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Abstract
Due to the convenience in applications, interconnection and damping assignment passivity-based control (IDA-PBC) is
applied widely to reformulate the nonlinear robust control as the total energy shaping. However, only few researches focus
on the fault-tolerant control (FTC) method based on IDA-PBC, which limits its applications under actuator faults. To break
this limitation, this paper improves the IDA-PBC with fault-tolerant ability, and the main contributions are to propose high-
gain and adaptive IDA-PBC methods under loss of actuator effectiveness. The simulation and experiment results with a
rotorcraft unmanned aerial vehicle (RUAV) are presented to illustrate the control effectiveness of the improved IDA-PBC
methods.
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1 Introduction

Passivity-based control (PBC) is a powerful technique to
design nonlinear and robust controllers for physical systems
modelled by Euler-Lagrange (EL) equations [1]. Classical
PBC stabilizes physical systems by “shaping” only potential
energy, and assigns a dissipative closed-loop energy
function equal to the difference between the original energy
of controlled plant and the energy from designed controller
[2]. To shape the total energy of controlled plant, [2] and [3]
propose interconnection and damping assignment passivity-
based control (IDA-PBC), which constructs the closed-loop
energy function by desired subsystem interconnections and
damping [3]. Superior to classical PBC, IDA-PBC relies
on a more general system description — port-controlled
Hamiltonian (PCH) model rather than the EL equation.
Due to the convenience for nonlinear controller design and
inherent robustness against unmodeled dynamics, IDA-PBC
has been applied widely for the control of manipulator
[4], rotorcraft unmanned aerial vehicle (RUAV) [5], RUAV
slung load system [6], and electrical system [7].
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To ensure stability or acceptable control performance
of controlled plant under sensor faults or actuator faults,
nonlinear passive and active fault-tolerant control (FTC)
methods have been researched for a long time [8] based
on sliding mode control [9–11], backstepping control [12–
15], and linear parameter-varying (LPV) control [16–18].
Reference [19] further carries out the comparative study
between passive and active approaches to provide an
objective assessment for them. However, according to the
authors’ knowledge, only a few of researches focus on the
fault-tolerance based on classical passivity or IDA-PBC. For
example, [20] applies passivity theory to ensure the stability
of nonlinear systems under loss of actuator effectiveness,
and [21] introduces integral action into IDA-PBC to deal
with matched and constant disturbances. Above lack of
attention separates passivity from stability analysis under
different faults.

Aiming at extending IDA-PBC into the control under loss
of actuator effectiveness, this paper improves the IDA-PBC
with fault-tolerant ability, and two passive FTC methods
are proposed without the fault detection and identification
(FDI) strategy. Due to the loss of actuator effectiveness
reduces control performance obviously, high-gain IDA-PBC
is proposed first to improve nominal controller performance
based on the lower bound of actuator faults, and L2 stability
of closed-loop system could be ensured via passivity. Then,
to avoid above dependence on the lower bound of actuator
faults, adaptive IDA-PBC is considered further inspired
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by [13] and [14]. The asymptotic stability of closed-loop
system could be ensured with an adaptive control law, and
the actuator saturation is taken into account by an auxiliary
state vector. To alleviate the dramatic fluctuations of the
adaptive control inputs in stable case, a modified version of
this adaptive method is proposed immediately.

The main contributions of this paper are to propose
high-gain and adaptive IDA-PBC methods for the control
under loss of actuator effectiveness, and to extend IDA-
PBC technique into FTC for actuator faults, which is
seldom considered in existing references. Compared with
some other passive FTC methods for loss of actuator
effectiveness [9, 10, 12, 14, 15, 18], the proposed methods
inherit the advantages of IDA-PBC, and are robust against
unmodeled dynamics, which provide the convenience for
real applications. To illustrate the effectiveness of the
proposed methods, some simulation results are displayed
with the rotational dynamics of a hexarotor unmanned
aerial vehicle (UAV). The hovering flight experiments are
carried out further with high-gain IDA-PBC for rolling
motion control under loss of actuator effectiveness. Due
to the varying battery voltage and flight maneuver, the
actuator dynamics of the real platform is uncertain. To
solve this problem, unscented Kalman filter (UKF) [22]
is applied offline with regular flight data to estimate and
determine the upper and lower bounds of uncertain actuator
dynamics. Then these uncertain actuator dynamics could be
transformed into the actuator fault formulation and dealt
with by high-gain IDA-PBC.

The remaining parts of this paper are organized as
follows: Section 2 introduces some useful knowledge
about passivity and general IDA-PBC technique; Section 3
formulates the FTC problem under loss of actuator
effectiveness and actuator saturation first, and presents the
proposed high-gain and adaptive IDA-PBCmethods further;
some simulation and experiment results are displayed in
Section 4 to illustrate the effectiveness of the proposed
methods; section V ends the whole paper with conclusions.

In following contents, let || • || mean Euclidean norm, �
represent gradient, λmin([•]) and λmax([•]) mean minimum
and maximum eigenvalues of matrix [•], In be identity
matrix with n-dimension, diag(•) mean diagonal matrix,
Mu([•]) = [•]T · [•], (λmax · Mu)([•]) = λmax (Mu([•])),
and sign(•) represent sign operator.

2 Preliminary

2.1 Prior Knowledge

According to [1], as for a nonlinear system with x, u, and y

as the state, control input, and output vectors, the definition
of passivity is as follows:

Definition 1 The nonlinear system is passive, if there is a
energy functionH, such that

H(x(T )) ≤ H(x(0)) +
∫ T

0
h(u(t), y(t))dt (1)

with h(u, y) = uTy and any T ≥ 0; it is input strictly
passive (ISP) if h(u, y) = uTy − δi||u||2 in (1), where
δi > 0; the nonlinear system is output strictly passive (OSP)
if h(u, y) = uTy − δo||y||2 in (1), where δo > 0.

Moreover, passivity establishes the natural relationship
with L2 stability as follows [1]:

Definition 2 The nonlinear system is said to be L2 stable,
if there exists a positive constant ε such that for any initial
condition x0 and T ≥ 0, following inequality is satisfied
with a finite constant α(x0):

[∫ T

0
||y(t)||2dt

] 1
2

≤ ε

[∫ T

0
||u(t)||2dt

] 1
2

+ α(x0).

