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Abstract
Sensitivity Amplification Control (SAC) algorithm was first proposed in the augmentation application of the Berkeley Lower
Extremity Exoskeleton (BLEEX). Since the SAC algorithm can greatly reduce the complexity of exoskeleton system, it
is widely used in human augmentation applications. Nevertheless, the performance of the SAC algorithm depends on the
accuracy of dynamic model parameters. In this paper, we propose a novel Model-based control with Interaction Predicting
(MIP) strategy to lower dependency on the accurate dynamic model of the exoskeleton. The MIP consists of an interaction
predictor and a model-based controller. The interaction predictor can predict motion trajectories of the pilot and substitute
for the pilot to drive the exoskeleton through an impedance model. In proposed strategy, the model-based controller not only
amplify the forces initiated by the interaction predictor, but more importantly the forces imposed by the pilot to correct the
errors between the predictive motion trajectory and the intended motion trajectory of the pilot. Illustrative simulations and
experimental results are presented to demonstrate the efficiency of the proposed strategy. Additionally, the comparisons with
traditional model-based control algorithm are also presented to demonstrate the efficiency and superiority of the proposed
control strategy for lowering dependency on dynamic models.

Keywords Model-based control with interaction predicting · Sensitivity amplification control · Inaccurate dynamic
model · Physical human-robot interaction · Strength augmentation · Lower exoskeleton

1 Introduction

Lower extremity exoskeletons are wearable robotic systems,
they can effectively augment the performance of pilots by
wearing it on the body. They integrate human intelligence
and robot power, effectively avoiding the shortcoming of
both. Thanks to the development of wearable technologies,
lower extremity exoskeletons have been developed into
nearly commercialized products and applied in real-world
scenarios [7, 13, 15, 21, 24] over the last few decades. As
lower extremity exoskeleton is tightly coupled with human
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beings, it requires an ability that it can follow the pilot’s
motion with minimal resistance (i.e. little interaction forces
between the exoskeleton and the pilot). For human-robot
interaction related applications, the sense-act-modulated-
byinteractions (SAMI) architecture [1] is proposed and a
development methodology [19] on human-robot interaction
is proposed to support the robot standardization effort.

For different application scenarios, corresponding con-
trol algorithms are demonstrated for lower extremity
exoskeletons. Among them, the Berkeley Lower Extremity
EXoskeleton (BLEEX) is the famous one for field applica-
tions, in which the Sensitivity Amplification Control (SAC)
algorithm can greatly simplify the complexity of exoskele-
ton system. So, it is widely chosen for human augmentation
applications. The SAC algorithm is used as a high-level
control strategy in HUman-powered Augmentation Lower
EXoskeleton (HUALEX) [8], in which the introduction of
Reinforcement Learning (RL) has improved the adaptability
to the changing with different pilots and walking patterns.
In order to better describe different motion trajectories of
the pilot, Hierarchical Interactive Learning (HIL) strategy
is proposed [9, 11] with an imitation learning-Dynamic
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movement primitives (DMP). In [10], the real-time interac-
tion term between the pilot and the exoskeleton is modeled
through impedance model to achieve the proactive model-
ing of human motion trajectories, and the parameters of the
impedance model are learned online by a RL method. In
the mentioned applications, the SAC is used as a high-level
control algorithm. The goal of SAC algorithm is to make
the interaction forces between the exoskeleton and the pilot
as small as possible without measuring any information of
the pilot. However, SAC algorithm is a typical model-based
control method, so accurate dynamic models are required.
The performance of SAC algorithm is greatly affected by
the error of dynamic model parameters. And the identifica-
tion process of dynamic model is extremely complicated [5,
6] and the dynamic model is time-varying due to unexpected
mechanical vibrations [16]. In other word, the performance
of the SAC algorithm depends on the accuracy of dynamic
model parameters.

