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Abstract
The cooperativemultiple task assignment problem (CMTAP) of heterogeneous fixed-wing unmanned aerial vehicles (UAVs)
performing the Suppression of Enemy Air Defense (SEAD) mission against multiple ground stationary targets is studied in
this paper. The CMTAP is a NP-hard combinatorial optimization problem, which faces many challenges like problem scale,
heterogeneity of UAVs (different capability and maneuverability), task coupling and task precedence constraints. To address
this issue, we proposed a modified genetic algorithm (GA) with multi-type-gene chromosome encoding strategy. Firstly, the
multi-type-gene encoding scheme is raised to generate feasible chromosomes that satisfy the UAV capability, task coupling
and task precedence constraints. Then, Dubins car model is adopted to calculate the mission execution time (objective
function of CMTAP model) of each chromosome, and make each chromosome conform to the UAV maneuverability
constraint. To balance the searching ability of algorithm and the diversity of population, we raise the modified crossover
operator and multiple mutation operators according to the multi-type-gene chromosome encoding. The simulation results
demonstrate that the modified GA has better optimization performance compared with random search method, ant colony
optimization method and particle search optimization method.

Keywords Unmanned aerial vehicles · Cooperative task assignment · Genetic algorithm ·
Multi-type-gene chromosome encoding · Dubins car model

1 Introduction

Unmanned aerial vehicle (UAV) has the advantages of low
cost, zero casualty, strong mobility and low detectability,
which is capable of performing boring, harsh, dangerous
and hidden tasks in complex battlefield [1, 2]. Due to
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limit capacity, single UAV cannot realize multi-dimensional
and extensive coverage of mission area. Thus, the develop-
ment of multi-UAV cooperation is essential to improve the
efficiency of mission completion [3]. This paper concen-
trates on cooperative task assignment that allocates multiple
heterogeneous fix-wing UAVs to perform Suppression of
Enemy Air Defense (SEAD) mission on multiple ground
stationary targets.

The cooperative multiple task assignment problem
(CMTAP) in this paper has two characteristics. Firstly, UAV
team is composed of heterogeneous fix-wing UAVs, includ-
ing the surveillance UAV, combat UAV and munition UAV.
The heterogeneity of UAVs reflects on different capabil-
ity (ability to perform certain tasks, e.g., munition UAV
can only execute attack task) and different maneuverability
(cruise speed and turning radius). Secondly, there are strict
task coupling and task precedence constraints. In SEAD
scenario, UAV team is required to perform three tasks (clas-
sify, attack and verify) against targets. The attack task can
only be performed after completing classify task, and verify
task can only be performed after target is attacked.
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Some researches on the cooperative task assignment
only focus on single-type task [4–6] or homogeneous
UAVs [4–8]. Due to the lack consideration on multi-type
tasks, these approaches cannot be directly applied in SEAD
mission. Then, multiple combat UAVs are considered to
perform SEAD mission on multiple targets in [9–12].
These papers only consider the homogeneous UAVs, which
ignore the emergence of heterogeneous UAVs in actual
aerial battlefield. Considering UAVs’ maneuvering perfor-
mance, UAVs’ heterogeneous capabilities, task coupling
and task precedence constraints, CMTAP is a strongly NP-
hard combinatorial optimization problem [13]. On the one
hand, with the increasing of CMTAP model scale, the
number of possible solutions rises exponentially. Analytic
methods like mix integer linear program [14–16], deci-
sion tree [17, 18] face prohibitive computational complex-
ity when handling large, complex CMTAP scenarios [13].
On the other hand, the UAV heterogeneity, task coupling
and task precedence constraints brings significant com-
plexity to CMTAP model. The enumeration operation of
analytic methods will produce many infeasible solutions
and make the algorithm uneasy to converge. Rasmussen
and Shima [10] revealed that obtaining a feasible solution
in an allotted time period is more desirable than waiting
until the optimal solution is reached in practical applica-
tion. Thus, various researches focus on applying intelli-
gent optimization methods to CMTAP model. Taking the
task precedence and coordination into account, [19, 20]
developed GA to solve the CMTAP model. Shima et al. [19]
and Darrah et al. [20] revealed that GA can efficiently solve
the assignment problem without resolving to the compu-
tational complexity of analytic methods. Yao et al. [21]
designed a GA chromosome encoding method based on task
sequence. However, the method uses binary matrixes to rep-
resent chromosomes, which leads to inevitably computation
complexity in large scenarios. By introducing the Dubins
car model [23–25], [22] raised the integrated scheme of
task assignment and motion planning based on GA and
graph representation. Then, a modified GA based on multi-
type genes and mirror representation is put forward in [26].
However, the presented method in [26] may produce dead-
lock chromosomes that violate the task coupling and task
precedence constraints. Thus, [26] developed a graph-based
method to solve the potential deadlock. It’s obvious that
handling the deadlock problem increases the computational
complexity. Besides, [27] presented a hybrid gravitation
searching algorithm-genetic algorithm. The segment encode
scheme of the hybrid algorithm is composed of task allo-
cation segment and task sequencing segment, in which the
length of chromosome is twice as that of [26].

