
https://doi.org/10.1007/s10846-020-01203-2

Trajectory Tracking for Aerial Robots: an Optimization-Based
Planning and Control Approach

Jose Luis Sanchez-Lopez1 ·Manuel Castillo-Lopez1 ·Miguel A. Olivares-Mendez1 ·Holger Voos1,2

Received: 30 September 2019 / Accepted: 14 April 2020
© Springer Nature B.V. 2020

Abstract
In this work, we present an optimization-based trajectory tracking solution for multirotor aerial robots given a geometrically
feasible path. A trajectory planner generates a minimum-time kinematically and dynamically feasible trajectory that includes
not only standard restrictions such as continuity and limits on the trajectory, constraints in the waypoints, and maximum
distance between the planned trajectory and the given path, but also restrictions in the actuators of the aerial robot based
on its dynamic model, guaranteeing that the planned trajectory is achievable. Our novel compact multi-phase trajectory
definition, as a set of two different kinds of polynomials, provides a higher semantic encoding of the trajectory, which allows
calculating an optimal solution but following a predefined simple profile. A Model Predictive Controller ensures that the
planned trajectory is tracked by the aerial robot with the smallest deviation. Its novel formulation takes as inputs all the
magnitudes of the planned trajectory (i.e. position and heading, velocity, and acceleration) to generate the control commands,
demonstrating through in-lab real flights an improvement of the tracking performance when compared with a controller that
only uses the planned position and heading. To support our optimization-based solution, we discuss the most commonly
used representations of orientations, as well as both the difference as well as the scalar error between two rotations, in both
tridimensional and bidimensional spaces SO(3) and SO(2). We demonstrate that quaternions and error-quaternions have
some advantages when compared to other formulations.

Keywords Trajectory tracking · Trajectory planning · Aerial robotics · Multirotor · UAV · MAV · Remotely operated
vehicles · Mobile robots · Model predictive control · Optimization

1 Introduction

1.1 Motivation

Multiple studies, [57], foresee a great number of civilian
applications of multirotor aerial robots (also called drones or
Unmanned Aerial Vehicles, UAVs), such as their integration
in smart cities [40], or aerial inspection [9], among others.
Most of these applications are either under research and
development as prototypes or they are still simply concepts.

� Jose Luis Sanchez-Lopez
joseluis.sanchezlopez@uni.lu

1 Automation and Robotics Research Group, Interdisciplinary
Centre for Security, Reliability and Trust 29, University
of Luxembourg, Avenue J. F. Kennedy, L-1855,
Luxembourg, Luxembourg

2 Faculté des Sciences, de la Technologie et de la Communica-
tion, University of Luxembourg, Luxembourg, Luxembourg

Only a few of them have already become a reality that some
service provider companies are commercially exploiting
by use the multirotor aerial vehicles in a remotely piloted
way with a low-level of autonomy. Despite showing great
potential, a high-level of autonomy is required to make most
of the applications become a reality, as well as to increase
the efficiency, usability, and safety of the already existing
ones.

Recent advances in fully autonomous architectures
and software frameworks like Aerostack [48, 49], have
demonstrated the high level of autonomy [11] required to
fully integrate aerial robots in daily use. Nevertheless, there
are still multiple open research problems that limit the use
of aerial robots. Two important ones are motion planning
[19] and control [4, 35].

There are two different motion control tasks in robotics
that sometimes are confused in the literature and need to
be differentiated: path following and trajectory tracking.
Paraphrasing [3], in path-following, the robot is required
to converge to and follow a path that is specified without

/ Published online: 22 July 2020

Journal of Intelligent & Robotic Systems (2020) 100:531–574

http://crossmark.crossref.org/dialog/?doi=10.1007/s10846-020-01203-2&domain=pdf
https://orcid.org/0000-0001-5018-0925
https://orcid.org/0000-0001-8526-4184
https://orcid.org/0000-0001-8824-3231
mailto: joseluis.sanchezlopez@uni.lu

a temporal law. On the other hand, in trajectory-tracking,
the robot has to reach and follow a time parameterized
reference. A trajectory is, therefore, defined as a time
parameterized reference (i.e., a geometric path with an
associated timing law).

Similarly, it needs to be distinguished between two dif-
ferent motion planning tasks: path planning and trajectory
planning. In path planning, the goal is to generate geomet-
rically feasible (e.g. collision-free) paths, i.e. without time
parametrization. In trajectory planning, not only geometri-
cal feasibility is considered, but also kinematic and dynamic
limits are taken into account to generate a trajectory.

To solve the problem of motion planning and control,
we adopt a frequently seen approach in the literature,[26,
38, 46, 51], by combining three different components: (1)
a collision-free geometric path planner, (2) a trajectory
planner that computes a feasible trajectory from the
previously given path, considering the restrictions of the
kinematic and dynamic model of the robot, and (3) a
controller for the trajectory tracking.

1.2 Problem Formulation and Objectives

In this work, we assume to have a geometrically feasible
(e.g. collision-free) path given by a geometric path planner
such as [51, 52]. This path, P , is defined as a discrete set of
waypoints, Wi , that encode the desired position and heading
of the aerial robot, as displayed in Fig. 1. The initial position
of the robot is considered as the first waypoint.

A trajectory planner must generate a trajectory, L, used
by a trajectory tracking controller as a reference, following
an efficiency criterion. This trajectory consists of the
relationship between time and the desired values of the
position, heading of the aerial robot and all their derivatives,
which the robot has to track. The trajectory has to pass
through the waypoints and it must follow the given path,
with a user-defined bounded maximum distance between
the planned trajectory and the given path to avoid collisions
with the obstacles of the environment, as a requirement for

Fig. 1 Problem formulation. The desired path is represented with
a black dashed line through the waypoints that encode the desired
position (black circles) and desired heading (purple arrows). The
planned trajectory is depicted by a blue dotted line

industrial-oriented applications. It has also to be feasible
(kinematically and dynamically) by the robot.

A trajectory tracking controller has the responsibility
of the generation of the control commands that ensure
the generated trajectory, L, is tracked by the aerial robot
with the smallest deviation, correcting the effect of the
disturbances through the estimated state of the aerial robot.

1.3 Contributions and Outline

In this paper, we present our latest advances in trajectory
tracking. This work is the natural continuation of our
previous study [50], where we presented our research
on optimization-based trajectory planning. Back then, we
validated our proposed trajectory planner with in-lab
real flight experiments using a trajectory controller that
combined a fuzzy-logic based feedback component with a
feed-forward component that was taking advantage of the
planned trajectory.

As the first contribution of this work, we present a
multi-phase trajectory definition as a set of two different
kinds of polynomials (i.e. acceleration/deceleration and
constant velocity), more suitable for real applications such
as inspection or package delivery, unlike other research-
oriented aggressive maneuvers shown in the literature (e.g.
[38]). This definition provides a higher semantic encoding
of the trajectory which allows calculating, without loss of
flexibility, an optimal solution but following a predefined
simple profile. When comparing to our previous work, we
have reformulated this definition, to reduce the number of
parameters needed to describe the trajectory by implicitly
including the continuity restrictions.

Secondly, we have reformulated our previous
optimization-based trajectory planning solution from a
given path. Our formulation is still based on total time min-
imization, instead of energy or snap. Our planner includes
restrictions such as continuity of the trajectory (i.e. class
Cm), limits on velocity, and higher-order derivatives, con-
straints in the waypoints, and maximum distance between
the planned trajectory and the given path. Our new formu-
lation considers the aforementioned restrictions as well as
additional restrictions in the actuators of the aerial robot by
using its dynamic model, relaxing the dependence of setting
robot-feasible limits on the trajectory values (i.e. velocity,
acceleration, jerk, etc.), and guaranteeing that the planned
trajectory will be achievable by the robot.

Third, we present our optimization-based Model Pre-
dictive Controller (MPC) for trajectory tracking. Our new
approach takes from the planner, at each sample time, all
the magnitudes of the planned trajectory (i.e. position and
heading, velocity, and acceleration) as well as the control
command references computed using the planned trajectory,
for all the steps in the prediction horizon. As confirmed by

J Intell Robot Syst (2020) 100:531–574532

our in-lab real flight experiments, our formulation has a bet-
ter performance when compared with a controller that only
uses the planned position and heading.

As the final contribution, to support our optimization-
based solution in both the planner and controller, we
analyze the most commonly used formulations to represent
orientations and their kinematic relationships in the
tridimensional space SO(3) and in the bidimensional space
SO(2). We also include the mathematical formulations
to compute difference between two rotations as well as
the definition of a scalar error between two orientations,
which is needed in optimization-based problems involving
rotations. As discussed in the experimental part, our
formulation uses quaternions and error-quaternions, as it has
some advantages when compared to other formulations.

The remainder of the paper is organized as follows:
Section 2 discuses the existing related works. Sections 3
and 4 includes the mathematical formulations to work
with orientations in the tridimensional space SO(3) and
in the bidimensional space SO(2). Section 5 describes the
aerial robot model, whereas Section 6 defines the trajectory
model used, to formulate later in Section 7 our proposed
trajectory planner by means of an optimization problem. In
Section 8 the model predictive trajectory tracking controller
is presented. An evaluation and discussion of the results
of this work are done in Section 9. Finally, Section 10
concludes the paper and points out some future lines of
work. In addition to this, Appendices A and B provide
extra information regarding the trajectory definition and the
evaluation, respectively.

2 RelatedWork

The field of trajectory tracking from a given collision-free
path is a recurrent topic found in the literature. Most of
the existing works divide the trajectory tracking task into
two parts: trajectory planning (Section 2.1), and trajectory
tracking control (Section 2.2).

2.1 Trajectory Planning

Regarding the trajectory planning task, it is worth to
mention two different kinds of works that unfortunately
are often confused and mixed in the literature: (1) path
smoothing and (2) trajectory planning. The first set of
works, path smoothing, generate a smoother path given a
desired (collision-free) path. The generated smooth path is
computed following particular design criteria. In [58], a
continuous curvature path smoothing algorithm for fixed-
wing aerial robots is presented. In [26, 27], the authors
propose a splines-based optimization to plan a path for
multirotor aerial robots. In [27] the path is planned over

a grid, whereas in [26], the path is planned with the help
of Voronoi diagrams. The outcome of these works is not
a trajectory, but simply a smooth path, i.e. there is no
time dependence and therefore, velocity and higher-order
derivatives are not computed. The main drawback of these
approaches is that kinematic and dynamic constraints, e.g.
velocity and acceleration bounds and continuity, are not
guaranteed to be satisfied, and only the curvature of the path
is considered.

If we consider only the trajectory planning problem
itself, as the generation of time parameterized references
given desired paths, different application domains should be
analyzed to have a complete overview of the state of the
art, since most of the ideas are exportable from one field
to another. One of the first application domains and still a
quite active one is comprised of the robotic manipulators: In
[22], the authors generate smooth velocity and acceleration-
bounded trajectories for robotic manipulators by replacing
parts of the given path by closed-form time-optimal
collision-free segments. In [16, 21, 36], the authors propose
an analytical closed-form algorithm for the generation of
velocity, acceleration, and jerk-bounded trajectories. The
proposed trajectory is formed by a set of polynomials and
is defined by different phases, i.e. acceleration increment,
sustained acceleration, acceleration decrement, and constant
velocity. The waypoints can include any arbitrary desired
command, i.e. velocities and accelerations.

Trajectory planning for mobile robots is as well a
quite active research field. In [12], the authors present a
time-optimal algorithm for velocity planning of wheeled
ground robots (e.g. autonomous driving cars). Their
proposal discretize the trajectory and apply a closed-
form optimization real-time capable method, considering
kinematic constraints and some bounds on linear normal
acceleration. In [37], the authors propose a kinematically
feasible trajectory for fixed-wing aerial robots that connects
a series of waypoints.

Multirotor aerial robots have some particular features
that make them being different from another kind of mobile
robots, as they can move in the 3D space, or they can reach
any position in a holonomic way.

In [43], the authors propose a closed-form analytical
trajectory planning approach to transition from one state to
another state checking feasibility and minimizing the jerk.
The planned trajectory is defined as a polynomial. [8] is an
extension of the previous work for fully-actuated multirotor
aerial robots. In [5–7], the authors propose a closed-form
analytical trajectory planning approach from a given path.
The trajectory has a multiple phases polynomial definition,
like some other works mentioned above. In [5, 6], the
proposed trajectory is jerk-bounded but jerk discontinuous.
Despite being faster, and more suitable for real-time
applications, having a closed-form analytical solution limits

J Intell Robot Syst (2020) 100:531–574 533

the versatility of the trajectory planning, being impossible
to add newer constraints such as the maximum distance
between the trajectory and the original path, a dynamic
model of the aerial robot, or certain requirements of the
waypoints.

Another approach to trajectory planner for multirotor
aerial robots is based on optimization algorithms. In [1,
38, 46], an optimization-based trajectory planning approach
for multirotor aerial robot is presented. The trajectory is
defined as a set of polynomials. Differential flatness is
used to model the robot. Authors of [46] incorporate a
collision-free check, while [1] simply impose some distance
to path limitations in certain discrete trajectory parts. In
[38, 46], the snap is minimized, whereas in [1] the energy
(acceleration) is optimized but with the requirement to
have a continuous snap. These works are very suitable
for aggressive maneuvers, but the fact of not imposing
distance to path restrictions difficult its usage in cluttered
environments. Moreover, in [1, 38], the time to pass for the
waypoints is imposed externally and not computed by the
planner.

Interestingly, trajectory planning has been extended to
multi-robot applications. In [23, 55], the authors combine
a collision-free path planner with an optimization-based
trajectory planner using a polynomial description of the
trajectory.

Finally, it is worth to mention that there exist some
approaches that combine in the same component the
trajectory planner and the trajectory tracking controller,
taking advantage of optimization-based control techniques.

For example, [42] propose a Model Predictive based
Control (MPC), to make the multirotor aerial robot
transition from the current state to another given state.
Despite the proposed controller is generating a (discretized)
trajectory for this transition, it cannot be fully compared
with a trajectory planner since it does only consider one
desired state and not a full path. The main drawback of these
approaches is the tightness between the trajectory planner
and the controller. This enforces the need for constantly
re-planning at the control frequency which is unachievable
for long and complex trajectories. Therefore, despite
being theoretically feasible, it is not currently achievable
in real-time, being this the main reason to have two
different components, one for planning and another one for
control.

2.2 Trajectory Tracking Control

Trajectory tracking control of multirotors has been an active
topic of research during the last decade, as surveyed in [32].
Specifically, Model Predictive Control (MPC) approaches
have shown to outperform traditional approaches in terms of
tracking performance and robustness [41]. To increase the

tracking performance, a cascade control hierarchy is often
used, where feed-forward control commands are given to
the MPC algorithm as control references. For instance, in
[28] they design a hierarchical control structure for aerial
robots where a linear quadratic regulator provides a steady-
state reference to a model predictive controller to perform
aggressive attitude tracking of aerial robots. Unlike our
work, they don’t incorporate heading control in the MPC
approach, which limits its planning capabilities when the
planned trajectory involves heading maneuvers. In [44]
they present a unified trajectory optimization framework
based on model predictive control, where a sequential
linear quadratic trajectory optimization is performed to
generate a steady-state reference state. However, they do
not include control saturations nor path constraints. In
[2, 53] they perform inversion-based position control and
trajectory following for micro aerial vehicles, but they do
not include control saturations nor path constraints since
they employ a linear quadratic regulator for position control.
In [29] linear and nonlinear MPC for trajectory tracking
are compared, computing a feed-forward control reference
from the planned acceleration. However, the heading is not
controlled by the MPC algorithm, which leads to prediction
errors when wide heading maneuvers are needed.

The use of unit quaternions for attitude representation is
limited in the MPC literature on aerial robots. To properly
employ this representation one must define integration and
error functions based on the quaternion algebra. However,
different works make use of standard algebra and a post-
normalization as a workaround. In [18] the quaternion
kinematics are considered in an MPC approach to include
perception objectives into the optimal control problem.
However, the attitude error is posed as a difference of
quaternions, which is an ill-defined notion since unit
quaternions are closed under composition, not sum or
difference. Outside of the optimization-based control,
there are different works with a proper quaternion-based
error formulation. For instance, in [15] they formulate a
quaternion-based error vector by extracting the eigenaxis
rotation, and in [56] they induce error formulations from
rotation matrices. However, these methods lack control
saturations and path constraints.

3 Representation of Rotations in SO(3)

In this section we compile some mathematical properties
relative to the representation of orientations in the tridimen-
sional space SO(3). Most of the information here presented
has been carefully extracted and summarized from multiple
sources that deeply address the previously mentioned prob-
lem. Some of the used sources include [20], [24], [31], [59],
and specially [54].

J Intell Robot Syst (2020) 100:531–574534

The reader must note that this section has been included
to create a self-contained paper that is easy to follow
and understand, but it could be partially skipped if
the reader is familiar with the topic. Special attention
requires Section 3.3, which presents, as part of this work’s
contributions, two proposals on how to compute a scalar
error between two orientation for optimization problems.

3.1 Orientation of a Rigid Body

The orientation of a rigid body, B, in an inertial reference
frame, W, can be represented using multiple different
formalisms.

One widely used formalism is the unit quaternion, also
called rotation quaternion:

(1)

where qw is the scalar part, and qv is the vectorial part of
the quaternion.

Quaternions follow a well defined particular algebra
which extends the two-dimensional complex numbers to
four dimensions. Unit quaternions are a sub kind of
quaternions that have a unitary norm, i.e. ‖q‖ = 1 and
that are used to represent orientations, being possible to use
their algebra to easily carry out geometric transformations,
e.g. rotations composition or rotation inversion. Therefore,
unit quaternions represent rotations on the tridimensional
space SO(3) using four variables and one constraint. Unit
quaternions allow having a continuous and singularity-free
representation of the orientation of the body (unlike for
instance Euler angles) with a reduced number of variables
(unlike rotation matrices). Nevertheless, unit quaternions do
not represent the rotation uniquely, being q and −q, two
valid representations of the same orientation.

The Euler’s rotation theorem states that any rotation
can be expressed as a single rotation of an angle φ about
an axis u. This rotation formalism is called axis-angle
representation. The rotation axis u ∈ R

3 is a unitary vector.
The rotation angle is defined as φ ∈ R, and therefore, there
are infinite axis-angle values that correspond to the same
rotation. We define the rotation angle ψ ∈ R[−π, π], as the
rotation angle that has the minimum absolute value of all
the ones that encode the same orientation. Therefore, all the
rotation angles with the value φ = ψ+2·π ·k, for any integer
k, ∀k ∈ Z, encode exactly the same rotation. It is worth to
highlight that the axis-angle representation, similarly than
quaternions, requires four variables and one constraint to
represent the tridimensional space SO(3).

The rotation vector, also called Euler vector, is computed
from the axis-angle representation as:

φ = φ · u (2)

Similarly than the axis-angle, infinite rotation vectors
correspond to the same rotation. Concretely, all the rotation
vectors of length φ = ψ +2 ·π ·k, for any integer k, ∀k ∈ Z,
encode exactly the same rotation. The reader must note that
rotation vectors only require three variables to represent
rotations on the tridimensional space SO(3), nevertheless,
unlike quaternions, performing geometric operations with
them is not straightforward.

The axis-angle representation can be calculated from the
rotation vector as:

φ = ‖φ‖ (3)

u = φ

‖φ‖ (4)

Nevertheless, as the reader may have noticed, it can only be
computed in the case that φ �= 0, being otherwise undefined
the rotation axis u.

The unit quaternion can be calculated from the axis-
angle rotation and the rotation vector, using the following
relationships:

(5)

which is only valid for the rotation vector, in the case of
φ = ‖φ‖ �= 0.

In the case of a small rotation, φ ≈ 0, then, the unit
quaternion can be approximated to:

(6)

It is important to highlight that it is required that qw =
cos φ

2 ≥ 0, i.e. φ ∈ [−π, π] + 2 · π · k, k ∈ Z. Otherwise,
we need to use the equivalent quaternion −q.

The rotation vector and the axis-angle can be computed
from Eq. 5 using the following expression:

φ = 2 · arctan

(‖qv‖
qw

)
︸ ︷︷ ︸

φ

· qv

‖qv‖︸ ︷︷ ︸
u

(7)

which is valid only if ‖qv‖ �= 0.
In case that ‖qv‖ ≈ 0, the small rotation approximation

presented in Eq. 6 can be used, obtaining:

φ ≈ 2 · qv (8)

3.2 Difference Between Two Orientations

The rotation existing between two different orientations can
be represented employing the quaternion difference. The

J Intell Robot Syst (2020) 100:531–574 535

quaternion difference, δq, encodes the difference between
the two quaternions qa and qb and it is calculated as:

δq = q∗
a ⊗ qb (9)

where q∗
a is the conjugate of qa and ⊗ is the quaternion

product.
To overcome the fact that the quaternions use four

variables to represent the tridimensional space SO(3), the
rotation vector of the quaternion difference, δφ, can be used
following Eqs. 7 and 8.

The rotation vector obtained from a quaternion dif-
ference, applying the small rotation angle approximation
presented in Eq. 6, is often called in the literature error-
quaternion, δθ , as:

(10)

The approximation presented in Eq. 10, is often used for
non small angles, |δφ| > 0. In this case, it is needed to
take into account the same consideration mentioned in Eq. 6
that δqw = cos δφ

2 ≥ 0, and otherwise, we need to use the
equivalent quaternion −δq.

3.3 Scalar Error Between Two Orientations

When dealing with optimization problems, it is often needed
to have a scalar magnitude, e.g. for the cost function,
representing the difference between two orientations, e.g.
the current and the desired orientations in control problems.

A first possibility is to compute the norm of the rotation
vector difference, δφ, obtaining:

eφ = ‖δφ‖2 = δφT · δφ = 4 · arctan2
(‖δqv‖

δqw

)
(11)

The reader must note that this expression is valid for all the
values of the quaternion δq, no matter the value of ‖δqv‖,
unlike Eq. 7 and 8.

Another option is to use the error-quaternion, δθ ,
obtaining:

eθ = ‖δθ‖2 = δθT · δθ = 4 · δqT
v · δqv (12)

The reader must note that in this case, no special precaution
has to be adopted, unlike Eq. 10.

Other possibilities have been studied in the literature,
as the function � proposed in Eq. 8 of [34], which is
proportional to our eθ , or the function � proposed in Eq. 9
of [33], which has a certain resemblance to our eφ .

