary, the agents will have distributed themselves on
G. Therefore, if v0 ∈ A, we deduce that the number of
time steps required for completion is T = |P| − i∗.

Case B: If instead, v0 ∈ B, this means that Eq. 4 is not
satisfied, i.e., A− runs out of agents before the “goal”
flag reaches its rightmost agents. After the “goal” flag is
raised, agents in A+ move at 1 peak per time step and
occupy their half of G by the time the “goal” flag reaches
the rightmost boundary since no agent has to travel more
than |P|/2 peaks. Since agents in A− previously occupy
alternating peaks, they all must travel the same number
of peaks to reach their final configuration. The rightmost
agent in A− receives the “goal” flag last and is the last
agent to occupy its peak in G. Therefore, we need to
compute the time it takes for A− to receive the message
and the leftover time needed for the rightmost agent in
A− to move to the boundary of S1.5. A− runs out of
agents at vertex d = i∗ + 2|A−|. With the notation used
above, the time required for the “goal” flag to reach this
vertex is the solution to 1 + 2t = d , i.e., t = (d − 1)/2.
Once the A− has received the message it takes

|P| − d,

steps to reach the boundary. Therefore, the total number
of time steps is

T = i∗ − 1 + (d − 1)/2 + |P| − d = |P| + i∗

2
− |A−| − 3

2
.
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From Theorem 2, one can see that, in region B, the time
complexity monotonically increases as the initial location
moves from the left boundary of this region (at |P|/6 + 1 or
|P|/6, depending on whether |A| is even or not), to the peak
closest to |P |

2 , Next, we determine the completion time of
the 1.5D alternate peak strategy w/o wait.

Theorem 3 (1.5D alternate peak strategy w/o
waitcompletion time): The number of time steps required
for the 1.5D alternate peak strategy w/o waitto complete is

T =

⎧
⎪⎨

⎪⎩

|P| − i∗ v0 ∈ A,
7|P |

8 − i∗
4 v0 ∈ B,

3(|P |−1)
4 v0 ∈ C,

(5)

where i∗ is determined by v0 according to Eq. 2.

Proof With respect to the proof of Theorem 2, the scenarios
when the initial condition belongs to A and C are the same.
In case A, the “goal” flag is communicated completely
before either group runs out of agents. Similarly, in case C
the algorithm completes before the “continue” flag is raised.

Case B: In this case, agents in A− rationalize as soon as
possible that they are in A− and raise their “continue”
flag. Agent, a, in A− raises its “continue” flag at time
step: 2A−+ID −2, where ID is the unique identification
of the agent. Since the agents occupy peaks in order of
decreasing ID, this is the amount of time the agent should
have received the “goal” flag if it belonged in A+. a then
moves at one peak per turn in its initial direction until it
receives or raises the “goal” flag. This means that if v0 is
in region B, two “goal” flags may be active at the same
time and propagate from the boundaries to the center. The
algorithm terminates when agents no longer move, which
occurs where the two “goal” flags meet. We use this fact
to determine the time of execution for 1.5D alternate-
peak strategy w/o waitin region B. For this analysis, we
examine the “goal” flag from A−. The rightmost agent
in A− reaches the boundary and raise the “goal” flag in
t1 = |P | − i∗ since the 1.5D alternate peak strategy w/o
waitallows agents to move at one peak per time step to
the boundary when “continue” is raised. The rightmost
“goal” flag travels at two peaks per time step and meets
the leftmost “goal” flag in t2 = d

2 time steps, where
d is the distance from the rightmost boundary to where
the “goal” flags meet. Note that d increases linearly with
respect to i∗ since the time that |A−| and |A+| reach their
respective boundaries is linearly dependent on i∗. We
interpolate between two boundary initial conditions of
region B to determine d . For v0 = |P |

2 , A− and A+ reach
their respective boundaries at or around the same time.
The goal flags meet at the center of S1.5, and d = |P |

2 . For

v0 = |P |
6 , the goal flag from A+ reaches the rightmost

agent in A− just as the “continue” flag is raised and meets
with rightmost “goal” flag at d = 0. We interpolate for:

d = 3

4
(i∗ − |P|

6
),

which allows us to determine the time of execution

T = t1 + t2 = |P| − i∗ + 3

4
(i∗ − |P|

6
) = 7|P|

8
+ i∗

4
,

as stated.