In this paper, the proposed GA with multi-type-gene
chromosome encoding strategy is designed to produce
feasible solution for CMTAP model. Firstly, the raised

encoding scheme guarantees to produce feasible and
deadlock-free chromosomes that satisfy the UAV hetero-
geneity, task coupling and task precedence constraints.
After that, Dubins car model is used to simulate the UAV
path that conforms to maneuverability constraint and calcu-
late the objective function of GA (defined as the mission
execution time of UAV team). According to the character-
istics of chromosome encoding method, the corresponding
population initialization, crossover and mutation operators
are then designed to search for the optimization solution. In
this paper, we designed five mutation operators to overcome
the poor local search ability and precocious performance of
GA.

The rest of this paper is arranged as follows. Section 2
presents the CMTAP model. Section 3 elaborates the
modified GA, including the multi-type-gene chromosome
encoding strategy, population initialization and genetic
operators. Simulations and analyses are shown in Section 4.
At last, Section 5 concludes the paper.

2 Problem Formulation

Based on the CMTAP model in [12, 17], this paper
addresses the scenario of assigning multiple heterogeneous
fixed-wing UAVs to execute SEADmission against multiple
ground stationary targets under the following assumptions.

1) Each UAV has its fixed altitude. That is, each UAV
flies at different altitude and different UAVs have no
collisions.

2) There is no limit to fuel and weapon system in UAV
team.

3) UAVs take off from the same base at the same time.
4) There is no requirement on the task execution angle.

An UAV can perform a task by passing directly over a
target.

5) There is no priority or time window requirements on
the targets.

The main symbols used in this section are shown in Table 1.

2.1 Targets and Tasks

Suppose that there are NT stationary ground targets with
known positions, the set of targets is

T = {T1, T2, . . . , TNT } (1)

The set of tasks to be performed on each target is

MT = {C, A, V } (2)

where C, A, V separately represent the classify, attack and
verify tasks.

616 J Intell Robot Syst (2020) 100:615–627



Table 1 Nomenclature
Symbol Description

T set of targets
Target-related NT number of targets

MT set of tasks to be performed on each target
NM total number of tasks to be performed on all targets

U set of UAVs
NU number of UAVs

UAV-related US set of UAVs which can perform surveillance task
UA set of UAVs which can perform attack task
[r1, r2, . . . , rNU

] cruise speed of UAVs

[v1, v2, . . . , vNU
] turning radius of UAVs

tUk
task execution time of UAV Uk

Model-related X
Uk,m
(qi ,qj ) binary decision variable of CMTAP model

d
Uk

(qi ,qj ) Dubins path length of UAV Uk flying from location qi to qj

Bold entries represent the definitions of UAV set, target set, and task set

Apparently, there are ‖MT ‖ = 3 tasks that need to be
executed on each target. In the SEAD scenario, the total
number of tasks to be performed on all targets is NM =
NT · ‖MT ‖ = 3NT . The execution of three tasks follows
strict task coupling and task precedence constraints. The A

task can only be executed after completing C task, and V

task can only be performed after target is attacked.

2.2 UAVs

Assume that there are NU heterogeneous fix-wing UAVs in
the UAV team, the set of UAV is defined as

U = {U1, U2, . . . , UNU } (3)

The heterogeneity of UAVs in this paper reflects on
different capability and different maneuverability.

Firstly, the UAV team has surveillance UAV, combat
UAV and munition UAV. The capabilities of different UAVs
are exhibited in Table 2. It is obvious in Table 2 that the
surveillance UAV can perform surveillance tasks {C, V }, the
munition UAV can perform attack task {A}, and the combat
UAV can perform all tasks {C, A, V }.

Based on Table 2, we define US,UA to separately
represent the set of UAVs that can perform surveillance task,
and the set of UAVs that can perform attack task.

US =
{
U1, U2, . . . , UNUS

, UNNS
+1,

UNNS
+2, . . . , UNNS

+NUC

}
(4)

UA =
{
U1, U2, . . . , UNUM

, UNNM
+1,

UNNM
+2, . . . , UNUM

+NUC

}
(5)

where NUS , NUC , NUM respectively represent the number
of surveillance UAVs, the number of combat UAVs and the
number of munition UAVs.

Obviously, the following equations are satisfied.

U = US ∪ UA (6)

NU = NUS + NUC + NUM (7)

Then, the cruise speed [v1, v2, . . . , vNU ] and turning
radius [r1, r2, . . . , rNU ] of UAVs reflect their different
maneuverabilities. Dubins car model solves the shortest
path problem from one point with given orientation
to a second point with given orientation [25]. Thus,
Dubins car model is introduced to generate the shortest
UAV path between configurations (xstart, ystart, ϕstart) to
(xend, yend, ϕend). Given start and end configurations, the
Dubins paths is determined [26]. Dubins path must be one
of the six combinations of line segments and curvature
arcs: {LSL, RSR, RSR, RSL, LRL, RLR}, where R is
the clockwise turn, L is the counterclockwise turn, and S is
the straight line [23–25].

