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Abstract
This paper presents elite group-based evolutionary algorithms (EGEA) for adaptive ocean sampling using multiple
unmanned marine vehicles (UMVs). The EGEA integrate a group-based framework and elitist selection methods into
evolutionary path planner, which combine main advantages of these two techniques.The group-based framework allows each
offspring individual of evolutionary algorithm to generate its own group of new solutions with a certain probability. Two
elitist selection methods, herein referred to as group individual elitist selection (GIES) and whole population elitist selection
(WPES), are proposed to facilitate selecting preferable solutions to be passed on to the next generation in the procedure
of evolutionary algorithms. The EGEA path planners based on simulated annealing algorithm (SA) and particle swarm
optimization (PSO) are tested to find trajectories for multiple UMVs to collect maximum interested ocean information from
regions under investigation. The mixed integer linear programming (MILP) is also described and evaluated with the proposed
EGEA for solving the adaptive sampling problem. Simulation results show that the whole elite group-based simulated
annealing algorithm (WEGSA) is able to generate trajectories with more information gain from regions of high scientific
interest with constrained energy of multiple UMVs than other techniques. Monte Carlo simulations demonstrate the inherent
robustness and superiority of the proposed planner based on the EGEA in comparison with other techniques.

Keywords Path planning · Multiple unmanned marine vehicles · Adaptive ocean sampling ·
Simulated annealing algorithm · Particle swarm optimization

1 Introduction

The capability to observe, track and estimate the ocean
phenomenon is crucial for oceanic applications, such as
ocean forecasting, pollution management, marine resources
utilization and ecosystem monitoring [1, 2]. However, the
practical inability to make extensive and sustained measure-
ments and the limited information at depth to complement

� Zheng Zeng
zheng.zeng@sjtu.edu.cn

� Lian Lian
llian@sjtu.edu.cn

1 State Key Laboratory of Ocean Engineering, Shanghai Jiao
Tong University, Shanghai, China

2 School of Oceanography, Shanghai Jiao Tong University,
Shanghai, China

3 Qingdao Collaborative Innovation Center of Marine Science
and Technology, Qingdao, China

the satellite measurements make it a challenging task for
ocean monitoring [3]. To successfully sense and sample
the ocean, great efforts have been made by scientists in
investigating ocean observation systems, which have been
developed rapidly in the last two decades and open the door
of acquiring more accurate spatiotemporal measurement
resolution [4]. Unmanned marine vehicles (UMVs), such
as autonomous surface vehicles (ASVs) and autonomous
underwater vehicles (AUVs), are important and valuable
tools for exploring the ocean, travel through the ocean freely
and fast, and can be equipped with sensors to take mea-
surements and collect data in adaptive sampling missions
[5].

Path planner is a core part of UMV’s guidance module,
which allows UMV to autonomously compute optimized
path for adaptive ocean sampling. Theoretical and field
researches have been conducted on planning the paths
of UMVs [6, 7]. Yang et al. [8] used artificial potential
field (APF) algorithm for motion planning and obstacle
avoidance of multi-HUG formation. Multi-dimensional
rapidly exploring random trees star (RRT*) algorithm was
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introduced by Cui et al. [9], which returns feasible, and
obstacle-free paths that steer vehicles from the initial state
to the goal state for the multi-AUVs system. Song et al.
[10] proposed a novel multi-layered fast marching (MFM)
method to generate practical trajectories for ASVs when
operating in a dynamic environment. The purpose of these
earlier researches focused on planning and determining
feasible strategies that minimize a chosen energy or time-
related cost criterion. However, considerable work has to be
done to develop advanced techniques for path planning of
multi-UMVs that explicitly address the problem of adaptive
ocean sampling.