We find that 1.5D alternate peak strategy w/o
wait completes quicker than 1.5D alternate peak
strategy with wait in regions B and C. In region A, the
limiting factor for both algorithms is the time required
to traverse S1.5 from one end point to the other. These
realizations are illustrated in Fig. 5 which graphs results
from Theorems 2 and 3 with respect to the initial starting
vertex.

5DistributedDeployment over 2.5D Terrains

This section studies the distributed deployment problem
over 2.5D polyhedral terrains. We introduce the concept of
a (non-)redundant vertex of a guarding set and characterize
a sufficient and sometimes necessary number of vertices
of guarding sets without redundant vertices. We build on
this result to design a distributed strategy to efficiently

Fig. 5 Time of execution versus initial condition in a 1.5D
environment with 500 peaks. On the y-axis we show the time of
execution T over the number of peaks |P |. The x-axis describes the
initial starting location v0
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place the robotic agents and achieve full visibility as shown
in Fig. 10.

5.1 Guarding set via Non-redundant Vertices

In this section, we reason over the planar graph S∗∗
2.5

determined by contracting reducible sets in S∗
2.5 as described

in Section 2.0.4. Let �S∗∗
2.5

be the set of triangles in the
triangulated planar graph S∗∗

2.5 and let G be a guarding set.
A triangle � is uniquely guarded if only 1 of its vertices
v is in G. We denote the collection of such triangles by
�u ⊂ �S∗∗

2.5
and by �v

u the set of all triangles uniquely
guarded by v. A vertex in VS∗∗

2.5
is redundant if it does

not uniquely guard any triangle, i.e., |�v
u| = 0. An

edge in S∗∗
2.5 is redundant if it connects two redundant

vertices. A vertex is non-redundant if it is not redundant,
i.e., |�v

u| ≥ 1. We denote by V r and Er ⊂ ES∗∗
2.5

the
set of redundant vertices and edges, respectively. Let Gnr

be the result of removing all redundant vertices from G.
Note that Gnr remains a guarding set and, furthermore,
Gnr = VS∗∗

2.5
\ V r .

Lemma 3 (Upper bound on |Er |) Given a guarding set G

of S∗∗
2.5, |Er | ≤ 3|V r | − 6.

Proof For planar graphs, the maximum number of edges
given n vertices is 3|n|−6. Since Er ⊂ ES∗∗

2.5
, no edges cross

in Er , thus the graph (V r , Er) is also planar.

In order to bound the number of agent needed for
achieving full visibility on S∗∗

2.5, we next determine the
minimum number |Er | of redundant edges that can exist
given G. To do this we find the maximum ratio of non-
redundant vertices to redundant edges. Given er ∈ Er , let
Ner ,� be the number of uniquely guarded triangles that are
adjacent to er . Note that, for any planar graph, we have
Ner ,� ≤ 2. This is because for any redundant edge, there
exists at most two vertices v1 and v2 in G that uniquely
guard triangles adjacent to er . Let

rer =
⎧
⎨

⎩

1
�

v1
u

if Ner ,� = 1,

1
�

v1
u

+ 1
�

v2
u

if Ner ,� = 2.
(6)

Since the minimum number of triangles that any vertex
v ∈ Gnr uniquely guards is 1, |�v

u| ≥ 1 and, therefore,
rer ≤ 2. Furthermore, the number of vertices in Gnr can be
expressed as the sum of this ratio for all redundant edges

|Gnr | =
∑

er∈Er

rer . (7)

Using rer ≤ 2, this quantity is bounded as

|Gnr | ≤ 2|Er |. (8)

Theorem 4 (Upper bound on |Gnr |) Let Gnr be a guarding
set of S∗∗

2.5 without redundant vertices. Then |Gnr | ≤
(|6VS∗∗

2.5
| − 12)/7.

Proof Using Lemma 3 and Eq. 8, |Gnr | ≤ 2|Er | ≤ 6|V r |−
12. From Gnr = VS∗∗

2.5
\ V r , we have |V r | = |VS∗∗

2.5
| − |Gnr |.

Then

|Gnr | ≤ 6|VS∗∗
2.5

| − 6|Gnr | − 12

and the result follows.