2.3 CMTAPModel

The purpose of CMTAP model is to allocate multiple
heterogeneous fix-wing UAVs to perform SEADmission on
multiple ground stationary targets. In this paper, we design
the objective function of CMTAP model as to minimize the
mission execution time of UAV team.

min J = max
Uk∈U

tUk (8)

Table 2 Capabilities of different UAVs

UAV type Capability Available tasks

Surveillance Surveillance {C,V }
Combat Surveillance, Attack {C,A, V }
Munition Attack {A}
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where tUk is the task execution time of UAV Uk

performing its assigned tasks.

tUk =
NV∑
i=1

NT∑
j=1

3∑
m=1

{
X

Uk,m
(qi,qj )d

Uk

(qi,qj )

vk

} (9)

where X
Uk,m
(qi,qj )

∈ {0, 1} is the binary decision variable.

X
Uk,m
(qi,qj ) = 1 means that UAV Uk flys from configuration qi

to qj to perform task m on target Tj , vice versa. d
Uk

(qi,qj ) is
the Dubins path length of UAVUk flying from configuration
qi to configuration qj . qi, qj separately represent the last
and current configurations of UAV Uk . NV = NU + NT

represents all possible configurations of UAVs during the
mission, including their take-off configurations and possible
configurations on targets.

In Eq. 9, the term inside the parenthesis represents the
task execution time of UAV Uk when executing task m of
target j . Thus, tUk defines the task execution time of UAV
Uk performing all assigned tasks.

Two constraints of the CMTAP model are

NU∑
k=1

NV∑
i=1

3∑
m=1

X
Uk,m
(qi,qj ) = ‖MT ‖, ∀j ∈ T (10)

tCTj
< tATj

< tVTj
, ∀j ∈ T (11)

Equation 10 shows that for each target, ‖MT ‖ tasks must
be performed once. Equation 11 reflects that for each target,
‖MT ‖ tasks need to be executed in order. Thus, Eqs. 10, 11
describe the task coupling and task precedence constraints.

Referring to Table 2, the third constraint of CMTAP
model is that the capability of assigned UAVUk should have
the required capability of assigned task m.

3 The Proposed GA

To solve the CMTAP model in this paper, we proposed
a modified GA. Firstly, the multi-type-gene chromosome
encoding strategy is raised to generate feasible individuals
that satisfy the UAV heterogeneity, task coupling and task
precedence constraints. Based on Dubins car model, the task
execution time of each UAV in Eq. 9 can be calculated, and
then the objective function of CMTAP model in Eq. 8 can
be derived. According to the unique chromosome encoding
strategy, we designed a feasible population initialization to
generate valid and deadlock-free chromosomes. Besides,
the crossover operator and multiple mutation operators are
put forward.

Fig. 1 Multi-type genes

3.1 Multi-type-gene Chromosome Encoding
Strategy

Chromosome encoding is the premise of GA. We firstly
raise the multi-type-gene concept. Taking target Tk as an
example, Fig. 1 describes the multi-type-gene strategy.

Classify, attack and verify genes of target Tk are shown
in Fig. 1. Each gene shows a UAV configuration of the
task assignment. For example, the classify gene shows that
UAV US/C performsC task on target Tk with heading angle
ϕC . We can see from classify gene that only UAV with
surveillance capability can perform the C task. Thus, the
third constraint of CMTAP model is realized.

Based on the multi-type-gene strategy, we design the pro-
posed chromosome encoding scheme. An example is used to
illustrate the multi-type-gene chromosome encoding scheme.

Example 1 Assuming that the UAV team U =
{US

1 , UC
2 , UM

3 } from the same base needs to perform SEAD
mission on two targets T = {T1, T2}. The cruise speed vec-
tor and turning radius vector are [v1, v2, v3] = [70, 80, 70]
m/s [r1, r2, r3] = [200, 250, 200] m, the initial heading
angles of UAVs are [ϕ0

1 , ϕ0
2, ϕ0

3] = [0◦, 45◦, 90◦]. Intro-
ducing the task execution order as the 1st row, one feasible
chromosome using the multi-type-gene encoding scheme is
shown in Fig. 2.

We can see from Fig. 2 that the chromosome is composed
of NM = NT · ‖MT ‖ = 6 genes. The number of genes

Fig. 2 Multi-type-gene chromosome
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in chromosome equals to the number of all tasks, which
shows that exactly ‖MT ‖ = 3 tasks are performed on each
target. Thus, the first constraint of CMTAP model in Eq. 10
is established.

Then, we introduce two transformations of the multi-
type-gene chromosome. The target-order and UAV-order
chromosomes are exhibited in Fig. 3.

Arrange the chromosome in Fig. 2 by target ID and task
type, we can derive the target-order chromosome in Fig. 3a.
Taking target T1 in Fig. 3a as an example, the execution of
three tasks C, A, V follows the task precedence constraint
in Eq. 11. Hence, the second constraint of CMTAP model is
achieved.

According to above analyses, the multi-type-gene chro-
mosome in Fig. 2 satisfies three constraints of CMTAPmodel.

Arrange the chromosome by UAV ID and task execution
order, we can derive the UAV-order chromosome in Fig. 3.
The UAV-order chromosome gives the configurations of
UAVs during the mission: US

1 classifies target T1 and then
verifies target T2 after it has been attacked by UM

3 . UC
2

attacks target T1 after it has been classified, flies to target T2
to perform classify task, and then flies to target T1 to verify
the target T1.