To achieve more precise modeling of industrial robots,
multi-body modelling softwares are created for replacing
pen and paper. In [6, 23], the swing leg is modeled as a two-
dimensional three-segment manipulator. The length of the
thigh and shank links is determined by direct measurement.
The mass moment parameters, inertial parameters, stiffness
torques, damping and friction torques can be identified
by least squares estimation. For dealing with complex
dynamics, learning methods are used to approximate the
dynamic model for model-based robot control, such as
Local Gaussian Process Regression (LGPR) [18], RL [17].
For repetitive processes and run-based processes, Iterative
Learning Control (ILC), Repetitive Control (RC), and Run-
to-Run control (R2R) play an important role [4, 25].
Which can find a optimal scheme from repetitive task
in the automatic operation of dynamic systems. However,
in applications of coupled the human-exoskeleton system,
the interaction factors can affect the control performance.
Literature [22] considers that in a human-exoskeleton
interaction application the interaction torque resulted from
the pilot can determined by normal physical mathematical
model. So Locally Weighted Regression (LWR) is used
to learn physical human-exoskeleton interaction dynamics.
As lower extremity exoskeleton is tightly coupled with
human beings, the interaction factor and the dynamic
of exoskeleton should be considered as one dynamic
system.

In this paper, we propose a Model-based control
with Interaction Predicting (MIP) strategy which can
lower dependency on the accurate dynamic model of
exoskeletons. The MIP strategy is based on model-based
control and takes advantages of model-based control to
greatly simplify the complexity of exoskeleton system
[11]. In addition, the addition of an interaction predictor

can overcome the main drawback of model-based control:
requiring accurate dynamic models of the exoskeleton
(includes effects of interaction factor and errors of dynamic
model). The goal of the proposed strategy is to reduce
the physical interaction forces between the pilot and
the exoskeleton with inaccurate dynamic models of the
exoskeleton. In MIP strategy, an interaction predictor can
generate a proactive motion trajectory of the pilot base on
gait descriptors such as historical information and substitute
for the pilot to drive the exoskeleton through an impedance
model. In traditional model-based algorithm (such as the
SAC algorithm), the pilot drives the exoskeleton forcibly
to manage inaccurate dynamic models of the exoskeleton.
That is to say, the inaccurate dynamic models result
bigger interaction forces. In proposed MIP, the inaccurate
dynamic models are managed by the interaction predictor
substituted for the pilot. The model-based controller not
only amplify the forces initiated by the interaction predictor
but also allow the pilot to easily correct the errors between
the predictive motion trajectory and the intended motion
trajectory of the pilot through amplifying the forces of the
pilot. Through above methods, we can effectively lower
down the dependency on accurate dynamic models of
the exoskeleton, and design simulation experiments and
actual wear experiments to fully verify our strategy. In the
experiment, the same motion curve and dynamic model
error were designed to compare MIP and SAC control
strategies. The interaction force between the exoskeleton
and the pilot is used to measure the superiority of the control
strategy.

The main contributions of this paper can be summarized
and emphasized as follows:

– We bring about a novel MIP strategy to lower depen-
dency on the accurate dynamic model of exoskeletons.

– Specific interaction predictor is used to generate
proactive motion trajectories of the pilot and substitute
for the pilot to drive the exoskeleton through an
impedance model. The model-based controller not only
amplify the forces initiated by the interaction predictor
but also help the pilot easily correct the errors.

– The comparisons on a single Degree Of Freedom (DOF)
exoskeleton platform demonstrate the advantages of the
MIP strategy, and the verifications on HUALEX system
proves that our works are useful.

The structure of this paper is organized as follows:
Section 2 addresses the design of the proposedMIP strategy.
Illustrative simulations and corresponding experimental
results on a single DOF exoskeleton and HUALEX system
are shown in Section 3, and we detail the comparisons
with traditional model-based control algorithms. The end is
coming with conclusions and future works in Section 4.
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2Model-based Control with Interaction
Predicting Strategy

According to the study of biomechanics and dynamics,
several distinct phases can be abstracted from normal
walking gait [26]. In this paper, we divide normal walking
gait into stand phases and swing phases. The main function
of the stand phase is to transfer loads to the ground; unload
movements are performed in the swing phase and the swing
phase has a wide range of motions with high bandwidth
refer to the stand phase. The issue of following ability is
sharper in the swing phase. Therefore, the proposed MIP
strategy is mainly used for the swing phase. An exoskeleton
interacting with a pilot during walking motion represents as
Fig. 1. The encoder integrated in joints can read the angular
disturbance resulted from the pilot. Accoding to the angular
disturbance, the MIP strategy can provide τ to drive the
exoskeleton. The inclinometer set in the backpack used to
provide the gait descriptors for the MIP strategy.