A small but significant literatures on path planning
of UMVs have been available that specifically focus on
the adaptive ocean sampling problem that acquires mean-
ingful information from data collection in regions under
investigation. Yilmaz et al. [3] presented the first attempt
at formulating a multi-AUVs path planner for adaptive
ocean sampling using MILP. Jaillet et al. [11] proposed
the Transition-based RRT (T-RRT) algorithm that com-
bines the exploration strength of the RRT and the effi-
ciency of stochastic optimization method, for path plan-
ning of one robot in high-dimensional cost spaces. Then,
a new algorithm named Zig-Zag in the Tranquil Ocean
Path Planner (ZZTOPP) was proposed by Smith et al. [12]
to plan the path of glider. A branch and bound method
inspired by feature selection algorithm was applied to find
path of a AUV that maximizes the reduction in vari-
ance of the ocean field being estimated [13]. Sampling-
based motion planning algorithms were proposed by Geof-
frey et al. [14] for generating informative trajectories of
robots to achieve efficient information gathering in con-
tinuous space with motion constraints. The above men-
tioned algorithms are used for solving off-line adaptive
sampling problem, which can generate globally optimized
paths. Meanwhile, some researchers have developed on-
line path re-planning algorithms considering spatiotemporal
variations of environment phenomena for adaptive sam-
pling problem [15–17]. Those algorithms are effective when
applied to small scale adaptive ocean sampling problem, but
may not necessarily be valid when dealing with the complex
large scale adaptive ocean sampling problem considering
energy constraints of multi-UMVs. When it comes to large
scale ocean environmental sampling, ocean phenomenon
may last for days or weeks over scales of tens or hundreds of
kilometers with high spatial complexity, therefore, an effec-
tive global path planning algorithm is of vital importance
to solve the complex adaptive ocean sampling problem. In
this research, we focus on developing global off-line path
planning algorithms of multi-UMVs for large scale adaptive
ocean sampling mission with a-priori known nowcast envi-
ronment map, and on-line path re-planning algorithms will
be developed in our future works.

Evolutionary algorithms, on the other hand, have been
successfully utilized to solve large scale path planning
problem. Genetic algorithm (GA) was proposed to find
rendezvous trajectories for multiple gliders with minimal
energy consumption [18]. Particle swarm optimization
(PSO) was applied to plan trajectories of AUVs that
maximum ocean measurements collection in regions under
investigation [19]. Simulated annealing algorithm (SA)
was applied to plan optimal route for robot operating
in dynamic environments with both static and dynamic
obstacles [20]. Zeng et al. [21] came up with the shell
space decomposition (SSD) scheme to be integrated with
a quantum-behaved particle swarm optimization (QPSO)
based path planner to find an optimal and efficient path for
an AUV navigating through a variable ocean environment
in the presence of obstacles. Meanwhile, Zeng et al. [22]
proposed B-Spline based QPSO for path planning, which
outperforms RRT/RRT*, GA and PSO methods, as well as
the deterministic A* method for solving the optimal path
planning problem of an AUV operating in environments
with ocean currents with minimization of time usage.
Zhuang et al. [23] integrated particle swarm optimization
(PSO) algorithm with Legendre pseudospectral method
(LPM) for finding time-optimal collision-free path of an
AUV. Therefore, evolutionary algorithms can be a choice
to be applied for solving the multi-UMVs path planning
problem associating with adaptive ocean sampling.

However, there are still a number of challenges for
evolutionary algorithms when solving this problem. Earlier
works on this topic have been dominated by single-
UMV planning. In real applications, it is beneficial to use
multiple-UMVs to perform large scale sampling missions
and survey tasks, since multiple-UMVs can reduce mission
time, permit a wider area of data acquisition and improve
outcomes of one mission [24]. The number of UMVs
involved in ocean sampling mission relates to the dimension
of the solution space and computational complexity grows
exponentially for high dimensional search space [25]. In
addition, the problem of constrained energy resources
available for UMVs to conduct science missions over long
periods arises [26]. It is required that the path planner is
able to incorporate battery capability of every vehicle to
ensure that the mission can be accomplished both safely and
optimally [27].

Considering the above challenges, to increase search-
ing efficiency of evolutionary path planner and save com-
putation time, elite group-based evolutionary algorithms
(EGEA) is proposed in this research. The EGEA inte-
grate a group-based framework and elitist selection methods
into evolutionary path planner, which combine the main
advantages of these two techniques. These include the
group-based framework allowing each offspring individ-
ual of evolutionary algorithm to generate its own group
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of new solutions with a certain probability; and two elitist
selection methods, herein referred to as group individual
elitist selection (GIES) and whole population elitist selec-
tion (WPES), are proposed to facilitate selecting preferable
solutions to be passed on to the next generation in the pro-
cedure of evolutionary algorithms. The EGEA path planners
based on simulated annealing algorithm (SA) and particle
swarm optimization (PSO) are tested offline to find opti-
mized trajectories for multiple UMVs to collect maximum
interested ocean information based on an available cost map
under investigation. Meanwhile, mixed integer linear pro-
gramming (MILP) [3] is also described and compared with
the EGEA for the adaptive sampling problem.