The bound in Theorem 4 can be improved with
an additional operation after pruning redundant vertices.
Consider the particular case where there are two non-
redundant vertices v1 and v2 that uniquely guard triangles
adjacent to a single redundant edge er and that |�v1

u | and
|�v2

u | are 1. In this case, we call er a doubly redundant edge,
as is the type of edge that generates the maximum possible
ratio rer = 2. When there is a doubly redundant edge, it
is always possible to convert both v1 and v2 to redundant
vertices and convert one of the original redundant vertices
to non-redundant. Doing this operation does not change
the overall guarding character of the modified Gnr , since
both of the uniquely guarded triangles are still guarded by
the new non-redundant vertex. We call this process Non-
redundant vertex reduction, which can be executed on
S∗∗

2.5 sequentially for each doubly redundant edge. Let the
remaining guarding set after removing doubly redundant
edges via Non-redundant vertex reductionbe G∗

nr .

Theorem 5 (Upper bound on |G∗
nr |): LetG∗

nr be a guarding
set of S∗∗

2.5 determined by running Non-redundant vertex
reductionon Gnr . Then |G∗

nr | ≤ (|9VS∗∗
2.5

| − 9)/11.

Proof This proof follows that of Theorem 4 except that
the ratio between non-redundant vertices and redundant
edges changes. After Non-redundant vertex reductionis
executed, no doubly redundant vertices exist and rer is
maximized when Ner ,� = 2 and one of its associated non-
redundant vertices v uniquely guards at least 2 or more
triangles, |�v

u| ≥ 2. In this case, the maximum possible
ratio according to Eq. 6 is rer = 1.5. Using this fact in Eq. 7
yields

|G∗
nr | ≤ 1.5|Er |.

A similar reasoning as in the proof of Theorem 4 yields the
desired result.

The bound in Theorem can be further refined for a
class of environments that satisfies a specific topological
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Fig. 6 A simple illustration of two S∗∗
2.5 graphs with and without

embedded triangles. In a Nr = 0 and in b Nr = 1

assumption. We say S∗∗
2.5 contains embedded triangles if

there exist a triangle that is contained in the convex hull
of another triangle in S∗∗

2.5, cf. Figure 6. We denote by Nr

the number of triangles in S∗∗
2.5 that encapsulate 1 or more

triangles in its convex hull.

Theorem 6 (Upper bound on |G∗
nr | with

Non-redundant vertex reductionover environments without
embedded triangles): Let G∗

nr be a guarding set of S∗∗
2.5

determined by running Non-redundant vertex reductionon
Gnr and assume that S∗∗

2.5 does not contain embedded
triangles. Then |G∗

nr | ≤ (3|VS∗∗
2.5

| − 4)/4.

Proof To guard any given triangle, one of its vertices must
belong to G∗

nr if S∗∗
2.5 contains no embedded vertices (this

is not necessarily true when S∗∗
2.5 does contain embedded

triangles) This implies that there cannot be any redundant
vertices that form a triangle. Because the resulting graph
of redundant edges is planar, and planar graphs without
triangles have no more than 2n − 3 edges (with n being
the number of vertices), then |Er | ≤ 2|VS∗∗

2.5
| − 3.

Using this inequality instead of Lemma 3 in the proof of
Theorem yields the result.

We rely on the results above to upper bound the number
of agents that need to be active in the guarding deployment
of S∗∗

2.5.

5.2 S2.5 Exploration and Guarding Algorithm

If we know that there are no embedded triangles in
the environment, then we let |Aa| = (3|VS∗∗

2.5
| − 4)/4

and |Ar | = ∅ based on Theorem 6. Otherwise, if we
have no knowledge regarding the presence of embedded
triangles in the environment, we consider initially |Aa| =
(3|VS∗∗

2.5
| − 4)/4 and |Ar | = (9|VS∗∗

2.5
| − 9)/11 − |Aa|

agents based on Theorem . Our proposed deployment
strategy seeks to guard non-redundant vertices to achieve
distributed coverage of S2.5. The idea is to allocate agents

on a guarding set G∗
nr determined by a valid coloring of

S∗∗
2.5 and detection of redundant vertices. To determine a

valid coloring of S∗∗
2.5, the agents label vertices that they

discover such that no connected vertices are labeled the
same color. We refer to the colors that the agents assign
to vertices as {1, 2, Gc}, where Gc is a label for a color
in {3, 4, 5, 6} that is instantiated during the execution of
the algorithm and denotes vertices that agents plan to
occupy or place a relay on. By definition of coloring on
planar graphs, each triangular face in S∗∗

2.5 contains a vertex
that is colored Gc. Occupying all vertices that are not
{1, 2} guarantees full visibility, since every face on S2.5 is
a triangle.