The advantage of the MIP strategy is that it can lower
dependency on accurate dynamic models of the exoskeleton
as Fig. 2. The strategy is mainly composed of two parts:
1) an interaction predictor; 2) a model-based controller. We
use the interaction predictor to generate proactive motion

trajectories (θ̂h,
ˆ̇θh,

ˆ̈θh) and substitute for the pilot to drive

Backpack

Encoder+

actuator

Exoskeleton

Walking in sagittal plane

+ ̂ℎ

Inclinometer

Fig. 1 An exoskeleton interacting with a pilot during walking motion

the exoskeleton through an impedance model and the torque
is τ̂h provided by the impedance model. The model-based
controller not only amplify the forces initiated by the
interaction predictor but also the forces imposed by the pilot
to correct the errors between the predictive motion trajectory
and the intended motion trajectory of the pilot, the torque
provided by the model-based controller is represented by
τc. The details of the MIP strategy will be introduced this
section.

2.1 Interaction Predictor

The main purpose of the interaction predictor is to generate
a proactive control strategy for assisting motions of the pilot.
The interaction predictor mainly consists of a trajectory
generator and an impedance model. The trajectory generator
is mainly used for generating predictive motion trajectories
of the pilot base on gait descriptors, the trajectories
are treated as the motions performed by a virtual pilot
synchronized with the real pilot. Then the impedance model
maps the motion trajectories to the control strategies which
are imposed on the exoskeleton. In this section, we will
present how we predict motion trajectories of the pilot and
how the predictive motion trajectories are mapped to control
strategies.

2.1.1 Trajectory Generator of Pilot’s Motion

Learning by demonstration methods have widely used
in imitation learning of robots. In human-coupled robot
applications, it is used to model the goal motion trajectory
through human demonstrations. In which, DMP is known
for the outstanding performance of imitation learning. It
is used as a powerful representation tool to model human
movement trajectories [2, 3, 9–11]. During the interaction
between pilot and lower extremity exoskeleton, we can
consider the process that the pilot changes his/her motion
patterns as the demonstration process. And the trajectories
demonstrated by the pilot are recorded as the trained dataset
(gait descriptors) of imitation learning. For the purpose
of incrementally learning motion trajectory online, DMP
is updated by an incrementally learning modular with
LWR. Due to the rhythmic nature of pilot’s motions, the
reshaped motion trajectories can be used to predict the
motion trajectory of the pilot (i.e. the rhythmic nature
promises the motion trajectory of the virtual pilot to be
better synchronized with the real pilot.).

DMP is divided into different types for describing
different movements of robot, the limit-cycle oscillator
DMP describes rhythmical movements [12], while discrete
movements are described by the discrete acceleration DMP.
In this paper, we choose the limit-cycle oscillator DMP
to model motion trajectories of the pilot. The limit-cycle
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Fig. 2 Control diagram of MIP control strategy consisted of an interaction predictor and a model-based controller

oscillator DMP is defined as follows:{
τ ż = μ

E0
(E − E0)z − k2u

τ u̇ = z, whereE = (z2 + k2u2)/2,
(1)

where μ and k are positive parameters related to the
stiffness and damping of the oscillator. We can adjust τ

to determine the frequency of the oscillator. The predictive
motion trajectory θ̂ is calculated by Eq. 2:

τ ˆ̇θ = β(θm − θ̂ ) + f, (2)

where β is used as a positive constant parameter. We
determine the baseline of the predictive motion trajectory θ̂

through adjusting θm. The nonlinear function f gives DMP
the ability to model arbitrary trajectories. The definition of
the nonlinear function is given as follows:

f =
∑N

i=1 ψiω
T
i z̃∑N

i=1 ψi

, z̃ = [z, √E0]T . (3)

As shown in Eq. 3, N gaussian kernel functions are
combined into the nonlinear function f . The process of
motion learning is done by finding appropriate parameters
ωi of the gaussian kernel functions. The basis function of
the gaussian kernels is defined as:

ψi = exp−0.5hi(φ − ci)
2, (4)

where the parameters hi and ci are the location and width of
each gaussian kernel respectively. The phase variable φ =
atan2(z, ku) anchors gaussian kernels. The appropriate
parameters ωi of the gaussian kernels can give us accurate
models representing the motion trajectories of pilot.