Lemma 1 If the nonlinear system is OSP, then it is L2 stable.

2.2 General IDA-PBC

Classical PBC always focuses on the dynamics modelled by
Euler-Lagrange (EL) equation as follows with ignored t for
simplified representation, which describes the behaviour of
a large class of engineering systems:

M(q)q̈ + C(q, q̇)q̇ + ∂V(q)

∂q
= B(q)u + d,

where q(t) ∈ Rn is the generalized position vector, M(q)

is the generalized inertial matrix, C(q, q̇) = Ṁ(q) −
1
2

∂q̇T M(q)
∂q

, V(q) is the potential energy function, B(q)

represents the input matrix that is usually an invertible
matrix indicating fully-actuated system or a column full
rank matrix indicating underactuated system, u(t) ∈ Rm is
the control input vector, and d(t) is the disturbance vector
with Euclidean norm ||d(t)|| ≤ Td . To shape the total
energy of the controlled plant by IDA-PBC, following port-
controlled Hamiltonian (PCH) model is required [3], and EL
equation could also be transformed into this form:
[

q̇

ṗ

]
=

[
0 In

−In 0

] [
�qH
�pH

]
+

[
0
B(q)

]
u +

[
0
d

]
, (2)

where p(t) = M(q(t))q̇(t) is the generalized momenta,
the Hamiltonian function H(q, p) = 1

2p
TM−1(q)p +

V(q) represents the total energy with gradients �qH =
− 1

2�q q̇TM(q)q̇ +�qV(q) and�pH = M−1(q)p, and the

output vector is usually defined as y(t) = [
qT(t) pT(t)

]T
for state feedback control.
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According to [2] and [3], the control input from IDA-
PBC is proposed as

u = udi(q, p) + ues(q, p), (3)

where udi(q, p) = −KdBT(q)�pHd injects damping,
and B(q)ues(q, p) = �qH − Md(q)M−1(q)�qHd +
JdM−1

d (q)p shapes energy with Kd > 0 and Jd =
−J T

d . The desired Hamiltonian function is as follows with

Md(q) > 0 and Vd(q) ≥ 0 as the desired inertia matrix and
potential energy:

Hd(q, p) = 1

2
pTM−1

d (q)p + Vd(q). (4)

To achieve the tracking control towards a reference vector
q∗, the desired potential energy function should have an
isolated minimum:

q∗ = arg minHd(q, p) = arg minVd(q) i.e. �qVd(q∗) = 0, �2
qVd(q∗) > 0. (5)

Moreover, to deal with the underactuated system without
an invertible input matrix, following partial differential
equation (PDE) should be satisfied:

B⊥(q)
[
�qH−Md(q)M−1(q)�qHd+JdM−1

d (q)p
]
=0,

(6)

where B⊥(q) satisfies B⊥(q)B(q) = 0.
By introducing (3) into (2), the desired PCH model and

also the closed-loop system is as follows:[
q̇

ṗ

]
= (Mes − Mdi)

[
�qHd

�pHd

]
+

[
0
d

]
, (7)

where Mes = −MT
es =

[
0 M−1Md

−MdM−1 Jd

]
is from

the item ues in (3) for energy shaping, and Mdi = MT
di =[

0 0
0 B(q)KdBT(q)

]
≥ 0 injects damping for �pHd by the

item udi in (3). The stability analysis could refer to [3].

3Main Results

3.1 Problem Statement

This section will consider the IDA-PBC under loss of
actuator effectiveness for following simplified PCH model
defined from (2):[

q̇

ṗ

]
=

[
0 In

−In 0

] [
�qH
�pH

]
+

[
0
B

]
�u +

[
0
d

]
,

y �
[

q

p

]
=

[
In 0
0 M(q)

] [
q

q̇

]
, (8)

where the Hamiltonian function H(q, p) = 1
2p

TM−1

(q)p is with the simplified form, and �(t) = diag
(γ1(t), ..., γm(t)) with 0 < γ Im ≤ �(t) ≤ Im represents
loss of actuator effectiveness that could be time-varying.
To avoid complex PDE (6) in controller design, the input
matrix is assumed to be constant and with right inverse
matrix B− that satisfies B · B− = In and B-T · BT =
In. In addition, the potential energy function V(q) in the

simplified Hamiltonian function is further assumed to be
zero to avoid the energy compensation under faults. Due
to the common potential energy in mechanisms is induced
by gravity, elasticity, and gravitation, the case with zero
potential energy is usual in the attitude dynamics of most
unmanned vehicles [5, 6]. Based on the lower bound of
actuator faults represented by γ , following high-gian IDA-
PBC would deal with the FTC problem of (8).

However, in the case without the known value of
γ , high-gain IDA-PBC cannot work, and some new
FTC methods should be designed. Moreover, the loss of
actuator effectiveness always reduces the actuator saturation
magnitudes. To further consider actuator saturation, the
control input vector in (8) could be redefined as follows:

u=sat(v)=
{

[v1 ... vm]T , |vi | ≤ umaxi[
sign(v1)umax1 ... sign(vm)umaxm

]T
, |vi | > umaxi

(9)

with v as the outputs of controller and inputs of actuators,
i = 1, ..., m, and umax = [umax1 ... umaxm]T as the saturation
magnitude. According to (8) and (9), the form of �u =
�sat(v) means the actuator faults could affect the actuator
saturation magnitudes [13]. Due to the inputs for actuators
are always finite in real platforms, the maximum outputs
of actuators are limited by the actuator faults absolutely, so
the form of �sat(v) is with practical significance actually.
Under unknown actuator faults, following adaptive IDA-
PBC would deal with the FTC problem of (8), and an
auxiliary state vector would be introduced to allow the
existence of the actuator saturation (9).