US
1 : (Base, ϕ0

1) → (T C
1 , 296◦) → (T V

2 , 258◦) (12)

UC
2 :(Base, ϕ0

2 ) → (T A
1 , 354◦)→ (T C

2 , 208◦)→ (T V
1 ,190◦) (13)

UM
3 : (Base, ϕ0

3) → (T A
2 , 292◦) (14)

Based on the assigned configurations of UAVs, Dubins car
model is used to generate their Dubins paths (shown in Fig. 4).

Dividing the Dubins paths of UAVs by their cruise
speeds, we can obtain the task execution times of UAVs
based on Eq. 9.

[tU1, tU2, tU3] = [120.3473, 162.4719, 118.0666]s
Then, the objective value of the chromosome can be

derived based on Eq. 8.

J = max
Uk∈U

tUk = 162.4719s (15)

The objective function and three constraints of CMTAP
model are separately described by the proposed multi-
type-gene chromosome encoding scheme. Therefore, the
proposed chromosome encoding method is feasible.

Original chromosome is obtained by arranging the target-
order/UAV-order chromosome based on the task execution
order. Thus, chromosome, target-order chromosome and
UAV-order chromosome can be mutual transformed.

3.2 Population Initialization

Based on the multi-type-gene chromosome encoding
strategy, the population initialization process ( shown in
Algorithm 1) generates Np (Np is the population size)
feasible chromosomes as the initial population.

Fig. 3 Two transformations of
chromosome
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Fig. 4 Dubins paths of UAVs

In Algorithm 1, step 4. ensures that exactly three tasks
C, A, V on each target are performed and tasks C, A, V

of each target are performed in sequence. That is, task
coupling and task precedence constraints in Eqs. 10, 11
are satisfied. Step 5. shows that in each gene, the assigned
UAV has corresponding capability to the required task type.
That is, the third constraint of CMTAP model is established.
Therefore, the population initialization in Algorithm 1
generates Np feasible chromosomes.

3.3 Genetic Operators

We utilize selection, elitism, crossover and mutation
operators in this paper. The roulette wheel method is
applied as the selection operator to randomly select the
parent chromosomes. The roulette wheel method ensures
that the individual with higher fitness value has bigger
possibility to be chosen. Elitism operator directly preserves
the predetermined Ne parent chromosomes with the highest
fitness values into the offspring population. Elitism strategy
can improve the convergence speed of the proposed GA
through reserving the optimal individuals. In this paper,
crossover and mutation operators are modified according to
the proposed chromosome encoding strategy.

3.3.1 Crossover Operator

In the proposed GA, there are Ncr < Np − Ne offspring
individuals generated through the crossover process. The
crossover operator can improve the global searching abil-
ity of the proposed GA through the information exchange
among the population. In the crossover operation, two
selected parent chromosomes exchange their gene infor-
mation to create two new chromosomes as the offspring

individuals. Notably, the objective value of chromosome
is calculated based on the accumulation of Dubins paths
between assigned configurations. It is important to reserve
the good continuous configurations of parent chromosomes
in the crossover operation. Therefore, we use the two-point
crossover operator to exchange the continuous configu-
rations between two parent chromosomes. The crossover
process is realized by Algorithm 2.

The crossover process of Example (shown in
Section 3.1) is illustrated in Fig. 5.

Notably, the information exchange in step 2. only
exchanges the assigned UAV and its heading angle. On the
one hand, the 2nd and 3rd rows of all target-order chromo-
somes are the same. Only exchange the 4th and 5th rows will
reduce the computation complexity during the crossover
operation. On the other hand, the task execution order in the
1st row is not involved in the crossover process because it
guarantees valid transformation between chromosome and
target-order chromosome without violating the task prece-
dence constraint. As long as the parent chromosomes satisfy
the CMTAP constraints on UAV heterogeneity, task cou-
pling and task precedence, the offspring chromosomes will
follow the same constraints. Thus, the crossover operator
generates feasible offspring chromosomes.

3.3.2 Mutation Operators

In the proposed GA, there are Nmu = Np − Ne −
Ncr offspring individuals that are generated through the
mutation process. The mutation operator can overcome the
premature phenomenon of crossover process and enhance
the diversity of population. The mutation process (shown
in Algorithm 3) changes one or more genes of the
probabilistically selected parent chromosome to generate
the offspring chromosomes.
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To enhance the diversity of GA population, we proposed
five mutation ways to change the gene(s) of the target-based
parent chromosome in step 2.: 1) mutate the assigned UAV
of the mutation site; 2) mutate the heading angle of the
mutation site; 3) mutate the assigned UAV of the chosen

target according to ‖Utype‖ − x, where x is the assigned
UAV of the chosen target, and ‖Utype‖ is the number of
UAVs that have the same capability of x; 4) randomly
choose two targets and select a mutation task, exchange the
assigned UAV and the heading angle of the mutation task
between two targets; 5) randomly choose two targets, and
exchange the assigned UAV and the heading angle of all
tasks between two targets.

In the Example shown in Section 3.1, US =
{US

1 , UC
2 },UA = {UC

2 , UM
3 } separately represent the

UAV sets which can perform surveillance task and attack
task. The five mutation ways of Example are illustrated
in Fig. 6.

