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Abstract
Underwater docking technology enables autonomous underwater vehicles (AUVs) to execute long-term observation missions by
periodically recovering and recharging AUVs. The conventional AUV homing and docking operations utilize acoustic and
optical sensors at different ranges relative to the docking station. However, this method cannot perform perfectly in confined
water regions because of the acoustic reflection and multipath effect. Thus, this paper proposes a novel navigation system, which
fuses downward-looking visual odometry and model-based velocity for homing, and recognizes and tracks the light marker for
terminal docking, in order to overcome the defects of the conventional navigation method. The reservoir experiment result
verifies the effectiveness of the proposedmethod and shows good potential to extended applications in underwater routine cruise.
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1 Introduction

Autonomous underwater vehicles (AUVs) are playing an in-
creasingly important role in ocean exploration and observa-
tion. With the technological advances, the application scenar-
ios of AUVs are not limited to the open oceans and can also be
extended to some confined water regions, such as the pool,
reservoir and the aquarium. The power-intensive instrumenta-
tion consumes much energy of AUVs and limits their working
periods. This means that for nearly all the missions, the AUV
should be attended by a surface vessel or shoreside staff, in-
creasing much cost and inconvenience for missions.

Underwater docking technology enables AUVs to be au-
tonomously guided to the docking station, to recharge the
batteries, download data, upload a new mission plan, and
safely park until the next mission [1, 2]. The navigation pro-
cess of AUV docking can be divided into homing and docking
stages [3]. The former stage refers to the case where AUV is
over 10–25 m away from the docking station (DS) and the
later stage refers to the case where the distance between the

AUV and the DS is less than 10 m. The ultra-short base line
(USBL) positioning system is commonly used for the homing
stage because of its error-bounded performance for long-range
localization. During the docking stage, the optical guidance
[4], camera- based visual guidance [5], and electromagnetic
guidance [6] are preferable choices due to their higher locali-
zation accuracy. However, in the confined water regions, the
performance of the USBL positioning system is remarkably
degraded caused by the acoustic reflection and multipath ef-
fects, thereby causing intermittent position fixes and many
outlier measurements. Additionally, the doppler velocity
log (DVL) generates large-noise velocity measurements
when the AUV is close to the bottom. Thus, it is not an
appropriate choice to use acoustic sensors in confined un-
derwater regions.

Visual simultaneous localization and mapping (SLAM) are
popular methods for solving on-land navigation problems [7].
SLAM techniques build a map of an unknown environment
firstly and then localize the robot in the map, whereby the
localization error of the robot can be bounded within a limited
range. One notable defect of the SLAM methods is the large
map information that should be stored for loop closure and
trajectory optimization. Once the features cannot be matched
from two consecutive frames, the map error would increase
obviously. The AUV hardly ever revisits the same place un-
derwater because of various requirements of exploration mis-
sions. Additionally, it is difficult to accurately guide AUV
along a specific path, while the on-land vehicles can do easily
by referring to the road-side features. Therefore, the visual
SLAM method is rarely used for underwater missions and
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the visual odometry (VO) method is much more favored. It is
known that underwater features (e.g. leaves) are similar and
difficult to be distinguished, especially when the captured im-
age contains much noise. Even if many researchers made sig-
nificant contributions for underwater VO methods, most of
them are operated offline [8, 9].

This paper aims to propose a real-time and robust naviga-
tion system to achieve docking operations in confined water
regions with good visibility. For the homing stage, an integrat-
ed navigation algorithm by fusing visual odometry and kinetic
model-based velocity is proposed, and a simple but effective
light marker tracking algorithm is used at the docking stage.

The rest of this paper is organized as follows. Section 2
demonstrates the AUV docking system. Section 3 and 4 dem-
onstrate the hydrodynamic model of the refitted AUV and
underwater visual odometry method, respectively. Section 5
demonstrates the improved navigation system. Section 6 dem-
onstrates the optical guidance method, Section 7 demonstrates
the experiment and Section 8 draws a conclusion and dis-
cusses the future work.