3.2 High-gain IDA-PBC

According to (7), general IDA-PBC only injects damping
for �pHd. To introduce damping into all states for
the stability analysis in this section, consider the state
transformation [21]:

zq = q, zp = p + BKqBTM−1(q)�zqHd (10)

with Kq > 0 and following desired Hamiltonian function:

Hd(zq, zp) = 1

2
zTpM−1

d zp + 1

2
(zq −q∗)TKp(zq −q∗), (11)
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where q∗ is a reference vector, Md is the constant desired
inertial matrix, and Kp > 0. A closed-loop PCH system
could be formulated as follows:

[
żq

żp

]
=

[ −M−1(q)BKqBTM−1(q) M−1(q)Md

−MdM−1(q) −BKdBT

] [
�zqHd

�zpHd

]

+
[
0
B

]
[�(t) − Im] u +

[
0

d(t)

]
(12)

where following control input vector is introduced into (8)
with B�(t)u = Bu + B [�(t) − Im] u:

u = B−�qH − B−MdM−1(q)�zqHd

−KdBT�zpHd − KqBT d
[
M−1(q)�zqHd

]
dt

= −KdBT�zpHd −
[
B−Md − KqBTM−1(q)Ṁ(q)

]
M−1(q)�zqHd

−
[
1

2
B− ∂q̇TM(q)

∂q
+ KqBTM−1(q)Kp

]
q̇, (13)

with q̇ = M−1(q)Md�zpHd − M−1(q)BKqBTM−1(q)

�zqHd. Compared with (4) for general IDA-PBC, (11) is

with constant Md and Vd(q) = 1
2 (zq − q∗)TKp(zq − q∗),

and Jd in (3) is set as 0 in (13) for simplification. Obviously,
the control law (13) is absolutely available in fault-free case
(�(t) = Im) [21]. With following theorem, this control law

could ensure the L2 stability of (8) under loss of actuator
effectiveness.

Theorem 1 With the control input vector (13), if the
lower bound of actuator faults γ is known, and there exist
parameters σ1 > 0, σ2 > 0, and σ3 > 0, matrices Md,
Kq , andKp, and a diagonal matrixKd that satisfy following
inequalities for two intermediate matrices M1 and M2:

1

2σ1
Mu

{[
1

2
B− ∂q̇TM(q)

∂q
+ KqBTM−1(q)Kp

]
M−1(q)MdB-T

}
≤ M1,

1

2σ2
Mu

[
B−Md − KqBTM−1(q)Ṁ(q)

]
+

1

2σ3
Mu

{[
1

2
B− ∂q̇TM(q)

∂q
+ KqBTM−1(q)Kp

]
M−1(q)BKqBT

}
≤ M2, (14)

Md > 0, γKd >
σ1 + σ2 + σ3

2
(1 − γ )2Im + M1,BKqBT ≥ M2, Kp > 0, (15)

then, for closed-loop system (12), the map d(t) �→ �zpHd is
L2 stable under the loss of actuator effectiveness �(t) that
satisfies 0 < γ Im ≤ �(t) ≤ Im.

Proof Regard (11) as the Lyapunov function, and consider
its derivative with (12):

Ḣd =
[
�T

zq
Hd �T

zp
Hd

] [
żq

żp

]

= −�T
zq
HdM−1(q)BKqBTM−1(q)�zqHd − �T

zp
HdBKdBT�zpHd

+�T
zp
HdB [�(t) − Im] u + �T

zp
Hdd(t).
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Then introduce (13) into above equation, and there is:

Ḣd =
[
�T

zq
Hd �T

zp
Hd

] [
żq

żp

]

= −�T
zq
HdM−1(q)BKqBTM−1(q)�zqHd − �T

zp
HdB�(t)KdBT�zpHd

+�T
zp
Hdd(t) + H̃ , (16)

where

H̃ = �T
zp
HdB [Im − �(t)]

[
B−Md − KqBTM−1(q)Ṁ(q)

]
M−1(q)�zqHd −

�T
zp
HdB [Im − �(t)]

[
1

2
B− ∂q̇TM(q)

∂q
+ KqBTM−1(q)Kp

]
M−1(q)BKq ·

BTM−1(q)�zqHd + �T
zp
HdB [Im − �(t)] ·[

1

2
B− ∂q̇TM(q)

∂q
+ KqBTM−1(q)Kp

]
M−1(q)Md�zpHd.

Note that, for any vector x and y, following inequality is
satisfied for any parameter σ > 0:

xTy ≤ 1

2σ
xTx + σ

2
yTy. (17)

Based on this inequality, H̃ could be relaxed with σ1 > 0,
σ2 > 0, and σ3 > 0. Due to 0 < γ Im ≤ �(t) ≤ Im

with known γ , [Im − �(t)]T [Im − �(t)] ≤ (1 − γ )2 Im is
satisfied, and H̃ is with following form according to (14)
and (17):

H̃ ≤ 1

2σ1
�T

zp
HdB · Mu

{[
1

2
B− ∂q̇TM(q)

∂q
+ KqBTM−1(q)Kp

]
M−1(q)Md

B-T
}

· BT�zpHd + σ1

2
�T

zp
HdB [Im − �(t)] [Im − �(t)]BT�zpHd +

1

2σ2
�T

zq
HdM−1(q) · Mu

[
B−Md − KqBTM−1(q)Ṁ(q)

]
·

M−1(q)�zqHd + σ2

2
�T

zp
HdB [Im − �(t)] [Im − �(t)]BT�zpHd +

1

2σ3
�T

zq
HdM−1(q) · Mu

{[
1

2
B− ∂q̇TM(q)

∂q
+ KqBTM−1(q)Kp

]
M−1(q)

BKqBT
}

· M−1(q)�zqHd +
σ3

2
�T

zp
HdB [Im − �(t)] [Im − �(t)]BT�zpHd

≤ �T
zq
HdM−1(q) · M2 · M−1(q)�zqHd +

�T
zp
HdB

[
σ1 + σ2 + σ3

2
(1 − γ )2 Im + M1

]
BT�zpHd.

By introducing above equation into (16), the derivative of
Hd(zq, zp) could be reformulated with diagonal matrix Kd:

Ḣd ≤ −�T
zq
HdM−1(q)

(
BKqBT − M2

)
M−1(q)�zqHd + �T

zp
Hdd(t)

−�T
zp
HdB

[
γKd − σ1 + σ2 + σ3

2
(1 − γ )2Im − M1

]
BT�zpHd.
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Based on (15), above equation could be formulated as
follows:

Ḣd ≤ −�T
zp
HdB

[
γKd − σ1 + σ2 + σ3

2
(1 − γ )2Im − M1

]
BT�zpHd

+�T
zp
Hdd(t). (18)

Due to B
[
γKd − σ1+σ2+σ3

2 (1 − γ )2Im − M1
]
BT > 0,

according to Definition 1, (18) means the closed-loop
system (12) is OSP. Based on Lemma 1, the L2 stability
defined in Definition 2 is satisfied, so the map d(t) �→
�zpHd is L2 stable under the loss of actuator effectiveness
�(t).