Taking the mutation of assigned UAV in Fig. 6 as an
example, UC

2 is change to another UAV with the same
capability, That is, UA \ {UC

2 } = {UM
3 }. It’s easy to

check in Fig. 6 that these five mutation ways will not
make the offspring chromosome violate the constraints on
UAV heterogeneity, task coupling and task precedence.
Thus, the offspring chromosomes after mutation process are
feasible.

Fig. 5 Crossover operation of Example
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Fig. 6 Crossover operation of Example

Table 3 Simulation scenarios
Scenarios Position of targets and initial status of UAVs

3 UAVs against 4 targets Position of base [2500, 0]m
Position of targets [800, 3200; 2800, 4200; 4000, 2000; 1000, 760]m
Cruise speed vector of UAVs [v1, v2, v3] = [70, 80, 70]m/s

Turning radius vector of UAVs [r1, r2, r3] = [200, 250, 200]m
Initial heading angles of UAVs [ϕ1, ϕ2, ϕ3] = [0◦, 45◦, 90◦]

5 UAVs against 3 targets Position of base [2500, 0]m
Position of targets [1000, 3400; 2800, 4600; 4500, 2000]m
Cruise speed vector of UAVs [v1, v2, v3] = [70, 80, 70, 90, 60]m/s

Turning radius vector of UAVs [r1, r2, r3] = [200, 250, 200, 300, 180]m
Initial heading angles of UAVs [ϕ1,ϕ2,ϕ3,ϕ4,ϕ5] = [0◦, 22.5◦, 45◦, 67.5◦, 90◦]

5 UAVs against 9 targets Position of base [0, 0]m
Cruise speed vector of UAVs [v1, v2, v3] = [70, 80, 70, 90, 60]m/s

Turning radius vector of UAVs [r1, r2, r3] = [200, 250, 200, 300, 180]m
Initial heading angles of UAVs [ϕ1,ϕ2,ϕ3,ϕ4,ϕ5] = [0◦, 22.5◦, 45◦, 67.5◦, 90◦]

15 UAVs against 10 targets Position of base [2500, 0]m
Randomly select the position of targets in the interest area

Randomly select the cruise speeds of UAVs between [50 − 100]m/s

Randomly select the turning radius of UAVs between [150 − 300]m
Randomly select the initial heading angles of UAVs between [0◦ − 90◦]
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Table 4 Simulation parameters in four scenarios

Methods Simulation parameters

RS Np = 100

GA Np = 100, Ne = 4, Ncr = 66, Nmu = 30

ACO Nant = 100, α = 1, β = 0.5, ρ = 0.1,Q = 1

PSO Nparticle = 100, c1 = 0.5, c2 = 0.7

4 Simulations and Analyses

Monte Carlo simulations are used to test the optimization
performance of the proposed GA for the CMTAP model. In
the 5000 × 5000m2 interest area, UAV team from the same
base needs to perform SEAD mission on several targets,
where the execution time of each task is 5s. Four SEAD

Fig. 7 Monte Carlo results of four methods in scenario 1

scenarios in Table 3 are used to comprehensively discuss the
effectiveness of the proposed GA.

RS, ACO and PSO are selected as the comparing meth-
ods. RS represents the stochastic searching algorithm,
ACO and PSO represent the heuristic swarm optimization
algorithms. ACO is a combinatorial optimization algo-
rithm which simulates the ants’ foraging process with
pheromones [8], which has been introduced to solve the
vehicle routing problem (VRP), as well as CMTAP model.
PSO has simple structure equations and very few parameters
to adjust, which is able to produce robust solutions within
short computation time [28]. In order to prove the optimiza-
tion performance of the proposed GA, the raised multi-type
gene chromosome encoding strategy is extended into RS,
ACO and PSO. The parameters of the proposed GA and
comparing methods are shown in Table 4 (same parameters
are used in four scenarios), and the number of iterations of
all methods is Ng = 300.

Fig. 8 Monte Carlo results of four methods in scenario 2
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In Table 4, Nant, α, β, ρ, Q of ACO respectively denote
the number of ants, the importance index of pheromone,
the influence index of pheromone heuristic information,
the evaporation rate of the local pheromone trail, and
the predetermined pheromone intensity. Nparticle, c1, c2
of PSO respectively denote the number of particles,
the cognitive acceleration index and social acceleration
index.

4.1 Scenario 1: 3 UAVs Against 4 Targets

In Scenario 1, the heterogeneous UAV team U =
{US

1 , UC
2 , UM

3 } needs to perform SEAD mission on four
targets. Through 60 Monte Carlo runs, the results of four
methods are shown in Fig. 7.

Figure 7a shows the objective values of solutions during
60 Monte Carlo runs. The smaller the objective value is, the

Fig. 9 Monte Carlo results of four methods in scenario 3

better the solution is. Obviously, the proposed GA generate
better solutions than the compared methods. Figure 7b
shows the average convergence performance of four

methods, where ENg = JNg

J0
denotes the convergence value.