2 AUV DOCKING SYSTEM

Figure 1 demonstrates the designed AUV, the ultra-wideband
(UWB) localizationmodules/stations, and the docking station.
For a standard torpedo-like AUV, its rudders must have a
sufficient flow of water over them to provide the necessary
lift forces to keep the controllability, i.e., AUV should have a
forward velocity as it attempts to dock. While the common
AUV speed of 2–3 knot is not fast, it is fast enough to damage
the docking station and the vehicle if the trajectory is not
correct. For the newly-developed AUV shown in Fig. 1(a), it
can be controlled at a specified depth without forward velocity
because the AUV uses thrusters to provide lift forces rather

than rudders, i.e., the AUVis able to execute dockingmissions
(at a specific depth) at a relatively slow speed, gathering more
localization data in unit time. A light marker is mounted on the
docking station to guide the AUV for the terminal docking
operations. The UWB localization system is used to provide
ground-truth locations of the AUV. The UWB location is ac-
quired by computing distances to three UWB stations, which
are deployed around the reservoir in the experiment. The lo-
cation error of the UWB positioning system is within 10 cm
with a maximum update rate of 10 Hz according to product
specification. To evaluate the model-based linear velocity of
the AUV, the reference velocity is calculated by using the
UWB displacement and interval periods.

Figure 2 demonstrates the composition of the AUV. The
vehicle is equipped with a downward-looking camera to per-
form the monocular visual odometry and a forward-looking
camera to recognize the navigation lights on the DS. The ten-
axis attitude system (TAS) can provide attitude and angular
velocity data, and the pressure sensor measures the depth of
AUV. The control unit is responsible for commanding AUV
motion, sampling from the sensors, and transmitting data. The
navigation unit computes the localization result and sends it to
the control unit for generating control commands.

3 Hydrodynamic Model-Based Velocity
Prediction

The hydrodynamic model is used to predict AUV velocity
during the docking mission. Here, the mathematical formulae
of the AUV motion are provided according to the SNAME
notation. Fig. 3 demonstrates the motion and reference frames
of the AUV where {b} and {n} represent the body-fixed ref-
erence frame and the North-East-Down (NED) reference
frame, respectively, and vb = [u v w]Tand ωb = [p q r]T denote

(a) AUV (b) Three UWB stations (c) Docking station

Fig. 1 The AUV docking system. (a) AUV (b) Three UWB stations (c) Docking station
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the body-fixed velocity vector and angular velocity vector,
respectively. Without loss of generality, the homing and
docking stages are set at a specific depth. The velocity of the
AUV can be computed using a horizontal hydrodynamic
model, which is modified based on the model from a standard
torpedo-like AUV. According to the control inputs of the
AUV, its horizontal model can be formulized as follows.

m u̇−vr−yg ṙ−xgr
2
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ṙ þ N

0
r rj jr rj j

� �
þ a1Fp1−a2Fp2
� �

l ð3Þ

Jz denotes the moment of inertia about zb axis, L denotes the
characteristic length of AUV, ρ denotes the density of water, l
denotes the distance between two thrusters. Additionally, m
and (xG yG zG)

T denote the mass and the vector of gravity
center in the body-fixed coordinate, respectively. Fp1 and
Fp2 denote the thrust generated by the left and right horizontal
thrusters, respectively, and they are calculated by

Fpi ¼ Aiu2 þ Biunpi þ Cin2pi ð4Þ

where i denotes the order of the thruster, npi denotes the rotation
speed of the i-th thruster, and Ai, Bi and Ci are three constants
reflecting the characteristics of the i-th thruster and they can be
calculated by referring to the work [10]. It is noted that two
modification coefficients a1 and a2 are added to (1) and (3) to
modify the thrust forces because two thrusters cannot generate
the same thrust forces when given the same rotational speed due
to the error of manufacture. Here, the particle swarm optimiza-
tion (PSO) algorithm is used to offline identify the modification
coefficients [11], and its schematic diagram is illustrated in Fig.
4. Before identification, the AUV was commanded to execute
linear and circular motion in order to collect field data including
the control input npi and corresponding velocity measurements
u*t ; v

*
t ; r

*
t

� �
. The 19 dimensionless hydrodynamic parameters in

(1)–(3) were solved by the method proposed in [12] and their
values are provided in Table 1.