3.4 Time-Derivatives of the Orientation

The angular velocity of the rigid body in coordinates of the
inertial reference frame, is defined as the time derivative of
the rotation vector of the body:

ω = dφ

dt
= d

dt
(φ · u) (13)

The relation between the unit quaternion that represents
the orientation of a rigid body and its angular velocity is:

q̇ = dq

dt
= 1

2
· ω̄W

B ⊗ q = 1

2
· q ⊗ ω̄B

B (14)

where ωW
B = ω represents the angular velocity of the body

in coordinates of the inertial reference frame; ωB
B represents

the angular velocity of the body in body coordinates; ω̄

represents the pure quaternion associated to the angular
velocity ω; and ⊗ is the quaternion product.

The l-th derivative of the orientation of the body in the
inertial reference frame is given by:

ω(l−1) = d(l−1)ω

dt (l−1)
=

⎡
⎢⎢⎢⎣

dω
(l−1)
x

dt (l−1)

dω
(l−1)
y

dt (l−1)

dω
(l−1)
z

dt (l−1)

⎤
⎥⎥⎥⎦ , ∀l ∈ N, l > 1 (15)

4 Representation of Rotations in SO(2)

The tridimensional space SO(3) can be reduced to the
bidimensional space SO(2) in the case we only interested
in considering the yaw angle, omitting the value of the
other two angles. As presented in Section 5, this is the
case, when using some differential flatness properties of
multirotor aerial robots.

Along this section, we present some mathematical
properties relative to the representation of orientations in
SO(2), by adapting the ones developed in Section 3. The
mathematical tools introduced in this section represent the
foundations of the following sections when dealing with
orientations.

4.1 Orientation of a Rigid Body

In the case that we omit the value of the pitch and roll angles,
retaining only the value of the yaw, the unit quaternion, q,
that represents the attitude of the body, B, in the inertial
reference frame, W, presented in Eq. 1, has the following
shape:

(16)

J Intell Robot Syst (2020) 100:531–574536

The attitude of the rigid body can be, therefore,
represented by the following simplified unit quaternion, q̃:

(17)

and therefore, it requires two values and one restriction to
represent rotations in SO(2).

In the case of the angle-axis representation, the rotation
axis is simplified to u = [0, 0, 1]T , and therefore the
rotation vector is simplified to:

φ = φ · u = φ ·
⎡
⎣ 0

0
1

⎤
⎦ =

⎡
⎣ 0

0
φ

⎤
⎦ (18)

and therefore, the rotation vector in SO(2) is a scalar
magnitude, φ̃ = φ.

As mentioned in Section 3, the rotation angle is defined
as φ ∈ R, and therefore, there are infinite axis-angle values
that correspond to the same rotation. Similarly, we extend
the definition of the rotation angle ψ ∈ R[−π, π], as the
rotation angle that has the minimum absolute value of all
the ones that encode the same orientation as all the infinite
possible values of φ. Therefore, all the rotation angles with
the value φ = ψ + 2 · π · k, for any integer k, ∀k ∈ Z,
encode exactly the same rotation. This rotation angle, φ,
is equivalent to the yaw angle used in aviation and aerial
robotics.

We define the orientation value, pψ ∈ R, as the rotation
angle that encodes the total angular state of the rigid body,
i.e. it encodes the total angle rotated by the body since its
initial state has been defined. It is, therefore, a continuous
real number, unlike the previously defined rotation angles ψ

or φ.
Following Eq. 5, the simplified unit quaternion can be

calculated from the rotation vector as:

The reader must note that qw is always positive when
computed using the angle ψ as ψ ∈ R(−π, π], what is not
always the case when computed using φ. Nevertheless, both
simplified unit quaternion represent the same rotation.

The yaw angle, ψ , represented by a simplified quater-
nions, can be obtained from Eq. 20, as:

ψ = 2 · arctan

(
qz

qw

)
(21)

Similarly, the simplified unit quaternion can be computed
from the orientation value, pψ , as:

(22)

The reader must note that the simplified quaternion q̃ can
be calculated from the orientation value pψ , but not the
other way around. Equation 19 is, therefore, a surjection
q̃ = f (pψ).

Finally, combining Eq. 21 and 22, the yaw angle, ψ , can
be computed from the orientation value, pψ , as:

ψ = 2 · arctan

(
tan

(
1

2
· pψ

))
(23)

Similarly than Eq. 22, Eq. 23 is a surjection.
The reader must note that the simplified quaternion,

q̃, the yaw angle, ψ , and the orientation value, pψ ,
represent the same orientation (see Fig. 2). It is important
to remember that the orientation value, pψ , cannot be
calculated from the other two representations, while the
other two representations can be calculated from any other
representation.

4.2 Difference Between Two Orientations

Equation 9 for the quaternion difference is simplified to:

(24)

0 5 10 15
Time (s)

-10

0

10

20

An
gl

e
(ra

d)

p

0 5 10 15
Time (s)

-1

-0.5

0

0.5

1

Q
ua

te
rn

io
n

qw
qz

Fig. 2 The three different discussed representations in SO(2) for the
same rotations. Top: Simplified unit quaternion, being qw the solid
blue and qz the dotted red. Bottom: pψ in solid blue, and ψ in dotted
red

J Intell Robot Syst (2020) 100:531–574 537

Combining Eq. 22 and 24, the quaternion difference is
calculated in terms of the orientation value as:

(25)

Similarly, combining (20) and (24), the quaternion
difference is calculated in terms of the yaw angle as:

(26)

The error-quaternion can be calculated for the simplified
quaternions, following Eq. 10, as:

(27)

which, as mentioned before, requires δqw ≥ 0, otherwise,
the quaternion −q̃ must be used.

Combining (27) and (26), the error-quaternion is
calculated in terms of the yaw angle, ψ , as:

δθ ≈ 2 · sin

(
1

2
· (ψb − ψa)

)
(28)

where, in this case, δqw = cos
(

1
2 · (ψb − ψa)

)
≥ 0 is

always satisfied.
Similarly, combining (27) and (25), the error-quaternion

is calculated in terms of the orientation value, pψ , as:

δθ ≈
⎧⎨
⎩

2 · sin
(

1
2 · (pbψ − paψ

)) ⇔ δqw ≥ 0

−2 · sin
(

1
2 · (pbψ − paψ

)) ⇔ δqw < 0
(29)

where δqw = cos
(

1
2 · (pbψ − paψ

))
.

The yaw angle difference δψ can be calculated as:

δψ = 2 · arctan

(
δqz

δqw

)
(30)

= 2 · arctan

(
tan

(
1

2
· (pbψ − paψ

)))
(31)

= 2 · arctan

(
tan

(
1

2
· (ψb − ψa)

))
(32)

Figure 3 plots the yaw angle difference, δψ , and the
error-quaternion, δθ . As stated in Section 3.2, the error-
quaternion approximation is often used for large rotation

-6 -4 -2 0 2 4 6
pb -pa (rad)

-4

-3

-2

-1

0

1

2

3

4

An
gu

la
r e

rro
r

Fig. 3 Yaw angle difference, δψ , in dashed red and error-quaternion,
δθ , in solid blue

differences. The reader must note that this approximation is
only equivalent to δψ , in the environment where δψ ≈ 0.

4.3 Scalar Error Between Two Orientations

The norm of the rotation vector difference, δφ, presented in
Eq. 11, is simplified to:

eφ = ‖δφ‖2 = 4 · arctan2
(‖δqz‖

δqw

)
(33)

= 4 · arctan2
(

tan

(
1

2
· (ψb − ψa)

))
(34)

= 4 · arctan2
(

tan

(
1

2
· (pbψ − paψ

)))
(35)

The norm of the error-quaternion, δθ , presented in
Eq. 12, is simplified to:

eθ = ‖δθ‖2 = 4 · δqz
T · δqz (36)

= 4 · sin2
(

1

2
· (ψb − ψa)

)
(37)

= 4 · sin2
(

1

2
· (pbψ − paψ

))
(38)

Figure 4 plots both presented scalar rotation errors, the
norm of the rotation vector difference, eψ , and the norm
of the error-quaternion ,eθ . Since the norm of the error-
quaternion, it is only an approximation of the norm of
the rotation vector difference, it does not have a good
performance when the difference of the rotation angle is not
δψ ≈ 0.

J Intell Robot Syst (2020) 100:531–574538

-6 -4 -2 0 2 4 6
pb -pa (rad)

0

1

2

3

4

5

6

7

8

9

10
Sc

al
ar

 a
ng

ul
ar

 e
rro

r

e
e

Fig. 4 eψ , in dashed red and eθ , in solid blue

4.4 Time-Derivatives of the Orientation

The expression of the angular velocity of the rigid body
in coordinates of the inertial reference frame, introduced in
Eq. 13, is simplified to:

ω = dφ

dt
= d

dt
(φ · u) = d

dt

⎛
⎝φ ·

⎡
⎣ 0

0
1

⎤
⎦
⎞
⎠ = dφ

dt
·
⎡
⎣ 0

0
1

⎤
⎦

= ω̃ ·
⎡
⎣ 0

0
1

⎤
⎦ =

⎡
⎣ 0

0
ωψ

⎤
⎦ (39)

being the simplified angular velocity ω̃ = ω̃ = ωψ .
It is important to highlight that, from Eq. 39, the rotation

angle, φ, is required to be continuous and derivable. To
guarantee this derivability, we prefer to define the angular
velocity in terms of the orientation value, pψ , as:

ωψ = dpψ

dt
⇒ pψ =

∫ tf

t0

ωψ · dt (40)

Equation 14 that relates the unit quaternion with its
angular velocity is simplified to:

dq̃

dt
= 1

2
· ¯̃ωW

B ⊗ q̃ = 1

2
· q̃ ⊗ ¯̃ωB

B (41)

Equation 15, to calculate the l-th derivative of the
orientation of the rigid body in the inertial reference frame
is simplified to:

ω̃(l−1) = d(l−1)ω̃

dt (l−1)
=

[
dω

(l−1)
ψ

dt (l−1)

]
, ∀l ∈ Z, l > 1 (42)

Using the algebra of the quaternions, reduced to the
case of the simplified quaternion, and considering its unity

property when representing rotations, ‖q̃‖ = 1, Eq. 41 is
reduced to:

(43)

5 Aerial Robot Model

5.1 Reference Frames

The reference frames involved in the aerial robot modeling
are represented in Fig. 1. The world reference frame, W ,
is arbitrary defined, attached to the ground and being its
z-axis parallel to gravity. The body reference frame, B,
is rigidly attached to the center of the robot, being its x-
axis pointing to the front of the platform, and its z-axis
perpendicular to the plane of the rotors. Finally, the robot
horizontal reference frame, R, has its origin attached to the
center of the platform and its x-axis is pointing to the front
of the platform, but unlike the robot reference frame, its z-
axis remains parallel to gravity, i.e. pitch and roll angles are
zero. All the reference frames are right-handed.

5.2 Dynamical Model

The dynamics of multirotor aerial platforms are often
modeled, [17, 38], considering their mechanical properties
such as its mass, moment of inertia, distance from the axis
of rotation of the rotors to the center of the quadrotor, drag
coefficient of the propellers, etc., and the fact that it is
possible to command directly the desired spinning speed of
the rotors.

Since this model very accurately represents the dynamics
of multirotor aerial platforms, its complexity is very
high, being especially critical the accurate identification
of the value of its mechanical properties. In addition,
mo,1 are equipped with a robust and efficient autopilot
that provides embedded attitude and velocity controllers.
A large amount of these industrial autopilots behave,
from the final user point of view, like black-boxes with
inputs-outputs and configuration parameters. It is therefore
impossible to modify these autopilots further than what
their manufacturers allow. It is highly uncommon that these
autopilots offer the possibility to directly command, from a
companion computer connected to it, the desired spinning
speed of the rotors.

To overcome the aforementioned difficulties, exploiting
the high-performance of the embedded autopilots, the
dynamics of multirotor aerial platforms can be represented
employing simplified models that include the dynamic

1DJI webpage: https://www.dji.com

J Intell Robot Syst (2020) 100:531–574 539

https://www.dji.com

response of the autopilot, as in [10, 53]. In these models, the
control command given to the platform is the desired

(44)

where uj represents the desired velocity of the aerial
platform in the axis j of the reference frame attached to
the aerial platform that is parallel to the ground (robot
horizontal reference frame).

The dynamics of the aerial platform is represented with a
simple first-order model as in [10]:

aR
R = Kv · vR

R + Kuxyz · uxyz (45)

αψ
R
R = Kω · ωψ

R
R + Kuψ · uψ (46)

where vR
R , and aR

R are the linear velocity and acceleration
of the robot in robot coordinates. ωψ

R
R , and αψ

R
R are the

angular velocity and acceleration of the robot in robot
coordinates. The robot model parameters are defined as:

Kv =
⎡
⎢⎣

− 1
τx

0 0

0 − 1
τy

0

0 0 − 1
τz

⎤
⎥⎦ (47)

Kuxyz =
⎡
⎢⎣

kx

τx
0 0

0 ky

τy
0

0 0 kz

τz

⎤
⎥⎦ (48)

Kω =
[
− 1

τψ

]
(49)

Kuψ =
[
kψ

τψ

]
(50)

where ki and τi are the gain and time constants of each first-
order velocity reference model. The remainder of the model
of the aerial platform is calculated by using Kinematic
relationships,2 as follows:

{
ṗW

R = vW
R

v̇W
R = aW

R

(51)

{ ˙̃qW
R = 1

2 · ωψ
W
R ⊗ q̃W

R = 1
2 · q̃W

R ⊗ ωψ
R
R

ω̇ψ
W
R = αψ

W
R

(52)

⎧⎨
⎩

vW
R = q̃W

R ⊗ vR
R ⊗

(
q̃W

R

)∗ = RW
R · vR

R

aW
R = q̃W

R ⊗ aR
R ⊗

(
q̃W

R

)∗ = RW
R · aR

R

(53)

{
ωψ

W
R = ωψ

R
R

αψ
W
R = αψ

R
R

(54)

2The notation νB
A represents the value of the magnitude ν of the system

A represented in coordinates of the system B.

where RW
R is the rotation matrix associated to the simplified

quaternion q̃W
R . The reader should note the following

relationships: pW
R = pW

B , vW
R = vW

B , and aW
R = aW

B .
The nominal state of the aerial robot platform can be

defined using the different rotation conventions presented in
Section 4, as one of the following:

xR =
[
pW

R , pψ
W
R , vR

R, ωψ
R
R

]T

(55)

=
[
pW

R , ψW
R , vR

R, ωψ
R
R

]T

(56)

=
[
pW

R , q̃W
R , vR

R, ωψ
R
R

]T

(57)

The reader should note that the state in Eqs. 55 and 56
has dimension 8, while the state in Eq. 57 has dimension 9,
as the unit simplified quaternion, q̃W

R , comes along with one
restriction.

The dynamical model of the aerial robot platform can
be reformulated to the standard non-linear state space
representation as ẋR = f (xR, u). This representation will
be useful for the trajectory controller presented in Section 8.

We define the state difference, δx, also called error-state,
as the difference between two states, xa and xb, as:

δx = xa � xb (58)

where � represents the difference operation between two
states, what is a vectorial difference for all the elements
of the state vector, except for the elements that represent
rotations, in which case, we use the operations presented in
Section 4.2.

The error-state has therefore, the following shape:

δxR =
[
δpW

R , δq̃W
R , δvR

R, δωψ
R
R

]T

(59)

=
[
δpW

R , δψW
R , δvR

R, δωψ
R
R

]T

(60)

=
[
δpW

R , δθW
R , δvR

R, δωψ
R
R

]T

(61)

The reader should note that the error-state in Eqs. 60
and 61 has dimension 8, while the error-state in Eq. 59 has
dimension 9, as the unit simplified quaternion, δq̃W

R , comes
along with one restriction.

5.3 Differential Flatness

According to [17, 38], the dynamics of an underactuated
multirotor aerial robot is differentially flat. This means that
the states and the inputs appearing in its model can be
written as algebraic functions of four carefully selected flat
outputs and their derivatives.

A common choice of the flat outputs, [17, 38], are the
position of the center of mass of the body of the aerial
robot in world coordinates, pW

B = [
px, py, pz

]T , and its

J Intell Robot Syst (2020) 100:531–574540

continuous yaw (heading) angle, here represented as the
orientation value, pψ

W
R , introduced in Section 4.1.

This property facilitates the generation of trajectories
since any smooth trajectory (with reasonably bounded
derivatives, due to actuator limits) in the space of flat
outputs can be followed by the aerial robot.

5.4 Control Command References

Due to the differential flatness property presented in the
previous Section 5.3, the inputs that appear in the model of
an underactuated multirotor aerial robot, can be written as
an algebraic function of the flat outputs and their derivatives.
These inputs are the control command references needed
to follow a given trajectory, and they can be computed by
inverting the dynamical model of the aerial robot platform
presented in Section 5.2 (45) and (46):

ur
xyz = (

Kuxyz

)−1 ·
(
aR

R − Kv · vR
R

)
(62)

ur
ψ = (

Kuψ

)−1 ·
(
αψ

R
R − Kω · ωψ

R
R

)
(63)

Thus, we can penalize deviations from the optimal
controls by defining the following control error:

δu = u − ur (64)

The reader must note that these control command
references will never perform an accurate trajectory tracking
when inputted to the real aerial platform. This is due
to the fact that the real dynamics of the aerial robot
platform is never going to be perfectly represented by the
aforementioned dynamic model, on account of modeling
simplifications and errors, as well as unconsidered external
disturbances. Therefore, the trajectory tracking task requires
a trajectory tracking controller compensating these errors,
like the one presented in Section 8.

6 Trajectory Definition

6.1 General Description of the Trajectory

The trajectory, L, is defined as a piecewise set of ns

segments, si , that depend on the time, ti , which is delimited
within a time range, ti ∈ [

ti0, tif
]
:

L = {si (ti), ti ∈ [
ti0, tif

]
, ∀i = {1..ns}}

The number of segments, ns , of the trajectory, L, depends
on the number of waypoints, nw, of the given path, P .

Carrying out the following change on the time variable:

τi = ti − ti0, τi ∈ [
0, Δτi = tif − ti0

]
the trajectory, L, is redefined as:

L = {s̃i (τi), τi ∈ [0, Δτi] , ∀i = {1..ns}}

All the segments, s̃i (τi), are defined in the space of the
flat outputs, R3 × SO(2), defined in Section 5.3:

s̃i (τi) : [0, Δτi] → R
3 × SO(2) (65)

where

(66)

The value of the orientation, q̃i,ψ (τi), is calculated
following (22).

Each of the dimension, pi,j of the segments s̃i , being
j = {x, y, z, ψ}, are defined as polynomial functions of
order mi , i.e. the (mi + 1)-th derivative of the position, pi,j ,
with respect to the time, τi , is zero:

pi,j (τi) =
k=mi∑
k=0

(
bi,j,k · τ k

i

)
(67)

where bi,j,k are the coefficients of the polynomial.
The lm-th time-derivative of the each polynomial is

calculated by differentiation of Eq. 67 as:

p
(lm)
i,j (τi) = dlmpi,j

dτ
lm
i

=
k=mi∑
k=0

⎛
⎝bi,j,k ·

⎛
⎝ k∏

l=k−(lm−1)

l

⎞
⎠ · τ

k−lm
i

⎞
⎠ (68)

This definition of the trajectory allows to calculate a
trajectory that is continuous up to nd -th order, i.e. T ∈ Cnd .
In other words, all the segments and their derivatives up to
the nd -th order are continuous.

6.2 Continuity of the Trajectory

As mentioned in Section 6.1, the proposed definition of the
trajectory allows to calculate a trajectory that is continuous
up to nd -th order, i.e. T ∈ Cnd .

This continuity imposition, allows to make a distinction
in the initial state of every segment: (1) the part that is
given by the continuity restriction, xi,j,0:nd

(0); and (2) the
part that is not influenced by the continuity restriction,
xi,j,(nd+1):mi

(0):

xi,j,0:mi (0) =
[

xi,j,0:nd
(0)

xi,j,(nd+1):mi
(0)

]
(69)

Similarly, the final state of the segment, xi,j,0:mi (Δτi),
has two parts, and it can be calculated, given its initial state
(see Eq. 108 of Appendix A).

The initial state of the segment i+1, xi+1,j,0:nd
(0) can be

computed applying the continuity property to the final state
of the segment i, xi,j,0:nd

(Δτi).

J Intell Robot Syst (2020) 100:531–574 541

We have ∀i = {1..(ns − 1)}, ∀j = {x, y, z, ψ}, and
∀l = {0..nd}, the following expression:

p
(l)
i+1,j (0) = p

(l)
i,j (Δτi) (70)

and using the compact formulation (see Appendix A):

xi+1,j,0:nd (0) = xi,j,0:nd (Δτi)

The reader must note that for the orientation, there
is no need to use simplified quaternions when analyzing
the continuity of the trajectory, as the orientation values
pi,ψ (Δτi) and pi+1,ψ (0) can be computed, and since they
are continuous variables, they can be compared in the same
way than the rest of the magnitudes.

6.3 Compact Description of the Trajectory

As mentioned in Section 6.1, every segment i, ∀i = {1..ns},
of the trajectory T is represented by four polynomials,
∀j = {x, y, z, ψ}, of degree mi . Every segment requires,
therefore, the following variables to be completely defined:

– The time intervals of the segment, Δτi .
– The coefficients of the polynomials, bi,j,:.

being the number of variables:

ny =
∑
∀i

(4 · (mi + 1) + 1) (71)

The coefficients of the polynomials can be calculated
by using the initial state of the segment, xi,j,0:mi (0), (see
Eq. 106 of Appendix A) and therefore, every segment can
be completely defined by using:

– The time intervals of the segment, Δτi .
– The initial state of the segment, xi,j,0:mi (0).

By imposing the continuity restriction presented in
Section 6.2, every segment of the trajectory can be
completely defined by using the following simplified set of
variables:

– The time intervals of the segment, Δτi .
– The initial state of the segment that is not influenced by

the continuity restriction, xi,j,(nd+1):mi
(0).

being the number of variables in this case:

ny =
∑
∀i

(4 · max ((mi − nd) , 0) + 1) (72)

Thanks to this formulation that incorporates the conti-
nuity restrictions in the definition, the trajectory can be
described more compactly with less number of variables.