J0 is the initial objective value, and JNg is the objective
value after Ng iteration time. The smaller ENg is, the better
convergence performance the algorithm has. Figure 7b
reveals that the proposed GA has better convergence speed
and lower convergence value than the compared methods.
To further prove the overall performance of the proposed
GA, different scenarios are then discussed.

4.2 Scenario 2: 5 UAVs Against 3 Targets

The heterogeneous UAV team U = {US
1 , UC

2 , UC
3 ,

UC
4 , UM

5 } needs to perform SEAD mission on three targets.
Through 60 Monte Carlo runs, the objective values of

Fig. 10 Monte Carlo results of four methods in scenario 4
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solutions and average convergence performance are shown
in Fig. 8.

As shown in Fig. 8a, the proposed GA is the best in
both the distribution of solutions and the average value of
solutions during 60 Monte Carlo runs. Besides, Fig. 8b
reflects that the convergence performance of the proposed
GA is slightly better than the compared methods.

4.3 Scenario 3: 5 UAVs Against 9 Targets

Then, we increase the number of targets in the
CMTAP model. The heterogeneous UAV team
U = {US

1 , UC
2 , UC

3 , UC
4 , UM

5 } needs to perform SEAD
mission on nine targets. Through 60 Monte Carlo runs,
the objective values of solutions and average convergence
performance of four methods are shown in Fig. 9.

Figure 9 demonstrates that the proposed GA has obvious
advantages in the scenario of 5 UAVs against 9 targets.
On the one hand, the distribution of solutions and the

average values of solutions of the proposed GA are
superior to that of the compared methods. On the other
hand, the convergence performance of the proposed GA is
significantly better than that of the compared methods.

4.4 Scenario 4: 15 UAVs Against 10 Targets

The heterogeneous UAV team U = {US
1 , · · · , US

5 ,

UC
6 , · · · , UC

10, UM
11 , · · · , UM

15 } is allocated to perform
SEADmission on ten targets. Through 60Monte Carlo runs,
the objective values of solutions and average convergence
performance of four methods are shown in Fig. 10.

Compared with scenarios 1-3, the CMTAP model of
scenario 4 is the largest. We can see from Fig. 10
that compared with other methods, the proposed GA not
only obtains the best solutions, but also has outstanding
convergence performance. Obviously, the proposed GA
remarkably realizes the cooperative task assignment of
heterogeneous UAVs against multiple targets in scenario 4.

Table 5 Monte Carlo results of four methods in different scenarios

Scenarios UAV team Optimization results (min,max,avg,ENg
)

GA RS ACO PSO

3 UAVs against 4 targets Homogeneous 147.30 161.01 159.16 163.67
178.00 185.48 182.55 182.84
160.95 174.25 171.80 173.88
0.7729 0.8229 0.8037 0.8441

Heterogeneous 166.62 180.62 183.39 167.69
192.81 204.36 201.54 193.39
179.45 195.01 192.43 179.91
0.8129 0.8273 0.8255 0.8196

5 UAVs against 3 targets Homogeneous 96.04 100.96 101.55 98.93
106.31 111.53 108.43 109.30
101.05 105.58 105.33 105.51
0.8189 0.8260 0.8220 0.8489

Heterogeneous 97.96 100.05 100.14 101.91
106.31 108.81 109.19 110.16
102.90 106.10 105.66 106.31
0.8056 0.8295 0.8188 0.8477

5 UAVs against 9 targets Homogeneous 202.91 284.93 257.82 289.62
273.02 331.32 297.44 332.22
239.11 312.16 283.50 313.72
0.6419 0.8152 0.7542 0.8347

Heterogeneous 209.31 293.10 268.63 297.27
301.66 342.68 311.38 339.60
252.86 322.16 291.86 322.77
0.6488 0.8101 0.7463 0.8420

15 UAVs against 10 targets Homogeneous 107.37 148.71 149.19 150.79
136.50 175.66 174.45 179.19
121.60 166.97 165.64 166.97
0.6091 0.8111 0.8185 0.8368

Heterogeneous 86.74 132.04 130.24 123.32
121.06 154.40 150.94 153.98
103.38 144.56 141.33 142.57
0.5718 0.7888 0.7828 0.7991
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4.5 Discussions

To comprehensively illustrate the effectiveness and robust-
ness of the proposed GA for the CMTAP model, the detailed
task assignment results of four methods in the above four
scenarios are provided in Table 5. Besides, the homoge-
neous combat UAV team is also considered.

Table 5 presents the minimum (min), maximum (max)
and average (avg) objective values of the solutions over
60 Monte Carlo runs. In addition, the average convergence

indexes ENg = JNg

J0
of four methods are exhibited in

Table 5. The best results among different methods are
highlighted in bold.

We can see from Table 5 that:

1) In all four scenarios, the proposed GA has lowest
objective values (min/avg/max values). The superiority
of the proposedGA in themin/max/avg objective values
is further revealed when dealing with large-scale SEAD
scenarios.

2) In scenarios 1-2, the convergence indexes ENg of
four methods all reach around 0.8. In scenarios 3-
4, ENg of the proposed GA reaches 0.58-0.65, while
the comparing methods still remain around 0.8. With
the increasing of the model size, the convergence
performance of the proposed GA enhances prominently.