In the PSO algorithm, the search ranges of a1 and a2 are
empirically confined within [0.8,1.2] since the manufactureFig. 3 AUV motion denotations and reference frames
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Fig. 2 Composition of the AUV
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consistency of the thrusters would not be too bad based on the
test performance in the experiments. The objective function
during the identification process is given by:

g ¼ min ∑
T

t¼1

u*t −but
u*t

�����
�����þ v*t −bvt

v*t

�����
�����þ r*t −brt

r*t

�����
�����

 !( )
ð5Þ

where but;bvt;brtð Þ denotes the model-based velocity com-
puted by the Runge-Kutta method [13] and the T denotes
the total time steps of the collected field data. If the sum
of the relative error of the model-based velocity con-
verges, it is believed that a1 and a2 can modify the de-
viation of the thrust force well. Figure 5 (a) demonstrates
the variation process of the modification coefficients,
which are the average result calculated by 50 indepen-
dent PSO runs. It is observed that a1 and a2 converges to
1.095 and 1.093, respectively. Based on this result, the
modified model-based velocity can be calculated using
the field data, and the corresponding result is shown in
Fig. 5 (b)-(c). It is observed that the modified model-
based velocity has better accuracy compared to the un-
calibrated model-based velocity. More specifically, the
modified method improves the computational accuracy
by 34.7% and 48.2% for linear and angular velocities,
respectively. This result is gained by comparing with
the ground-truth velocity (velocity measurements in the
figures) calculated from the UWB positioning system.

4 Underwater Monocular Visual Odometry

The bundle adjustment (BA) method is popular for visual nav-
igation as it can optimize the robot pose andmap features with a
loop closure detection to eliminate the accumulative localiza-
tion error [14]. However, for the terminal docking operation
which only covers dozens of meters, the BA method spends
much time matching with the global map. Thus, a simple but
effective underwater monocular visual odometry (UMVO)
method is proposed to support the original navigation system
and maintain the real-time performance. Pyramidal Lucas
Kanade (PLK) feature tracker is popular for target tracking
problems as it eliminates the need of costly feature description
and directly operates on pixel intensities [15]. Here, FAST fea-
ture extractor is used to extract the image corners and combined
with the PLK tracker to quickly perform the feature registration.

Based on the above-mentioned framework, the proposed
UMVO can address two critical problems in homing stages: 1)
remove inaccurate feature correspondences; 2) compute the
AUV pose. The details are given as follows.

4.1 Remove Inaccurate Feature Correspondences

To compute the AUV pose, the PLK tracker is used to deter-
mine the feature correspondences. Although the PLK tracker
can achieve good results in most terrestrial applications, it
would inevitably encounter feature mismatch problems due
to the blurry and similar features in underwater environments.

Fig. 4 The schematic diagram of identification of the thrust modification coefficients

Table 1 Estimated hydrodynamic parameters and modification coefficients
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0
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Value −2.490e-1 1.630e−3 4.998e-1 −2.768e−1 -3.519e−1 -2.149e-2 −1.250e−2
Parameter N

0
v
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r N
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0
v vj j N

0
v a1 a2

Value 5.941e-4 -1.889e-2 -1.001e-1 3.476e-2 -2.352e-4 1.095 1.093
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Some effective solutions have been proposed to enhance and
restore the underwater images, such as the modulation transfer
function-based restoration [16], histogram equalization [17],
and the dehazing enhancement [18]. However, for a real-time
navigation system, these methods are time-consuming and
cannot completely avoid wrong feature matching, especially
when some suspended solids adhere to the front of the camera.
Therefore, we proposed a random sample consensus
(RANSAC) based method to remove the outlier feature
matchings for UMVO. The proposed method has three steps
as given below.

4.1.1 Remove Features around Image Boundary

It is noted that the captured underwater images are inevitably
distorted due to refraction of water and the water-proof shell,
decreasing the position accuracy of extracted features.
Therefore, Zhang’s calibration method is used to correct the
distorted images [19]. After image calibration, there will be a
lot of black pixels around the boundary of images, as shown in
Fig. 6. The features located at the boundary region which is
confined between two yellow rectangles should be removed

because the extracted corners here may not be the environ-
mental features. This confined region is determined by
maximumly selecting the effective image area. The area of
the confined region is related to the intrinsic parameters of
the camera and calibrated coefficients. Thus, if the camera
and its water-proof shell are not changed, the boundary region
would not change too.