The reader must note that the initial state of the
segment that is influenced by the continuity restriction can

be calculated with the previous segment as presented in
Section 6.2. The only exception to this is the computation of
the initial state of the first segment of the trajectory, which
requires the state in the first waypoint.

6.4 Proposed Particular Description of the Trajectory

Our particular trajectory proposal has three segments
between every two existing waypoints, which, as explained
below, represent three different phases: acceleration, con-
stant velocity, and deceleration. The number of segments is
therefore calculated as:

ns = 3 · (nw − 1) (73)

We propose to have two kinds of polynomial segments,
the ones that are connected to the waypoints, and the ones
that are not. We have therefore two waypoint connected
polynomials, per each intermediate one.

For the waypoint connected polynomials, we propose
to force the seventh derivative, i.e. the lock, to be zero,
obtaining for the position and the orientation-related value
a 6th-degree polynomial, mi = 6, with 7 coefficients
per dimension and segment. These segments are used to
represent the acceleration and deceleration movements of
the robot.

For the intermediate polynomials, we force the second
derivative, i.e. the acceleration, to be zero, obtaining for
the position and the orientation-related value a 1st-degree
polynomial, mi = 1, with 2 coefficients per dimension and
segment. These segments are used to represent a constant
velocity movement of the robot.

As mentioned in Section 6.1, the definition of the
trajectory allows to calculate a trajectory that is continuous
up to nd -th order, i.e. T ∈ Cnd . Although our presented
solution is general enough, we propose a continuous
trajectory, up to third order, nd = 3, that is, the third
derivative, i.e. the jerk, is continuous but not derivable.

The advantage of this multi-phase trajectory definition
as a set of two different kinds of polynomials (i.e.
acceleration/deceleration and constant velocity), is that is
more suitable for real applications such as inspection or
package delivery, unlike other research-oriented aggressive
maneuvers shown in the literature (e.g. [38]). This definition
provides a higher semantic encoding of the trajectory which
on the other hand, allows calculating, without loss of
flexibility, an optimal solution but following a predefined
simple profile.

7 Trajectory Planner

The trajectory planner calculates the suboptimal trajectory,
L∗, defined by the parameters, x∗

f , and Δτ ∗, as illustrated

J Intell Robot Syst (2020) 100:531–574542

in Section 6, by solving the following single-objective
nonlinear multivariable constrained minimization problem:

x∗
f ,Δτ ∗ = arg min

xf ∈X,Δτ∈T

(J (Δτ))

subject to:
Time feasibility: −Δτ ≤ 0
Continuity of the trajectory: cs(xf ,Δτ) = 0
Waypoints: w(xf ,Δτ , P) = 0
Dynamics of the traj.: ‖νT (xf ,Δτ)‖2 − ‖νmax‖2 ≤ 0
Actuators of the robot: uR(xf ,Δτ) − umax ≤ 0

umin − uR(xf ,Δτ) ≤ 0
Distance to path: d(xf ,Δτ , P) − dmax ≤ 0

The proposed optimization problem is detailed in the
following Sections 7.1 to 7.5.

7.1 Optimization Variables

The optimization variables, y, also called unknowns, gather
all the parameters that describe the trajectory, L, introduced
in Section 6.3, i.e.:

– The initial state of the polynomials of the segments that
are set to free, xf = {x(k)

i,j (0)} ∈ X, ∀i = {1..ns}, ∀j =
{x, y, z, ψ}, and ∀k = {(nd + 1)..mi}, where mi = 6
for the case of waypoint connected polynomials, and
mi = 1 for the case of intermediate polynomials.

– The time intervals of the segments, Δτ = {Δτi} ∈ T ,
∀i = {1..ns}.

being, therefore, the number of unknowns, ny = 27 · (nw −
1). All the unknowns are real numbers, i.e. y ∈ R

ny .

7.2 Objective Function

The objective function, J (y), also called cost function, that
has to be minimized, is the total time of the trajectory
tracking. It is calculated as

J (Δτ) =
∑
∀i

Δτi (74)

Other objectives like the minimization of the snap,
as in [39], could be included in this objective function.
Nevertheless, we will experimentally see in Section 9 that
our proposed approach, also influences the snap while
minimizing the total time.

7.3 Constraints

Two kinds of constraints, cin(y) ≤ 0, and ceq(y) = 0, are
included in the optimization problem formulation and are
detailed below.

7.3.1 Time Feasibility

The time intervals of all the segments, Δτi , must be feasible,
i.e. cannot be negative:

Δτi ≥ 0, ∀i = {1..ns} (75)

7.3.2 Continuity of the trajectory

As mentioned in Section 6, the trajectory has to be
continuous up to nd -th order, i.e. T ∈ Cnd . In other words,
all the segments and their derivatives up to the nd -th order
(in our case, nd = 3) have to be continuous.

The continuity of the trajectory has been implicitly
imposed in the trajectory definition (see Section 6.2).
Including this constraint explicitly might be useful to
overcome the possible issues appearing due to the fact that
there are two kind of polynomial with different degree mi .

We represent this set of restrictions as cs(xf , Δτ) =
0, and are computed following the equations presented in
Section 6.2.

7.3.3 Waypoints

The trajectory has to pass through the waypoints of
the given path, P . The reader must remember that
the waypoint n, Wn, is characterized by is position,
pWn

= [
pWn,x, pWn,y, pWn,z

]T and orientation,

q̃Wn
= [

qWn,w, qWn,z

]T . We represent this set of
restrictions as w(xf , Δτ , P) = 0.

For the position, we have ∀j = {x, y, z}, ∀n ∈ P , and
∀i−, i+ connecting polynomials, the following expressions:

pi−,j

(
Δτi−

) = pWn,j

pi+,j (0) = pWn,j

Obtaining:

w(xf , Δτ , P) = pi−,j

(
Δτi−

) − pwn,j = 0 (76)

w(xf , Δτ , P) = pi+,j (0) − pwn,j = 0 (77)

The value of pi−,j

(
Δτi−

)
and pi+,j (0) can be calculated by

combining (89) and (106) of Appendix A.
Similarly, for the orientation, we have:

q̃i−,ψ

(
Δτi−

) = q̃wn

q̃i+,ψ (0) = q̃wn

As presented in Section 4.2, we have two options to
compute the reduced dimensionality difference between two
rotation:

J Intell Robot Syst (2020) 100:531–574 543

On the one hand, we can use the yaw angle difference,
δψ , defined in (30):

w(xf , Δτ , P) = fδψ

(
q̃i−,ψ

(
Δτi−

)
, q̃wn

) = 0 (78)

w(xf , Δτ , P) = fδψ

(
q̃i+,ψ (0) , q̃wn

) = 0 (79)

On the other hand, we can use the error-quaternion, δθ ,
defined in Eq. 27:

w(xf , Δτ , P) = fδθ

(
q̃ i−,ψ

(
Δτi−

)
, q̃wn

) = 0 (80)

w(xf , Δτ , P) = fδθ

(
q̃ i+,ψ (0) , q̃wn

) = 0 (81)

Similarly than before, the value of q̃ i−,ψ

(
Δτi−

)
and

q̃ i+,ψ (0) can be calculated by combining (89) and (106) of
Appendix A.

The reader must note that one of the (76) and (77), and
one of the (78) and (79), or (80) and (81), are redundant and
therefore might be omitted for simplicity.

7.3.4 Dynamics of the trajectory

Certain limits need to be imposed on the dynamics of the
trajectory, i.e. limit on velocity, acceleration, jerk, snap,
crackle, pop, ... This may be needed due to requirements
of the application (e.g. tracking a trajectory with a certain
maximum velocity), or due to an incomplete (or too simple)
model of the dynamics of the robot that does not consider
higher-order derivatives or non-linear limits, as mentioned
in Section 5.3.

These limits are represented as

‖νT (xf , Δτ)‖2 ≤ ‖νmax‖2

Which is equivalent to:

cT (xf , Δτ , νmax) = ‖νT (xf , Δτ)‖2
2 − ‖νmax‖2

2 ≤ 0 (82)

where ‖νT (xf , Δτ)‖2
2 can be calculated by combining (97)

and (122), with Eq. 106 of Appendix A.

7.3.5 Actuators of the robot

The actuators of the robots have physical limits that cannot
be exceeded.

The control commands, uR(xf , Δτ), are calculated
following the dynamic model of the robot expressed in
Eqs. 62 and 63, and the following constraints are applied:

umin ≤ uR(xf , Δτ) ≤ umax (83)

Which is equivalent to

uR(xf , Δτ) − umax ≤ 0 (84)

umin − uR(xf , Δτ) ≤ 0 (85)

7.3.6 Linear distance to path

The euclidean linear distance between the given path and
the position variables of the trajectory has to be lower than
the value, dmax .

We represent this restriction as d(xf , Δτ , P) − dmax ≤
0, and it is calculated as:
∣∣∣∣∣∣pi,: (τi) − pPn,n+1

∣∣∣∣∣∣
2

≤ dmax (86)

∀τi ∈ [0, Δτi], ∀i = {1..ns}, and for all the position
subpaths, pPn,n+1

, that form the complete path P . The value
pi,: (τi) can be calculated by combining (111) and (106) of
Appendix A.

The reader must note that this restriction might only be
applied to any user-defined sub-path of the given path P .

7.4 Initialization

The initialization of the unknowns is essential for the
fast convergence of the optimization algorithm to a local
minimum. The initial value of the unknowns, y0, has to be
feasible from the optimization problem point of view, i.e. it
has to fulfill the constraints described in Section 7.3.

We propose an initial trajectory, L0, that exactly follows
the given path, P , by setting to zero the velocity and all
the continuous higher-order derivatives in the waypoints.
This means that, between every two waypoints, the three
following stages take place: acceleration from zero velocity,
constant velocity movement, and deceleration to zero
velocity. By definition, this initial trajectory pass through
all the waypoints, and the linear distance to the path is
zero. The acceleration and deceleration stages are carried
out following the limits on the dynamics and actuators of
the robot.

The aforementioned initial trajectory, L0, is, therefore,
feasible from the optimization problem point of view. It
can be calculated analytically but for the sake of brevity, a
complete expound of its computation method is omitted.

7.5 Recursive sequential optimization

To boost the computation of suboptimal trajectory, the
aforementioned large optimization problem can be divided
into a set of small optimization problems that can be solved
sequentially.

The full path is sequentially divided into sub-paths of
three waypoints, solving the optimization problem for only
these three waypoints. Once the trajectory is computed for
these three waypoints, we advance to the next waypoint of
the path, and we solve the optimization problem for the
sub-path formed by the previous last two waypoints and the
new waypoint. The computed trajectory in every iteration

J Intell Robot Syst (2020) 100:531–574544

of the sequence updates the value of the initial trajectory
calculated as mentioned in Section 7.4, which is used in the
following sequence as the initial sub-trajectory of the small
optimization problem. This process continues until the last
waypoint is reached.

In order to improve the optimality of the computed
trajectory, the full sequential optimization problem is solved
again in a recursive way, always using the last computed
trajectory, as the initial trajectory of the optimization
problem.

A later joint optimization of the full trajectory could
be done, using the last computed trajectory, as the initial
trajectory of the optimization problem, to improve even
more the optimality of the computed trajectory.

8 Trajectory Tracking Controller

To maximize the trajectory tracking performance, we design
a Model Predictive Control (MPC) approach that, each
sample time, obtains the control commands u by solving the
following optimal control problem (OCP):

min.
u(t),x(t)

J =
∫ T

0

(
‖δxR(t)‖2

P + ‖δu(t)‖2
Q + ks2

)
dt(87a)

s.t . ẋR(t) = f (xR(t), u(t)) (87b)

‖q‖2 = 1 − s (87c)

umin(t) ≤ u(t) ≤ umax(t) (87d)

where xR and δxR are the state and the error-state of the
system as defined in Eqs. 57 and 61 respectively. Similarly,
the control commands u and δu are defined in Eqs. 57
and 64 respectively. The state-space formulation of the
dynamical model of the aerial robot is included in Eq. 87b,
as developed in Section 5.2. The weighting matrices P and
Q, and the weighting scalar k are tuning parameters for
the desired objective function (87a). As discussed by [13],
Eq. 87c needs to be included to prevent large violation of
the quaternion’s norm during optimization. In this work, we
introduce it as a soft constraint [30], where the slack variable
s minimizes the deviations of the quaternion from being
unitary.

As a result, the MPC produces a predicted commanded
trajectory x and control commands u that minimizes the
tracking performance along the horizon T . The feasibility of
this commanded trajectory is ensured through the dynamical
model constraint (87b) and the control saturations (87d).

One of the key facts of this formulation is to include
δu(t) instead of u(t) in the cost function to minimize the
deviations from the optimal control command references
(computed given the planned trajectory following Eqs. 62
and 63), which improves the tracking performance for two
reasons. First, the controller follows feasible time-optimal

control references instead of stabilizing ones. Second, the
feasible evolution of the control reference improves the
convergence of the optimization problem, since the state of
the system is closer to the optimal one.

The other key fact is the incorporation of the quaternion
algebra developed in Section 4, concretely the results of
Eq. 36. This provides a singularity-free attitude control,
whose rotation-matrix equivalent has been shown to be
asymptotically stable for large attitude deviations [34].

To solve the OCP we employ direct optimization, where
the problem is discretized through a multiple-shooting
algorithm over N steps with a 4th order Runge-Kutta
integration of the dynamics (87b). This integration scheme
The resulting nonlinear program (NLP) is solved through
a sequential quadratic programming (SQP) algorithm as
described in [14].

9 Evaluation and Results

9.1 Evaluationmethodology

The validation of the proposed trajectory tracking approach
is done considering two different aspects.

On the one hand, in Section 9.3, we illustrate and
evaluate the proposed trajectory planner. We analyze both
qualitatively and quantitatively the optimization process
of the trajectory planner together with the properties of
the calculated trajectories. Additionally, we compare the
two different presented options to compute the reduced
dimensionality difference between two rotation when
applying the waypoints restriction of the trajectory planner
(discussed in Section 7.3.3).

We use the concept of the energy value, νenergy , applied
to different magnitudes, ν, of the trajectory:

νenergy =
∫ tf

0
‖ν(t)‖2 · dt (88)

On the other hand, we exemplify and evaluate the
proposed trajectory tracking controller in Section 9.4 by
means of in-lab real flight experiments. We study both
qualitatively and quantitatively its different performance
when taking advantage of the whole output of the trajectory
planner (i.e. pose and higher-order derivatives, and control
command references) and when only considering the
desired pose.

We use the following well-known four error metrics:

– Mean Squared Error (MSE)
– Root Mean Square Error (RMSE)
– Mean Absolute Error (MAE)
– Max Absolute Error (MaAE)

J Intell Robot Syst (2020) 100:531–574 545

Table 1 List of waypoints of the first path used for the evaluation. The path can be visualized in Fig. 5

W1 W2 W3 W4 W5 W6 W7 W8

px (m) −1.35 1.35 1.35 −1.35 1.35 1.35 −1.35 −1.35

py (m) −1.35 −1.35 1.35 1.35 −1.35 1.35 1.35 −1.35

pz (m) 1.25 1.25 1.25 1.25 2 2 2 1.25

ψ(◦) 0 −90 180 90 −90 180 90 0

We have defined two paths for evaluation purposes. Both
paths are limited by the dimensions of our flying arena that
are 5.5 × 5.0 × 4.5 m (W × L × H).

The first path is defined by the 8 waypoints presented in
Table 1, and can be visualized in Fig. 5 This path emulates
a kind of spiral in position, with a constant rotation on the
desired robot heading along with the waypoints. This spiral,
apart from evolving in the horizontal coordinates, has also
changes both up and down in the vertical coordinate z.

The second path used for the evaluation is defined by the
10 waypoints listed in Table 2 and it is shown in Fig. 6. This
path aims to have a relatively large number of waypoints
with a high complexity in the available reduced space,
combining in some cases changes between waypoints in just
one or two dimensions in a relatively short distance (e.g. W1

to W2 or W2 to W3), together with changes up to the four
dimensions in larger distances (e.g. W5 to W6 or W6 to W7).

In both cases, we assume the aerial robot to be initially
hovering with a pose that coincides with the first waypoint.

For comparison purposes, our trajectory planner has been
configured with two different maximum linear distance to
the path, dmax , (see Section 7.3.6), and with four different
sets of limits on the dynamics of the trajectory, ‖νmax‖2,
(see Section 7.3.4). The two maximum linear distance to
the path, indicated in Table 3, are named accurate and
inaccurate. The four sets of limits on the dynamics of
the trajectory, summarized in Table 4, are called Slow,
Medium-Slow, Medium-Fast, and Fast.

1.5

2

z
(m

)

2

1
2

y (m)

0 1

x (m)

0-1
-1

-2-2

Fig. 5 3D view of the first path used for the evaluation. The path is
represented with a dashed black line, being its waypoints, listed in
Table 1, represented by a circle (position) and a red arrow (heading)

The total number of trajectories considering the two paths
and all the previously mentioned configuration parameters
combinations is 16. This number is doubled to 32 when
taking into account that we have two different options to
compute the reduced dimensionality difference between two
rotation when applying the waypoints restriction of the
trajectory planner, as discussed in Section 7.3.3.

Despite the limits on the dynamics of the trajectory may
seem relatively small, the reader must note that they are
quite challenging when considering the reduced size of our
flying arena and the comparatively large size of our aerial
robot, presented in Section 9.2.

9.2 Experimental setup

Our aerial robot platform is a DJI Matrice 1003 quadrotor
(see Fig. 7). It is equipped with a DJI N1 flight controller,
that does not only stabilizes the platform but also provides
a velocity controller that uses only onboard sensors as
feedback (including a DJI Guidance4). This autopilot allows
us to input a command in terms of the desired velocity
of the platform (i.e. linear velocity and heading velocity,
both in robot coordinates), unlike [17, 38], where the
control commands are the spinning velocity of the motors
of the aerial platform. Moreover, our aerial robot platform
is equipped with some extra sensors and a companion
computer.

The reader might note that our aerial robot (see Fig. 7)
is considerably larger and heavier (Size: 890 × 890 × 340
mm3, MTOW: 3600 g.) than the aerial platforms used in
works like [1, 38, 46] that focus on aggressive maneuvering
(e.g. AscTec Hummingbird.5 Size: 540 × 540 × 85.5 mm3,
MTOW: 710 g.). Moreover, the reader must take into
consideration, as previously presented in Section 9.1, the
substantially small size of our flying arena when compared
with the size of our aerial robot (our flying arena is only
about 5 times larger than the aerial robot). Figure 8 shows
our aerial robot flying autonomously inside our flight arena
during an experimental validation test.

3https://www.dji.com/matrice100
4https://www.dji.com/guidance
5Source: http://www.asctec.de/en/uav-uas-drones-rpas-roav/asctec-
hummingbird/

J Intell Robot Syst (2020) 100:531–574546

https://www.dji.com/matrice100
https://www.dji.com/guidance
http://www.asctec.de/en/uav-uas-drones-rpas-roav/asctec-hummingbird/
http://www.asctec.de/en/uav-uas-drones-rpas-roav/asctec-hummingbird/

Table 2 List of waypoints of the second path used for the evaluation. The path can be visualized in Fig. 6

W1 W2 W3 W4 W5 W6 W7 W8 W9 W10

px (m) −1.5 0 1.5 1.5 0 −1.5 1.5 −1.5 −1.5 −1.5

py (m) −1.5 −1.5 0 1.5 1.5 1.5 −1.5 1.5 −1.5 −1.5

pz (m) 1.25 1.25 1.25 1.25 1.25 1.25 2 2 2 1.25

ψ(◦) 0 45 45 90 135 180 0 −90 0 0

The values of the parameters kj and τj presented in
Section 5.2, have been calculated empirically, following the
procedure described in [10], and are shown in Table 5.

Both the trajectory planner and the trajectory tracking
controller have been configured with the control command
(i.e. actuator) limits (see Sections 7.3.5 and 8) presented
in Table 6. The reader must note that we have set the
trajectory controller limits higher than the planner ones, to
let the controller a margin to compensate model errors and
disturbances and therefore improve the performance of the
trajectory tracking.

Figure 9 shows the proposed system architecture for the
experimental evaluation. All the components, except the
trajectory planner, have been implemented in C++ using
ROS [45] as middleware.

Our trajectory planner is executed offline and we have
implemented it in MATLAB, using the single-objective
nonlinear multivariable constrained minimization solver
provided by the function fmincon. It has been configured to
use the interior-point (IP) method, computing the Hessian
by a dense quasi-Newton approximation. The trajectory
tracking controller has been implemented using ACADO
Toolkit [25], which exports efficient C code to solve the
problem (87) efficiently through embedded integrators and
sequential quadratic programming (SQP).

We collect information about the state of our aerial plat-
form through an Optitrack motion capture system installed
in our flying arena, which provides the measurements of its

1.5

z
(m

)

2

2

1 2

y (m)

1

x (m)

0 0
-1-1

-2

Fig. 6 3D view of the second path used for the evaluation. The path
is represented with a dashed black line, being its waypoints, listed in
Table 2, represented by a circle (position) and a red arrow (heading)

position and orientation at a frequency of 200 Hz. The state
of the robot (i.e. pose and velocity) is estimated using [47].

9.3 Trajectory planning results

In this section, we illustrate and evaluate the proposed
trajectory planner, analyzing the optimization process and
the properties of the calculated trajectories. Additionally,
we compare the two different presented options to compute
the reduced dimensionality difference between two rotation
when applying the waypoints restriction of the trajectory
planner (discussed in Section 7.3.3).

For the first part of this section, the 32 possible
trajectories presented in Section 9.1 have been computed
using the proposed trajectory planner until the objective has
converged to a stable value, or until a maximum number of
iterations (i.e. 100) has been reached.

As described in Section 7, the trajectory planner consists
of an optimization process that computes a feasible
trajectory that minimizes the total time of trajectory. The
initial trajectory is computed analytically, and modified over
the iterations carried out by the optimizer until the optimum
trajectory is found. Figure 10 illustrates this optimization
process displaying the first 4 waypoints of the first path,
configured with an inaccurate maximum linear distance to
the path, and using the error-quaternion, δθ , to compute the
difference between two rotation.