We utilize LWR method to update the parameter ωi

incrementally [20] to achieve learning of the pilot’s
demonstration. The changing of his/her motion patterns
trigger the learning process, and the motion trajectories θd

recorded by the exoskeleton used to find the regression goal
fg . It can be calculated through Eq. 5 based on the motion
trajectories θd .

fg = τ θ̇d − β(θm − θd). (5)

The detailed learning process of LWR is illustrated in
Algorithm 1. The default weighted parameters ωi derived
from the learning of clinical normal walking trajectories.
During operation, the time of latest gait cycle determine
the frequency parameter τ , and the nonlinear function fg

is used to find optimal weighted parameters ωi . In order to
speed up the learning process, the weighted parameters ωi

are initialized with the historical DMP from last gait cycle.

Algorithm 1 Increment learning process using locally
weighted regression.

1: Obtain reshaped motion trajectories from pilot’s demon-
stration;

2: Update τ based on the time of latest gait cycle;
3: Initialize ωi with historic DMPs of latest gait cycle;
4: Calculate fg based on the reshaped trajectories by Eq. 5;
5: repeat(For N Gaussian kernels i ∈ [1, N])
6: ωi ← ωi + Piz̃ei ;
7: Pi ← 1

λ
(Pi − Pi z̃z̃

T Pi
λ
ψi

+z̃T Pi z̃
);

8: until Until ei = |fg − ωiz̃| < ε (ε is a small positive
number)

2.1.2 Impedance Model

After obtaining the predictive motion trajectory, we will
consider how the exoskeleton follows the predictive motion
trajectory accurately (i.e. synchronize the movements of
the exoskeleton and the pilot). In general exoskeleton
systems, the interaction forces can be transferred to
the exoskeleton through compliant connections and the
compliant connections are modeled as impedance models
[8–11]. So, we utilize impedance model as the function
which can map the predictive motion trajectories of the pilot
to the torques imposed on joints of the exoskeleton. The
impedance model is represented as:

τ̂h = ks(θ̂h − θ) + kd( ˆ̇θh − θ̇ ), (6)

where ks and kd are positive quantities, θ̂h and ˆ̇θh are
predictive motion trajectories of the pilot (joint angle and
angular velocity) generated by the trained DMP model.

2.2 Model-based Controller

In the MIP strategy, the model-based controller is utilized
to amplify the forces provided by the interaction predictor.
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Another more critical role is to assist the pilot correct the
errors between the predictive motion trajectory and the
intended motion trajectory of the pilot. By this way, even if
the model-based controller uses inaccurate dynamic models,
the exoskeleton can achieve better performance following
the pilot’s motion. In this paper, the model-based controller
(i.e. the SAC algorithm) which is proven to be stable [14] is
defined as:

τc = mgl · sin θ + (1 − α−1)(Ĵ θ̈ + B̂θ̇ ). (7)

Estimated dynamic parameters Ĵ and B̂ of the exoskeleton
(the inertial moment and viscous friction coefficient
parameters) are usually obtained by identification methods
and they are not accurate enough in most real-time
applications. The mass and length of the exoskeleton are
represented by m and l respectively. g represents the
gravitational constant and α is the sensitivity factor.

3 Experiments and Discussions

In this section, we designed different experiments to explore
the characteristics of the MIP strategy, and the comparisons
with traditional strategies can tell us the advantages in
detail. Next, we use a simulation platform and a HUALEX
platform to verify the performance. The next subsections
will detail the experimental setup, results and corresponding
analysis of the experiments.

3.1 Experimental Flatforms

3.1.1 Single DOF Exoskeleton Platform

In order to achieve better comparisons between the MIP
strategy and traditional strategies, we design a single DOF
exoskeleton platform, and the schematic diagram of the
single DOF exoskeleton is illustrated as Fig. 3. Imitating the

physiological structure of human leg, we designed a shank
and a thigh, and they are connected by a joint. It is powered
by a bi-directional linear hydraulic actuator. We integrate a
force sensor at the end of the hydraulic actuator for directly
obtaining the joint torque. So, the inertial dynamic of the
hydraulic actuator can be ignored. We set an encoder at the
knee joint to provide the joint state for our algorithm. The
pilot’s leg can impose forces on the exoskeleton through
impedance models (simulate the compliant connection).
In the strategy, the torque τ̂h provided by the interaction
predictor and the torque τc provided by the model-based
controller are imposed on the joint through actuators. In
Eq. 8, τh represents the equivalent torques which are applied
on the exoskeleton leg by the pilot’s leg. The dynamic
of the single DOF exoskeleton based on Lagrange can be
represented as:

J θ̈ + Bθ̇ + mgl · sin θ = τ̂h + τc + τh, (8)

where the letters J, B, m and l represent the inertial
moment, viscous friction coefficient, mass and length of
the exoskeleton leg. Note that they are different from the
estimated dynamic parameters mentioned previous section.
The gravitational constant is characterized by g. The joint
state vector (θ, θ̇ , θ̈ ) indicate the angle, angular velocity and
angular acceleration of the exoskeleton joint.

3.1.2 HUALEX System

The HUALEX system is a highly bionic and lightweight
human-robot coupling system. A pair of wearable robotic
legs can transfer the load set on the backpack to the
ground. In this way, the strength and endurance of pilots can
be effectively enhanced. The schematic of the HUALEX
system wearing by a pilot is shown in Fig. 4a. It is
constructed with links which are connected together by
rotating joints. There are four active joints to drive the

Pilot Leg

Exoskeleton Leg

Knee Joint+Encoder

Actuator

Compliant Connections

ℎ

PilotExoskeleton

Physical Human-Robot 

Interaction

Force Sensor

Fig. 3 The schematic diagram of the single DOF exoskeleton with the pilot’s leg. The physical Human-Robot Interaction (pHRI) between the
exoskeleton and the pilot is shown on the right
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Fig. 4 a HUALEX is worn by a
pilot. The compliant connections
connect the HUALEX and the
pilot into a robot-human system.
The bi-directional linear
hydraulic cylinders provide
torques for HUALEX. The
smart shoes are used for
detecting the gait phases; b
During the experiment, the joint
state of the pilot was obtained
by the inclinometer placed on
the thigh and shank, and the
encoder at the exoskeleton joint
recorded the state of HUALEX

Pilot

Load Backpack 

with 

inclinometer

Compliant 

Connections

Actuators

Smart Shoes

Encoders

(a)

Inclinometers 

Encoders

Inclinometer 

(b)

system moving, and the driving torques are derived from
bi-directional linear hydraulic cylinders.

According to the study of human biomechanics and
dynamics, the ankle joint mainly realizes the normal walk-
ing of the human through the energy storage mechanism
[19]. Therefore, compared to the BLEEX system, energy-
storage mechanism is used in the ankle joints, it can store
the energy from gravity in stance phases then push the
pilot forward at toe off. Simplification of the ankle joint
can effectively reduce energy consumption. When a pilot
wearing a HUALEX system, the pilot is attached to the
HUALEX system at waist, thighs, shanks and feet.

Three kinds of sensors are used to monitor its current
states. The joint angles are measured by encoders and an
accelerometer set at the backpack can capture the walking
velocity of the pilot. The sole pressure sensors provide
the required information for judging the phase of the
HUALEX. This sensor information is collected by a nearest
node controller. Another function of the node controller
is to control nearby actuators. The node controller can
communicate with the main controller running the control
algorithm via Controller Area Network (CAN).

In order to execute the MIP strategy on the HUALEX
system, we first need to model the HUALEX system. The
dynamic of the HUALEX system can be described as
follows:

M(Θ)Θ̈ + C(Θ, Θ̇) + G(Θ) = T̂h + Tc + Th, (9)

where Θ, Θ̇ and Θ̈ are vectors of angle, angular velocity
and angular acceleration of the active joint, T̂h and
Tc represent the input torques from the HUALEX. The
equivalent torques resulted from the pilot are represented
as vector Th. The specific functions of the torques are
corresponding to Eq. 8.

The legs of lower extremity exoskeletons in different
gait phases can be consider as different link mechanism
as Fig. 5. Corresponding dynamic models have different
parameter vectors. The swing leg can be modeled as a two-
link mechanism connected to a base with a rotation joint,
where the dynamic parameter matrixes M(Θ), C(Θ, Θ̇)

and G(Θ) are two dimension. Unlike the swing leg, the
stance leg is modeled as a three-link mechanism and
the dimension are three. In which, since the structure of
exoskeleton’s feet has a small mass than the thigh or the
shank, the ankle joint is ignored.