Remark 1 Above theorem increases the gains of Kd and Kq

based on the lower bound of actuator faults and intermediate
matrices M1 and M2. In the applications of Theorem 1, the
values of M1, M2, Md, and Kp could be given directly. To
determine the values of σ1, σ2, σ3, Kq , and Kd that satisfy
(14) and (15), the following forms could be considered
online:

σ1 = 1

2λmin(M1)
(λmax · Mu)

{[
1

2
B− ∂q̇TM(q)

∂q
+ KqBTM−1(q)Kp

]
·

M−1(q)MdB-T
}

,

σ2 = 1

λmin(M2)
(λmax · Mu)

[
B−Md − KqBTM−1(q)Ṁ(q)

]
,

σ3 = 1

λmin(M2)
(λmax · Mu)

{[
1

2
B− ∂q̇TM(q)

∂q
+ KqBTM−1(q)Kp

]
·

M−1(q)BKqBT
}
. (19)

The above σ1, σ2, and σ3 ensure the satisfaction of (14),
where Kq could be obtained by BKqBT ≥ M2 directly, and
Kd must be determined online by γKd >

σ1+σ2+σ3
2 (1 −

γ )2Im + M1 according to (15). It could be noticed that
Kd would be time-varying based on the parameters from
(19). According to the proof, the time-varying Kd has no
effect on the stability analysis. However, other parameter
matrices, such asMd, Kq , and Kp, must be constant in case
of introducing corresponding derivatives, which are difficult
to handle with.

In this subsection, high-gain IDA-PBC is proposed to
deal with the loss of actuator effectiveness, and the lower
bound of actuator faults is applied in order to improve
the nominal controller performance, which is similar to
some existing passive FTC methods based on high-gain
idea [9, 10, 18, 23]. These FTC methods based on high

controller gains always aim at the worst faulty case, and
own simpler controller structures compared with active FTC
methods. However, they are absolutely conservative without
considering the real-time fault magnitudes, and this is a
general disadvantage of passive FTC methods. Moreover,
compared with fault-free case, the high-gain controllers for
faulty case, such as high-gain IDA-PBC, are more possible
to induce actuator saturation. Following subsection would
consider this issue without the prior information about loss
of actuator effectiveness and its lower bound.

3.3 Adaptive IDA-PBC

To deal with actuator saturation under loss of actuator effective-
ness, introduce control input vector v = v1 + v2 into (8)
with B�(t)u = Bv + B(u − v) + B [�(t) − Im] u, where

v1 = B− [
�qH − Md(q)M−1(q)�zqHd

]
+ B−Jd�zpHd − KdBT�zpHd

−KqBT d
[
M−1(q)�zqHd

]
dt

(20)

34 J Intell Robot Syst (2020) 100:29–45



with zq and zp defined in (10), and v2 is an adaptive control
input vector that would be designed in this subsection. Then
following PCH system could be formulated with 
u =
u − v:
[

żq

żp

]
=

[ −M−1(q)BKqBTM−1(q) M−1(q)Md(q)

−Md(q)M−1(q) Jd − BKdBT

] [
�zqHd

�zpHd

]

+
[
0
B

]
v2 +

[
0
B

]

u +

[
0
B

]
[�(t) − Im] u+

[
0

d(t)

]
, (21)

where the desired Hamiltonian function is equal to

Hd(zq, zp) = 1

2
zTpM−1

d (zq)zp + Vd(zq) (22)

with Md(zq) > 0 and Vd(zq) > 0 satisfying (5). Note that
(13) and (11) are actually the special froms of (20) and (22)
with Md(zq) = Md, Vd(zq) = 1

2 (zq − q∗)TKp(zq − q∗),
and Jd = 0.

To deal with 
u, [�(t) − Im] u, and d(t) in (21) by v2,
following adaptive control input vector is formed:

v2 = Kaxa −B− �zpHd

||�zpHd||
[
T̂d +

√
λmax(BTB)uTmaxumax(1 − γ̂ )

]
,

(23)

where an auxiliary state vector xa ∈ Rm and two parameters
are required dependent on Td ≥ 0 and γ ≤ 1 as follows:

ẋa = −kaxa − �T
zp
HdB
u

xT
a xa

xa, (ka > 0), (24)

˙̂
Td = kd ||�zpHd||, (T̂d (0) ≥ 0, kd > 0),

˙̂γ = −kγ ||�zpHd||
√

λmax(BTB)uTmaxumax, (γ̂ (0) ≤ 1, kγ > 0). (25)

The vector xa is applied to deal with 
u in (21). Based on
(24), the actuator saturation is allowed in controller applica-
tions [13], and the saturated control inputs could ensure the
asymptotic stability according to following theorem.

Theorem 2 With the control input vectors (20) and (23)
based on the parameters in (25), if there exist parameters
σa > 0, ka > σa

2 , kd > 0, and kγ > 0, matrices Kq , Kd,
and Ka that satisfy Kd > 1

2σa
KaK

T
a > 0 and Kq > 0, then

the asymptotic stability of �zqHd, �zpHd, and xa could be
ensured for the controlled plant (8) with actuator saturation
(9) and the unknown lower bound of actuator faults.

Proof Define T̃d = T̂d − Td , γ̃ = γ̂ − γ , and VLya = Hd

(zq, zp) + 1
2x

T
a xa + 1

2kd
T̃ 2

d + 1
2kγ

γ̃ 2 as Lyapunov function.
Consider the derivative of this Lyapunov function with
system (21):

V̇Lya = Ḣd(zq, zp) + xT
a ẋa + 1

kd

T̃d
˙̃
Td + 1

kγ

γ̃ ˙̃γ

= −�T
zq
HdM−1(q)BKqBTM−1(q)�zqHd − �T

zp
HdBKdBT�zpHd

+�T
zp
HdBv2 + �T

zp
HdB
u + �T

zp
HdB [�(t) − Im] u + �T

zp
Hdd(t)

+xT
a

(
−kaxa − �T

zp
HdB
u

xT
a xa

xa

)
+ 1

kd

T̃d
˙̃
Td + 1

kγ

γ̃ ˙̃γ

≤ −�T
zq
HdM−1(q)BKqBTM−1(q)�zqHd − kax

T
a xa

−�T
zp
HdBKdBT�zpHd + �T

zp
HdBv2 + ||�zpHd|| · ||d(t)||

+||�zpHd|| · ||B [�(t) − Im] u|| + 1

kd

T̃d
˙̃
Td + 1

kγ

γ̃ ˙̃γ .