Agents arrange themselves into trees to organize the
exploration in a hierarchical fashion. We use the following
notation to indicate properties of an agent including their
determined place in the dynamically created trees

a.v: The vertex v occupied by a

a.parent: An agent that is the parent of a

a.children: A set of agents that are children of a

a.root: True if a is the root of a tree
a.explored: True if a recently explored

In addition to knowledge regarding their tree, agents need
to keep track of which vertices have been explored thus far.
We sort vertices in S2.5 into exploration sets, which help the
agents decide which vertices to explore. Let us introduce
some terminology and notation. Vertices that are have not
yet been detected by agents belong to the undetected set U.
If v has been detected by the agents and all of the triangles
that touch v are visible to agents, then v belongs to the
known set of vertices K. Finally if a vertex v has been
detected but some triangles that touch v are not visible,
i.e., v �∈ K, then v belongs to the discovered set D. All
agents connected via edges on S2.5 are able to communicate.
Note that, at any given time, there may be more than one
connected component of agents. Each connected component
AC

i maintains its own exploration sets of vertices, UAC
i

,
DAC

i
, and KAC

i
.

We proceed to define 2.5D non-redundant peak
strategy. The following is an informal description for the
pseudocode in Algorithm 2.

[Informal description]: Agents can be initialized
on any vertex. Connected components of agents
are determined based on connectivity of the initial
condition. Each of the occupied vertices are assigned
color Gc. There are multiple processes for each
step of 2.5D non-redundant peak strategy , which
each connected component of agents execute. The
agents first create subtrees in build subtrees, that
allow them to organize themselves for exploration and
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maintaining connectivity. The connected component
of agents AC

i keeps track of DAC
i

and KAC
i

. Agents
color newly discovered vertices in color. In explore,
one agent in each of the created subtrees move to
a vertex in DAC

i
. The vacant spot is then occupied

by the parent of the agent that moves. Agents then
use redundant agent removalto refine the guarding
set so that |A| is sufficient. We allow the agents to
place relays, r ∈ R at a vertex they occupy. Relays
provide communication between neighboring vertices.
2.5D non-redundant peak strategyrepeats until agents
occupy G such that Q(G) = V . As a result
of the exploration, two or more separate connected
components of agents may be able to communicate
with each other via neighboring edges. In merge, their
exploration sets, KAC,i

, UAC,i
and DACi

are combined
and the sets of connected components of agents merge
into one, larger set. Last, agent activationactivates
agents from the set of reserve agents when embedded
triangles are detected in S∗∗

2.5.

Algorithm 2 2.5D non-redundant peak strategy.

for all a:

a.parent = None

a.children = ∅
a.v = vertex that agent occupies

def main:
While Q(G) is not V :

build subtrees
color
explore
redundant agent removal
merge
agent activation

5.2.1 Process: build subtrees

The first process of 2.5D non-redundant peak strategyis
build subtrees where agents structure themselves for
exploration.

[Informal description]: In build subtreesagents deter-
mine tree structures that allow them to explore without
breaking connectivity. This algorithm begins by deter-
mining which vertices are occupied by more than one
agent. One agent on these vertices claim to be the
root of a new subtree. Agents can only belong to one
subtree. After roots determined, the agents take turns
adopting neighboring agents as their children. Each
agent maintains memory of their parent and child. If
an agent has no children they will have priority in
exploring amongst its subtree in explore.

build subtrees.

find roots ()
While AP is not empty:

a = AP .get ()

adopt children(a)
Subfunctions

def find roots
a.parent = None
a.children = ∅
AP = ∅
If a.v is occupied by at least one other agent and no

other agents are a root:
a.root = T rue

AP = AP ∪ a

def adopt children(a):
for all b that neighbors a:

if b.parent =None:
a.children.append(b)
b.parent = a

AP .put(b)

5.2.2 Process: color

Next, we describe the process for coloring vertices that have
just been discovered.