This paper is organized as follows. Section 2 deals
with mathematical models including objective function and
motion constraints of single UMV cases and multi-UMVs
cases in a 2D ocean environment. Section 3 elaborates
preliminary optimization algorithms and discusses the pro-
posed approach as well as its integration into evolutionary
path planner. Section 4 presents four case studies under vari-
ous scenarios and robustness assessment using Monte Carlo
trials. Finally, Section 5 gives the conclusion and ideas for
the future works.

2 Problem Formulation

In this research, the multi-UMVs path planning problem
associating with adaptive ocean sampling is formulated to
generate offline trajectories for UMVs so that they can
collect as much data as possible in high scientific interest
areas with constrained energy in an available cost map.
Our primary concern is increasing the searching efficiency
of evolutionary path planner for UMVs with simplified
dynamics in large-scale ocean sampling. As for planning
strategies of AUVs in 3D ocean environments, readers
can refer to existing works [28–30] for more details. The
following assumptions are considered in formulating multi-
UMVs path planning problem:

Assumption 1 This research primarily focuses on a high-
level planning architecture in scale of tens of kilometers
and UMVs are equipped with GPS, therefore it is assumed
that UMVs are programmed to resurface every hour for
localization and control strategies can drive the vehicles to
track the planned trajectories with simplified dynamics [31,
32].

Assumption 2 The water-referenced speed of each UMV is
assumed to be a constant. Since this speed is proportional to
the cube root of thrust [33], the vehicle has constant thrust
power and thus the energy consumed along the path is a
constant multiple of the distance traveled, and consequently,

energy constraints of UMVs can be assumed as maximum
distance they can travel.

Assumption 3 When an UMV passes a grid in a 2D
discrete ocean environment field, the vehicle obtains not
only the sampling value of this grid, but also sampling
values of the adjacent eight grids. And, when the UMV
moves to next grid, sampling values of these nine grids will
turn to zero to avoid repeated calculation.

Workspace W = R
2 is modeled as a patch of ocean

environment field. A set of S-UMVs are deployed to travel
with constant velocity V from their initial position P0 =
[x0, y0] to take measurements. In this research, the potential
UMVs path is represented by a sequence of points along the
path Ps = {P1, P2, ..., PHs }, where Hs is the total number of
passed grids belonging to the sth vehicle.

Additionally, UMVs need to be retrieved before energy
is depleted. According to Assumption 2, the energy
consumption of UMV is related to the range of UMV, hence
the path length of each UMV in simulation cannot exceed a
specified constant Lmax .

Therefore, the multi-UMVs path planning problem
associating with adaptive ocean sampling is formulated as
the following maximization problem:

P ∗
s = argmax

Ps∈P

F (S, V ,W, P0)

s.t .
.
V = 0,

Ls < Lmax, s = 1, 2, ..., S (1)

where F is the data collection objective function in this
research and will be discussed in the next subsection.

2.1 Optimization Criterion

The purpose of this research is to find mathematically
optimized paths that maximize data collection in the regions
of high scientific interest with constrained energy of UMVs.

For single UMV case, objective function is defined
to maximize the total collected sampling value along the
path of the vehicle over a 2D predefined research region.
Therefore the objective function of the ocean sampling
problem of single UMV case can be written as:

Fsingle =
H1∑

λ=1

fλ (2)

where Fsingle is the sampling value collected by an UMV
for one mission, fλ denotes the obtained sampling value of
λth passed grid in the 2D discrete ocean environment map.