Then the adaptive control input vector v2 in (23) and parame-
ters in (25) should be applied. Due to γ ≤ 1, introduce

||B [�(t) − Im] u|| ≤
√

λmax(BTB)uTmaxumax(1 − γ̂ + γ̃ ),

||d(t)|| ≤ Td = T̂d − T̃d ,
˙̃
Td = ˙̂

Td, ˙̃γ = ˙̂γ,

parameters in (25), and v2 in (23) into above V̇Lya, and
following equation could be formulated:

V̇Lya ≤ −�T
zq
HdM−1(q)BKqBTM−1(q)�zqHd − �T

zp
HdBKdBT�zpHd

−kax
T
a xa+�T

zp
HdBv2+||�zpHd||

[
T̂d +

√
λmax(BTB)uTmaxumax(1−γ̂ )

]

= −�T
zq
HdM−1(q)BKqBTM−1(q)�zqHd − �T

zp
HdBKdBT�zpHd

−kax
T
a xa+�T

zp
HdBKaxa.
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Further apply (17) for

�T
zp
HdBKaxa ≤ 1

2σa
�T

zp
HdBKaK

T
a BT�zpHd + σa

2
xT
a xa,

and following equation could be formulated:

V̇Lya ≤ −�T
zq
HdM−1(q)BKqBTM−1(q)�zqHd

−�T
zp
HdB

(
Kd − 1

2σa
KaK

T
a

)
BT�zpHd −

(
ka − σa

2

)
xT
a xa ≤ 0.

According to invariant principle in [24], the closed-loop
system would converge to the largest invariant set contained
in the set with V̇Lya = 0, which means �zqHd = �zpHd =
xa = 0. Consequently, the asymptotic stability of �zqHd,
�zpHd, and xa could be achieved.

Remark 2 The asymptotic stability of �zpHd means

limt→+∞M−1
d (zq)zp = limt→+∞zp = 0. Together with

the stability of �zqHd, the tracking of q towards q∗ could
be ensured. It is much easier to understand in the case

with Vd(q) = 1
2 (q − q∗)TKp(q − q∗) and Kp > 0, and

limt→+∞�zqHd = 0 is equal to limt→+∞Kd(q − q∗) = 0.

Due to the asymptotic stability of �zqHd, the denomina-
tor in control law (23) approaches 0 with t → +∞. This
phenomenon induces severe fluctuations of control inputs
as shown in [9] and [14]. Note that the denominator in (24)
has little effect on control inputs due to the integral rela-
tionship between ẋa and xa. To deal with the denominator
in (23), replace (23) and (25) by following adaptive control
input vector and parameters:

v2 = Kaxa − B− �zpHd

||�zpHd|| + �H

[
T̂d +

√
λmax(BTB)uTmaxumax(1 − γ̂ )

]
, (26)

˙̂
Td = kd

||�zpHd||
||�zpHd|| + �H

||�zpHd||, (T̂d (0) ≥ 0, kd > 0),

˙̂γ =−kγ

||�zpHd||
||�zpHd||+�H

||�zpHd||
√

λmax(BTB)uTmaxumax,

(γ̂ (0) ≤ 1, kγ > 0), (27)

where �H is a small positive constant. Following corollary
would analyze the closed-loop property with modified
control input vector (26) and parameters in (27).

Corollary 1 With the control input vectors (20) and (26)
based on the parameters in (27), if there exist parameters
σa > 0, ka > σa

2 , kd > 0, and kγ > 0, matrices Kq , Kd,

and Ka that satisfy Kd > 1
2σa

KaK
T
a > 0 and Kq > 0, then

�zqHd, �zpHd, and xa would ultimately converge to the
definite ranges from norm point of view for the controlled
plant (8) with actuator saturation (9) and the unknown
lower bound of actuator faults. Furthermore, if M−1(q) is
with bounded eigenvalues, the definite ranges would also be
bounded.

Proof Similar to the proof of Theorem 2, define T̃d = T̂d −
Td , γ̃ = γ̂ −γ , and VLya = Hd(zq, zp)+ 1

2x
T
a xa + 1

2kd
T̃ 2

d +
1

2kγ
γ̃ 2 as Lyapunov function. Consider the derivative of this

Lyapunov function with (24), (26), and (27):

V̇Lya = Ḣd(zq, zp) + xT
a ẋa + 1

kd

T̃d
˙̃
Td + 1

kγ

γ̃ ˙̃γ

≤ −�T
zq
HdM−1(q)BKqBTM−1(q)�zqHd − �T

zp
HdBKdBT�zpHd

−kax
T
a xa + �T

zp
HdBv2 + ||�zpHd||(T̂d − T̃d )

+||�zpHd||
√

λmax(BTB)uTmaxumax(1 − γ̂ + γ̃ ) + 1

kd

T̃d
˙̃
Td + 1

kγ

γ̃ ˙̃γ

= −�T
zq
HdM−1(q)BKqBTM−1(q)�zqHd − �T

zp
HdBKdBT�zpHd

−kax
T
a xa + �T

zp
HdBKaxa +

(
1 − ||�zpHd||

||�zpHd|| + �H

)
||�zpHd|| [Td

+
√

λmax(BTB)uTmaxumax(1 − γ )

]
.
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Then apply inequality (17), and following equation could
be formulated:

V̇Lya ≤ −�T
zq
HdM−1(q)BKqBTM−1(q)�zqHd

−�T
zp
HdB

(
Kd − 1

2σa
KaK

T
a

)
BT�zpHd −

(
ka − σa

2

)
xT
a xa

+�H

[
Td +

√
λmax(BTB)uTmaxumax(1 − γ )

]

≤ −λ ·
(
||�zqHd||2 + ||�zpHd||2 + ||xa||2

)
+ σ,

where

λ = min
{
ka − σa

2
, λmin

[
M−1(q)BKqBTM−1(q)

]
,

λmin

[
B

(
Kd − 1

2σa
KaK

T
a

)
BT

]}
> 0,

σ = �H

[
Td +

√
λmax(BTB)uTmaxumax(1 − γ )

]
≥ 0.