[Informal description]: Agents that have recently
explored (a.explored = T rue) color their neighboring
vertices in this process. For each agent a, if a
neighboring vertex v is in DAC

i
and that vertex has

no neighbors with color 1, then a colors that vertex
1. The agent does the same for color 2. If v has
neighbors of both colors 1 and 2, then a colors that
vertex Gc, indicating that vertex should be guarded in
future exploration steps.

color

for a ∈ A such that a.explored= T rue:
for all v ∈ DAC

i
that neighbor a:

if v has no neighbors with color 1:
a colors v to 1

else if v has no neighbors with color 2:
a colors v to 2

else:
a colors v to Gc

a.explored= False

a broadcasts and updates colors in DAC
i

a sets DAC
i

to ∅
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5.2.3 Process: explore

After the agents have colored their neighboring vertices they
are ready to explore S∗∗

2.5 as follows.

[Informal description]: Agents move to vertices that
need to be guarded or, if they cannot find one, move
to vertices that discover more candidates for guarding.
For each subtree, agents that do not have children look
for neighboring vertices in DAC

i
, prioritizing vertices

in Gc. If such a vertex exists, the agent moves to that
vertex. If no such vertex exists the agent signals its
parent to explore. When an agent moves its parent
follows to the vertex that the child was previously
occupying.

explore

G = ∅
for a ∈ A such that a.children= ∅:

explore subtree(a)
for all a ∈ A:

if a.child moved:
a moves to last occupied vertex of a.child

G = G ∪ a.v
Subfunctions

def explore subtree(a):
if a neighbors v ∈ DAC

i
of color Gc:

v′ = v

else if a neighbors v ∈ DAC
i

of color 1 or 2:

v′ = v

else:
explore subtree(a.parent)
return

a moves to v

a broadcasts and updates tree
a.explored= T rue

Remark 3 (Exploration): As a result of moving to the
exploration process, vertices in S∗

2.5 are discovered. These
vertices are visible and now belong to Q(G) through
completion of the 2.5D non-redundant peak strategy.
When new vertices are discovered, agents re-evaluate S∗∗

2.5
and DAC

i
.

5.2.4 Process:merge

After agent exploration, two or more connected compo-
nents of agents may be able to communicate via neighboring
edges. In merge, the exploration sets are updated accord-
ingly and the connected components of agents merge into
one larger set.

[Informal description]: Let {AC
1 , AC

2 , . . .} denote the
set of connected components of agents that are able to
merge after exploration, and AC

# denote the connected
component of agents after merging. KAC

#
contains all

vertices in KAC
1
, KAC

2
, . . .. DAC

#
contains all vertices in

DAC
1
, DAC

2
, . . . except for any vertex in KAC

#
. Finally,

UAC
#

contains the rest of the vertices, which have not
yet been detected by the agents and do not need to be
calculated for the algorithm.

merge

KAC
#

= ∅
DAC

#
= ∅

{AC
1 , AC

2 , . . .} is a set of merging connected components
for AC

i in {AC
1 , AC

2 , . . .}
KAC

#
= KAC

j
∪ KAC

i

for AC
i in {AC

1 , AC
2 , . . .}

DAC
#

= DAC
j

∪ DAC
i

\ KAC
j

5.2.5 Process: redundant agent removal

Agents need to place relays in order to maintain connectivity
when redundant vertices are found. The process for
determining and placing relays is redundant agent
reduction as described in redundant agent removal.