4.1.2 RANSAC Based Outlier Removal

The RANSAC method can be used to remove outliers based
on a mathematics model, which are the essential or
homography matrix in the UMVO method. However, it is
difficult to determine which model is more suitable to describe
the transformation of features because each model is suitable
for a specified condition. Clearly, the essential matrix is gen-
erally used to describe the epipolar geometry constraint which
requires the distance of two consecutive camera positions can-
not be too close, while the homography matrix describes the
transformation of matched features in a same plane. For real-
world scenarios, such as at pool or sea, only little prior infor-
mation of the environmental characteristics can be acquired.
For our UMVO method, it is assumed that the terrain around
the docking station would not be very rugged.

Here, a RANSAC based method is proposed to remove
incorrect feature correspondences. The models of
homography transformation and epipolar geometry constraint
are given by:

Γ 1 p1; p2ð Þ ¼ p2−Hp1 ð6Þ

ð7Þ

where p1 and p2 denote the coordinates of the matched fea-
tures in consecutive image I1 and I2, respectively, H and E
denote the homography and essential matrices, respectively,K
denotes the intrinsic matrix of the camera, and R and t denote
the rotation matrix and the displacement vector of the camera
from the image I1 to I2, respectively. It is noted that [t×] is a
simplified expression, which is defined as

a� b ¼
0 −a3 a2
a3 0 −a1
−a2 a1 0

24 35 b1
b2
b3

24 35 ¼ a�½ �b ð8Þ

where a = [a1 a2 a3]
Tand b = [b1 b2 b3]

T. The rigorous defi-
nition of two basic models is that (6) and (7) are equal to 0.
However, this condition cannot be satisfied due to the image
noise and limited extracted accuracy. Therefore, the inliers and
outliers in the RANSAC based method are identified by a
predefined threshold as:

Γ i p1; p2ð Þk k < dith; i ¼ 1; 2 ð9Þ

Fig. 5 Test results of the modification method. (a) Variation of
modification coefficients. (b) Linear velocity comparison, unit: m/s. (c)
Angular velocity comparison, unit: rad/s

Fig. 6 The calibrated image with an enlarged view
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where dith denotes the threshold for the RANSAC method
using Γi(p1, p2), and it is set to 3 based on the recommendation
from the OPENCV library.

4.1.3 Fine Removal Using Prior Information

Although the previous steps can remove most outliers, there
still remains inaccurate feature correspondences as some iden-
tified features are too close and look similar; as a consequence,
some different features may also match and satisfy the condi-
tion of (9). To remove outliers further, the prior information of
terrain near the homing station is used. The detailed execution
steps are: a) Triangulate the matched features in image I1; b)
compute the median depth dme of triangulated 3-D feature
points. c) Remove the features whose depth have a negative
sign to dme or is larger than 3dme, or smaller than 1/(3dme).

The optical flow before and after removing the outliers are
shown in Fig. 10, in which the white line connects the matched
feature positions in image I1 and I2, and the white circles denote
the feature position in image I2. Note that the yellow circle 1 in
Fig. 7(a) contains a black spot which is a suspended solid ad-
hered to the water-proof shell of the camera, and the yellow
circle 2 and 3 mark the position of inaccurate optical flow,
which has an obviously different tendency compared to the
others. It can be observed that the inaccurate feature correspon-
dences are all removed in Fig. 7(b), proving that the proposed
method can effectively improve the correctness of feature
matching.

4.2 Compute the AUV Pose

4.2.1 Select the Best Solution for Pose Update

The camera pose can be acquired by decomposing the essential
or homography matrix using the singular value decomposition
method. However, there are four pose solutions for both essen-
tial and homography matrices. To eliminate the incorrect solu-
tions, the matched features are firstly triangulated by the

corresponding pose, and then the solutions where the point is
in front of both cameras are chosen as the temporarily correct
solutions. After these steps, there is only one solution for the
essential matrix and two solutions for the homography matrix.
Although the prior information believes that the terrain around
the docking station would not be very rugged, it is not enough
to determine which model is more suitable for computing the
AUV pose. Therefore, the following method is proposed to
determine and update the AUV pose.
Step 1. Calculate the average parallax of matched features in

the forward direction. If the average parallax is
smaller than the preset threshold, the homography
matrix will be used to describe the feature transfor-
mation of the current scenario, and then go step 2.
Otherwise, go step 3.