Obviously, if M−1(q) is with bounded eigenvalues, λ

would also be bounded.
Similar to the analysis shown in [15], above equation

means if ||�zqHd||2 + ||�zpHd||2 + ||xa||2 > σ
λ
, there

would be V̇Lya < 0, and the value of Lyapunov function
would be decreased until ||�zqHd||2+||�zpHd||2+||xa||2 ≤
σ
λ
. Consequently, �zqHd, �zpHd, and xa could ultimately

converge to the definite sets with t → +∞, and these sets
are also bounded with boundedM−1(q).

In this subsection, adaptive IDA-PBC is proposed and
improved to deal with the loss of actuator effectiveness and
actuator saturation. Based on some estimated parameters,
the lower bound of actuator faults is not necessary for FTC
design. An auxiliary state vector is introduced to guarantee
the saturated control inputs could ensure the closed-loop
stability. This vector actually allows the existence of
actuator saturation in controller applications, and similar
ideas are also proposed in [25] based on modified sector
condition and quadratic polytopic differential inclusion.
Compared with some references that avoid actuator
saturation based on the intermediate control law [26] and
segmented control inputs [27], the allowance of actuator
saturation could make full use of the actuator capability to
improve the closed-loop dynamic performance.

4 Simulation and Experiment Results

To validate the effectiveness of the proposed methods, the
attitude control of a hexarotor UAV as shown in Fig. 1
will be considered in this section. The configuration of
this UAV is shown in Fig. 2, where six rotors generate six

thrusts represented by fi (i = 1, ..., 6), l means the distance
from a rotor to center of gravity, and ObXbYbZb represents
the body-axis coordinate system. The fault-free rotational
dynamics of the hexarotor UAV could be represented as
following PCH model:

[
q̇

ṗ

]
=

[
0 I3

−I3 0

] [
�qH
�pH

]
+

[
0
I3

] ⎡
⎣ Mx

My

Mz

⎤
⎦+

[
0
d

]
, (28)

where q = [φ θ ψ]T is the Euler angle vector,
q∗ = [φ∗ θ∗ ψ∗]T would represent corresponding ref-
erence values, Mx, My, and Mz are the moments in
body-axis coordinate system generated by rotors and
with control effects in different directions, H(q, p) =
1
2p

TM−1(q)p is the Hamiltonian function with only angu-
lar kinetic energy, and the inertia matrix is M(q) =

R(q)JRT(q) with J =
⎡
⎣ Ixx 0 −Ixz

0 Iyy 0
−Ixz 0 Izz

⎤
⎦ and R(q) =

⎡
⎣ 1 0 0

0 cosφ − sinφ

− sin θ sinφ cos θ cosφ cos θ

⎤
⎦. In following simulation

results, the moments Mx, My, and Mz would be regarded as
control inputs, and attitude controllers would be designed
for them by the proposed methods to track some step signals
under different actuator faults.

For the attitude controller design in flight experiments,
the forms of Mx, My, and Mz should be considered further to
deal with the uncertain actuator dynamics in the real plat-
form. According to the configuration of the hexarotor UAV,
the moments in (28) could be represented as follows [28]:

⎡
⎣ Mx

My
Mz

⎤
⎦ =

⎡
⎣ −l l 1

2 l − 1
2 l − 1

2 l 1
2 l

0 0
√
3
2 l −

√
3
2 l

√
3
2 l −

√
3
2 l

−c c −c c c −c

⎤
⎦

︸ ︷︷ ︸
Bhex

⎡
⎢⎢⎢⎢⎢⎣

u1 − u0
u2 − u0
u3 − u0
u4 − u0
u5 − u0
u6 − u0

⎤
⎥⎥⎥⎥⎥⎦

ξf (t) (29)

where c is a constant parameter for reaction torque, ui

(i = 1, ..., 6) is the control signal to generate thrust fi ,
ξf (t) > 0 represents the actuator dynamics with fi =
ξf (t) · ui , and u0 = 1

6

∑6
i=1 ui with f0 = ξf (t) · u0 =
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Fig. 1 Hexarotor UAV platform
and structure parameters [28]

1
6

∑6
i=1 fi . For the hexarotor UAV, ξf (t) represents the

aerodynamics of rotors and dynamics of driving motors,
which is uncertain with varying battery voltage and flight
maneuver. To simplify the attitude controller design with the
actuator uncertainty, the following control signals are usually
considered in real applications:

⎡
⎢⎢⎢⎢⎢⎢⎣

u1 − u0
u2 − u0
u3 − u0
u4 − u0
u5 − u0
u6 − u0

⎤
⎥⎥⎥⎥⎥⎥⎦

= 1

6

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2l−1 0 −c−1

2l−1 0 c−1

l−1 3√
3
l−1 −c−1

−l−1 − 3√
3
l−1 c−1

−l−1 3√
3
l−1 c−1

l−1 − 3√
3
l−1 −c−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
B−
hex

⎡
⎣ ux

uy
uz

⎤
⎦ , (30)

where B−
hex is the right inverse matrix of Bhex, ux, uy, and

uz are three virtual control inputs, and u0 is the virtual
control input for flight height control actually, which could
be ignored directly in the attitude control. By introducing
the above equation into (29), the following equivalent form
of

[
Mx My Mz

]T could be formulated:
⎡
⎣ Mx

My

Mz

⎤
⎦ =

⎡
⎣ ξx(t) 0 0

0 ξy(t) 0
0 0 ξz(t)

⎤
⎦

︸ ︷︷ ︸
�(t)

⎡
⎣ ux

uy
uz

⎤
⎦ . (31)

In the ideal case, the diagonal elements of �(t) are all equal
to the uncertain actuator dynamics ξf (t). However, due to
the difference between actuators and assembly errors in
the real platform, the uniform actuator uncertainties might
not exist, so the subscripts x, y, and z are applied for the
distinction between ξx(t), ξy(t), and ξz(t).