It can be seen in Fig. 10 that the initial trajectory
(depicted in solid red) is coincident with the path (in
solid black). The intermediate trajectories (in dashed cyan)
computed at different iterations of the optimization process
are calculated by increasing the maximum values of the
trajectories (e.g. distance to the path) to minimize the total
trajectory time. The final optimum computed trajectory (in
solid blue) is the one that minimizes the total trajectory time.

Table 3 The two configuration parameters of the trajectory planner for
the maximum linear distance to the path, dmax

accurate inaccurate

(m) (m)

dpath 0.05 0.5

J Intell Robot Syst (2020) 100:531–574 547

Table 4 The four set of configuration parameters of the trajectory planner for the limits on the dynamics of the trajectory, ‖νmax‖2

SLOW (S)

vW
R|W aW

R|W jW
R|W sW

R|W cW
R|W pW

R|W
(m·s−1) (m·s−2) (m·s−3) (m·s−4) (m·s−5) (m·s−6)

1 2 6 15 90 600

ωψ
W
R|W αψ

W
R|W jψ

W
R|W sψ

W
R|W cψ

W
R|W pψ

W
R|W

(rad·s−1) (rad·s−2) (rad·s−3) (rad·s−4) (rad·s−5) (rad·s−6)

1 2 6 15 90 600

MEDIUM-SLOW (MS)

vW
R|W aW

R|W jW
R|W sW

R|W cW
R|W pW

R|W
(m·s−1) (m·s−2) (m·s−3) (m·s−4) (m·s−5) (m·s−6)

1.5 3 9 27 135 810

ωψ
W
R|W αψ

W
R|W jψ

W
R|W sψ

W
R|W cψ

W
R|W pψ

W
R|W

(rad·s−1) (rad·s−2) (rad·s−3) (rad·s−4) (rad·s−5) (rad·s−6)

1.5 3 9 27 135 810

MEDIUM-FAST (MF)

vW
R|W aW

R|W jW
R|W sW

R|W cW
R|W pW

R|W
(m·s−1) (m·s−2) (m·s−3) (m·s−4) (m·s−5) (m·s−6)

1.75 3.5 11 35 145 880

ωψ
W
R|W αψ

W
R|W jψ

W
R|W sψ

W
R|W cψ

W
R|W pψ

W
R|W

(rad·s−1) (rad·s−2) (rad·s−3) (rad·s−4) (rad·s−5) (rad·s−6)

1.75 3.5 11 35 145 880

FAST (F)

vW
R|W aW

R|W jW
R|W sW

R|W cW
R|W pW

R|W
(m·s−1) (m·s−2) (m·s−3) (m·s−4) (m·s−5) (m·s−6)

2 4 12 40 155 900

ωψ
W
R|W αψ

W
R|W ιψ

W
R|W sψ

W
R|W cψ

W
R|W pψ

W
R|W

(rad·s−1) (rad·s−2) (rad·s−3) (rad·s−4) (rad·s−5) (rad·s−6)

2 4 12 40 155 900

Table 7 gathers the average for all the trajectories of
the total time of the trajectory computed by the trajectory
planner. The initial and final values, together with the
intermediate values at 1%, 5% and 10% of the final value
are provided along with their required number of iterations.
The columns δψ and δθ gather the average of the 16 planned

Fig. 7 The aerial robot platform used for the experimental validation

trajectories per each of the two methods to compute the
reduced dimensionality difference between two rotations,
the yaw angle difference, δψ , and the error-quaternion,
δθ . The last column shows the difference between the two

Fig. 8 Our aerial robot flying autonomously inside our flight arena
during an experimental validation test. A video with several real flight
experiments can be visualized in: https://youtu.be/peR2cTX02Ww

J Intell Robot Syst (2020) 100:531–574548

https://youtu.be/peR2cTX02Ww

Table 5 Empirically calculated values of the dynamic model of our
aerial platform

x y z ψ

kj 1.0 1.0 1.0 π/180

τj 0.8355 0.7701 0.5013 0.5142

previous ones. The raw data (before averaging) can be found
in the Appendix B, in Table 12 and Fig. 29 for the first path,
and in Table 13 and Fig. 30 for the second path.

In all of the cases, except one, the trajectory planner
converged to an optimum solution before the maximum
allowed number of iterations is reached. In all of the cases,
the total time of the trajectory computed by the trajectory
planner, using the yaw angle difference, δψ , and the error-
quaternion, δθ , to compute the difference between two
rotation, converge to a similar value with a difference lower
than 3 %. of improvement with respect to the initial time.
Based on these experimental data summarized in Table 7,
we can conclude that the error-quaternion, δθ , converges to
a slightly better optimum than the yaw angle difference, δψ ,
but it requires more iterations.

As it is expected, the optimization process carried out
by the trajectory planner eventually converges to a feasible
local solution that minimizes the total time of trajectory. It
is worth to highlight that in case of real-time constraints and
/ or limited computational resources availability, the user
would be able to limit the maximum number of iterations
of the optimization process. In such a case, the calculated
trajectory would still be feasible (i.e. all the constraints
would be fulfilled), but it would not have converged to a
local minimum of the total time of trajectory. Nevertheless,
this solution would be a better choice than the initial
trajectory. According to the experimental data summarized
in Table 7, the error-quaternion, δθ , is faster than the yaw
angle difference, δψ , reaching the 1%, 5% and 10% of
the optimum value. Therefore, it is preferable to use the
error-quaternion, δθ , as the method to compute the reduced
dimensionality difference between two rotation, for real-
time applications.

Table 8 shows the percentage of the configuration
parameters with respect to their the maximum value for
the magnitudes of the planned trajectories. The column Init
shows the average of the eight initial trajectories (four per
each of the two evaluation paths). The first two columns

Table 6 Configuration control
commands (i.e. actuator) limits
of our aerial platform used in
both the trajectory planner and
the trajectory tracking
controller

ux uy uz uψ

Pla. Ctr. Pla. Ctr. Pla. Ctr. Pla. Ctr.

Min. −3.0 −4.0 −3.0 −4.0 −3.0 −4.0 −100.0 −100.0

Max. 3.0 4.0 3.0 4.0 3.0 4.0 100.0 100.0

of the column named as Planned gather the average of
the 16 planned trajectories per each of the two methods
to compute the reduced dimensionality difference between
two rotations, the yaw angle difference, δψ , and the error-
quaternion, δθ . The last column shows the difference
between the two previous ones. The raw data (before
averaging) can be found in the Appendix B, in Tables 14
and 16 for the first path, and in Tables 15 and 17 for the
second path.

As it can be extracted from the experiments, the
maximum values of the planned trajectories increase with
respect to the ones of the initial one, as the optimization
process increases them (without over exceeding them)
to minimize the total trajectory time. The reader should
observe that any of the values of the planned trajectories are
higher than 100 %, which means that the maximum values
have never been exceeded.

It is desirable that, for the same total trajectory time, the
maximum values are the lower possible. The last column
of Table 8 can be used to determine which method to
compute the reduced dimensionality difference between two
rotations is better. A positive number on the last column
of the table means that the error-quaternion, δθ , generates
lower maximum values than the yaw angle difference, δψ .
According to the experimental data, the error-quaternion,
δθ , is slightly better than the yaw angle difference, δψ .

Table 9 displays the percentage of the energy (computed
with Eq. 88) of the planned trajectory magnitudes with
respect to the initial trajectories. The columns δψ and δθ

gather the average of the 16 planned trajectories per each
of the two methods to compute the reduced dimensionality
difference between two rotations, the yaw angle difference,
δψ , and the error-quaternion, δθ . The last column shows
the difference between the two previous ones. The raw data
(before averaging) can be found in the Appendix B, in
Table 18 for the first path, and in Table 19 for the second
path.

It can be extracted from the experiments, summarized
in Table 9, that on average, the total energy is increased
with respect to the initial trajectory, as the planned trajec-
tory is more aggressive than the initial one. It is interest-
ing to highlight that the total energy of the higher-order
derivatives is reduced with respect to the initial trajectory,
while the lower order ones have the opposite behavior. We
can, therefore, confirm, based on the experimental data,
that our trajectory planner reduces the total energy of the

J Intell Robot Syst (2020) 100:531–574 549

Fig. 9 System architecture setup
for the experimental evaluation
of the proposed trajectory
planner

Fig. 10 Illustration of the optimization process of the trajectory plan-
ner displaying the first 4 waypoints of the first path, configured with
an inaccurate maximum linear distance to the path, and using the error-
quaternion, δθ , to compute the difference between two rotation. In

solid red, the initial trajectory that is coincident with the path (in solid
black). In dashed cyan, the intermediate trajectories computed at dif-
ferent iterations of the optimization process. In solid blue, the final
optimum computed trajectory

Table 7 Total time of the trajectory computed by the trajectory planner, average for all the trajectories

Rot. error δψ δθ δψ − δθ

Fin # it. 37.4375 42.3750 −4.9375

t (s) 18.9438 18.8494 0.0944

1 % # it. 20.4375 17.4375 3.0000

t (s) 19.0694 18.9694 0.1000

5 % # it. 11.2500 9.0625 2.1875

t (s) 19.4719 19.4831 −0.0112

10 % # it. 7.3125 5.8750 1.4375

t (s) 20.4737 20.1388 0.3350

Init # it. 0 0 0

t (s) 43.0763 43.0763 0

% improv. −56.0581 −56.2369 0.1787

The initial and final values, together with the intermediate values at 1%, 5% and 10% of the final value are provided along with their required
number of iterations

Minimum values highlighted in bold

J Intell Robot Syst (2020) 100:531–574550

Table 8 Percentage of the
configuration parameters with
respect to their maximum value
for the magnitudes of the
planned trajectories

Init Planned

Rot. error δψ δθ δψ – δθ

Max. d 0.0 85.4219 83.7288 1.6931

Vel. Lin. 52.9375 99.9906 99.9950 −0.0044

Ang. 40.6075 73.2269 73.5100 −0.2831

Acc. Lin. 39.7900 99.5219 99.6637 −0.1419

Ang. 30.5350 53.1075 51.5856 1.5219

Jer. Lin. 32.3912 69.8181 70.8212 −1.0031

Ang. 24.8713 52.0438 47.4475 4.5962

Sna. Lin. 90.7938 99.9819 99.9750 0.0069

Ang. 69.7375 89.3981 85.7806 3.6175

Cra. Lin. 97.7763 95.5644 94.0231 1.5412

Ang. 71.7413 86.0206 85.9800 0.0406

Pop Lin. 30.9637 34.6644 31.7262 2.9381

Ang. 19.0962 25.8731 27.7581 −1.8850

Average Lin. 57.4412 83.1937 82.7219 0.4719

Ang. 42.7550 63.1544 62.0531 1.1013

Total 50.0962 73.2369 72.3250 0.9119

ux Min. 40.1887 84.0950 85.0294 −0.9344

Max. 41.7762 86.7287 86.3931 0.3356

uy Min. 31.8000 69.0350 67.7144 1.3206

Max. 26.5700 66.2706 63.4663 2.8044

uz Min. 11.6212 24.6281 25.1250 −0.4969

Max. 6.9437 12.0381 13.1019 −1.0637

uψ Min. 50.5938 82.6463 81.7556 0.8906

Max. 22.2375 41.2031 39.3550 1.8481

Average 28.9650 58.3312 57.6487 0.6825

Average 39.6625 68.1400 67.3719 0.7681

Average for all the trajectories, differentiating between the two proposed methods to compute the reduced
dimensionality difference between two rotations
Minimum values highlighted in bold

higher-order derivatives when minimizing the total tra-
jectory time at the cost of increasing the total energy
lower order derivatives. This behavior emerges without been
explicitly programmed.

It is desirable that, for the same total trajectory time,
the total energy values are the lower possible. The last
column of Table 9 can be used to determine which method
to compute the reduced dimensionality difference between
two rotations is better. A positive number on the last column
of the table means that the error-quaternion, δθ , generates
lower total energy values than the yaw angle difference,
δψ . According to the experimental data, on average, the
yaw angle difference, δψ , is slightly better than the error-
quaternion, δθ . Nevertheless, it is worth to highlight that the
error-quaternion, δθ , has a better performance in the angular
magnitudes than in the linear ones.

Table 10 displays the percentage of the energy (computed
with Eq. 88) of the planned control command references
with respect to the initial trajectories. The columns δψ and
δθ gather the average of the 16 planned trajectories per each
of the two methods to compute the reduced dimensionality
difference between two rotations, the yaw angle difference,
δψ , and the error-quaternion, δθ . The last column shows the
difference between the two previous ones. The raw data (be-
fore averaging) can be found in the Appendix B, in Table 20
for the first path, and in Table 21 for the second path.

Similarly than for the case of the trajectory magnitudes,
for the case of control command references, it can be
extracted from the experiments, summarized in Table 10,
that on average, the total energy is increased with respect
to the initial trajectory, as the planned trajectory is more
aggressive than the initial one.

J Intell Robot Syst (2020) 100:531–574 551

Table 9 Percentage of the
energy (88) of the planned
trajectory magnitudes with
respect to the initial trajectories

Rot. error δψ δθ δψ - δθ

Vel. Lin. 17.6225 24.5913 −6.9687

Ang. 100.7581 100.7419 0.0162

Acc. Lin. –11.2225 –6.6869 –4.5356

Ang. 153.3263 148.7037 4.6225

Jer. Lin. –31.2831 –28.6687 –2.6144

Ang. 90.3188 90.9425 –0.6238

Sna. Lin. –38.2250 –36.6337 –1.5913

Ang. 53.7319 51.5231 2.2087

Cra. Lin. –35.1731 –34.0381 –1.1350

Ang. –8.7419 –11.1669 2.4250

Pop Lin. –21.5456 –20.7713 –0.7744

Ang. –31.2850 –27.2587 –4.0263

Average Lin. –19.9719 –16.9750 –2.9969

Ang. 59.6847 58.9350 0.7497

Total 19.8564 20.9800 –1.1236

Average for all the trajectories, differentiating between the two proposed methods to compute the reduced
dimensionality difference between two rotations
Minimum values highlighted in bold

It is desirable that, for the same total trajectory time, the
total energy values are the lower possible. The last column
of Table 10 can be used to determine which method to
compute the reduced dimensionality difference between two
rotations is better. A positive number on the last column
of the table means that the error-quaternion, δθ , generates
lower total energy values than the yaw angle difference,
δψ . According to the experimental data, on average, the
yaw angle difference, δψ , is slightly better than the error-
quaternion, δθ . The reader must note that this difference is
especially high in the uz control command reference.

After the deep analysis of the experimental data
presented above, we cannot conclude that there exists a
clear dominant method to compute the difference between

Table 10 Percentage of the energy (88) of the planned control
commands references with respect to the initial trajectories

Rot. error δψ δθ δψ - δθ

ux 195.5856 196.5512 −0.9656

uy 182.3600 181.0913 1.2687

uz 149.4519 171.6263 −22.1744

uψ 108.4969 108.2475 0.2494

Average 158.9737 164.3788 −5.4050

Average for all the trajectories, differentiating between the two
proposed methods to compute the reduced dimensionality difference
between two rotations

Minimum values highlighted in bold

two rotation. We prefer to use the error-quaternion, δθ ,
over the yaw angle difference, δψ , since it is more suitable
for real-time applications without a significant difference
in performance. In the remainder experimental part of the
paper, we use the error-quaternion, δθ , to compute the
difference between two rotation.

The second part of the trajectory planning results aims
to deeply illustrate the trajectory planning process by using
two example trajectories.

The first example trajectory has the first path as reference
(see Table 1), the inaccurate maximum linear distance to
the path, dmax (see Table 3) and the Medium-Fast limits on
the dynamics of the trajectory (see Table 4). We have set
10 as maximum number of iterations, but the optimization
converged at 9 iterations.

The second example trajectory has the second path
as reference (see Table 2), the accurate maximum linear
distance to the path, dmax (see Table 3) and the Medium-
Slow limits on the dynamics of the trajectory (see Table 4).
We have set 4 as the maximum number of iterations,
finishing the optimization process before reaching the
optimum value.

Figures 11 and 12 plot the values (pose and derivatives up
to jerk) of the initial trajectory used in our trajectory planner
(see Section 7.4) for the first example trajectory. The total
time of this initial trajectory is t = 36.29 s.

Figure 13 shows the 3D view of the calculated trajectory
after the optimization process has ended for the first
example trajectory. The values (pose and derivatives up to

J Intell Robot Syst (2020) 100:531–574552

0 5 10 15 20 25 30 35
time (s)

-2

-1

0

1

2

p x (m
/s

)

Position x

0 5 10 15 20 25 30 35
time (s)

-1

0

1

v x (m
/s

)

Velocity x

0 5 10 15 20 25 30 35
time (s)

-2

0

2

a x (m
/s

2)

Acceleration x

0 5 10 15 20 25 30 35
time (s)

-10

-5

0

5

10

j x (m
/s

3)

Jerk x

0 5 10 15 20 25 30 35
time (s)

-2

-1

0

1

2

p y (m
/s

)

Position y

0 5 10 15 20 25 30 35
time (s)

-1

0

1

v y (m
/s

)

Velocity y

0 5 10 15 20 25 30 35
time (s)

-2

0

2

a y (m
/s

2)

Acceleration y

0 5 10 15 20 25 30 35
time (s)

-10

-5

0

5

10
j y (m

/s
3)

Jerk y

0 5 10 15 20 25 30 35
time (s)

1.4

1.6

1.8

2

p z (m
/s

)

Position z

0 5 10 15 20 25 30 35
time (s)

-1

0

1

v z (m
/s

)

Velocity z

0 5 10 15 20 25 30 35
time (s)

-2

0

2

a z (m
/s

2)

Acceleration z

0 5 10 15 20 25 30 35
time (s)

-10

-5

0

5

10

j z (m
/s

3)

Jerk z

Fig. 11 Initial trajectory (first example trajectory). Position, and its derivatives up to jerk, plotted in solid blue. The blue dots and squares illustrate
the beginning and end of a segment of the trajectory. The vertical dashed black lines represent the waypoints. Its total trajectory time is t = 36.29 s

jerk) of this trajectory are plotted in Figs. 14 and 15. The
total time of the planned trajectory is t = 14.93 s.

0 5 10 15 20 25 30 35
time (s)

-10

-5

0

 (r
ad

)

-1

0

1

q
(a

di
m

)

Orientation

p

qw
qz

0 5 10 15 20 25 30 35
time (s)

-1

0

1

 (r
ad

/s
)

Angular Velocity

0 5 10 15 20 25 30 35
time (s)

-2

0

2

 (r
ad

/s
2)

Angular Acceleration

0 5 10 15 20 25 30 35
time (s)

-10

0

10

j
 (r

ad
/s

3)

Angular Jerk

Fig. 12 Initial trajectory (first example trajectory). Heading, and its
derivatives up to jerk, plotted in dashed red and magenta and in solid
blue. The blue dots and squares illustrate the beginning and end of a
segment of the trajectory. The vertical dashed black lines represent the
waypoints. Its total trajectory time is t = 36.29 s

As expected, the planned trajectory after the optimization
process still fulfills all the constraints, but its total trajectory
time has decreased by 58.86% from the initial trajectory
(t = 36.29 s.) to the optimized one (t = 14.93 s.).
The reader is encourage to deeply compare the values of
the initial trajectory, Figs. 11 and 12, with the values of
the planned trajectory, Figs. 14 and 15, to perceive the
difference between the two trajectories.

Figures 16 and 17 plot the values (pose and derivatives
up to jerk) of the initial trajectory used in our trajectory
planner for the second example trajectory. The total time of
this initial trajectory is t = 44.36 s.

Fig. 13 3D view of the planned trajectory (first example trajectory).
The position values are drawn with a solid blue line, whereas the
heading is represented with magenta arrows. The path is displayed
with a dashed black line, being its waypoints represented by a circle
(position) and a red arrow (heading)

J Intell Robot Syst (2020) 100:531–574 553

Fig. 14 Planned trajectory (first example trajectory). Position, and its derivatives up to jerk, plotted in solid blue. The blue dots and squares
illustrate the beginning and end of a segment of the trajectory. The vertical dashed black lines represent the waypoints. Its total trajectory time is
t = 14.93 s

0 2 4 6 8 10 12 14
time (s)

-10

-5

0

 (r
ad

)

-1

0

1

q
(a

di
m

)

Orientation

p

qw
qz

0 2 4 6 8 10 12 14
time (s)

-1

0

1

 (r
ad

/s
)

Angular Velocity

0 2 4 6 8 10 12 14
time (s)

-2

0

2

 (r
ad

/s
2)

Angular Acceleration

0 2 4 6 8 10 12 14
time (s)

-10

0

10

j
 (r

ad
/s

3)

Angular Jerk

Fig. 15 Planned trajectory (first example trajectory). Heading, and its
derivatives up to jerk, plotted in dashed red and magenta and in solid
blue. The blue dots and squares illustrate the beginning and end of a
segment of the trajectory. The vertical dashed black lines represent the
waypoints. Its total trajectory time is t = 14.93 s

Figure 18 shows the 3D view of the calculated trajectory
once the optimization process ended for the second example
trajectory.. The values (pose and derivatives up to snap) of
this trajectory are plotted in Figs. 19 and 20. The total time
of the planned trajectory is t = 19.46 s.

As expected, despite forcing to finish the optimization
before reaching the optimum value, the planned trajectory
after the optimization process finished, still fulfills all the
constraints and it total time has decreased by 56.13% from
the initial trajectory (t = 44.36 s.) to the optimized one
(t = 19.46 s.). The reader is encourage to deeply compare
the values of the initial trajectory, Figs. 16 and 17, with the
values of the planned trajectory, Figs. 19 and 20, to perceive
the difference between the two trajectories.

9.4 Trajectory Tracking Results

In this section, we illustrate and evaluate the proposed
trajectory tracking controller. To analyze the impact of
our trajectory planner on the tracking performance, we
compare the effect of providing the augmented references
(full state and control command) against the traditional pose
reference. We have selected 4 of the trajectories presented
in Sections 9.1 and 9.3 for real flights with the aerial robot
platform presented in Section 9.2.