For multi-UMVs case, it is necessary to take considera-
tion of collision between vehicles. It is dangerous for any

J Intell Robot Syst (2020) 99:875–889 877



vehicle to navigate too close to another one at the same time.
Constraints can be constructed as:

|Prλ − Psλ| ≥ dmin (3)

where drλ and dsλ is the position of rth and sth vehicle at
the same time, and dmin is the minimum safety distance
in case of collision. Therefore the objective function of
multi-UMVs case can be written as:

Fmultiple = max

S∑

s=1

Hs∑

λ=1

fsλ (4)

where Fmultiple is the total sampling value of S-UMVs in the
fleet, fsλ denotes the obtained sampling value of λth passed
grid of sth vehicle.

2.2 Ocean Field Environment

Oceanographic processes show great variability in space
and time, last from days to weeks, and cover large areas
of hundreds to thousands of square kilometers. In prac-
tice, the path planning problem for ocean sampling is
generally solved for long-term missions with durations of
several days and path length of tens to hundreds kilo-
meters. Marine vehicles, such as Saildrones, equip with
thermal imaging camera (”https://www.infinitioptics.com/
technology/thermal-imaging”) can provide sampling at high
spatial (1-5 km) and temporal (1 min) resolution [34].
Meanwhile, National Weather Service (NWS) (”https://
www.weather.gov/”) can provide ocean data, such as cur-
rents, sea temperature, salinity, etc, in 1kmx1km resolution,
which have been widely recognized by researchers to be
used for ocean research. In this research, we assume that
higher temperature zones are where marine scientists need
the UMVs to take measurements. Then, temperature data
obtained from National Weather Service (NWS) over a pre-
defined area is transformed to a cost map for path planning
of multi-UMVs.

Since the following proposed elite group-based evolu-
tionary path planner can handle not only low resolution
ocean model but also high resolution ocean model with large
space dimensions, the ocean sampling field in this research
will focus on a 80km×60km map with temperature value
varying from 3.6 to 5.2, which is represented by a 2D dis-
crete grid map with 80×60 grids. On this particular issue,
temperature value in each grid is set to be the sampling
value.

3 Elite Group-based Evolutionary Path
Planner

This section develops preliminary evolutionary algorithms
and the proposed group-based evolutionary algorithm with

two selection methods for UMVs path planning in the
regions of high scientific interest.

For comparison, optimized paths are also computed using
mixed integer linear programming (MILP), which is the first
proposed algorithm to be implemented to the adaptive ocean
sampling problem. For a detailed discussion of MILP, we
refer the readers to the complete publication [3].

3.1 Preliminary Evolutionary Algorithms

In this subsection, conventional methods of SA and PSO are
elaborated in detail.

3.1.1 Simulated Annealing Algorithm

Simulated annealing algorithm is a well-known form of
evolutionary algorithm using a random variation of current
solutions [35]. The crucial idea of SA is to use random
search, which not only accepts changes that improve the
objective function, but also keeps some changes that are not
ideal with a probability.

Suppose xn
i denote the solutions of ith individual

in nth iteration. In one iteration, new solutions are
generated through movement based on current solutions.
The movement can be written as:

xn+1
i = xn

i + random(−1, 1)ηn+1 (5)

ηn+1 = ηnηdamp (6)

where η denotes the movement range of every individual,
ηdamp is damping ratio of η in each iteration. Solutions
with better objective function value will be automatically
accepted. Meanwhile, to avoid falling into local optimum,
worse solutions can also be accepted in a certain probability
defined as:

p = e
− �f

Tn (7)

where �f is the change of objective function value between
two solutions of one individual and Tn is the temperature
for controlling the annealing process. A random number r

is used as a threshold to decide whether or not to accept
a worse solution. Thus, if p > r , the worse solution is
accepted; otherwise, the previous solution will be remained.
The temperature is updated according to the following
equation:

Tn+1 = αTn (8)

where α is a constant close to one. The initial temperature
T0 must be large enough to increase diversity of solutions.
As the temperature is decreasing by iteration, the probability
of accepting a worse solution decays. Therefore, the final
solution is near optimal when the temperature approaches
zero.
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3.1.2 Particle Swarm Optimization

Particle swarm optimization is generally recognized to be
effective for solving path planning problem. The aim of
PSO is to find the global best among all the current best
solutions until the objective no longer improves or after a
certain number of iterations [36].