Based on the form of (31), the virtual control inputs
ux, uy, and uz would be designed in following flight
experiments, and (30) would be applied further to calculate
the control signal of every actuator. Due to the actuator
dynamics �(t) in (31) is uncertain with varying battery
voltage and flight maneuver, the diagonal elements ξ�(t)

(� =x, y, and z) are difficult to estimate accurately.
However, if its upper bound ξ� is known, it would be easy

to reformulate the uncertain actuator dynamics as ξ�(t) =
ξ�γ�(t), where 0 < γ�(t) ≤ 1. Consequently, uncertain
matrix �(t) could be transformed into the actuator fault
formulation as

⎡
⎣ ξx(t) 0 0

0 ξy(t) 0
0 0 ξz(t)

⎤
⎦

︸ ︷︷ ︸
�(t)

=
⎡
⎣ ξx 0 0

0 ξy 0
0 0 ξ z

⎤
⎦

︸ ︷︷ ︸
B

⎡
⎣ γx(t) 0 0

0 γy(t) 0
0 0 γz(t)

⎤
⎦

︸ ︷︷ ︸
�(t)

,

(32)

where �(t) is within the bounded range 0 < γ I3 ≤ �(t) ≤
I3, and γ = ξ

�
/ξ� with ξ

�
as the lower bound of ξ�(t). To

deal with the actuator uncertainty with the fault formulation
(32), the diagonal elements in �(t) would be estimated
offline by UKF in following contents, and the values of B
and γ would be determined based on the upper and lower
bounds of estimations. Then high-gain IDA-PBC would be
designed for the rolling stability of the UAV in hovering
flight experiments under the actuator uncertainty and further
actuator fault.

To achieve the hovering flight in following experiments,
the necessary position control as well as pitching and
yawing stability would be achieved based on the typical
RUAV control method proposed in [29]. Moreover, the
actuator fault for the virtual control input ux about rolling

Fig. 2 Configuration of the hexarotor UAV platform
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Table 1 Controllers and parameters for four simulation cases

No. Controller Parameters Note

Case 1 General IDA-PBC from (3) Md = J , Vd = 1
2 (p − p∗)TKp(p − p∗), Kp = 4J ,

Kd = diag(0.02, 0.02, 0.02), Kq = diag(0.02, 0.02, 0.02)
No fault

Case 2 With fault

Case 3 High-gain IDA-PBC from Theo-
rem 1

Md = J , Kp = 4J , M1 = diag(0.02, 0.02, 0.02),
M2 = diag(0.02, 0.02, 0.02), σ1, σ2, and σ3 are from (19),

Kd = 1.01
[

σ1+σ2+σ3
2γ · (1 − γ )2I3 + M1

γ

]
, Kq = M2

With fault

Case 4 Adaptive IDA-PBC from Corol-
lary 1

Md = J , Vd = 1
2 (p − p∗)TKp(p − p∗), Kp = 4J ,

Kd = diag(0.02, 0.02, 0.02), Kq = diag(0.02, 0.02, 0.02),
Ka = diag(0.001, 0.001, 0.001), ka = kd = kγ = 0.1,
�H = 0.05, σa = 0.99 · 2ka

With fault

dynamics would be introduced further by software in
following flight experiments. The fault for the virtual
control input usually means simultaneous faults of several
actual actuators, which might be infrequent in real
platforms. However, this faulty case is convenient to
validate the applied control method, which focuses on
virtual control inputs based on (31). Note that, according
to the form of (29), Bhex is a row full rank matrix
with the right inverse matrix B−

hex shown in (30), so the
proposed methods in this paper could deal with the faults

on actual actuators of the hexarotor UAV absolutely. Due
to the configurations of hexarotor UAVs provide redundant
actuators for fault-tolerance [30, 31], the quadrotor UAV
might be more suitable than hexarotor UAV for the control
performance validation under the faults on actual actuators.
The faulty case for the virtual control input is also an
expedient strategy to avoid the fault-tolerant ability from
the UAV configuration. After all, the main purpose of flight
experiments is to validate the proposed FTC method by a
real platform.

Fig. 3 Euler angles with
different controllers (zooms
show some details of curves)
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Fig. 4 Control inputs from
different controllers (zooms
show some details of curves)

4.1 Simulation Results

To compare with different control methods in four
simulation cases, the applied controllers and parameters are
listed in Table 1, where Case 1 and Case 2 apply same
controller, but no fault is introduced into Case 1. For Case
2∼4, following actuator faults are considered:

γx(t) =
{

1, t ≤ 10s
0.6, t > 10s

, γz(t) =
{

1, t ≤ 10s
0.4, t > 10s

,

γy(t) =
{

1, t ≤ 10s
0.6 + 0.2 sin(0.4πt), t > 10s

.

According to above equations, the lower bound of actuator
faults for Case 3 is γ = 0.4. Note that, to present the results
within finite simulation time, the actuator faults are set up to
occur synchronously, but the proposed methods could deal
with the varying faults that occur at different time points.

For following simulation results, the initial Euler angles
and their final reference values are set as [10◦ − 10◦ 45]T,
the time-varying disturbances are all uniformly distributed

Table 2 Criterion for simulation results in four cases†

ave(•) std(•) ave(•) std(•) ave(•) std(•)

|φ∗ − φ| |θ∗ − θ | |ψ∗ − ψ |

Case 1 5∼10s 0.237 0.157 0.333 0.342 0.353 0.248

10∼15s 0.210 0.139 0.328 0.218 0.227 0.202

Case 2 5∼10s 0.237 0.157 0.333 0.342 0.353 0.248

10∼15s 0.331 0.191 0.563 0.481 0.342 0.246

Case 3 5∼10s 0.033 0.019 0.037 0.033 0.061 0.041

10∼15s 0.042 0.027 0.074 0.056 0.071 0.044

Case 4 5∼10s 0.014 0.009 0.017 0.015 0.028 0.019

10∼15s 0.021 0.014 0.035 0.027 0.037 0.025

†
All criterion are with unit deg
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random signals between −0.1 and 0.1, and the control
inputs are limited within [−0.1, 0.1]. Although general
IDA-PBC and high-gain IDA-PBC from Theorem 1 do
not consider the actuator saturation, saturation blocks are
applied artificially for same simulation conditions with
adaptive IDA-PBC from Corollary 1. The curves of Euler
angles and control inputs are displayed in Figs. 3 and 4,
where the magnitudes of Mx, My, and Mz increase at 25s,
20s, and 15s to track the reference values of φ, θ , and ψ .
Note that the actuator faults reduce the actuator saturation
magnitudes as shown in Fig. 4 due to the form of �sat(v) in
the controlled plant (8) and (9), which is consistent with the
real applications as previous discussion.