Step 2. Calculate the sum of feature reprojection error for each
solution from the homography matrix, and choose the
best solution which has the smaller error. Go step 4.

Step 3. Calculate the sum of feature reprojection error for
three solutions from both essential and homography
matrices, and choose the solution with the smallest
error. Go step 4.

Step 4. Compute the AUV trajectory as

Rk ¼ R1; k ¼ 1
R⋅Rk−1; k ≥2

�
ð10Þ

tk ¼ sk t1; k ¼ 1
tk−1 þ sk ⋅ Rk tð Þ; k≥2

�
ð11Þ

where tk and Rk denote the AUV displacement and rotation
matrix at time step k, respectively, and sk denotes the monoc-
ular scale.

4.2.2 Recover the Metric Scale

It is known that the monocular vision-only systems are inca-
pable of recovering the metric scale, thus limiting their usage

(a) Before removing outliers   (b) After removing outliers

Fig. 7 Optical flow results
presented in image I2. (a) Before
removing outliers (b) After
removing outliers
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in real-world applications, such as at pool and sea. In recent
years, there is an increasing trend to use a low-cost inertial
measurement unit (IMU) to recover themonocular scale, how-
ever, this method requires complex and rigorous initialization,
such as launching the robot from a known pose, moving slow-
ly or starting missions from a known environment. To address
this problem, we propose a scale recovery method by aligning
the hydrodynamicmodel-based motion to UMVO. This meth-
od can be formulized as follows:

Vkj j þ Vk−1j j
2

Tk−Tk−1ð Þ ¼ sk tkk k ð12Þ

where Tk and Tk − 1 denote the timestamp at time step k and k-
1, respectively, Vk and Vk − 1 denote the velocity at time step k
and k-1, respectively, and sk denotes the metric scale. The
corresponding schematic diagram is shown in Fig. 8.

To evaluate performance of the scale recovery method, the
AUV was commanded to move along a square path and col-
lect the images and corresponding control commands at
Yuquan pool/reservoir at Zhejiang University (ZJU pool),
Hangzhou, China. The collected data are called ZJU dataset
in this paper. Figure 9(a) demonstrates the comparison result
of the proposed UMVO with the model-based scale and the
relative scale [20], respectively. It is observed that the trajec-

tory with the model-based scale is closer to a square, while the
trajectory with the scale updated in a relative way has obvious
drift, especially when the AUV turned a corner. This is be-
cause the model-based scale is essentially an absolute scale
which is independent of the previous scale, while the scale
calculated in a relative way will accumulate the error and
cause trajectory drift. Comparing to the UWB localization
module, the proposed method improves the localization accu-
racy by 8.4%. To further evaluate the proposed visual
odometry method, the open-source KITTI dataset (sequence:
00) is used to test the localization accuracy [21] and the test
result is shown in Fig. 9 (b). It is observed that the trajectory
with the absolute scale outperforms that with the relative scale
in long range, and this result is similar to the testing using ZJU
pool dataset.

5 ISRT-UKF Based Navigation System

To improve the localization accuracy and robustness of the
proposed algorithm, this study fuses the hydrodynamic
model-based velocity and UMVO by modifying our previous
navigation algorithm and adding an outlier rejection function
to prevent filter failures [22]. The modified algorithm is re-
ferred to as the improved square root transformed unscented
Kalman filter (ISRT-UKF). In the following parts, how to use
and fuse each data source will be introduced in detail.

5.1 System and Measurement Models

To apply the ISRT-UKF algorithm, the system and measure-
ment models of the AUV should be firstly established. In our
tests, the AUV canmovewith nearly zero pitch and roll angles
during the entire docking mission. Thus, we only consider the
horizontal motion of the AUV. The corresponding system and
measurement models are provided as:

Visual odometry 

Model-based trajectory 

Align 

Fig. 8 Recovering the metric scale by the model-based alignment
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Fig. 9 The performance test of
the proposed visual odometry
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KITTI dataset (sequence: 00)
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System model:

ð13Þ

Measurement model:

ð14Þ

where Θk − 1 denotes the rotation matrix from the body-fixed
reference frame to the NED reference frame, Δt denotes the
sampling time, Xk and Zk denote the system and measurement
state vectors at time step k, the vector [xk yk ϕk]

T represents
the position and heading of the AUV in the NED reference
frame, f(⋅) and h(⋅) denote the system and measurement model
functions respectively, Uk − 1 denotes the control input which
contains linear and angular velocity in the body-fixed refer-
ence frame, nk − 1 and mk denote the noise vectors of the con-
trol input and measurements respectively. These two vectors
satisfy the Gaussian distribution of N(0,Qk − 1) and N 0;Rk

� �

where Qk − 1 and Rk denote the system and measurement co-
variance matrices, respectively.