5 Conclusions

Cooperative multiple task assignment problem (CMTAP)
is a NP-hard combinational optimization problem. In
this paper, we studied the CMTAP model to allocate
heterogeneous UAVs to perform classify, attack and
verify tasks consecutively on multiple ground stationary
targets. To address this problem, we proposed a modified
genetic algorithm (GA) with multi-type-gene chromosome
encoding strategy. The chromosome population built by
the encoding strategy satisfies the UAV heterogeneity,
task coupling and task precedence constraints. By the
introduction of Dubins car model, the objective function
of each chromosome is calculated, as well as its fitness
value. Then, according to the designed encoding scheme,
corresponding crossover operator and multiple mutation
operators are presented to trade-off the global search ability
of GA and the diversity of GA population. The simulation
results demonstrate the effectiveness and robustness of the
proposed GA for the CMTAP model.

Acknowledgements The paper is funded by the National Natural
Science Foundation of China (No. 61701134, No. 51809056),
the National Key Research and Development Program of China
(No. 2016YFF0102806), and the Natural Science Foundation of
Heilongjiang Province, China (No. F2017004).

References

1. Xu, G.T., Liu, L., Long, T., et al.: Cooperative multiple
task assignment considering precedence constraints using multi-
chromosome encoded genetic algorithm. 2018 AIAA Guidance.
Navigation, and Control Conference 1859 (2018)

2. Shima, T., Rasmussen, S.J.: UAV Cooperative decision and
control: challenges and practical approaches Society for Industrial
and Applied Mathematics (2009)

3. Zhen, Z.Y., Xing, D.J., Chen, G.: Cooperative search-attack
mission planning for multi-UAV based on intelligent self-
organized algorithm. Aerosp. Sci. Technol. 76, 402–411 (2018)

4. Zhao, J.W., Zhao, J.J.: Study on multi-UAV task clustering and
task planning in cooperative reconnaissance. 6th IEEE Internation
Conference Intelligent Human-Machine Systems and Cybernetics
(IHMSC) 2, 392–395 (2014)

5. Yang, W.L., Lei, L., Deng, J.S.: Optimization and improvement for
multi-UAV cooperative reconnaissance mission planning problem.
11th IEEE International Computer Conference on Wavelet Actiev
Media Technology and Information Processing (ICCWAMTIP)
10–15 (2014)

6. Wang, Z., Liu, L., Long, T., et al.: Multi-UAV reconnaissance task
allocation for heterogeneous targets using an opposition-based
genetic algorithm with double-chromosome encoding. Chinese J.
Aeronaut. 31(2), 339–350 (2018)

7. Hu, X.X., Cheng, J., Luo, H.: Task assignment for multi-
UAV under severe uncertainty by using stochastic multicriteria
acceptability analysis. Mathematical Problems in Engineering.
Article ID 249825, 1–10 (2015)

8. Hu, X.X., Ma, H.W., Ye, Q.S., et al.: Hierarchical method of task
assignment for multiple cooperating UAV teams. J. Syst. Eng.
Electron. 26(5), 1000–1009 (2015)

9. Zaza, T., Richards, A.: Ant colony optimization for routing and
tasking problems for teams of UAVs. IEEE UKACC International
Conference on Control (CONTROL) 652–655 (2014)

10. Rasmussen, S.J., Shima, T.: Tree search algorithm for assigning
cooperating UAVs to multiple tasks. Int. J. Robust Nonlinear
Control 18(2), 135–153 (2008)

11. Zhou, S.L., Yin, G.Y., Wu Q.P.: UAV cooperative multiple task
assignment based on discrete particle swarm optimization. 7th
IEEE International Conference on Human-Machine Systems and
Cybernetics. (IHMSC) 2, 81–86 (2015)

12. Geng, L., Zhang, Y.F., Wang J.J., et al.: Cooperative task planning
for multiple autonomous UAVs with graph representation and
genetic algorithm. 10th IEEE International Conference on Control
and Automation (ICCA) 394–399 (2013)

13. Whitbrook, A., Meng, Q., Chung, P.W.H.: Reliable, distributed
scheduling and rescheduling for time-critical, multiagent systems.
IEEE Trans. Autom. Sci. Eng. 15(2), 732–747 (2018)

14. Schumacher, C., Chandler, P., Pachter, M., et al.: Constrained opti-
mization for UAV task assignment. AIAA Guidance Navigation,
and Control Conference and Exhibit 5352 (2004)

15. Darrah, M.A., Niland, W.M., Stolarik, B.M.: Multiple UAV
dynamic task allocation using mixed integer linear programming
in a SEAD mission[C]. Infotech @ Aerospace 7164 (2005)

16. Wang, Z., Liu, Q.Q., Tao, H.T., et al.: Multiple task planning based
on TS algorithm for multiple heterogeneous unmanned aerial
vehicles. Proceedings of IEEE Chinese Guidance, Navigation and
Control Conference (CGNCC) 630–635 (2014)

17. Shima, T., Rasmussen, S.J., Sparks, A.G., et al.: Multiple task
assignments for cooperating uninhabited aerial vehicles using
genetic algorithms. Comput. Operations Res. 33(11), 3252–3269
(2006)