Table 2 further lists the averages and standard derivations
of absolute tracking errors in different simulation periods,
where ave(•) and std(•) represent average and standard
derivation operators. For a discrete-time signal X (kT )

(t = kT ) with k and T as sampling number and
period, ave(X (kT )) = 1

N

∑N
i=1 X(iT ) and std(X (kT )) =√

1
N

∑N
i=1 [X(iT ) − ave(X (kT ))]2 in N sampling periods.

Obviously, after actuator faults (occur at 10s), the control
performance of the general IDA-PBC in Case 2 degenerates,
and more vibrations of states appear as shown in Fig. 3. Due
to inherently excellent control performance, high-gain IDA-
PBC in Case 3 and adaptive IDA-PBC in Case 4 still keep
good control performance after actuator faults. According
to Fig. 4, the control inputs Mx, My, and Mz of Case 3 and
Case 4 are with more fluctuations than Case 1 and Case 2
for good control performance. Relatively speaking, adaptive

Fig. 5 UKF estimation results

IDA-PBC is with better disturbance attenuation than high-
gain IDA-PBC, and corresponding control inputs fluctuate
more dramatically as show in Fig. 4. If reduce the value of
�H, the disturbance attention of adaptive IDA-PBC would
be much better, but the fluctuations of control inputs would
also be severer.

4.2 Experiment Results

Flight experiments mainly validate high-gain IDA-PBC.
To transform the uncertain actuator dynamics of the
real platform into the actuator fault formulation (32),
the diagonal elements of matrix � should be estimated.
Similar to the modeling of actuator faults in [32], the
derivatives of ξx, ξy, and ξz could also be assumed as
stationary random processes. Based on the Newton-Euler
equation about attitude dynamics, ξx, ξy, and ξz could be

estimated jointly with angular velocities
[
ωx ωy ωz

]T by
UKF, and the fault-free flight data including hovering and
regular attitude variations are applied for these estimations.
Detailed contents about UKF design could refer to [22]
and [32], and are ignored here. To apply high-gain IDA-
PBC for rolling motion control, Fig. 5 displays the offline
estimations about ωx and ξx. With these results, the upper
and lower bounds of ξx could be chosen as ξx = 7.1 and
ξ
x

= 1.6. Consequently, constant B and the lower bound of
γx for the actuator fault formulation (32) are determined as
7.1 and 1.6/7.1 ≈0.225 for rolling dynamics.

By assuming that other degree-of-freedoms have been
stabilized, the controller for rolling motion could be
designed as follows according to (13) with M(q) = Md =
Ixx, q = φ, and q∗ = φ∗:

ux =
(
B−1Kp + KT

dBI−1
xx BKqBTI−1

xx Kp

)
(φ∗ − φ)

−
(
KT

dB + KqBTI−1
xx Kp

)
φ̇.

According to (14) and (15), following inequalities should be
satisfied:

σ1 ≥
(KqBTI−1

xx K -T
pB)2

2M1
> 0, σ2 ≥ (B−1Ixx)

2

M2
> 0,

σ3 ≥ (KqBTI−1
xx KpI

−1
xx BKqBT)2

M2
> 0,

γKd >
σ1 + σ2 + σ3

2
(1 − γ )2 + M1, BKqBT ≥ M2.

For high-gain IDA-PBC under only actuator uncertainty, the
value of γ is set as 1.6/7.1 ≈0.225; to consider the loss of
actuator effectiveness not more than 40% (occur at around
77.5s), the value is set as γ = 1.6/7.1 · 0.6 ≈ 0.135 for
the controller under actuator uncertainty and fault. Other
parameters in above controller are set as: M1 = M2 =
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Fig. 6 φ and tracking error with
different controllers in hovering
flight experiments

Fig. 7 ux from different
controllers and actuator fault
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Table 3 Criterion in flight
experiments with High-gain
IDA-PBC†

ave(|φ∗ − φ|) std(|φ∗ − φ|)

Fault-free Faulty Fault-free Faulty

Without fault- tolerance (γ ≈0.225) 1.074 1.987 0.532 0.835

With fault- tolerance (γ ≈0.135) 0.976 1.675 0.250 0.471

†
All criterion are with unit deg

0.003, Kp = 10Ixx, Kd = 1.01
[

σ1+σ2+σ3
2γ (1 − γ )2 + M1

γ

]
,

and Kq = B−1M2B-T.
The curves of attitude information and control inputs

in the hovering flight experiments are displayed in Figs. 6
and 7, where the reference value of φ is generated for the
position control based on the method in [29]. Moreover,
Table 3 lists the averages and standard derivations of
absolute tracking errors. After the actuator fault, the control
performance of the controller without fault-tolerance
degenerates obviously. The proposed high-gain controller
with fault-tolerance owns better disturbance attenuation.
Above all, it could ensured the closed-loop stability under
actuator faults based on passivity. The advantages of the
proposed controller would be more obvious, if a severer
actuator fault is introduced. For safe flight experiments,
only a nonlethal fault (loss of actuator effectiveness not
more than 40%) is considered here. Moreover, together with
better disturbance attenuation, the control inputs with fault-
tolerance also accompany with more dramatic fluctuations
similar to the results from simulation.

5 Conclusion

This paper focuses on the FTC based on IDA-PBC. High-
gain and adaptive IDA-PBC methods are proposed under
loss of actuator effectiveness. Although the loss of actuator
effectiveness with specific lower bound is not fatal, the
control performance under it degenerates obviously. The
proposed high-gain and adaptive IDA-PBC methods could
still keep the control performance and good disturbance
attention under actuator faults. The faulty case with actuator
saturation and unknown lower bound of actuator faults
is dealt with further in adaptive IDA-PBC method. Some
simulation results are displayed to illustrate the control
effectiveness. Moreover, the uncertain actuator dynamics
of the real platform is transformed into the actuator
fault formulation, and high-gain IDA-PBC is applied for
hovering flight experiments under the actuator uncertainty
and further actuator fault.
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