It is noted that the model-based velocity has accumulative
error because it is computed in an iterative way. Therefore, to
reduce accumulative error, the AUV is regarded to move in a
constant forward speed (when without the rotational motion)
when it speeds up to a velocity that is close to the theoretically
stable velocity.

The noise statistics of the linear velocity and UMVO are
empirically determined by observing performance of the
AUV in a constant speed. For the TAS, the noise statistics is
tuned according to the specifications of the sensor manufac-
turers. In the navigation system, the origin of the NED reference
frame is set at the center of the docking station entrance. The
UMVO results is acquired in the reference frame established at
the position regarding the first camera frame. Therefore, to fuse
the UMVO and the model-based velocity, a coordinate trans-
formation should be carried out. The zero degree of the heading
angle provided by the TAS aligns with the due east direction.
Assuming that the heading angle of AUV at the first camera
frame is δ0, the position given by the UMVO should be trans-
formed from the original xcvo; y

c
vo

� �
to the NED reference frame

at xNEDvo ; yNEDvo

� �
in the way:

xNEDvo ¼ xcvocos
π
2
−δ0

� �
þ ycvosin

π
2
−δ0

� �
ð15Þ

yNEDvo ¼ ycvocos
π
2
−δ0

� �
−xcvosin

π
2
−δ0

� �
: ð16Þ

5.2 ISRT-UKF Algorithm

The ISRT-UKF algorithm is modified from our previous work
[22] whose computational process is provided in Table 2
where chol() denotes the Cholesky decomposition operator,
qr() denotes the QR decomposition, and cholupdate() denotes

Table 2 The SRT-UKF algorithm
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the Cholesky update for the square root factor of the state
covariance matrix. The ISRT-UKF contains two steps, and
they are prediction and correction. The navigation data for
the prediction step come from the model-based velocity and
TAS. For the correction step, the data come from the UMVO.
The related nomenclature is given at the end of this paper. The
primary difference between two algorithms is that the ISRT-
UKF has an outlier rejection strategy. The details of additional
steps in the filter are given below.

5.3 Initialization and outlier rejection

For most underwater navigation cases, the initial position of
the AUV is given by the GPS. The accuracy of the GPS posi-
tion fixes is generally bounded within 5 m. One of its draw-
backs is the localization jumps. This drawback may be negli-
gible for long-range missions at sea, but for a confined water
region, an accurate initial position is important for the AUV to
enter the light coverage area at the docking stage. Thus, we
propose a simple but robust initialization approach before
starting the homing mission. To evaluate quality of the GPS
position fix, the AUV is commanded to move along a speci-
fied heading angle firstly, and then compares the heading an-
gle to the included angle of the line between two successive
GPS position fixes. The schematic diagram of the method is
shown in Fig. 10, and it can be formulized as follows

πþ ϕi−arctan
yi−yi−1
xi−xi−1

	 
���� ����≤ϑ ð17Þ

where ϕi denotes the i-th measurement of the AUV heading
angle during the transitory stage, βi denotes the included angle
of the line between successive GPS position fixes (xi − 1, yi − 1)
and (xi, yi), and ϑ is an empirical threshold, which is set to π/6
by trial-and-error procedure. When (17) is satisfied for suc-
cessive two times, the latest GPS position fix is used to

initialize the system state. Although UMVO can provide ac-
curate localization, it may still generate inaccurate visual
tracks in scenes of illumination change and textureless areas.
To avoid fusing inaccurate information to ISRT-UKF, we pro-
pose an outlier rejection method using an uncertainty ellipse
method, which is modelled by the Mahalanobis distance. The
formulation of the proposed method is demonstrated as fol-
lows. First, calculate innovation of the measurement.