According to the mentioned analysis about the HUALEX
system, the swing leg can be simplified as a top fixed
two-link Fig. 6. The corresponding dynamic equation as
follows:

M(Θ)Θ̈ + C(Θ, Θ̇) + G(Θ) =[
m2l

2
1 + 1

3m1l
2
1 + 1

3m2l
2
2 + m2l1l2 cos θ2

1
3m2l

2
2+ 1

2m2l1l2 cos θ2
1
3m2l

2
2 + 1

2m2l1l2 cos θ2
1
3m2l

2
2

][
θ̈1
θ̈2

]

+
[

0 − 1
2m2l1l2 sin θ2

1
2m2l1l2 sin θ2 0

][
θ̇21
θ̇22

]

+
[ −m2l1l2 sin θ2 0

0 0

][
θ̇1θ̇2
θ̇1θ̇2

]

+
[

( 12m1 + m2)gl1 cos θ1 + 1
2m2gl2 cos (θ1 + θ2)

1
2m2gl2 cos (θ1 + θ2)

]
=

[
τ1
τ2

]
, (10)

where l1 and l2 are the length of the shank and thigh,
the corresponding mass is m1 and m2. θ1 is the angle at
which the link 1 deviates from the x-axis, and θ2 is the
angle at which the link 2 is offset from the link 1. τ1
and τ2 represent the total torque applied to the hip and
knee joints,respectively. Therefore, the MIP strategy for
HUALEX can be designed as:

Tc = G(Θ) + (1 − α−1)(M̂(Θ)Θ̈ + Ĉ(Θ, Θ̇)), (11)

394 J Intell Robot Syst (2020) 100:389–400



Fig. 5 The exoskeleton leg can
be modeled as a two-link
mechanism connected by a
rotation joint in stance phase.
The corresponding swing phase,
the exoskeleton leg is modeled
as a three-link mechanism

x

y

1

2

3

(a) Stance phase

x

y

1

2

(b) Swing phase

T̂h = ks(Θ̂h − Θ) + kd( ˆ̇Θh − Θ̇), (12)

Because the thighs and shanks of the HUALEX system
are not homogeneous links, the design parameters of the
3-dimensional model are used in the controllor.

x

y

1

2

1

2

1

2

Fig. 6 The model of Top fixed two-link

3.2 Experimental Setup

3.2.1 Single DOF Exoskeleton Platform

We use open source Gazebo 7.0 simulation software to
model the single DOF exoskeleton, in which the dynamic
model parameters J, B, m, l, g of the shank are set as
recommended physical parameters of a 0.3 × 0.03 ×
0.03 m3 rotary link. The interaction dynamic (compliant
connections) is modeled as an impedance model:

τh = kc(θh − θ) + kb(θ̇h − θ̇ ), (13)

where kc and kb are the positive stiffness and damping
parameter respectively and set to 100 and 10, determined
empirically. θh and θ̇h are the pilot’s joint angle and
angular velocity which are given in advance. Before the
simulation experiment start, we train the DMP of the
interaction predictor with a given motion trajectory. The
weights initialized with offline gait datas can improve the
imitation learning process in first gait cycle. During pilot’s
operaction, when the pilot changes his/her motion pattern,
the weights can be updated incrementally based on the
weights of latest gait cycle. In our experiments, the ks, kd

of the interaction predictor and the sensitivity factor α

of the model-based controller are set to 100, 10 and 100
empirically. And, we set the number of gaussian kernels to
25 and the incrementally learning process will be terminated
when the terminal condition ε = 0.5 is met.
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In this section, we carry out two experiments on the
simulation platform, the first experiment is used to simulate
the normal walking pattern of pilots. In which, we use
periodic sine waves to represent pilot’s rhythmic movement.
The angular frequency of the sine waves is set as 2π/s

and the amplitude is π/6. Second experiment, the input
of the pilot’s motion trajectories is replaced by periodic
sine waves with different frequencies and amplitudes.
Different frequencies and amplitudes are used to simulate
different pilots and walking patterns. In this experiment,
totally 9 cycles swing movement trajectories (the angular
frequencies are approximately set with 2π/s and 4π/s, and
the amplitudes are approximately set as π/6 and π/4) are
employed as the predefined pilot trajectories.