[Informal description]: One agent at a time determines
if they occupy a redundant vertex by checking if there
is a triangle that it uniquely guards (a triangle with
vertices not occupied by an agent). If an agent is
redundant, it places a relay on its vertex. Relays are
considered other agents when it comes to finding roots
in build subtreesFurthermore, if two agents occupy
non-redundant vertices that create a doubly redundant
edge er is detected, one of the two agents colors a
vertex v ∈ er to Gc and places a relay on their
currently occupied vertex. During the next exploration
step, one vertex on er will be occupied by either agent.
The agent that does not occupy v marks their currently
occupied vertex as redundant on the next redundant
agent reduction step.

redundant agent removal

for all a, asynchronously:
if if �a.v

u = 0
a places a relay at a.v

if a that uniquely guards a doubly redundant edge
a places a relay at a.v
a colors a vertex v that is part of the doubly

redundant edge as Gc
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Remark 4 (Tree-based exploration): By construction, the
tree-based ordering of agents guarantees |Q| never
decreases during exploration because agents are always
flowing from the root of the tree to the leafs. The root of the
tree by definition contains 2 or more agents. It is necessary
that redundant agent removal cycles through every agent
because the set of redundant agents changes every time a
redundant agent is removed.

5.2.6 agent activation

After redundant agent removal, all vertices with color
1 or 2 or vertices with a relay can be considered to be
redundant. We use properties of the redundant vertices
and their respective redundant edges to add agents to the
deployment if necessary.

[Informal description]: If a connected component of
agents detect a triangle of redundant vertices, 2 agents
are added to Aa from Ar .

agent activation

until |Aa| = min
( 3|VS∗∗

2.5
|−4

4 + 2|Nr |, |9VS∗∗
2.5

|−9
11

)

move any a from Ar to Aa

5.3 2.5D non-redundant peak strategycompletion

In this section we show that our deployment strategy yields
a guarding set G∗

nr such that S∗∗
2.5 is fully visible.

Lemma 4 (Monotonic increase of KAC
i
from explore): Let

KAC
i
, DAC

i
, and U be non-empty for a connected group of

agents that contain at least one agent that is a root. Then the
cardinality of the set of known vertices KAC

i
monotonically

increases as a result of explore.

Proof Agents move in explore when it is their turn based
on the hierarchy of the tree that they have formed and there
is a suitable neighboring vertex to explore to. As specified
in explore, the neighboring vertex always belongs to DAC

i
.

This is always possible for some agent because any v ∈ DAC
i

is by definition visible by at least one agent. When an agent
moves to a vertex v ∈ DAC

i
, that vertex must become part of

the known set of vertices KAC
i

, since all triangles touch that
vertex will be visible. Because visibility does not change as
a result of exploration, KAC

i
monotonically increases.

Lemma 5 (Completion of the 2.5D non-redundant peak
strategy): Given |Aa| = (3|VS∗∗

2.5
| − 4)/4 and |Ar | =

(9|VS∗∗
2.5

| − 9)/11 − |Aa| agents, 2.5D non-redundant peak
strategyresults in complete exploration of S2.5.

Proof Consider a connected group of agents AC
i and

assume UAC
i

and KAC
i

are non-empty. Note that there must
exist a vertex in DAC

i
along any path from any two vertices

v1 ∈ UAC
i

and v2 ∈ KAC
i

. This is because v1 and v2 cannot
be neighbors of each other, otherwise v1 would be detected
since neighbors of v2 are visible by definition. Therefore, if
UAC

i
and KAC

i
are non-empty, DAC

i
must be non-empty as

well. While KAC
i

, DAC
i

, and UAC
i

are non-empty, Lemma 4
indicates that |KAC

i
| monotonically increases as long as

there are enough agents. Agents in a connected component
of agents AC

i explore until the algorithm is complete or
until there are no two agents in AC

i that occupy the same
vertex. In the latter case, the agents remain dormant while
waiting for another connected component of agents to make
communication during their exploration. We now show that
there are enough agents for deployment. As a result of
redundant agent removal, agents do not occupy redundant
vertices and no doubly redundant edges exists. Furthermore,
for every redundant triangle that is detected, 2 agents are
activated. This is enough because for any 3 redundant
vertices that do not form a triangle, there can be at most
2 edges and 3 non-redundant vertices, using rer = 1.5.
If those three redundant vertices do form a triangle, then
there are 3 edges and 9/2 non-redundant vertices, using
rer = 1.5. Considering an environment with any number
of redundant triangles, the maximum number of non-
redundant vertices is given by Theorem 5. Hence, there will
always be enough agents in some connected component to
explore with

|Aa| = min

(3|VS∗∗
2.5

| − 4

4
+ 2|Nr |, |9VS∗∗

2.5
| − 9

11

)
,

where
∑

∀AC
i

|AC
i | = |Aa|. Note that a vertex cannot

belong to two different KAC
1

and KAC
2

, since otherwise the

connected components AC
1 , and AC

2 would be connected,
being part of a single known set. Therefore

∑
∀AC

i
|KAC

i
| ≤

|VS∗∗
2.5

|, where equality only holds when all vertices and
faces are visible. Since there is always some connected
component with enough agents to explore and given
Lemma 4, the collective number of known vertices∑