The estimated pose tracking error is evaluated statisti-
cally with the metrics presented in Section 9.1. In Table 11
we compare the tracking performance of the controller

J Intell Robot Syst (2020) 100:531–574554

Fig. 16 Initial trajectory (second example trajectory). Position, and its derivatives up to jerk, plotted in solid blue. The blue dots and squares
illustrate the beginning and end of a segment of the trajectory. The vertical dashed black lines represent the waypoints. Its total trajectory time is
t = 44.36 s

0 5 10 15 20 25 30 35 40
time (s)

-2

0

2

 (r
ad

)

-1

0

1

q
(a

di
m

)

Orientation

p

qw
qz

0 5 10 15 20 25 30 35 40
time (s)

-1

0

1

 (r
ad

/s
)

Angular Velocity

0 5 10 15 20 25 30 35 40
time (s)

-2

0

2

 (r
ad

/s
2)

Angular Acceleration

0 5 10 15 20 25 30 35 40
time (s)

-5

0

5

j
 (r

ad
/s

3)

Angular Jerk

Fig. 17 Initial trajectory (second example trajectory). Heading, and its
derivatives up to jerk, plotted in dashed red and magenta and in solid
blue. The blue dots and squares illustrate the beginning and end of a
segment of the trajectory. The vertical dashed black lines represent the
waypoints. Its total trajectory time is t = 44.36 s

when providing the augmented reference instead of the pose
reference along the 4 selected trajectories. For all exper-
iments, we observe that the controller’s tracking perfor-
mance increases considerably when applying the augmented
reference instead of the pose reference. From the experi-
mental data, we can conclude that the additional information
(references) generated by the planner actively increases the
tracking performance of the controller.

It is worth to mention that the high values of the
trajectory tracking error, when compared to another state
of the art controllers, is originated from two facts. First,

Fig. 18 3D view of the calculated trajectory (second example
trajectory). The position values are drawn with a solid blue line,
whereas the heading is represented with magenta arrows. The path is
displayed with a dashed black line, being its waypoints represented by
a circle (position) and a red arrow (heading)

J Intell Robot Syst (2020) 100:531–574 555

the trajectories are designed with sharp corners and
high velocity, which are difficult to track. Second, the
modeling errors of the first-order approximation of the
robot dynamics, as presented in Section 5. We strongly
believe that a more accurate (and complex) model of the
aerial robot will drastically reduce the trajectory tracking
errors. Nevertheless, as mentioned in Section 5, using such
complex models of the aerial robot is out of the scope of the
paper.

For illustrative purposes, we have selected two real
experiments from Section 9.3 to plot the trajectory
tracking performance of the proposed method: (1) First
example trajectory: first path, velocity medium-fast, dis-
tance inaccurate; (2) Second example trajectory: second
path, velocity medium-slow, distance accurate. Different
executions of the two example trajectories can be visualized
in the video: https://youtu.be/peR2cTX02Ww.

Figure 21 plots the 3D view of the trajectory tracking
for the first example trajectory. It presents the configured
path, the planned trajectory computed by the planner, and
the estimated executed trajectory, using the two different
reference configurations for the trajectory controller.

Figures 22 and 23 show the values of the position, ori-
entation and velocity (both linear and angular) involved in
the trajectory tracking task for the first example trajectory.
These figures plot the planned trajectory computed by the
planner, and the estimated executed trajectory, using the two
different configurations of the trajectory controller.

Fig. 19 Calculated trajectory (second example trajectory). Position, and its derivatives up to jerk, plotted in solid blue. The blue dots and squares
illustrate the beginning and end of a segment of the trajectory. The vertical dashed black lines represent the waypoints. Its total trajectory time is
t = 19.46 s

0 2 4 6 8 10 12 14 16 18
time (s)

-2

0

2

 (r
ad

)

-1

0

1

q
(a

di
m

)

Orientation

p

qw
qz

0 2 4 6 8 10 12 14 16 18
time (s)

-1

0

1

 (r
ad

/s
)

Angular Velocity

0 2 4 6 8 10 12 14 16 18
time (s)

-2

0

2

 (r
ad

/s
2)

Angular Acceleration

0 2 4 6 8 10 12 14 16 18
time (s)

-5

0

5

j
 (r

ad
/s

3)

Angular Jerk

Fig. 20 Calculated trajectory (second example trajectory). Heading,
and its derivatives up to jerk, plotted in dashed red and magenta and in
solid blue. The blue dots and squares illustrate the beginning and end
of a segment of the trajectory. The vertical dashed black lines represent
the waypoints. Its total trajectory time is t = 19.46 s

J Intell Robot Syst (2020) 100:531–574556

https://youtu.be/peR2cTX02Ww

Figure 24 show the control command references for
the first example trajectory. This figure plots the planned
control command reference computed by the planner, and
the executed control command reference by the controller,
using its two different configurations.

Figure 25 plots the 3D view of the trajectory tracking
for the second example trajectory. It presents the configured
path, the planned trajectory computed by the planner, and
the estimated executed trajectory, using the two different
configurations of the trajectory controller.

Figures 26 and 27 show the values of the position, ori-
entation and velocity (both linear and angular) involved in
the trajectory tracking task for the second example trajec-
tory. These figures plot the planned trajectory computed by
the planner, and the estimated executed trajectory, using the
two different configurations of the trajectory controller.

Figure 28 show the control command references for
the first example trajectory. This figure plots the planned
control command reference computed by the planner, and

Fig. 21 3D view of the trajectory tracking (first example trajectory).
The planned trajectory is represented with a dotted blue line.
The estimated executed trajectory with the controller using the
full reference is represented with a solid red line. The estimated
executed trajectory with the controller using only the pose reference
is represented with a dashed green line. The path is displayed with
a dashed black line, being its waypoints represented by a circle
(position) and a red arrow (heading)

Table 11 Comparison between the planned and the estimated executed trajectories for the four selected trajectories using the metrics presented in
Section 9.1, for the two configurations of the trajectory tracking controller: with and without reference

Path First Path Second Path

Velocity M-F F S M-S

Distance Ina Acc Acc Acc

it. (Traj. Plan) 9* (10) 10 30 4

Reference w/ ref wo/ ref w/ ref wo/ ref w/ ref wo/ ref w/ ref wo/ ref

δtx MSE 0.015422 0.031328 0.019823 0.063096 0.0061054 0.033262 0.012565 0.050249

RMSE 0.12419 0.177 0.14079 0.25119 0.078137 0.18238 0.11209 0.22416

MAE 0.10423 0.14443 0.10594 0.18916 0.065277 0.15574 0.087567 0.18229

MaAE 0.26897 0.36199 0.34667 0.50079 0.18314 0.39258 0.30958 0.48297

δty MSE 0.043384 0.12033 0.071807 0.20902 0.0088249 0.040129 0.010901 0.066206

RMSE 0.20829 0.34689 0.26797 0.45718 0.093941 0.20032 0.10441 0.25731

MAE 0.16852 0.29603 0.2131 0.38576 0.067312 0.16351 0.083794 0.20809

MaAE 0.51019 0.59049 0.62389 0.84786 0.26408 0.44502 0.22116 0.53269

δtz MSE 0.00023072 0.0013665 0.00048445 0.001859 0.00016056 0.00088256 0.00042386 0.0019874

RMSE 0.01519 0.036967 0.02201 0.043116 0.012671 0.029708 0.020588 0.044581

MAE 0.01174 0.027411 0.018388 0.030916 0.010181 0.018185 0.01525 0.028506

MaAE 0.036588 0.10118 0.048547 0.13187 0.029855 0.12026 0.065029 0.17138

δt MSE 0.059037 0.15302 0.092114 0.27397 0.015091 0.074274 0.02389 0.11844

RMSE 0.24298 0.39118 0.3035 0.52342 0.12284 0.27253 0.15456 0.34416

MAE 0.21559 0.35288 0.2609 0.46822 0.10658 0.25601 0.13658 0.31635

MaAE 0.53832 0.62114 0.63117 0.90611 0.26687 0.4654 0.3125 0.55515

δψ MSE 0.002323 0.023846 0.0079 0.059133 0.0023006 0.011252 0.0018696 0.019394

RMSE 0.048197 0.15442 0.088882 0.24317 0.047964 0.10608 0.043239 0.13926

MAE 0.038429 0.13726 0.069809 0.22115 0.038009 0.087457 0.035343 0.10996

MaAE 0.12029 0.26095 0.24615 0.43667 0.11551 0.22884 0.092931 0.30698

Minimum values highlighted in bold

J Intell Robot Syst (2020) 100:531–574 557

Fig. 22 Position and linear velocity of trajectory tracking (first exam-
ple trajectory). The planned trajectory is represented with a dotted blue
line. The estimated executed trajectory with the controller using the

full reference is represented with a solid red line. The estimated exe-
cuted trajectory with the controller using only the pose reference is
represented with a dashed green line

Fig. 23 Heading (angle) and angular velocity of trajectory tracking
(first example trajectory). The planned trajectory is represented with a
dotted blue line. The estimated executed trajectory with the controller
using the full reference is represented with a solid red line. The
estimated executed trajectory with the controller using only the pose
reference is represented with a dashed green line

the executed control command reference by the controller,
using its two different configurations.

From the experimental plots and data (Table 11) we
conclude that, for a given control approach and robot model,
the tracking performance can be considerably increased
by augmenting the reference information provided from
the planning step. Then, the controller finds the optimal
trade-off between the different references: pose, velocities,
control commands, etc.

10 Conclusions and FutureWork

In this paper, we have presented an optimization-based
trajectory tracking solution for multirotor aerial robots given
a geometrically feasible path, as the continuation of our
previous work [50].

Our trajectory planner minimizes the trajectory time
and includes not only restrictions such as continuity of
the trajectory (i.e. class Cm), limits on velocity, and
higher-order derivatives, constraints in the waypoints, and
maximum distance between the planned trajectory and the
given path, but also restrictions in the actuators of the
aerial robot based on its dynamic model, guaranteeing that
the planned trajectory will be achievable by the robot. We
proposed a novel compact multi-phase trajectory definition
as a set of two different kinds of polynomials, providing
a higher semantic encoding of the trajectory, which allows

J Intell Robot Syst (2020) 100:531–574558

Fig. 24 Control command
references (first example
trajectory). The planned control
command reference is
represented with a dotted blue
line. The executed control
command reference by the
controller using the full
reference is represented with a
solid red line. The executed
control command reference by
the controller using only the
pose reference is represented
with a dashed green line

Fig. 25 3D view of the trajectory tracking (second example
trajectory). The planned trajectory is represented with a dotted blue
line. The estimated executed trajectory with the controller using the
full reference is represented with a solid red line. The estimated
executed trajectory with the controller using only the pose reference
is represented with a dashed green line. The path is displayed with
a dashed black line, being its waypoints represented by a circle
(position) and a red arrow (heading)

calculating, without loss of flexibility, an optimal solution
but following a predefined simple profile.

Our Model Predictive Controller (MPC) for trajectory
tracking has been formulated to take as inputs all the
magnitudes of the planned trajectory (i.e. position and
heading, velocity, and acceleration) as well as the control
command references computed using the planned trajectory,
to generate the control commands, improving the tracking
performance when compared with a controller that only uses
the planned position and heading.

Both planner and controller quaternions and error-
quaternions to mathematical represent orientations, as it
has been shown that have some advantages when com-
pared to other formulations. To arrive to this conclu-
sion, we have analyzed the most commonly used math-
ematical representations of orientations and their kine-
matic relationships in the tridimensional space SO(3)

and in the bidimensional space SO(2), together with the
computations of the difference between two rotations as

J Intell Robot Syst (2020) 100:531–574 559

Fig. 26 Position and linear velocity of trajectory tracking (second
example trajectory). The planned trajectory is represented with a dot-
ted blue line. The estimated executed trajectory with the controller

using the full reference is represented with a solid red line. The esti-
mated executed trajectory with the controller using only the pose
reference is represented with a dashed green line

Fig. 27 Heading (angle) and angular velocity of trajectory tracking
(second example trajectory). The planned trajectory is represented
with a dotted blue line. The estimated executed trajectory with the
controller using the full reference is represented with a solid red line.
The estimated executed trajectory with the controller using only the
pose reference is represented with a dashed green line

well as the definitions of a scalar error between two
orientations.

We have validated our trajectory tracking approach
thanks to an extensive qualitative and quantitative evalua-
tion. On the one hand, we analyzed the proposed trajectory
planner, including its optimization process as well as
the properties of the calculated trajectories. On the other
hand, we studied the proposed trajectory tracking controller
through real flights, comparing its performance with a for-
mulation that takes advantage of the whole output of the tra-
jectory planner (i.e. pose and higher-order derivatives, and
control command references) and when only considering
the desired pose.

Some future work lines cover the usage, in both
the planner and controller, of a more complex robot
model to improve the tracking performance. Specifically
related to the trajectory planner include its online exe-
cution, a multi-objective optimization (for example min-
imizing time and snap simultaneously), and the incor-
poration of constraints in the derivatives of linear and
angular magnitudes in the waypoints (e.g. velocity in the
waypoints).

The trajectory controller will be extended in the future
to include a full dynamic model of the robot with SO(3)

attitude control. In addition, online model estimation and
disturbance rejection are supplementary properties that
could be developed to increase tracking performance.

J Intell Robot Syst (2020) 100:531–574560

Fig. 28 Control command references (second example trajectory). The
planned control command reference is represented with a dotted blue
line. The executed control command reference by the controller using

the full reference is represented with a solid red line. The executed con-
trol command reference by the controller using only the pose reference
is represented with a dashed green line

Author Contributions J.L.S.-L. representation of rotations, trajec-
tory definition, trajectory planner, evaluation and manuscript writ-
ing. M.C.-L. trajectory tracking controller, evaluation and manu-
script writing. M.A.O.-M. and H.V. project management and funding
acquisition.

Funding Information This work was supported by the “Fonds
National de la Recherche” (FNR), Luxembourg, under the projects
C15/15/10484117 (BEST-RPAS) and PoC16/11565377 (AFI).

Appendix A: Appendix to Trajectory
Definition

To ease the formulation of the trajectory planner presented
in Section 7, the definition of the trajectory can be expressed
using the compact formulation presented along with this
Appendix A.

A.1 Position and Derivatives of a Polynomial

The position of a polynomial segment defined in Eq. 67, can
be written using the following compact nomenclature:

pi,j (τi) = lx,mi ,0(τi) · bi,j,:

=
[
1 τi τ 2

i ... τ
mi

i

]
·

⎡
⎢⎢⎢⎢⎣

bi,j,0

bi,j,1

bi,j,2

...
bi,j,mi

⎤
⎥⎥⎥⎥⎦ (89)

pi,j (τi) = (bi,j,:)T · rx,mi ,0(τi)

= [
bi,j,0 bi,j,1 bi,j,2 ... bi,j,mi

] ·

⎡
⎢⎢⎢⎢⎣

1
τi

τ 2
i

...
τ

mi

i

⎤
⎥⎥⎥⎥⎦
(90)

J Intell Robot Syst (2020) 100:531–574 561

The lm-th time-derivative of the position defined in
Eq. 68, can be written as:

p
(lm)
i,j (τi) = dlmpi,j

dτ
lm
i

= lx,mi ,lm(τi) · bi,j,: (91)

= (bi,j,:)T · rx,mi ,lm(τi) (92)

where the k-th element of the matrices:

lx,mi ,lm(τi)1,k = rx,mi ,lm(τi)k,1 (93)

=
⎛
⎝ k∏

l=k−(lm−1)

l

⎞
⎠ · τ k−lm

i

The following equivalence can be easily extracted:

rx,mi ,lm(τi) = (
lx,mi ,lm(τi)

)T (94)

Additionally, it can be easily demonstrated that:

dlx,mi ,lm(τi)

dτi

= lx,mi ,lm+1(τi) (95)

drx,mi ,lm(τi)

dτi

= rx,mi ,lm+1(τi) (96)

The norm of the magnitude, p
(lm)
i,j (τi), can be calculated

as:

‖p(lm)
i,j (τi)‖2

2
=

(
p

(lm)
i,j (τi)

)T · p
(lm)
i,j (τi)

= (
bi,j,:

)T · rx,mi ,lm(τi) · lx,mi ,lm(τi) · bi,j,:
= (

bi,j,:
)T · rlx,mi ,lm(τi) · bi,j,: (97)

A.2 State of a Polynomial

The state xi,j,l0:lm of a polynomial can be defined as:

xi,j,l0:lm(τi) =
[
p

(l0)
i,j p

(l1)
i,j ... p

(lm)
i,j

]T

(98)

Which is calculated using the following compact
nomenclature:

xi,j,l0:lm(τi) = Lx,mi ,l0:lm(τi) · bi,j,: (99)(
xi,j,l0:lm(τi)

)T = (bi,j,:)T · Rx,mi ,l0:lm(τi) (100)

where

Lx,mi ,l0:lm(τi) =

⎡
⎢⎢⎣

lx,mi ,l0(τi)

lx,mi ,l1(τi)

...
lx,mi ,lm(τi)

⎤
⎥⎥⎦ (101)

Rx,mi ,l0:lm(τi) = (Lx,mi ,l0:lm(τi))
T (102)

In the same way than in Eqs. 95 and 96, it can be easily
demonstrated that:

dLx,mi ,l0:lm(τi)

dτi

= Lx,mi ,l1:lm+1(τi) (103)

dRx,mi ,l0:lm(τi)

dτi

= Rx,mi ,l1:lm+1(τi) (104)

A.3 Coefficients of a polynomial

Given the state of a polynomial, xi,j,l0:lm , at a certain
time τi , the coefficients of the polynomial, bi,j,:, can be
calculated using Eq. 100, as:

bi,j,: = (
Lx,mi ,l0:lm(τi)

)−1 · xi,j,l0:lm(τi) (105)

with the condition that l0 = 0 and lm = mi .
The coefficients of a polynomial, bi,j,:, can be calculated

from its initial state, xi,j,0:mi
(0), using (105).

bi,j,: = (
Lx,mi ,0:mi

(0)
)−1 · xi,j,0:mi

(0) (106)

being therefore the value of the coefficients, independent of
the time, Δτi .

A.4 Initial and Final States of a Polynomial

The initial state of a polynomial, xi,j,0:mi
(0), can be

calculated following (100), as:

xi,j,0:mi
(0) = Lx,mi ,0:mi

(0) · bi,j,: (107)

The final state of a polynomial, xi,j,0:mi
(Δτi), can be

calculated from its initial state as follows:

xi,j,0:mi
(Δτi) = Lx,mi ,0:mi

(Δτi) · bi,j,:
= Lx,mi ,0:mi

(Δτi) · (Lx,mi ,0:mi
(0)

)−1 · xi,j,0:mi
(0)

(108)

A.5 Linear Variables of a Segment

The full-dimensional position of the segment is defined as:

pi,: (τi) = [
pi,x (τi) pi,y (τi) pi,z (τi)

]T (109)

Which is calculated using the following compact
nomenclature:

pi,: (τi) = lx,mi ,0(τi) · bi,xyz,: (110)

(
pi,: (τi)

)T =
(
bi,xyz,:

)T · rx,mi ,0(τi) (111)

J Intell Robot Syst (2020) 100:531–574562

where

bi,xyz,: =
⎡
⎣ bi,x,:

bi,y,:
bi,z,:

⎤
⎦ (112)

lx,mi ,0(τi) =
⎡
⎣ lx,mi ,0(τi) 01×(mi+1) 01×(mi+1)

01×(mi+1) lx,mi ,0(τi) 01×(mi+1)

01×(mi+1) 01×(mi+1) lx,mi ,0(τi)

⎤
⎦ (113)

rx,mi ,0(τi) =
(
lx,mi ,0(τi)

)T

(114)

The lm-th time-derivative of the position can be expressed
as:

p
(lm)
i,: (τi)= dlmpi,:

dτ
lm
i

=
[
p

(lm)
i,x (τi) p

(lm)
i,y (τi) p

(lm)
i,z (τi)

]T

(115)

Which is calculated using the following compact
nomenclature:

p
(lm)
i,: (τi) = lx,mi ,lm(τi) · bi,xyz,: (116)(

p
(lm)
i,: (τi)

)T =
(
bi,xyz,:

)T · rx,mi ,lm(τi) (117)

where

lx,mi ,lm(τi)=
⎡
⎣ lx,mi ,lm(τi) 01×(mi+1) 01×(mi+1)

01×(mi+1) lx,mi ,lm(τi) 01×(mi+1)

01×(mi+1) 01×(mi+1) lx,mi ,lm(τi)

⎤
⎦(118)

rx,mi ,lm(τi)=
(
lx,mi ,lm(τi)

)T

(119)

It can be easily demonstrated that:

dlx,mi ,lm(τi)

dτi

= lx,mi ,lm+1(τi) (120)

drx,mi ,lm(τi)

dτi

= rx,mi ,lm+1(τi) (121)

The norm of the magnitude, p
(lm)
i,: (τi), can be calculated

as:

‖p(lm)
i,: (τi)‖2

2
=

(
p

(lm)
i,: (τi)

)T · p
(lm)
i,: (τi)

=
(
bi,xyz,:

)T · rx,mi ,lm(τi) · lx,mi ,lm(τi) · bi,xyz,:

=
(
bi,xyz,:

)T · rlx,mi ,lm(τi) · bi,xyz,: (122)

Appendix B: Appendix to Evaluation
and Results

This Appendix B gathers extra information and the raw data
of the experiments presented in Section 9.