18. Gottlieb, Y., Shima, T.: UAVS task and motion planning in the
presence of obstacles and prioritized targets. Sensors 15(11),
29734–29764 (2015)

626 J Intell Robot Syst (2020) 100:615–627



19. Shima, T., Rasmussen, S.J., Sparks, A.G.: UAV Cooperative
multiple task assignments using genetic algorithms. IEEE
Proceedings of the American Control Conference 2989–2994
(2005)

20. Darrah, M., Niland, W., Stolarik, B., et al.: UAV Cooperative task
assignments for a SEAD mission using genetic algorithms. AIAA
Guidance. Navigation, and Control Conference and Exhibit 6456
(2006)

21. Yao, M., Wang, X.Z., Zhao, M.: Cooperative combat task
assignment optimization design for unmanned aerial vehicles
cluster. J. Univ. Electronic Sci. Technol. China 42(5), 723–727
(2013)

22. Edison, E., Shima, T.: Integrated task assignment and path
optimization for cooperating uninhabited aerial vehicles using
genetic algorithms. Comput. Operations Res. 38(1), 340–356
(2011)

23. Dubins, L.E.: On curves of minimal length with a constraint
on average curvature, and with prescribed initial and terminal
position. Am. J. Math. 79, 497–516 (1957)

24. Tsourdos, A., White, B., Shanmugavel, M.: Cooperative path
planning of unmanned aerial vehicles John Wiley & Sons (2010)

25. Cons, M.S., Shima, T., Domshlak, C.: Integrating task and motion
planning for unmanned aerial vehicles. Unmanned Syst. 2(01),
19–38 (2014)

26. Deng, Q.B., Yu, J.Q., Wang, M.F.: Cooperative task assignment
of multiple heterogeneous unmanned aerial vehicles using a
modified genetic algorithm with multi-type genes. Chinese J.
Aeronaut. 26(5), 1238–1250 (2013)

27. Zhang, Y.Z., Hu, B., Li, J.W., et al.: Heterogeneous multi-
UAVs cooperative task assignment based on GSA-GA. IEEE
International Conference on Aircraft Utility Systems (AUS) 423–
426 (2016)

28. Nedic, N., Prsic, D., Dubonjic, L., et al.: Optimal cascade
hydraulic control for a parallel robot platform by PSO. Int. J. Adv.
Manuf. Tech. 72(5-8), 1085–1098 (2014)

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Fang Ye received the B.S. and Ph.D degrees in Electrical Information
Engineering from Harbin Engineering University (HEU) in 2002 and
2006, respectively. She has been a teacher at Harbin Engineering
University of China since 2002, and became an associate professor
in 2007. During 2007-2008, she stayed in School of Electronics
and Computer Science from University of Southampton as a visiting
scholar. She is an IEEE member, a member of China Institute of
Communications, a senior member of China Communication Society,
and a senior member of China Computer Society. Her research
interests are wireless network, 5G communication, multi-agent system
and information fusion.

Jie Chen received the B.S. and M.S. degrees in Electrical Information
Engineering from Harbin Engineering University (HEU) in 2014
and 2016, respectively. Now, she is pursuing her Ph.D degree in
information and communication engineering at HEU. Her current
research interests are multi- UAV system, intelligent algorithm,
information fusion and signal identification.

Yuan Tian received the B.S. and M.S. degrees in Electrical
Information Engineering from Harbin Engineering University (HEU)
in 2003 and 2007, respectively. She has been a teacher at Harbin
Engineering University of China since 2007, and she is currently
pursuing the Ph.D. degree with the College of Information and
Communication Engineering at HEU. Her current research interests
include multi-robot cooperation, vision-based mobile robot navigation
systems, and integrated navigation systems.

Tao Jiang received the B.S. in aerospace and civil engineering from
Harbin Engineering University (HEU) in 1994, and received the M.S.
and Ph.D degrees in information and communication engineering
from HEU in 1999 and 2002, respectively. He has been a teacher
at Harbin Engineering University of China since 1999, and became
a full-time professor since 2008. During 2003-2004, he stayed in
Radar Signal Processing Laboratory from University of Singapore as
a visiting scholar. He is a Vice Chairman of IEEE Harbin Chapter
EMC Section, a member of IEEE AP/EMC/Communications, a senior
member of China electronics society, and a senior member of China
communication society. His research interests are multi-agent system,
radio navigation and precise positioning, modeling and simulation of
electromagnetic environmental effects, and antenna technology.

627J Intell Robot Syst (2020) 100:615–627


	Cooperative Multiple Task Assignment of Heterogeneous UAVs Using a Modified Genetic Algorithm with Multi-type-gene Chromosome Encoding Strategy
	Abstract
	Introduction
	Problem Formulation
	Targets and Tasks
	UAVs
	CMTAP Model

	The Proposed GA
	Multi-type-gene Chromosome Encoding Strategy
	Population Initialization
	Genetic Operators
	Crossover Operator
	Mutation Operators


	Simulations and Analyses
	Scenario 1: 3 UAVs Against 4 Targets
	Scenario 2: 5 UAVs Against 3 Targets
	Scenario 3: 5 UAVs Against 9 Targets
	Scenario 4: 15 UAVs Against 10 Targets
	Discussions

	Conclusions
	References