∀AC
i

|KAC
i
| monotonically increases until UAC

i
and DAC

i

are empty for all AC
i or until

∑
AC

i
|KAC

i
| = |VS∗∗

2.5
|.

The result of deployment on S∗∗
2.5 with sufficient number

of agents is the occupation of vertices in a guarding set G∗
nr .

Next, we characterize the number of time steps required by
2.5D non-redundant peak strategyfor completion.

Theorem 7 (Upper bound on completion time of 2.5D non-
redundant peak strategy): The S2.5 deployment strategy
takes at most |VS∗∗

2.5
| − 3 time steps to complete.

1123J Intell Robot Syst (2020) 100:1111–1127



Fig. 7 A S∗∗
2.5 with the potential

of taking |VS∗∗
2.5

| − 3 time steps
to complete

Proof The strategy completes when Q(G∗
nr ) = V , which

must be true when UAC
i

= ∅ and |KAC
i
| = |VS∗∗

2.5
|. From

Lemma 4, |KAC
i
| is increased by at least 1 every turn.

Therefore, the completion time is dictated by how quickly
the agents explore S∗∗

2.5. Since Q includes v0, and at least two
other vertices (since every vertex has at least two neighbors
in the polyhedral terrain), the strategy takes no more than
|VS∗∗

2.5
| − 3 time steps to complete. Figure 7 provides an

example for this worst-case scenario, showing that the upper
bound is attained.

Although it is possible for the algorithm to take up to
|VS∗∗

2.5
|−3 time steps, it is highly unlikely and can be avoided

through smarter coloring schemes. In Fig. 7, we use a color
scheme that prioritizes labeling by {1, 2, Gc}. During the
exploration phase, there are no unoccupied vertices with

color Gc, therefore the agent has to label a vertex with color
1 or 2 to Gc and proceed to move to that vertex.

Next, we characterize a lower bound on completion time
of the 2.5D non-redundant peak strategy. Let do be the max
out-degree of vertices in S∗∗

2.5.

Theorem 8 (Lower bound on completion time of 2.5D
non-redundant peak strategy): Assume a deployment of
2.5D non-redundant peak strategywhere all agents are
initialized on the same vertex. The S2.5 deployment strategy

takes at least
|�S∗∗

2.5
|−2

do−2 − 1 time steps to complete.

Proof Upon deployment completion and full 2.5D terrain
visibility we know that for each triangular face on the planar
graph, an agent occupies a vertex on that triangular face.
As agents explore, they create a face-spanning subgraph of

Fig. 8 Execution of 2.5D non-redundant peak strategyon S∗∗
2.5 with 200 vertices
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Fig. 9 Number of time steps required to complete deployment using
the 2.5D non-redundant peak strategy versus the number of nodes in
the environment. Each data point is averaged over 100 trials. The error
bars show the corresponding standard deviation

the complete environment that consists of vertices occupied
by relays and agents. A face-spanning subgraph can be

created with no less than
�S∗∗

2.5
−2

do−2 − 1 vertices [20]. Lastly,
from Lemma 4 we have that 2.5D non-redundant peak
strategy expands the face-spanning subgraph by 1 vertex per
step.

6 Implementation

To illustrate the practicality of our algorithm, we provide
here both simulation and experimental results on group of
robots.