Figures 29 and 30 graphically represent the total time of
the trajectory tracking computed by the trajectory planner

Fig. 29 Total time of the trajectory tracking computed by the trajectory
planner during the optimization process for the first evaluation path

J Intell Robot Syst (2020) 100:531–574 563

Fig. 30 Total time of the trajectory tracking computed by the trajectory
planner during the optimization process for the second evaluation path

Ta
bl
e
12

To
ta

lt
im

e
of

th
e

tr
aj

ec
to

ry
tr

ac
ki

ng
co

m
pu

te
d

by
th

e
tr

aj
ec

to
ry

pl
an

ne
r

fo
r

th
e

fi
rs

te
va

lu
at

io
n

pa
th

V
el
oc
it
y

S
M
-S

M
-F

F

D
is
ta
nc
e

A
cc

In
a

A
cc

In
a

A
cc

In
a

A
cc

In
a

R
ot
.e
rr
or

δ
ψ

δ
θ

δ
ψ

δ
θ

δ
ψ

δ
θ

δ
ψ

δ
θ

δ
ψ

δ
θ

δ
ψ

δ
θ

δ
ψ

δ
θ

δ
ψ

δ
θ

F
in

#
it.

69
35

37
30

33
19

39
42

35
10

0*
23

9
27

50
17

16

t
(s

)
25

.0
0

24
.9

8
24

.9
9

23
.3

5
20

.9
1

20
.9

0
17

.6
0

17
.3

3
16

.1
1

16
.1

2
14

.9
1

14
.9

3
15

.0
0

14
.8

9
14

.1
8

14
.0

4

1
%

#
it.

51
16

15
27

29
7

34
30

25
12

17
7

19
22

7
8

t
(s

)
25

.1
9

25
.0

6
25

.2
3

23
.5

7
20

.9
4

21
.1

0
17

.6
3

17
.4

8
16

.2
0

16
.2

3
14

.9
2

14
.9

9
15

.1
1

15
.0

0
14

.2
2

14
.0

4

5
%

#
it.

48
6

5
27

26
4

19
8

7
4

17
3

7
6

6
3

t
(s

)
25

.4
1

26
.0

8
26

.2
0

23
.5

7
21

.3
2

21
.9

2
18

.4
1

18
.0

1
16

.6
4

16
.8

6
14

.9
2

15
.4

1
15

.5
8

15
.4

5
14

.3
5

14
.3

7

10
%

#
it.

35
5

3
27

14
3

9
4

4
4

15
3

4
4

5
3

t
(s

)
27

.3
1

24
.4

4
27

.1
2

23
.5

7
22

.8
2

26
.0

5
18

.8
1

18
.7

7
17

.4
2

16
.8

6
16

.3
1

15
.4

1
16

.3
6

16
.1

0
15

.4
4

14
.3

7

In
it

#
it.

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

t
(s

)
51

.9
2

51
.9

2
51

.9
2

51
.9

2
36

.9
8

36
.9

8
36

.9
8

36
.9

8
36

.2
9

36
.2

9
36

.2
9

36
.2

9
34

.8
4

34
.8

4
34

.8
4

34
.8

4

%
im

pr
ov
.

−5
1.

85
-5

1.
88

−5
1.

86
-5

5.
03

−4
3.

45
-4

3.
48

−5
2.

42
-5

3.
12

-5
5.

61
−5

5.
59

-5
8.

93
−5

8.
86

−5
6.

94
-5

7.
28

−5
9.

32
-5

9.
74

T
he

in
iti

al
an

d
fi

na
lv

al
ue

s,
to

ge
th

er
w

ith
th

e
in

te
rm

ed
ia

te
va

lu
es

at
1%

,5
%

an
d

10
%

of
th

e
fi

na
lv

al
ue

ar
e

pr
ov

id
ed

al
on

g
w

ith
th

ei
r

re
qu

ir
ed

nu
m

be
r

of
ite

ra
tio

ns

M
in

im
um

va
lu

es
hi

gh
lig

ht
ed

in
bo

ld

J Intell Robot Syst (2020) 100:531–574564

Ta
bl
e
13

To
ta

lt
im

e
of

th
e

tr
aj

ec
to

ry
tr

ac
ki

ng
co

m
pu

te
d

by
th

e
tr

aj
ec

to
ry

pl
an

ne
r

fo
r

th
e

se
co

nd
ev

al
ua

tio
n

pa
th

V
el

oc
ity

S
M

-S
M

-F
F

D
is

ta
nc

e
A

cc
In

a
A

cc
In

a
A

cc
In

a
A

cc
In

a

R
ot

.e
rr

or
δ
ψ

δ
θ

δ
ψ

δ
θ

δ
ψ

δ
θ

δ
ψ

δ
θ

δ
ψ

δ
θ

δ
ψ

δ
θ

δ
ψ

δ
θ

δ
ψ

δ
θ

F
in

#
it.

75
87

49
55

27
84

54
23

45
46

18
20

23
46

28
16

t
(s

)
25

.5
2

25
.5

9
24

.6
8

24
.2

9
19

.0
7

18
.9

3
18

.4
0

18
.4

4
17

.4
5

18
.5

4
16

.7
5

16
.8

2
16

.7
2

16
.5

7
15

.8
1

15
.8

7

1
%

#
it.

40
39

21
21

13
47

23
8

11
8

9
10

4
9

9
8

t
(s

)
25

.7
6

25
.7

5
24

.8
9

24
.2

9
19

.2
5

19
.0

7
18

.5
2

18
.6

1
17

.6
2

18
.6

7
16

.8
7

16
.9

6
16

.8
0

16
.7

2
15

.9
6

15
.9

7

5
%

#
it.

6
33

7
6

7
16

6
8

8
7

4
8

3
3

4
3

t
(s

)
25

.4
6

26
.4

7
25

.5
4

25
.3

6
19

.3
4

19
.7

9
19

.2
7

18
.6

1
18

.2
1

18
.9

4
17

.3
6

17
.0

3
17

.0
7

17
.3

3
16

.4
7

16
.5

3

10
%

#
it.

4
15

3
4

5
5

3
5

4
3

3
3

3
3

3
3

t
(s

)
27

.7
5

27
.7

4
26

.6
0

25
.9

4
20

.2
2

20
.6

0
20

.2
0

20
.0

3
19

.0
0

20
.1

4
17

.7
7

18
.3

4
17

.0
7

17
.3

3
17

.3
8

16
.5

3

In
it

#
it.

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

t
(s

)
58

.2
8

58
.2

8
58

.2
8

58
.2

8
43

.3
6

43
.3

6
43

.3
6

43
.3

6
42

.3
1

42
.3

1
42

.3
1

42
.3

1
40

.6
3

40
.6

3
40

.6
3

40
.6

3

%
im

pr
ov
.

−5
6.

21
−5

6.
09

−5
7.

65
−5

8.
32

−5
6.

02
−5

6.
34

−5
7.

56
−5

7.
47

−5
8.

76
−5

6.
18

−6
0.

41
−6

0.
25

−5
8.

85
−5

9.
22

−6
1.

09
−6

0.
94

T
he

in
iti

al
an

d
fi

na
lv

al
ue

s,
to

ge
th

er
w

ith
th

e
in

te
rm

ed
ia

te
va

lu
es

at
1%

,5
%

an
d

10
%

of
th

e
fi

na
lv

al
ue

ar
e

pr
ov

id
ed

al
on

g
w

ith
th

ei
r

re
qu

ir
ed

nu
m

be
r

of
ite

ra
tio

ns

M
in

im
um

va
lu

es
hi

gh
lig

ht
ed

in
bo

ld

Table 14 Percentage of the configuration parameters with respect to
their maximum value for the magnitudes of the initial trajectories of
the first evaluation path

Velocity S M-S M-F F

Max. d 0.0 0.0 0.0 0.0

Vel. Lin. 54.02 55.79 49.81 45.90

Ang. 43.61 45.04 40.21 37.05

Acc. Lin. 39.17 42.53 38.50 35.61

Ang. 31.62 34.34 31.08 28.75

Jer. Lin. 31.10 35.50 31.10 30.24

Ang. 25.11 28.66 25.10 24.42

Sna. Lin. 100.0 100.0 83.75 78.04

Ang. 80.73 80.73 67.61 63.00

Cra. Lin. 82.21 100.0 100.0 100.0

Ang. 62.45 78.78 80.73 80.73

Pop Lin. 20.27 28.81 28.88 30.30

Ang. 14.90 21.35 21.94 23.10

Average Lin. 54.46 60.44 55.34 53.35

Ang. 43.00 48.15 44.45 42.83

Total 48.73 54.29 49.89 48.09

ux Min. 28.04 43.24 44.35 46.82

Max. 28.04 43.24 44.35 46.82

uy Min. 23.11 38.13 40.14 42.58

Max. 14.81 21.84 22.19 23.31

uz Min. 5.73 8.82 9.03 9.52

Max. 4.74 7.52 7.88 8.31

uψ Min. 34.55 54.78 57.43 60.59

Max. 9.56 16.06 17.11 18.13

Average 18.57 29.20 30.31 32.01

Average 34.92 42.15 40.06 39.67

Minimum values highlighted in bold

during the optimization process for the first and second
evaluation paths respectively.

Tables 12 and 13 show the summarized information of
the total time of the trajectory tracking computed during the
optimization process of the trajectory planner for the first
and second evaluation paths respectively.

Tables 14 and 15 gather the percentage of the configura-
tion parameters with respect to their maximum value for the
magnitudes of the initial trajectories of the first and second
evaluation paths respectively.

Tables 16 and 17 collect the percentage of the
configuration parameters with respect to their maximum
value for the magnitudes of the planned trajectories of the
first and second evaluation paths respectively.

J Intell Robot Syst (2020) 100:531–574 565

Table 15 Percentage of the
configuration parameters with
respect to their maximum value
for the magnitudes of the initial
trajectories of the second
evaluation path

Velocity S M-S M-F F

Max. d 0.0 0.0 0.0 0.0

Vel. Lin. 56.84 58.71 53.31 49.12

Ang. 41.45 42.81 38.87 35.82

Acc. Lin. 40.53 44.00 40.51 37.47

Ang. 29.55 32.08 29.54 27.32

Jer. Lin. 31.63 36.10 32.17 31.29

Ang. 23.07 26.33 23.46 22.82

Sna. Lin. 100.0 100.0 85.18 79.38

Ang. 72.92 72.92 62.11 57.88

Cra. Lin. 100.0 100.0 100.0 100.0

Ang. 55.45 69.95 72.92 72.92

Pop Lin. 30.53 35.66 35.75 37.51

Ang. 12.92 18.64 19.48 20.44

Average Lin. 59.92 62.41 57.82 55.79

Ang. 39.23 43.79 41.06 39.53

Total 49.57 53.10 49.44 47.66

ux Min. 25.27 41.67 44.70 47.42

Max. 29.23 45.86 47.03 49.64

uy Min. 18.66 28.91 30.62 32.25

Max. 21.73 34.14 36.31 38.23

uz Min. 12.16 15.36 15.74 16.61

Max. 4.48 7.09 7.56 7.97

uψ Min. 32.59 51.65 55.07 58.09

Max. 20.07 31.25 31.98 33.74

Average 20.52 31.99 33.63 35.49

Average 36.15 42.53 41.06 40.76

Minimum values highlighted in bold

J Intell Robot Syst (2020) 100:531–574566

Ta
bl
e
16

Pe
rc

en
ta

ge
of

th
e

co
nf

ig
ur

at
io

n
pa

ra
m

et
er

s
w

ith
re

sp
ec

tt
o

th
ei

r
m

ax
im

um
va

lu
e

fo
r

th
e

m
ag

ni
tu

de
s

of
th

e
pl

an
ne

d
tr

aj
ec

to
ri

es
of

th
e

fi
rs

te
va

lu
at

io
n

pa
th

V
el

oc
ity

S
M

-S
M

-F
F

D
is

ta
nc

e
A

cc
In

a
A

cc
In

a
A

cc
In

a
A

cc
In

a

R
ot

.e
rr

or
δ
ψ

δ
θ

δ
ψ

δ
θ

δ
ψ

δ
θ

δ
ψ

δ
θ

δ
ψ

δ
θ

δ
ψ

δ
θ

δ
ψ

δ
θ

δ
ψ

δ
θ

M
ax
.d

99
.8

9
99

.9
7

57
.5

9
64

.3
0

99
.9

5
99

.7
4

59
.0

5
67

.6
5

99
.9

9
10

0.
0

83
.3

7
71

.4
8

10
0.

0
10

0.
0

65
.3

9
75

.5
6

V
el
.

L
in
.

99
.9

9
10

0.
0

99
.9

9
99

.9
8

10
0.

0
99

.9
9

99
.9

9
10

0.
0

10
0.

0
10

0.
0

99
.9

9
99

.9
9

99
.9

9
99

.9
9

99
.9

9
99

.9
9

A
ng

.
77

.5
9

74
.7

6
76

.2
6

76
.2

7
74

.1
5

74
.9

5
73

.5
1

73
.9

7
83

.8
3

83
.4

3
77

.1
4

73
.9

5
75

.0
4

78
.5

8
73

.3
6

78
.1

6

A
cc
.

L
in
.

98
.3

8
10

0.
0

97
.2

0
95

.8
0

10
0.

0
99

.9
8

10
0.

0
99

.9
9

10
0.

0
10

0.
0

99
.9

9
99

.9
8

99
.8

9
99

.9
9

97
.0

1
99

.3
1

A
ng

.
49

.7
9

33
.0

1
33

.6
3

34
.8

6
33

.8
6

34
.5

1
35

.8
2

33
.1

0
48

.0
8

45
.1

8
35

.5
3

35
.9

5
46

.3
3

44
.7

0
41

.5
3

43
.7

0

Je
r.

L
in
.

53
.7

3
55

.5
9

59
.8

7
61

.5
0

68
.8

9
64

.2
7

57
.3

9
62

.2
9

75
.1

6
74

.7
1

67
.7

9
60

.8
9

86
.6

4
90

.9
0

86
.5

8
63

.9
5

A
ng

.
74

.8
8

29
.6

6
34

.9
0

26
.8

9
46

.1
6

61
.0

3
51

.7
6

47
.7

5
70

.1
2

73
.5

2
45

.1
2

39
.9

0
60

.9
1

60
.4

7
60

.0
8

51
.4

4

Sn
a.

L
in
.

99
.9

8
99

.9
8

99
.9

9
99

.9
4

99
.9

8
99

.8
4

99
.9

9
10

0.
0

99
.9

7
10

0.
0

99
.9

7
99

.9
8

99
.9

7
10

0.
0

99
.9

8
99

.9
8

A
ng

.
91

.3
3

63
.6

2
72

.5
4

72
.1

9
78

.5
0

85
.3

9
96

.1
4

76
.7

7
85

.5
3

98
.3

6
71

.7
2

65
.0

0
98

.9
8

96
.2

9
79

.6
9

82
.3

9

C
ra
.

L
in
.

75
.8

2
74

.4
6

72
.8

5
72

.5
3

10
0.

0
10

0.
0

99
.7

0
95

.4
1

99
.8

9
10

0.
0

99
.7

8
98

.6
7

99
.9

5
10

0.
0

99
.9

9
99

.3
0

A
ng

.
76

.9
2

65
.7

7
57

.4
0

51
.5

5
75

.2
3

78
.0

0
65

.3
0

76
.0

8
92

.2
9

91
.4

6
90

.9
2

75
.0

0
98

.3
3

99
.9

5
90

.8
5

95
.8

3

P
op

L
in
.

20
.7

0
20

.6
3

20
.6

0
17

.1
0

30
.1

1
29

.6
9

37
.8

5
34

.0
5

31
.1

4
29

.2
3

43
.3

8
30

.3
9

30
.4

8
29

.6
6

36
.1

5
52

.7
6

A
ng

.
24

.5
7

28
.8

1
14

.8
7

14
.8

9
19

.0
9

21
.1

2
16

.6
7

21
.9

9
25

.4
7

20
.3

2
26

.0
2

24
.5

0
30

.9
8

34
.3

1
22

.0
5

24
.7

5

A
ve
ra
ge

L
in
.

74
.7

7
75

.4
4

75
.0

8
74

.4
8

83
.1

6
82

.3
0

82
.4

9
81

.9
6

84
.3

6
83

.9
9

85
.1

5
81

.6
5

85
.1

5
86

.7
4

86
.6

2
85

.8
8

A
ng

.
65

.8
5

48
.1

1
48

.2
7

46
.1

1
54

.5
0

59
.1

7
56

.5
3

54
.9

4
67

.5
5

68
.7

1
57

.7
4

52
.3

8
68

.4
3

69
.0

5
61

.2
6

62
.7

1

To
ta
l

70
.3

1
61

.7
7

61
.6

7
60

.2
9

68
.8

3
70

.7
3

69
.5

1
68

.4
5

75
.9

6
76

.3
5

71
.4

5
67

.0
2

76
.7

9
77

.9
0

73
.9

4
74

.3
0

u x
M
in
.

51
.8

4
61

.2
4

58
.9

5
52

.6
2

93
.3

0
93

.5
9

89
.1

3
91

.8
1

99
.9

1
10

0.
0

99
.9

3
99

.9
7

10
0.

0
10

0.
0

99
.9

9
10

0.
0

M
ax
.

52
.6

5
53

.2
6

54
.4

8
54

.3
9

83
.3

7
83

.3
8

84
.1

3
89

.3
2

96
.0

4
98

.1
4

99
.6

8
99

.9
9

99
.9

8
10

0.
0

10
0.

0
99

.9
8

u y
M
in
.

50
.4

2
50

.6
1

51
.3

0
51

.5
2

78
.0

6
78

.0
1

84
.2

5
80

.6
0

95
.4

3
96

.9
4

98
.7

2
99

.7
8

99
.9

9
99

.9
6

99
.9

8
99

.8
2

M
ax
.

30
.6

3
30

.2
7

30
.8

6
34

.5
1

41
.7

9
41

.3
5

58
.8

6
53

.8
6

47
.5

6
46

.3
1

70
.1

2
69

.1
6

63
.7

9
61

.6
2

82
.9

8
67

.1
9

u z
M
in
.

11
.2

1
10

.9
5

6.
75

10
.6

6
16

.7
8

16
.8

5
12

.1
1

13
.8

1
20

.1
1

19
.9

4
19

.9
7

19
.8

5
22

.0
7

22
.6

9
20

.8
1

22
.3

8

M
ax
.

7.
22

7.
40

9.
64

12
.5

9
12

.2
2

12
.0

6
13

.6
8

10
.5

0
14

.2
9

14
.3

5
13

.4
1

13
.6

6
15

.3
2

15
.1

3
17

.0
4

17
.7

3

u ψ
M
in
.

54
.0

1
50

.7
8

47
.3

1
46

.7
3

79
.2

4
80

.8
8

72
.1

0
76

.7
2

99
.9

4
99

.9
3

93
.9

7
81

.4
8

99
.9

5
99

.9
9

99
.9

7
97

.1
7

M
ax
.

10
.9

6
8.

06
7.

28
8.

43
13

.6
8

13
.9

8
11

.6
8

13
.1

7
17

.1
4

21
.8

1
14

.5
3

15
.2

6
16

.4
5

14
.2

5
17

.2
8

17
.2

9

A
ve
ra
ge

33
.6

2
30

.0
7

33
.3

2
33

.9
3

52
.3

1
52

.5
1

53
.2

4
53

.7
2

61
.3

0
62

.1
8

63
.7

9
62

.3
9

64
.6

9
64

.2
1

67
.2

6
65

.2
0

A
ve
ra
ge

57
.7

4
53

.0
4

50
.6

8
50

.4
4

64
.0

2
65

.1
7

62
.8

1
62

.8
0

71
.5

2
72

.0
8

69
.1

0
65

.4
7

73
.2

9
73

.7
3

70
.9

9
70

.8
9

M
in

im
um

va
lu

es
hi

gh
lig

ht
ed

in
bo

ld

J Intell Robot Syst (2020) 100:531–574 567

Ta
bl
e
17

Pe
rc

en
ta

ge
of

th
e

co
nf

ig
ur

at
io

n
pa

ra
m

et
er

s
w

ith
re

sp
ec

tt
o

th
ei

r
m

ax
im

um
va

lu
e

fo
r

th
e

m
ag

ni
tu

de
s

of
th

e
pl

an
ne

d
tr

aj
ec

to
ri

es
of

th
e

se
co

nd
ev

al
ua

tio
n

pa
th

V
el

oc
ity

S
M

-S
M

-F
F

D
is

ta
nc

e
A

cc
In

a
A

cc
In

a
A

cc
In

a
A

cc
In

a

R
ot

.e
rr

or
δ
ψ

δ
θ

δ
ψ

δ
θ

δ
ψ

δ
θ

δ
ψ

δ
θ

δ
ψ

δ
θ

δ
ψ

δ
θ

δ
ψ

δ
θ

δ
ψ

δ
θ

M
ax
.d

99
.9

8
99

.9
9

72
.0

8
66

.0
2

99
.9

8
99

.9
9

79
.4

1
48

.2
5

10
0.

0
99

.9
9

10
0.

0
98

.3
3

10
0.

0
10

0.
0

50
.0

7
48

.3
9

V
el
.

L
in
.

10
0.

0
10

0.
0

10
0.

0
10

0.
0

99
.9

7
10

0.
0

99
.9

9
10

0.
0

10
0.

0
10

0.
0

10
0.

0
99

.9
9

99
.9

9
99

.9
9

99
.9

6
10

0.
0

A
ng

.
70

.8
9

70
.5

2
72

.1
7

69
.8

0
69

.3
1

72
.1

2
70

.1
8

72
.1

2
68

.2
3

69
.5

1
68

.8
4

68
.5

0
72

.2
4

65
.8

0
68

.8
9

73
.7

2

A
cc
.

L
in
.

10
0.

0
99

.9
7

99
.9

8
99

.9
8

10
0.

0
10

0.
0

99
.9

9
99

.9
6

99
.9

9
10

0.
0

99
.9

9
99

.9
9

99
.9

9
99

.6
8

99
.9

4
99

.9
9

A
ng

.
69

.0
9

66
.6

2
67

.9
4

67
.7

0
66

.8
4

68
.4

8
70

.2
3

66
.1

5
64

.7
9

63
.5

7
67

.2
7

64
.2

6
63

.0
8

57
.5

4
55

.9
1

66
.0

4

Je
r.

L
in
.

54
.8

3
54

.5
7

70
.0

0
57

.1
3

65
.9

0
58

.4
6

72
.3

5
85

.9
6

68
.5

1
98

.1
3

83
.0

8
86

.4
2

73
.4

5
66

.2
1

72
.9

2
92

.1
6

A
ng

.
41

.6
5

41
.8

1
43

.1
9

41
.4

5
54

.3
4

54
.3

5
44

.0
3

39
.8

7
52

.8
8

53
.8

2
38

.4
3

38
.2

4
73

.1
0

44
.8

2
41

.1
5

54
.1

4

Sn
a.

L
in
.

99
.9

9
99

.9
9

99
.9

6
99

.9
6

99
.9

8
10

0.
0

99
.9

8
99

.9
9

10
0.

0
99

.9
7

99
.9

9
10

0.
0

10
0.

0
99

.9
9

99
.9

8
99

.9
8

A
ng

.
99

.8
6

97
.2

5
98

.6
8

99
.0

9
92

.5
7

81
.9

4
89

.9
3

99
.9

8
86

.2
2

86
.1

3
89

.2
0

77
.2

1
99

.9
5

90
.9

0
99

.5
3

99
.9

8

C
ra
.

L
in
.