3.2.2 HUALEX System

In the experiments on the HUALEX system, we randomly
choose three pilots (A, B, C) with different heights (168cm,
174cm, 182cm) from our lab to operate the HUALEX
system independently with varying walking speed from
0.4m/s to 1.2m/s. Among them, the operation experience
has been experienced. So, there are not training sessions
for the pilots. The parameters of the MIP strategy are
set to same values as the simulation experiment. Before
starting the experiments, the DMP model is trained initially
through normal walking motion trajectories obtained from
gait capture system (VICON). During the operating, the
plantar sensor can tell the MIP strategy the start and end
time of each gait cycle, and the accelerometer set at the
backpack measures the walking speed of the pilot which
relate to the frequency parameters of the DMP model.
In order to show the performance of the proposed MIP
strategy in practical application, we additionally set four
inclinometers on the thighs and shanks of the pilot to get the
states of the pilot as Fig. 4a.

3.3 Experimental Results

3.3.1 Single DOF Exoskeleton Platform

The first simulation experiment is to compare the proposed
MIP with traditional SAC algorithm, in which the accurate
dynamic models determined by the design are employed.
During the experiment, the interaction forces calculated
by Eq. 13, the pilot’s joint angles given in advance and
the exoskeleton’s joint angles read directly from the API
interface provided by the simulation software are used to
show the performance of the strategies in Figs. 7 and 8.
Fig. 7 depicts the comparison of the MIP strategy and the
SAC algorithm with rhythmic patterns. We can intuitively
from the figures that there is a significant reduction in
interaction forces compared to traditional SAC algorithm.
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Fig. 7 Comparison of control performances with accurate dynamic
models of a MIP strategy: nMSE(MIP) = 0.002 rad; b SAC strategy:
nMSE(SAC) = 0.015 rad

We attribute this significant reduction to the addition of the
interaction predictor.

The SAC algorithm to follow the motion of the pilot
through amplificate the interaction forces imposed by
the pilot. In other words, the interaction force must
exist although the accurate dynamic models is exist.
However the interaction predictor replace the pilot to drive
the exoskeleton in the MIP strategy, so the interaction
forces between the exoskeleton and the pilot can be
little. And in the top figure, the joint trajectories of the
pilot and the exoskeleton are too close to make they
almost indistinguishable. The part of the perfect following
performance is contributed by the perfect period pilot’s
motion which make it easier for the trajectory generator to
estimate the pilot’s motion.

In order to show the possibility of our strategy responding
to different walking patterns. we use the sine waves
with different frequencies and different amplitudes for
simulating different walking patterns of human in real life.
The sine waves are not a simple combination of different
frequency and different amplitude waves, we did some
optimizations at the connection points. By this way, the
sine waves have a smooth transition which can avoid
larger interaction forces resulted from a unnatural transition
and is more in line with realistic walking patterns. As
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Fig. 8 Comparison of control performances with accurate dynamic
models of (a) MIP strategy: nMSE(MIP) = 0.005 rad; (b) SAC strategy:
nMSE(SAC) = 0.045 rad

shown in Fig. 8, the proposed MIP strategy demonstrates
its superiority through that the MIP strategy have smaller
interaction forces, the SAC algorithm does not. But, the
interaction forces of the proposed MIP strategy has a
increase when the motion pattern of the pilot changes,
since the pilot need move the exoskeleton forcibly to
correct the errors between the predictive motion trajectory
and the intended motion trajectory (such as in the first
gait cycle and the switching point of different walking
patterns). After obtaining the reshaped motion trajectories,
the interaction force of the proposed MIP can return to
small. Compared with the traditional SAC algorithm, the
increase is negligible because most of the interaction forces
is borne by the interaction predictor. And, we calculate
the normalized Mean Square Error (nMSE) tracking angle
trajectories of the pilot, they can convince us that the
MIP strategy have batter performances in lower extremity
exoskeleton (0.005 rad compare with 0.045 rad). Of course,
the perfect periodic pilot’s motion and the small changes
in amplitude and frequency contribute to the perfect
performance of the MIP strategy.

SAC algorithm is a typical model-based control algo-
rithm. The fundamental problem also exists in it, which is
that dynamic model parameters of the system (exoskeleton

in this paper) must be accurate enough. In order to prove
the key advantage that the proposed MIP strategy can lower
dependency on the accurate dynamic model of exoskele-
tons, we design another experiment to verify that the MIP
strategy can effective lower dependency on the accurate
dynamic model of exoskeletons.