Figure 8 shows several steps of the simulation of 2.5D
non-redundant peak strategyon a 2.5D terrain. The terrain
has 200 nodes. In (a), 149 and 14 agents are initialized in
Aa and Ar , respectively, at either one of two initial nodes,
which become roots represented by . Roots occur when 2
or more agents occupy the same vertex. The vertices that
are visible to the agents are denoted with either blue or

green dots. The agents label the newly detected vertices with
colors priority: 1 : green dot, 2 : red dot, and Gc : . Agents
from each one of the starting nodes will explore unaware of
the other group of agents and their node explorations until
they make communication visually by occupying adjacent
nodes. Once the agents are able to communicate with the
other group, cohesion is never lost as agents keep exploring.
In (b), agents have explored and 14 time steps have passed.
At this point, two connected components of agents are able
to communicate via the dashed edge shown on the bottom
of the image. Hence, mergecombines the exploration sets
of each of the connected components so knowledge of the
environment is shared. There is also a vertex shown as
shown in the bottom left. This vertex was deemed redundant
by agents so a relay is placed here. In (c) the environment is
completely visible and the deployment is complete after 55
time steps.

In Fig. 9, we display the number of time steps required
for the agents to complete deployment on the 2.5D terrain
as a function of the number of nodes in the environment. As
one can see from the plot, the required number of time steps
increases roughly linearly with the number of nodes. Noting
this fact, the computational complexity of the average case
looks linear, since the amount of time it takes an agent to
compute its step is independent of the total number of nodes
in the environment (and only depends on its neighboring
nodes).

We have also implemented 2.5D non-redundant peak
strategyon a group of robots in the Robotarium [21].
The Robotarium is a multi-agent platform for remotely
testing swarm robot applications. In this experiment, 12
agents are deployed on S∗∗

2.5 with 24 vertices. In order
to deploy, the agents use controllers based on their
unicycle dynamics to reach vertices that they explore,
which they treat as waypoints. Agents initially begin
at the vertex shown in Fig. 11a and find vertices to
guard shown in Fig. 11b. At every time step, agents
are given a set amount of time to reach their waypoints
before computing other steps of the algorithm, such as
coloring and vertex redundancy. Because the platform
utilizes robots for 2D environments, we projected the 2.5D

Fig. 10 For agent deployment, S2.5 is transformed into a planar graph S∗∗
2.5. The guarding set G∗

nr as a result of 2.5D non-redundant peak
strategyon S∗∗

2.5 from Fig. 8 shown as large dots on the environment. The respective vertices in the 2.5D environment S2.5 are shown at different
angles
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Fig. 11 Deployment of 2.5D
non-redundant peak strategy
using Robotarium [21]. A
projection of the S2.5 to a planar
graph S∗∗

2.5 overlays the images.
In (a) agents are shown at their
initial location at the vertex on
the top right. To avoid
collisions, agents start too the
side of the vertex. The final
configuration of the agents are
shown in (b) where the
environment is fully visible

environment to a planar graph which is shown as an overlay
in Fig. 11b.

7 Conclusions

We have designed coordination algorithms for distributed
exploration and guarding of agents in 1.5D and 2.5D
environments. For 1.5D settings, we have determined a
number of active agents that, on average, is sufficient to
achieve full visibility and provided enough reserve agents
when the ratio of peaks to valleys is high. We have
developed the 1.5D alternate peak strategy, established
that it leads to agent deployment with full visibility of the
environment, and characterized its time of completion. For
2.5D settings, we have characterized the necessary number
of agents required to achieve visibility for environments
with and without embedded triangles. We have introduced
the 2.5D non-redundant peak strategy, which allows for
groups of agents to begin on different nodes and operate
independently from each other. These groups dynamically
create subtrees and choose to explore nodes that maintain
connectivity. Separate groups eventually meet, merge their
learned information about the environment and deployment
in a consistent way, and continue exploring as a new single
group. We show that this process may be repeated until the
overall group of agents achieves full visibility, and provide
both upper and lower bounds on the time of completion.
Future work will explore scenarios for agents with limited
visibility and anisotropic visibility regions. A possible line
of attack to accommodate range-limited agent visibility
would have the algorithm add vertices to the 1.5D and
2.5D terrains to limit inter-node distances. Furthermore,
future work will extend the analysis to asynchronous
algorithm executions, and incorporate increasingly realistic
considerations in modeling the interactions of the agents
with the physical world, such as agents traversing across
the planes of the 2.5D terrain instead of just the edges and
accounting for agent dynamics in the algorithm execution.

Finally, the proposed algorithm is conservative in that it has
agents reasoning over a convex subset of their full visibility
region. We are also interested in improving the algorithm
efficiency by employing the full agents’ visibility regions.
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