eZk ¼ Zk−bZkjk−1 ð18Þ

where eZk denotes the innovation of the measurement, Zk de-

notes the actual measurement (UMVO) and bZkjk−1 denotes the

predicted measurement. In general, eZk satisfies the Gaussian
distribution ofN(0,Tk) whereTk denotes the covariance of the
innovation. Tk is calculated by:

Tk ¼ E eZkeZT

k

	 

¼ S

T

zkSzk ð19Þ
Y

 (
m

)
N

E
E

S

Fig. 11 Simulation test of the outlier rejection methodFig. 10 Schematic diagram of AUV position initialization
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where Szk denotes the square root factor of the predicted mea-
surement. The outlier can thus be identified:

d2 ¼ eZT

k T
−1
k
eZk < χ2

α ð20Þ

where d2 denotes the squared Mahalanobis distance and χ2
α is

the chi square value of confidence. If (20) is not satisfied, the
actual measurement is regarded as outlier and ISRT-UKF only
executes the prediction step.

Figure 11(a) demonstrates the simulation result of the per-
formance of the outlier rejection method. The AUV is as-
sumed to move along a specified path as the arrow indicates,
and the measurements are generated based on the true path. To
simulate outliers, some measurements are added random error
whose error is 8 times larger than the original error of the
measurements. It is observed that the estimated trajectory with
the outlier rejection function is closer to the true path. This
result reveals that the outlier rejection process can effectively
increase estimation accuracy and robustness of the ISRT-UKF
algorithm. Figure 11(b) shows the normalized estimation error
squared (NEES) in the simulation [23]. A larger NEES indi-
cates that the measurement cannot well match with the predic-
tion results and the filter has the potential to diverge. It is
observed that the NEES of ISRT-UKF is smaller than SRT-
UKF because the proposed outlier rejection removes the ab-
normal measurements (remarkable peaks) and maintains good
estimation performance of the filter.

6 Docking Operations Using Optical Guidance

To achieve terminal docking operations, we use the optical
guidance method which recognizes the light marker on the
docking station via a camera housed at the nose of the AUV.
Different from the at-sea trails, the experiment on a confined
water region, such as a reservoir, would generate virtual ob-
jective on the water surface because of the light reflection.
This wrong target should not be recognized by the visual
algorithm. The complete image processing steps are given
as: (1) Convert the RGB image to the grey image; (2)

Binarize the image; (3) Operate the median filter to remove
noisy image points; (4) Use the Hough circle recognition al-
gorithm to find the circles in the image and extracts the centers
of the circles; (5) Identify the number of circles and remove
outlier circles. The processed image sequences are given in
Fig. 12. During the docking process, the AUV is commanded
to continuously adjust its pose to keep the light spot (extracted
center point) in the center of the image.

7 Experiment

The validation experiments were conducted at ZJU pool,
which has a size of 50 m (length) × 21 m (width) × 1.5 m
(depth). In the experiments, we used the popular proportion-
integration-differentiation (PID) controller to command AUV
to track predetermined mission points and accomplish
docking operations. The forward speed of the AUV is
0.5 m/s and the resulting localization update rate is 6 Hz for
homing and 10 Hz for docking. Figure 13 provides the basic
schematic diagram of the homing and docking strategies. In
the experiments, the AUV was moving at a depth of roughly
0.2 m, enabling that the hull of the AUV was completely
submerged by the water but the antennas are able to receive
localization information above the water surface.

Figure 14 (a) demonstrates five mission trajectories where
the AUV tracks appointed mission points firstly and then go
back to the regions around the origin point. In five missions
the AUV has an average terminal error of 3.4 m and the aver-
age traveling distance is of approximately 110m. Figure 14(b)
shows a comparison result between the ISRT-UKF trajectory
and the UMVO-only trajectory. It is observed that the terminal
position of the ISRT-UKF trajectory is closer to the origin than
that of the UMVO-only method. This is because the heading
angle in UMVO is updated in an iterative way, while in ISRT-
UKF, the heading angle is updated by fusing TAS and UMVO
data so that the error would not obviously accumulated. In five
missions, the average terminal error of the UMVO-only meth-
od is 5.1 m, i.e., the ISRT-UKF based fusion method improves

Fig. 12 Processed images. (a)
raw image (b) gray image (c)
binarized image (d) median-
filtering image (e) final image
with extracted circles
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AUV terminal localization accuracy by 33.3% compared to
that of UMVO.