86
.4

9
92

.0
7

94
.6

7
72

.9
5

99
.9

6
99

.9
5

99
.9

9
99

.0
9

10
0.

0
99

.9
8

99
.9

9
99

.9
9

99
.9

9
99

.9
9

99
.9

6
99

.9
8

A
ng

.
91

.4
8

57
.0

3
68

.9
9

99
.2

6
91

.6
9

97
.7

4
79

.8
9

99
.7

4
99

.9
4

99
.9

6
97

.9
1

88
.5

3
99

.8
3

99
.8

1
99

.3
6

99
.9

7

P
op

L
in
.

28
.4

2
25

.6
4

41
.0

0
23

.4
2

33
.9

1
33

.8
7

47
.6

8
34

.1
0

35
.3

6
33

.8
2

38
.5

5
42

.8
0

39
.7

3
35

.0
0

39
.5

7
35

.4
6

A
ng

.
28

.4
0

18
.2

7
18

.1
3

31
.2

2
20

.1
0

19
.9

1
22

.6
0

45
.6

8
30

.0
3

32
.8

7
40

.0
5

24
.1

3
30

.3
0

37
.5

6
44

.6
4

43
.8

0

A
ve
ra
ge

L
in
.

78
.2

9
78

.7
1

84
.2

7
75

.5
7

83
.2

9
82

.0
5

86
.6

6
86

.5
2

83
.9

8
88

.6
5

86
.9

3
88

.2
0

85
.5

1
83

.4
8

85
.3

9
87

.9
3

A
ng

.
66

.9
0

58
.5

8
61

.5
2

68
.0

9
65

.8
1

67
.7

6
62

.8
1

70
.5

9
67

.0
2

67
.6

4
66

.9
5

60
.1

5
73

.0
8

65
.9

2
66

.2
5

72
.9

4

To
ta
l

72
.5

9
68

.6
5

72
.8

9
71

.8
3

74
.5

5
73

.9
0

74
.7

4
78

.5
5

75
.5

0
78

.1
5

76
.9

4
74

.1
7

79
.3

0
74

.7
0

76
.8

2
80

.4
4

u x
M
in
.

53
.4

4
50

.8
3

50
.2

0
54

.2
8

80
.2

0
77

.0
0

79
.2

1
83

.8
1

94
.4

3
96

.9
3

95
.0

8
98

.5
5

99
.9

9
99

.8
7

99
.9

2
99

.9
7

M
ax
.

63
.3

4
63

.2
9

61
.6

4
62

.0
4

96
.5

5
96

.6
6

96
.0

4
81

.9
5

10
0.

0
10

0.
0

10
0.

0
99

.9
3

99
.7

8
99

.9
9

99
.9

8
99

.9
7

u y
M
in
.

32
.9

1
32

.8
9

44
.7

7
34

.6
8

49
.3

5
49

.3
7

53
.3

0
49

.4
9

56
.5

6
57

.1
7

81
.7

6
76

.6
5

64
.4

5
61

.0
8

63
.3

1
64

.8
6

M
ax
.

50
.2

7
50

.1
3

46
.7

7
53

.1
6

80
.3

5
83

.0
0

83
.2

2
76

.6
9

94
.5

3
75

.8
6

89
.1

6
87

.9
3

98
.4

8
96

.8
7

90
.9

6
87

.5
5

u z
M
in
.

26
.6

7
26

.2
7

30
.3

9
28

.3
3

32
.8

2
33

.6
4

32
.9

5
19

.9
4

36
.1

5
35

.7
8

29
.0

8
41

.6
6

36
.0

8
35

.9
6

40
.1

0
43

.2
9

M
ax
.

6.
87

6.
84

9.
58

8.
03

10
.3

7
10

.7
6

10
.3

6
14

.7
8

12
.5

5
11

.9
6

12
.5

5
13

.7
3

13
.9

0
14

.1
8

13
.6

1
25

.9
3

u ψ
M
in
.

53
.8

6
57

.5
6

59
.0

5
48

.7
8

80
.9

8
88

.5
0

86
.1

8
86

.6
3

98
.7

0
97

.2
3

98
.2

0
97

.3
3

99
.2

0
99

.8
0

99
.6

8
98

.5
8

M
ax
.

40
.9

7
40

.6
9

42
.6

9
42

.3
7

59
.0

6
55

.4
5

61
.2

6
61

.7
8

82
.7

8
91

.3
1

86
.7

8
78

.5
2

99
.6

8
72

.3
1

77
.0

3
75

.0
0

A
ve
ra
ge

41
.0

4
41

.0
6

43
.1

4
41

.4
6

61
.2

1
61

.8
0

62
.8

2
61

.8
8

71
.9

6
70

.7
8

74
.0

8
74

.2
9

76
.4

5
72

.5
1

73
.0

7
74

.3
9

A
ve
ra
ge

61
.8

8
59

.6
3

61
.5

2
59

.9
8

70
.6

8
70

.5
3

70
.4

2
70

.7
6

75
.3

2
76

.3
8

76
.9

5
75

.3
7

79
.2

0
75

.0
7

74
.1

2
76

.6
1

M
in

im
um

va
lu

es
hi

gh
lig

ht
ed

in
bo

ld

J Intell Robot Syst (2020) 100:531–574568

Ta
bl
e
18

Pe
rc

en
ta

ge
of

th
e

en
er

gy
(8

8)
of

th
e

pl
an

ne
d

tr
aj

ec
to

ry
m

ag
ni

tu
de

s
w

ith
re

sp
ec

tt
o

th
e

in
iti

al
tr

aj
ec

to
ri

es
of

th
e

fi
rs

te
va

lu
at

io
n

pa
th

V
el

oc
ity

S
M

-S
M

-F
F

D
is

ta
nc

e
A

cc
In

a
A

cc
In

a
A

cc
In

a
A

cc
In

a

R
ot

.e
rr

or
δ
ψ

δ
θ

δ
ψ

δ
θ

δ
ψ

δ
θ

δ
ψ

δ
θ

δ
ψ

δ
θ

δ
ψ

δ
θ

δ
ψ

δ
θ

δ
ψ

δ
θ

V
el
.

L
in
.

95
.5

6
10

8.
59

21
.3

9
94

.0
2

80
.8

3
70

.0
7

13
.3

1
18

.3
3

47
.7

9
40

.7
4

52
.9

4
45

.4
3

10
9.

55
12

4.
24

13
1.

93
16

4.
41

A
ng

.
90

.8
2

88
.6

7
91

.5
4

99
.0

4
70

.5
0

71
.4

8
84

.7
3

86
.5

5
10

1.
66

10
2.

85
11

2.
97

11
2.

33
11

2.
00

11
5.

45
11

7.
05

12
0.

22

A
cc
.

L
in
.

31
.9

8
40

.4
3

−1
1.

93
30

.9
1

27
.0

5
23

.4
7

−1
6.

62
−1

0.
21

9.
13

4.
47

9.
15

6.
39

42
.0

0
47

.3
0

50
.3

8
75

.5
3

A
ng

.
27

.1
1

−2
5.

63
−3

9.
10

−3
9.

66
−3

.0
1

14
.2

9
−3

4.
42

−3
5.

44
52

.1
3

70
.8

4
−7

.7
5

−1
.4

8
75

.1
7

90
.2

9
40

.7
7

45
.0

0

Je
r.

L
in
.

−9
.3

6
−4

.9
0

−3
3.

49
−9

.9
8

−9
.4

2
−1

1.
28

−3
7.

31
−3

0.
77

−2
0.

17
−2

3.
25

−2
2.

61
−2

2.
79

−3
.5

8
−3

.3
0

−3
.2

0
14

.6
7

A
ng

.
44

.9
6

−3
4.

10
−4

0.
39

−5
1.

61
3.

07
33

.1
3

−2
2.

79
−2

7.
86

77
.4

7
10

3.
85

1.
32

13
.2

7
12

5.
84

16
1.

02
63

.4
9

61
.9

7

Sn
a.

L
in
.

−2
7.

65
−2

6.
13

−4
1.

13
−2

7.
86

−2
5.

17
−2

5.
90

−4
4.

56
−3

7.
70

−3
1.

93
−3

4.
21

−3
6.

23
−3

5.
11

−2
1.

97
−2

3.
71

−2
6.

12
−1

3.
78

A
ng

.
16

.7
4

−4
3.

41
−4

7.
75

−5
5.

90
−1

5.
48

14
.9

8
−2

5.
66

−2
7.

86
48

.4
8

72
.5

9
−1

3.
27

1.
36

10
8.

21
14

7.
64

38
.9

2
39

.7
9

C
ra
.

L
in
.

−2
9.

62
−2

9.
97

−3
6.

70
−2

9.
37

−2
6.

49
−2

6.
50

−4
0.

18
−3

3.
32

−3
0.

60
−3

2.
21

−3
6.

40
−3

4.
39

−2
4.

25
−2

6.
19

−3
0.

15
−2

3.
23

A
ng

.
−3

1.
63

−4
9.

98
−5

7.
66

−6
0.

43
−4

0.
92

−3
4.

49
−5

2.
87

−4
9.

84
−1

7.
51

−2
1.

85
−4

0.
75

−3
2.

45
−4

.6
4

13
.1

1
−3

3.
18

−2
4.

31

P
op

L
in
.

−1
8.

29
−1

8.
95

−1
9.

70
−1

7.
00

−1
6.

43
−1

6.
23

−2
2.

71
− 1

8.
58

−1
8.

79
−1

9.
50

−2
2.

11
−2

0.
16

−1
6.

68
−1

7.
58

−1
9.

39
−1

7.
40

A
ng

.
−2

8.
16

−3
8.

42
−4

8.
82

−5
1.

17
−3

7.
99

−4
0.

87
−5

7.
01

−4
6.

44
−2

8.
70

−4
2.

73
−3

7.
60

−3
0.

58
−2

4.
61

−9
.7

6
−4

9.
47

−4
2.

78

A
ve
ra
ge
.

L
in
.

7.
10

11
.5

1
−2

0.
26

6.
79

5.
06

3.
10

−2
4.

68
−1

8.
58

−7
.4

3
−1

0.
66

−9
.2

1
−1

0.
10

14
.1

8
16

.7
9

17
.2

4
33

.3
7

A
ng

.
19

.9
7

−1
7.

15
−2

3.
90

−2
6.

62
−3

.9
7

9.
75

−1
8.

00
−1

6.
47

38
.9

2
47

.5
9

2.
49

10
.4

1
65

.3
3

86
.2

9
29

.6
0

33
.3

2

To
ta
l

13
.5

4
−2

.8
2

−2
1.

98
−9

.9
2

0.
54

6.
43

−2
1.

34
−1

7.
53

15
.7

5
18

.4
7

−3
.3

6
0.

15
39

.7
5

51
.5

4
23

.4
2

33
.3

4

M
in

im
um

va
lu

es
hi

gh
lig

ht
ed

in
bo

ld

J Intell Robot Syst (2020) 100:531–574 569

Ta
bl
e
19

Pe
rc

en
ta

ge
of

th
e

en
er

gy
(8

8)
of

th
e

pl
an

ne
d

tr
aj

ec
to

ry
m

ag
ni

tu
de

s
w

ith
re

sp
ec

tt
o

th
e

in
iti

al
tr

aj
ec

to
ri

es
of

th
e

se
co

nd
ev

al
ua

tio
n

pa
th

.1

V
el

oc
ity

S
M

-S
M

-F
F

D
is

ta
nc

e
A

cc
In

a
A

cc
In

a
A

cc
In

a
A

cc
In

a

R
ot

.e
rr

or
δ
ψ

δ
θ

δ
ψ

δ
θ

δ
ψ

δ
θ

δ
ψ

δ
θ

δ
ψ

δ
θ

δ
ψ

δ
θ

δ
ψ

δ
θ

δ
ψ

δ
θ

V
el
.

L
in
.

20
.5

5
20

.7
6

41
.8

1
33

.1
0

−5
6.

58
−5

6.
90

−5
3.

43
−3

6.
49

−6
3.

76
−6

3.
46

−5
8.

96
−5

6.
18

−4
7.

86
−6

1.
74

−5
3.

11
−5

1.
46

A
ng

.
99

.4
4

98
.3

8
10

3.
79

10
5.

84
88

.8
0

90
.0

9
94

.4
3

91
.5

0
10

7.
07

99
.0

4
10

6.
90

10
3.

53
11

9.
61

11
0.

32
11

0.
82

11
6.

58

A
cc
.

L
in
.

−8
.5

1
−8

.3
7

11
.7

3
4.

08
−5

8.
29

−5
9.

03
−5

1.
63

−4
0.

29
−6

1.
38

−6
1.

64
−5

7.
52

−5
3.

50
−4

5.
30

−5
7.

47
−4

9.
80

−4
9.

06

A
ng

.
30

1.
02

26
9.

69
27

6.
25

25
4.

63
23

8.
23

23
6.

64
23

7.
77

24
5.

18
31

1.
18

32
6.

98
31

1.
81

27
7.

25
37

8.
35

29
5.

10
28

7.
71

35
5.

58

Je
r.

L
in
.

−2
9.

24
−2

9.
03

−1
2.

19
−1

8.
02

−5
8.

96
−6

0.
16

−5
0.

50
−4

4.
42

−5
9.

18
−6

0.
03

−5
6.

76
−5

2.
28

−4
5.

40
−5

4.
46

−4
9.

16
−4

8.
70

A
ng

.
16

1.
73

12
9.

07
14

0.
28

10
5.

14
11

5.
83

10
9.

98
11

0.
28

11
8.

82
16

3.
40

19
6.

05
10

6.
69

12
9.

43
24

9.
53

16
3.

07
14

4.
39

24
3.

85

Sn
a.

L
in
.

−3
7.

63
−3

7.
37

−2
4.

86
−2

8.
50

−5
4.

53
−5

6.
10

−4
6.

17
−4

3.
95

−5
2.

95
−5

3.
97

−5
2.

31
−4

7.
89

−4
2.

28
−4

8.
51

−4
6.

11
−4

5.
45

A
ng

.
74

.1
3

42
.3

3
73

.1
7

48
.4

4
53

.0
2

44
.0

1
43

.8
1

58
.8

3
88

.0
8

99
.9

8
85

.1
3

59
.5

4
21

9.
53

98
.6

1
11

2.
65

22
3.

44

C
ra
.

L
in
.

−3
5.

17
−3

5.
31

−2
8.

78
−2

9.
55

−4
3.

88
−4

5.
37

−3
8.

61
−3

8.
77

−4
2.

30
−4

1.
91

−4
3.

32
−4

0.
32

−3
6.

09
−3

9.
11

−4
0.

23
−3

9.
09

A
ng

.
−4

.9
0

−2
8.

08
−1

1.
86

4.
75

−8
.8

1
−1

2.
87

−9
.9

1
14

.5
3

−6
.1

5
1.

75
29

.7
8

2.
53

91
.0

3
17

.9
4

60
.1

1
81

.0
2

P
op

.
L
in
.

−2
0.

33
−2

1.
98

−2
1.

61
−1

8.
59

−2
4.

54
−2

5.
19

−2
3.

46
−2

4.
48

−2
5.

89
−2

1.
60

−2
5.

47
−2

5.
09

−2
3.

24
−2

4.
73

−2
6.

09
−2

5.
28

A
ng

.
−2

3.
77

−5
2.

59
−4

2.
51

13
.4

8
−4

9.
96

−4
2.

79
−2

8.
25

1.
73

−2
1.

35
−1

5.
98

2.
27

−2
5.

78
−1

0.
36

−8
.5

3
−1

4.
27

−2
.9

3

A
ve
ra
ge

L
in
.

−1
8.

39
−1

8.
55

−5
.6

5
−9

.5
8

−4
9.

46
−5

0.
46

−4
3.

97
−3

8.
07

−5
0.

91
−5

0.
44

−4
9.

06
−4

5.
88

−4
0.

03
−4

7.
67

−4
4.

08
−4

3.
17

A
ng

.
10

1.
27

76
.4

7
89

.8
5

88
.7

1
72

.8
5

70
.8

4
74

.6
9

88
.4

3
10

7.
04

11
7.

97
11

6.
26

91
.0

8
−1

0.
36

11
2.

75
11

6.
90

16
9.

59

To
ta
l

41
.4

4
28

.9
6

42
.1

0
39

.5
7

11
.6

9
10

.1
9

15
.3

6
25

.1
8

28
.0

6
33

.7
7

33
.6

0
22

.6
0

67
.2

9
32

.5
4

36
.4

1
63

.2
1

M
in

im
um

va
lu

es
hi

gh
lig

ht
ed

in
bo

ld

J Intell Robot Syst (2020) 100:531–574570

Ta
bl
e
20

Pe
rc

en
ta

ge
of

th
e

en
er

gy
(8

8)
of

th
e

pl
an

ne
d

co
nt

ro
lc

om
m

an
ds

re
fe

re
nc

es
w

ith
re

sp
ec

tt
o

th
e

in
iti

al
tr

aj
ec

to
ri

es
of

th
e

fi
rs

te
va

lu
at

io
n

pa
th

V
el

oc
ity

S
M

-S
M

-F
F

D
is

ta
nc

e
A

cc
In

a
A

cc
In

a
A

cc
In

a
A

cc
In

a

R
ot

.e
rr

or
δ
ψ

δ
θ

δ
ψ

δ
θ

δ
ψ

δ
θ

δ
ψ

δ
θ

δ
ψ

δ
θ

δ
ψ

δ
θ

δ
ψ

δ
θ

δ
ψ

δ
θ

u x
17

5.
62

17
4.

73
16

5.
22

17
9.

56
16

6.
21

16
4.

01
16

2.
92

16
4.

52
24

9.
86

25
5.

51
23

0.
76

23
1.

95
27

5.
94

26
0.

18
25

2.
08

26
8.

09

u y
10

7.
11

11
1.

35
11

6.
73

13
2.

96
10

9.
18

10
8.

19
15

7.
03

16
3.

87
18

0.
56

17
8.

77
24

3.
17

23
0.

55
22

9.
41

27
6.

93
27

7.
13

24
1.

83

u z
98

.0
8

10
1.

83
73

.1
8

13
5.

52
99

.8
5

99
.9

0
84

.8
3

87
.5

0
13

6.
25

13
4.

46
13

4.
00

13
2.

46
14

7.
92

15
1.

39
14

6.
34

14
9.

35

u ψ
85

.3
9

78
.6

6
80

.0
8

86
.9

9
60

.9
4

64
.1

9
69

.0
6

70
.5

3
94

.8
2

98
.8

7
96

.3
0

96
.4

5
10

7.
85

11
2.

89
10

6.
78

11
0.

49

A
ve
ra
ge

11
6.

55
11

6.
64

10
8.

80
13

3.
76

10
9.

05
10

9.
07

11
8.

46
12

1.
60

16
5.

37
16

6.
90

17
6.

06
17

2.
85

19
0.

28
20

0.
35

19
5.

58
19

2.
44

M
in

im
um

va
lu

es
hi

gh
lig

ht
ed

in
bo

ld

Ta
bl
e
21

Pe
rc

en
ta

ge
of

th
e

en
er

gy
(8

8)
of

th
e

pl
an

ne
d

co
nt

ro
lc

om
m

an
ds

re
fe

re
nc

es
w

ith
re

sp
ec

tt
o

th
e

in
iti

al
tr

aj
ec

to
ri

es
of

th
e

se
co

nd
ev

al
ua

tio
n

pa
th

V
el

oc
ity

S
M

-S
M

-F
F

D
is

ta
nc

e
A

cc
In

a
A

cc
In

a
A

cc
In

a
A

cc
In

a

R
ot

.e
rr

or
δ
ψ

δ
θ

δ
ψ

δ
θ

δ
ψ

δ
θ

δ
ψ

δ
θ

δ
ψ

δ
θ

δ
ψ

δ
θ

δ
ψ

δ
θ

δ
ψ

δ
θ

u x
14

7.
79

14
8.

37
15

2.
67

15
8.

62
15

6.
47

15
3.

91
16

2.
88

15
3.

47
19

9.
24

20
0.

04
19

9.
60

20
0.

57
20

3.
14

21
3.

85
22

8.
97

21
7.

44

u y
15

3.
62

15
1.

01
17

6.
79

17
8.

36
15

4.
70

16
2.

46
18

4.
98

15
4.

70
19

1.
07

15
6.

12
24

1.
57

22
8.

88
20

2.
21

21
6.

13
19

2.
50

20
5.

35

u z
15

4.
18

15
1.

52
24

8.
43

22
5.

39
14

6.
94

15
0.

90
20

0.
95

28
1.

30
16

1.
77

15
9.

86
15

5.
77

29
1.

54
16

1.
48

15
3.

24
24

1.
26

33
9.

86

u ψ
11

8.
62

11
4.

68
12

0.
21

12
0.

15
11

0.
28

11
0.

84
11

4.
57

11
3.

30
13

6.
80

13
1.

99
13

6.
82

12
8.

96
15

9.
08

13
9.

20
13

8.
35

15
3.

77

A
ve
ra
ge

14
3.

55
14

1.
39

17
4.

53
17

0.
63

14
2.

10
14

4.
53

16
5.

84
17

5.
69

17
2.

22
16

2.
00

18
3.

44
21

2.
49

18
1.

48
18

0.
61

20
0.

27
22

9.
11

M
in

im
um

va
lu

es
hi

gh
lig

ht
ed

in
bo

ld

J Intell Robot Syst (2020) 100:531–574 571

Tables 18 and 19 display the percentage of the
energy (computed with Eq. 88) of the planned trajectory
magnitudes with respect to the initial trajectories of the first
and second evaluation paths respectively.

Tables 20 and 21 show the percentage of the energy (88)
of the planned control commands references with respect
to the initial trajectories of the first and second evaluation
paths respectively.