In this experiment, we set two errors of the dynamic
model which are set as 10% and 20% respectively (e.g. the
error is 20% means that the estimated parameters Ĵ and
B̂ are chosen as Ĵ = 0.8J and B̂ = 0.8B). In Fig. 9,
the interaction forces (black curves) show the response of
the MIP strategy to the errors. We can see from the figure
that the interaction forces do not increase significantly with
the increase of the errors, and the interaction forces remain
small refer to the previous performance of the traditional
SAC algorithm. Similar to the previous experiments, the
exitance of the interaction predictor contributes to the
desire performance. In addition, we list the nMSE to show
the quantitative comparison of the MIP strategy and SAC
algorithm in the present of inaccurate dynamic models.
From the Table 1, we can intuitively get the conclusion that
the proposed MIP can effectively lower dependency on the
accurate dynamic model of exoskeletons.
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(a) MIP algorithm with 10% model error
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Fig. 9 Comparison of control performances with inaccurate dynamic
models of aMIP strategy with 10% model error: nMSE(MIP) = 0.013
rad; b MIP strategy with 20% model error: nMSE(MIP) = 0.032 rad
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Table 1 Compensation of MIP and SAC on single DOF exoskeleton

nMSE 10% 20% Different

(rad) model error model error angular frequency

MIP 0.013 0.032 0.005

SAC 0.114 0.295 0.045

3.3.2 HUALEX System

We choose a period of whole experiment of pilot C
as a representation for discussion. Figure 10a show the
joint trajectories of the pilot and the exoskeleton with the
proposed MIP control strategy. The proposed MIP strategy
can make the exoskeleton system follow the pilot’s motion
with little tracking errors. Compared with the simulation
experiments, we can see that there is significant mismatch
at the peak and valley of the curves. After analysis, the
mismatches may be caused by the defects of the mechanical
structure (such as the compliant connections and the invalid
stroke of the hydraulic cylinders allow a certain relative
movement between the pilot’s leg and the exoskeleton’s
leg). In addition, Fig. 10 shows the comparison of MIP
with SAC algorithm at the knee joint of one pilot. It can
be seen from the figure that at a position where the joint
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Fig. 10 Control performances of the knee joint on HUALEX: a MIP
strategy; b SAC strategy

Table 2 Comparison of MIP and SAC Strategy in HUALEX

nMSE(rad) 0.4 (m/s) 0.8 (m/s) 1.2 (m/s)

(MIP|SAC)

Pilot A 0.008 0.033 0.013 0.049 0.026 0.088

Pilot B 0.009 0.027 0.014 0.042 0.030 0.080

Pilot C 0.010 0.027 0.018 0.061 0.027 0.078

angle changes frequently, the tracking performance of MIP
is significantly better than SAC. We used a spring model to
calculate the interaction force between the exoskeleton and
the pilot for comparisons of the tracking performance. It can
be seen from the black curve in the figure that the interaction
force of MIP is significantly smaller than SAC. Note that
the two joint curves in Fig. 10 are slightly different because
the one pilot cannot test both algorithms at the same time.

Table 2 shows the quantitative comparison results at left
knee joint. An increase trend can be found in the table, we
can also find that the increase trend of the MIP strategy is
slower than the SAC algorithm. Additionally, Fig. 11 also
proves the conclusions obtained from Table 2 in nMSE. So,
we can conclude that the tracking performance of the MIP
strategy is better than SAC algorithm.

4 Conclusions and FutureWorks

This paper has proposed a novel MIP strategy, which aims
to lower dependency on the accurate dynamic model of
exoskeletons. In the MIP strategy, the interaction predictor
can predict motion trajectories of the pilot and substitute
for the pilot to drive the exoskeleton through an impedance
model. The model-based controller not only amplify the
forces initiated by the interaction predictor, but more
importantly the forces imposed by the pilot to correct the
errors between the predictive motion trajectory and the
intended motion trajectory.
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Fig. 11 The nMSE of the joint trajectories between HUALEX and
pilot with different walking speeds
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In this paper, we determine the weights of the interaction
predictor and the moedel-based controller based on our
experience. In the future, we will investigate in the coupling
relationship of the weights between the interaction predictor
and the model-based controller. How does the weights
affect the dependency on accurate dynamic models. How
to determine the weights according to the desire the
dependency.
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