Figure 15(a) shows an AUV docking mission trajectory
where the GPS origin point is at the location of the docking
station. It is observed that the AUV does not use the first three
GPS position fixes to initialize its position because the pro-
posed navigation system requires high-quality initialization
data. In addition, from all GPS fixes shown, the GPS

localization should not be merged into the ISRT-UKF because
the jumps have large error (see fixes around the DS entrance),
possibly causing diverging of the filter. Even with the outlier
rejection in the filter, the resulting algorithmmay only execute
the prediction step, and thus arises remarkable localization
error and makes the AUV miss the light coverage area when
it is close to the DS. Figure 15 (b) shows eight AUV trajecto-
ries of docking missions. In each docking attempt, AUV was
moving along the predefined path and finally guided into the
docking station. The homing process is shown in Fig. 16 and
the captured image sequences with distance information dur-
ing the docking process in shown in Fig. 17.

8 Conclusion

This paper proposes an AUV navigation system for docking
in a confined water region with good visibility. To enhance the
controllability of the conventional AUV (with one thruster
and four rudder pieces), a newly-designed AUV is used in

Y
(m

)
Y

(m
)

Fig. 15 Tests of AUV homing and docking operations

Fig. 14 Testing of AUV Localization performance

AUV 

Visual guidance Fusion of the model-based 

velocity and UMVO  

Homing Docking 

DS 

Light Coverage 

Fig. 13 Schematic diagram of the AUV homing and docking strategy
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the docking experiments. The simulation validated the advan-
tages of the monocular-scale recovery and the outlier rejection
methods, and the pool experiments validated the performance
of both homing and docking operations. The methods of
model-based velocity prediction and UMVO are low-cost,
ease-of-use and promising to AUV routine cruise for observa-
tion missions in confined environments. The proposed vision-
based optical guidance outperforms most guidance algorithms
(electromagnetic and acoustic) in computational complexity
and hardware requirements. For an AUV to operate AUV
docking operations at night, a floodlight should be equipped
for UMVO. In addition to visibility, the primary limitation of
the proposed navigation system is the environmental current,
which affects the prediction accuracy of the AUV velocity.
The current effects can be ignored in confined regions (not
open water areas) because such areas are usually surrounded
by walls or dam bodies, and the current is very gentle and
small. For working in open water regions, such as sea, the
proposed navigation system should be modified to equip with
a current meter to measure amplitude and direction of the

current, and involves the current items in the hydrodynamic
model.

The main contributions of this paper can be summarized as
follows.

(1) A horizontal hydrodynamic model of the AUVis derived
with two modification coefficients that computed by a
PSO-based method. The modified model effectively re-
duces velocity prediction drift caused by manufacturing
error of thrusters. This modification method can also be
extended to other underwater vehicles that have two par-
allel thrusters, and not only for horizontal motion.

(2) The proposed UMVO can remove wrong feature corre-
spondences by a three-layer strategy. The monocular
metric scale is recovered by aligning with the model-
derived displacement and outperforms the results using
the relative scale.

(3) An outlier detectionmethod is proposed in the non-linear
filter to remove outliers of measurements. The test results
validated the effectiveness of the method.

Fig. 16 Image sequences of AUV homing operations. (Yellow rectangle marks the position of AUV)

Fig. 17 Captured image sequences during the AUV docking operation
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The future work will focus on designing novel navigation
methods to improve AUV localization performance in turbid
environments with dynamic features.
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Nomenclature Xk − 1, The system state at time step k-1; Mk − 1, Square
root factor of the state covariance matrix;χ i½ �

k−1 , The i-th sigma point; ζ[i],
The i-th column of the transformed unscented point set; W, Weight of
sigma points; na, Dimension of the system state; χ i½ �

kjk−1 , The i-th prop-
agated sigma point of the system state; bX kjk−1 , Predicted system state;
Mk ∣ k − 1, Predicted square root factor of the system state; γ i½ �

k , The i-th
propagated sigma point of the measurement; bZkjk−1 , Predicted measure-
ment; Szk , Square root factor of the measurement; Pxkzk , Cross covari-
ance of the system state and measurements; Kk, Kalman gain matrix;bX kjk , Estimated system state; Mk, Estimated square root factor of the
system state
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