References

1. Achtelik, M.W., Lynen, S., Chli, M., Siegwart, R.: Inversion
Based Direct Position Control and Trajectory Following for Micro
Aerial Vehicles. In: 2013 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pp. 2933–2939 (2013).
https://doi.org/10.1109/IROS.2013.CR1

2. Achtelik, M.W., Lynen, S., Chli, M., Siegwart, R.: Inversion
Based Direct Position Control and Trajectory Following for Micro
Aerial Vehicles. In: 2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pp. 2933–2939. IEEE (2013)

3. Aguiar, A.P., Hespanha, J.P.: Trajectory-tracking and path-
following of underactuated autonomous vehicles with parametric
modeling uncertainty. IEEE Trans. Autom. Control 52(8), 1362–
1379 (2007). https://doi.org/10.1109/TAC.2007.902731

4. Alvarenga, J., Vitzilaios, N.I., Valavanis, K.P., Rutherford, M.J.:
Survey of unmanned helicopter model-based navigation and
control techniques. J. Intell. Robot. Syst. 80(1), 87–138 (2015).
https://doi.org/10.1007/s10846-014-0143-5

5. Beul, M., Behnke, S.: Analytical Time-Optimal Trajectory
Generation and Control for Multirotors. In: 2016 International
Conference on Unmanned Aircraft Systems (ICUAS), pp. 87–96
(2016). https://doi.org/10.1109/ICUAS.2016.7502532

6. Beul, M., Behnke, S.: Fast Full State Trajectory Genera-
tion for Multirotors. In: 2017 International Conference on
Unmanned Aircraft Systems (ICUAS), pp. 408–416 (2017).
10.1109/ICUAS.2017.7991304

7. Boeuf, A., Cortés, J., Alami, R., Siméon, T.: Planning Agile
Motions for Quadrotors in Constrained Environments. In: 2014
IEEE/RSJ International Conference on Intelligent Robots and
Systems, pp. 218–223 (2014). https://doi.org/10.1109/IROS.2014.
6942564

8. Brescianini, D., D’Andrea, R.: Computationally efficient trajec-
tory generation for fully actuated multirotor vehicles. IEEE Trans.
Robot. 34(3), 555–571 (2018). https://doi.org/10.1109/TRO.2018.
2813373

9. Carrio, A., Pestana, J., Sanchez-Lopez, J.L., Suarez-Fernandez,
R., Campoy, P., Tendero, R., Garcı́a-De-Viedma, M., González-
Rodrigo, B., Bonatti, J., Rejas-Ayuga, J.G., Martı́nez-Marı́n, R.,
Marchamalo-Sacristán, M.: UBRISTES: UAV-Based Building
Rehabilitation with Visible and Thermal Infrared Remote Sensing,
pp. 245–256. Springer International Publishing, Cham (2016)

10. Castillo-Lopez, M., Olivares-Mendez, M.A., Voos, H.: Evasive
Maneuvering for Uavs: an Mpc Approach. In: Ollero, A., Sanfeliu,
A., Montano, L., Lau, N., Cardeira, C. (eds.) ROBOT 2017: Third
Iberian Robotics Conference, pp. 829–840. Springer International
Publishing, Cham (2018)

11. Chen, H., Wang, X., Li, Y.: A Survey of Autonomous Control for
Uav. In: 2009 International Conference on Artificial Intelligence
and Computational Intelligence, vol. 2, pp. 267–271 (2009).
https://doi.org/10.1109/AICI.2009.147

12. Consolini, L., Locatelli, M., Minari, A., Piazzi, A.: An opti-
mal complexity algorithm for minimum-time velocity planning,
vol. 103, pp. 50–57 (2017). https://doi.org/10.1016/j.sysconle.
2017.02.001. http://www.sciencedirect.com/science/article/pii/
S0167691117300245

13. Diebel, J.: Representing attitude: Euler angles, unit quaternions
and rotation vectors (2006)

14. Diehl, M., Ferreau, H.J., Haverbeke, N.: Efficient Numerical
Methods for Nonlinear Mpc and Moving Horizon Estimation.
In: Nonlinear Model Predictive Control, pp. 391–417. Springer
(2009)

15. collab=Dvořák, J., de Lellis, M., Hurák, Z.: Advanced Control of
Quadrotor Using Eigenaxis Rotation. In: 2011 IEEE International
Conference on Control Applications (CCA), pp. 153–158. IEEE
(2011)

16. Ezair, B., Tassa, T., Shiller, Z.: Planning high order tra-
jectories with general initial and final conditions and asym-
metric bounds. Int. J. Robot. Res. 33(6), 898–916 (2014).
https://doi.org/10.1177/0278364913517148

17. Faessler, M., Franchi, A., Scaramuzza, D.: Differential flatness
of quadrotor dynamics subject to rotor drag for accurate tracking
of high-speed trajectories. IEEE Robot. Autom. Letters 3(2),
620–626 (2018). https://doi.org/10.1109/LRA.2017.2776353

18. Falanga, D., Foehn, P., Lu, P., Scaramuzza, D.: Pampc: Perception-
aware Model Predictive Control for Quadrotors. In: 2018
IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 1–8. IEEE (2018)

19. Goerzen, C., Kong, Z., Mettler, B.: A survey of motion planning
algorithms from the perspective of autonomous uav guidance. J.
Intell. Robot. Syst. 57(1), 65 (2009). 10.1007/s10846-009-9383-1

20. Hamilton, W.R. In: Hamilton, W.E. (ed.): Elements of Quaternions
https://doi.org/10.1017/CBO9780511707162, Cambridge Library
Collection - Mathematics. Cambridge University Press, Cam-
bridge (2010)

21. Haschke, R., Weitnauer, E., Ritter, H.: On-Line Planning of
Time-Optimal, Jerk-Limited Trajectories. In: 2008 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pp.
3248–3253 (2008). 10.1109/IROS.2008.4650924

22. Hauser, K., Ng-Thow-Hing, V.: Fast Smoothing of Manipulator
Trajectories Using Optimal Bounded-Acceleration Shortcuts. In:
2010 IEEE International Conference on Robotics and Automation,
pp. 2493–2498 (2010). https://doi.org/10.1109/ROBOT.2010.
5509683

23. Hönig, W., Preiss, J.A., Kumar, T.K.S., Sukhatme, G.S., Ayanian,
N.: Trajectory planning for quadrotor swarms. IEEE Trans.
Robot. 34(4), 856–869 (2018). https://doi.org/10.1109/TRO.2018.
2853613

24. Horn, B.K.: Closed-form solution of absolute orientation using
unit quaternions. Josa a 4(4), 629–642 (1987)

25. Houska, B. et al.: ACADO Toolkit – an open source framework
for automatic control and dynamic optimization optimal control
applications and methods (2011)

26. Judd, K.B., McLain, T.W.: Spline Based Path Planning for
Unmanned Air Vehicles. In: AIAA Guidance, Navigation, and
Control Conference and Exhibit, vol. 9. Montreal, Canada (2001)

27. Jung, D., Tsiotras, P.: On-Line Path Generation for Small
Unmanned Aerial Vehicles Using B-Spline Path Templates. In:
AIAA Guidance, Navigation and Control Conference, IEEE,
vol. 7135 (2008)

28. Kamel, M., Alexis, K., Achtelik, M., Siegwart, R.: Fast Nonlinear
Model Predictive Control for Multicopter Attitude Tracking on So
(3). In: 2015 IEEE Conference on Control Applications (CCA),
pp. 1160–1166. IEEE (2015)

J Intell Robot Syst (2020) 100:531–574572

https://doi.org/10.1109/IROS.2013.CR1
https://doi.org/10.1109/TAC.2007.902731
https://doi.org/10.1007/s10846-014-0143-5
https://doi.org/10.1109/ICUAS.2016.7502532
https://doi.org/10.1109/IROS.2014.6942564
https://doi.org/10.1109/IROS.2014.6942564
https://doi.org/10.1109/TRO.2018.2813373
https://doi.org/10.1109/TRO.2018.2813373
https://doi.org/10.1109/AICI.2009.147
https://doi.org/10.1016/j.sysconle.2017.02.001
https://doi.org/10.1016/j.sysconle.2017.02.001
http://www.sciencedirect.com/science/article/pii/S0167691117300245
http://www.sciencedirect.com/science/article/pii/S0167691117300245
https://doi.org/10.1177/0278364913517148
https://doi.org/10.1109/LRA.2017.2776353
https://doi.org/10.1017/CBO9780511707162
https://doi.org/10.1109/ROBOT.2010.5509683
https://doi.org/10.1109/ROBOT.2010.5509683
https://doi.org/10.1109/TRO.2018.2853613
https://doi.org/10.1109/TRO.2018.2853613

29. Kamel, M., Burri, M., Siegwart, R.: Linear vs nonlinear mpc for
trajectory tracking applied to rotary wing micro aerial vehicles.
IFAC-PapersOnLine 50(1), 3463–3469 (2017)

30. Kerrigan, E.C., Maciejowski, J.M.: Soft Constraints and Exact
Penalty Functions in Model Predictive Control. In: Proc. UKACC
International Conference (Control. Citeseer (2000)

31. Kuipers, J.B., et al.: Quaternions and rotation sequences, vol. 66.
Princeton University Press, Princeton (1999)

32. Lee, H., Kim, H.J.: Trajectory tracking control of multirotors from
modelling to experiments: A survey. Int. J. Control Autom. Syst.
15(1), 281–292 (2017)

33. Lee, T.: Exponential stability of an attitude tracking control system
on so(3) for large-angle rotational maneuvers. Syst. Control Let-
ters 61, 231–237 (2012). https://doi.org/10.1016/j.sysconle.2011.
10.017. http://www.sciencedirect.com/science/article/pii/S016769
1111002829

34. Lee, T., Leoky, M., McClamroch, N.H.: Geometric Tracking
Control of a Quadrotor Uav on Se (3). In: Decision and Control
(CDC), 2010 49Th IEEE Conference On, pp. 5420–5425. IEEE
(2010)

35. Li, Y., Song, S.: A Survey of Control Algorithms for Quadrotor
Unmanned Helicopter. In: 2012 IEEE Fifth International Con-
ference on Advanced Computational Intelligence (ICACI), pp.
365–369 (2012). https://doi.org/10.1109/ICACI.2012.6463187

36. Macfarlane, S., Croft, E.A.: Jerk-bounded manipulator trajectory
planning: design for real-time applications. IEEE Trans. Robot.
Autom. 19(1), 42–52 (2003). https://doi.org/10.1109/TRA.2002.
807548

37. Manyam, S.G., Rathinam, S., Casbeer, D., Garcia, E.: Tightly
bounding the shortest dubins paths through a sequence
of points. J. Intell. Robot. Syst. 88(2), 495–511 (2017).
https://doi.org/10.1007/s10846-016-0459-4

38. Mellinger, D., Kumar, V.: Minimum Snap Trajectory Generation
and Control for Quadrotors. In: 2011 IEEE International
Conference on Robotics and Automation, pp. 2520–2525 (2011).
https://doi.org/10.1109/ICRA.2011.5980409

39. Mellinger, D., Kumar, V.: Minimum Snap Trajectory Generation
and Control for Quadrotors. In: Robotics and Automation (ICRA),
2011 IEEE International Conference On, pp. 2520–2525. IEEE
(2011)

40. Mohammed, F., Idries, A., Mohamed, N., Al-Jaroodi,
J., Jawhar, I.: Uavs for Smart Cities: Opportunities and
Challenges. In: Unmanned Aircraft Systems (ICUAS),
2014 International Conference On, pp. 267–273 (2014).
https://doi.org/10.1109/ICUAS.2014.6842265

41. Morari, M., Lee, J.H.: Model predictive control: past, present and
future. Comput. Chem. Eng. 23(4-5), 667–682 (1999)

42. Mueller, M.W., D’Andrea, R.: A Model Predictive Controller
for Quadrocopter State Interception. In: 2013 European Control
Conference (ECC), pp. 1383–1389 (2013)

43. Mueller, M.W., Hehn, M., D’Andrea, R.: A Computationally
Efficient Algorithm for State-To-State Quadrocopter Trajectory
Generation and Feasibility Verification. In: 2013 IEEE/RSJ
International Conference on Intelligent Robots and Systems,
pp. 3480–3486 (2013). https://doi.org/10.1109/IROS.2013.6696852

44. Neunert, M., De Crousaz, C., Furrer, F., Kamel, M., Farshidian, F.,
Siegwart, R., Buchli, J.: Fast Nonlinear Model Predictive Control
for Unified Trajectory Optimization and Tracking. In: 2016 IEEE
International Conference on Robotics and Automation (ICRA),
pp. 1398–1404. IEEE (2016)

45. Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs,
J., Wheeler, R., Ng, A.Y.: Ros: an Open-Source Robot Operating

System. In: ICRA Workshop on Open Source Software, vol. 3, p.
5 (2009)

46. Richter, C., Bry, A., Roy, N.: Polynomial Trajectory Planning
for Aggressive Quadrotor Flight in Dense Indoor Environments,
pp. 649–666. Springer International Publishing, Cham (2016)

47. Sanchez-Lopez, J.L., Arellano-Quintana, V., Tognon, M., Cam-
poy, P., Franchi, A.: Visual marker based multi-sensor fusion state
estimation. IFAC-PapersOnLine 50(1), 16,003–16,008 (2017).
https://doi.org/10.1016/j.ifacol.2017.08.1911. 20th IFAC World
Congress

48. Sanchez-Lopez, J.L., Fernández, R.A.S., Bavle, H., Sampe-
dro, C., Molina, M., Pestana, J., Campoy, P.: Aerostack:
an Architecture and Open-Source Software Framework
for Aerial Robotics. In: 2016 International Conference on
Unmanned Aircraft Systems (ICUAS), pp. 332–341 (2016).
https://doi.org/10.1109/ICUAS.2016.7502591

49. Sanchez-Lopez, J.L., Molina, M., Bavle, H., Sampedro, C., Suárez
Fernández, R.A., Campoy, P.: A multi-layered component-based
approach for the development of aerial robotic systems: the
aerostack framework. J. Intell. Robot. Syst., 1–27 (2017)

50. Sanchez-Lopez, J.L., Olivares-Mendez, M.A., Castillo-Lopez, M.,
Voos, H.: Towards Trajectory Planning from a Given Path for
Multirotor Aerial Robots Trajectory Tracking. In: 2018 Interna-
tional Conference on Unmanned Aircraft Systems (ICUAS), pp.
1342–1351 (2018). https://doi.org/10.1109/ICUAS.2018.8453428

51. Sanchez-Lopez, J.L., Pestana, J., Campoy, P.: A Robust Real-
Time Path Planner for the Collision-Free Navigation of Multirotor
Aerial Robots in Dynamic Environments. In: 2017 International
Conference on Unmanned Aircraft Systems (ICUAS), pp. 316–325
(2017). https://doi.org/10.1109/ICUAS.2017.7991354

52. Sanchez-Lopez, J.L., Wang, M., Olivares-Mendez, M.A., Molina,
M., Voos, H.: A real-time 3d path planning solution for
collision-free navigation of multirotor aerial robots in dynamic
environments. J. Intell. Robot. Syst. 93(1), 33–53 (2019).
https://doi.org/10.1007/s10846-018-0809-5

53. Santos, M.C.P., Rosales, C.D., Sarapura, J.A., Sarcinelli-Filho,
M., Carelli, R.: An adaptive dynamic controller for quadrotor to
perform trajectory tracking tasks. J. Intell. Robot. Syst. 93(1),
5–16 (2019). 10.1007/s10846-018-0799-3

54. Sola, J.: Quaternion kinematics for the error-state kalman filter.
arXiv:1711.02508 (2017)

55. Tang, S., Thomas, J., Kumar, V.: Hold or take optimal
plan (hoop): a quadratic programming approach to multi-robot
trajectory generation. Int. J. Robot. Res. 37(9), 1062–1084 (2018).
https://doi.org/10.1177/0278364917741532

56. Tayebi, A., McGilvray, S.: Attitude Stabilization of a Four-Rotor
Aerial Robot. In: 2004 43Rd IEEE Conference on Decision and
Control (CDC)(IEEE Cat. No. 04CH37601), vol. 2, pp. 1216–1221.
IEEE (2004)

57. Valavanis, K.P., Vachtsevanos, G.J.: Handbook of unmanned aerial
vehicles. Springer, Berlin (2015)

58. Yang, K., Sukkarieh, S.: An analytical continuous-curvature path-
smoothing algorithm. IEEE Trans. Robot. 26(3), 561–568 (2010).
https://doi.org/10.1109/TRO.2010.2042990

59. Zhang, F.: Quaternions and matrices of quaternions. Linear
Algebra Its Appl. 251, 21–57 (1997)

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

J Intell Robot Syst (2020) 100:531–574 573

https://doi.org/10.1016/j.sysconle.2011.10.017
https://doi.org/10.1016/j.sysconle.2011.10.017
http://www.sciencedirect.com/science/article/pii/S0167691111002829
http://www.sciencedirect.com/science/article/pii/S0167691111002829
https://doi.org/10.1109/ICACI.2012.6463187
https://doi.org/10.1109/TRA.2002.807548
https://doi.org/10.1109/TRA.2002.807548
https://doi.org/10.1007/s10846-016-0459-4
https://doi.org/10.1109/ICRA.2011.5980409
https://doi.org/10.1109/ICUAS.2014.6842265
https://doi.org/10.1109/IROS.2013.6696852
https://doi.org/10.1016/j.ifacol.2017.08.1911
https://doi.org/10.1109/ICUAS.2016.7502591
https://doi.org/10.1109/ICUAS.2018.8453428
https://doi.org/10.1109/ICUAS.2017.7991354
https://doi.org/10.1007/s10846-018-0809-5
http://arxiv.org/abs/1711.02508
https://doi.org/10.1177/0278364917741532
https://doi.org/10.1109/TRO.2010.2042990

Dr. Jose Luis Sanchez-Lopez is a post-doctoral research associate at
the Automation & Robotics Research Group of the Interdisciplinary
Centre for Security Reliability and Trust (SnT) of the University of
Luxembourg since June 2017. He received his Ph. D. in Robotics
in 2017 at the Technical University of Madrid, after been a visiting
researcher at the Arizona State University (AZ, USA), and the at
LAAS-CNRS (Toulouse, France). He has been working for more than
8 years on aerial robotics systems, carrying out research activities
with the goal of providing aerial robots with the highest level of
autonomy without the need for human intervention. His research
interests can be summarized in three main topics: (1) perception
and situation awareness based on sensor fusion, state estimation,
localization and mapping, computer vision, and machine learning; (2)
intelligent and cognitive system architectures for multi-agent systems;
and (3) trajectory and path planning and control. He has authored more
than 50 scientific publications related to these fields with near 900
citations and an h-index of 24 (source Google Scholar).

Manuel Castillo-Lopez is a PhD student at the Automation &
Robotics Research Group of the Interdisciplinary Centre for Security
Reliability and Trust (SnT) of the University of Luxembourg since
September 2017. He received his MSc. in Industrial Engineering in
2017 at the University of Malaga. He has been working for 3 years on
real-time motion planning and control of aerial robots with the goal of
performing collision-free optimal trajectories with safety guarantees.
His research interests span from optimization and probability theory,
focusing on real-time stochastic optimal control.

Prof. Dr Miguel Olivares-Mendez is currently Assistant Professor on
Space Robotics and Senior Research Scientist at the SnT-University
of Luxembourg. He is also the head of the Space Robotics Research
Group (SpaceR) and the Space Robotics & Automation Lab. He
received the Diploma in Computer Science Engineering in 2006
(University of Malaga, UMA, Spain). He received the M.Sc. degree
in Robotics and Automation and the PhD degree in Robotics and
Automation (Technical University of Madrid, UPM, Spain), in 2009
and 2013, respectively. He got the Best PhD Thesis award of 2013 by
the European Society for Fuzzy Logic and Technology (EUSFLAT).
In May 2013 he joined the Interdisciplinary Center for Security
Reliability and Trust (SnT) at the University of Luxembourg (Uni.Lu),
as Associate Researcher in the Automation & Robotics Research
Group. In December 2016 he became Research Scientist and main
responsible of the research activities on mobiles robotics in the
Automation & Robotics Research Group at the SnT-University of
Luxembourg.

His main research interests are on UAVs, planetary and orbital
robotics, computer vision, sensor fusion, vision-based control, soft-
computing control techniques and robotics. He has published over 70
book chapters, scientific journals and conferences papers.

Holger Voos studied Electrical Engineering at the Saarland University
and received the Doctoral Degree in Automatic Control from the
Technical University of Kaiserslautern, Germany, in 2002. From 2000
to 2004, he was with Bodenseewerk Gertetechnik GmbH, Germany,
where he worked as a Systems Engineer in aerospace and robotics.
From 2004 to 2010, he was a Professor at the University of Applied
Sciences Ravensburg-Weingarten, Germany, and the head of the
Mobile Robotics Lab there. Since 2010, he is a Full Professor at the
University of Luxembourg in the Interdisciplinary Centre for Security,
Reliability and Trust (SnT), and the head of the SnT Automation and
Robotics Research Group. His research interests are in the area of
perception and control for autonomous vehicles and robots as well as
distributed and networked control and automation.

J Intell Robot Syst (2020) 100:531–574574

	Trajectory Tracking for Aerial Robots: an Optimization-Based Planning and Control Approach
	Abstract
	Introduction
	Motivation
	Problem Formulation and Objectives
	Contributions and Outline

	Related Work
	Trajectory Planning
	Trajectory Tracking Control

	Representation of Rotations in SO(3)
	Orientation of a Rigid Body
	Difference Between Two Orientations
	Scalar Error Between Two Orientations
	Time-Derivatives of the Orientation

	Representation of Rotations in SO(2)
	Orientation of a Rigid Body
	Difference Between Two Orientations
	Scalar Error Between Two Orientations
	Time-Derivatives of the Orientation

	Aerial Robot Model
	Reference Frames
	Dynamical Model
	Differential Flatness
	Control Command References

	Trajectory Definition
	General Description of the Trajectory
	Continuity of the Trajectory
	Compact Description of the Trajectory
	Proposed Particular Description of the Trajectory

	Trajectory Planner
	Optimization Variables
	Objective Function
	Constraints
	Time Feasibility
	Continuity of the trajectory
	Waypoints
	Dynamics of the trajectory
	Actuators of the robot
	Linear distance to path

	Initialization
	Recursive sequential optimization

	Trajectory Tracking Controller
	Evaluation and Results
	Evaluation methodology
	Experimental setup
	Trajectory planning results
	Trajectory Tracking Results

	Conclusions and Future Work
	Appendix A Appendix to Trajectory Definition
	A.1 Position and Derivatives of a Polynomial
	A.2 State of a Polynomial
	A.3 Coefficients of a polynomial
	A.4 Initial and Final States of a Polynomial
	A.5 Linear Variables of a Segment
	 Appendix to Evaluation and Results
	Appendix B Appendix to Evaluation and Results
	References