Let xi and vi be the position and velocity of particle i,
respectively. The particles are manipulated according to the
following equation:

vn+1
i = wnvn

i + c1rand1(pbest − xn
i )

+c2rand2(gbest − xn
i ) (9)

xn+1
i = xn

i + vn+1
i (10)

where wn is the weight factor, c1 and c2 are two positive
constant parameters, rand1 and rand2 are two random
functions in the range [0,1], pbest is the best position of the
ith particle, and gbest is the best position among all particles
in the swarm.

In this research, the following functional form for the
weight factor is selected as:

wn+1 = wnwdamp (11)

where wdamp is damping ratio of w in each iteration.

3.2 Elite Group-based Evolutionary Algorithms

Algorithm 1 IEGEA for adaptive ocean sampling.

Initialization: set initial values of all the parameters,
input current environmental information and randomly
generate a feasible path for each individual.

1: for n=1 to IT do
2: for i=1 to N do
3: for j=1 to h do
4: Generate new solutions based on

conventional PSO or SA;
5: Evaluate new solution Xj ;
6: end for
7: Select the best solutions Xn

i for ith individual in
nth iteration;

8: Store the best solutions;
9: end for

10: Update parameters;
11: end for

The main concept of the group-based evolutionary
algorithm is to give each individual h chances to create its
own group of new solutions in every iteration. Then, two

elite selection methods, group individual elitist selection
(GIES) and whole population elitist selection (WPES),
are proposed to select preferable individuals to be passed
on to next generation in each iteration. The group-based
evolutionary algorithm with two elitist selection methods
are herein referred to as the individual elite group-based
evolutionary algorithm (IEGEA) and whole elite group-
based evolutionary algorithm (WEGEA).

Algorithm 2 WEGEA for adaptive ocean sampling.

Initialization: set initial values of all the parameters,
input current environmental information and randomly
generate a feasible path for each individual.

1: for n=1 to IT do
2: for i=1 to N do
3: for j=1 to h do
4: Generate new solutions based on

conventional PSO or SA;
5: Evaluate new solution Xj ;
6: end for
7: end for
8: Sort all solutions in nth iteration;
9: Store the top N solutions;
10: Update parameters;
11: end for

As for IEGEA, the individual with best new solution of
each group is chosen to be passed on to next generation.
While, WEGEA is to put all the obtained new solutions
together, sort them and select the population number of
excellent individuals to be passed on to next generation. In
other words, IEGEA is to select the individual with best
solution of each group in every iteration, while WEGEA
is to select the top population number of all the orderly
new solutions in every iteration. There is one more point
to be noted that the population size must be reduced h

times to keep the improved two versions at the same
magnitude as the conventional algorithm when comparing
the performance between algorithms. Figures 1 and 2
illustrate the core procedure of IEGEA and WEGEA. The
pseudo code of IEGEA andWEGEA are given in Algorithm
1 and Algorithm 2.

4 Simulation Results

To investigate the effectiveness and robustness of the
proposed schemes, numerical simulations are carried out for
four different cases in Matlab R2016b under Windows 10
on a computer with 3.60 GHz CPU /12.0 GB RAM. Monte
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Fig. 1 Block diagram of IEGEA

Carlo simulations with random feasible initial values are
carried out to demonstrate the robustness of the proposed
evolutionary algorithms (SA, PSO, WEGSA, WEGPSO,

Fig. 2 Block diagram of
WEGEA

IEGSA and IEGPSO). The simulations are performed on
a 50-runs basis for each of the four cases and for each of
the six algorithms. The performance of the six algorithms
together with MILP can be compared from different
standpoints, such as maximum sampling value (Max SV),
mean sampling value (Mean SV), standard deviation of
sampling value (Std SV), travel distance (TD), sampling
value collected per kilometer (SV/km) and mean execution
time (MET).

As mentioned in the section ”Problem Formulation”, the
ocean sampling field for different case studies is a 2D
discrete temperature nowcast map represented by a grid map
of 80 × 60 grids.

The parameter setting is given in Table 1. Parameter
setting in evolutionary algorithms is a crucial task and
have been extensively studied in many literatures [22, 37–
40]. Based on these researches, larger values of c1 and
c2 in PSO or smaller values of T0 and α in SA would
push the path planners to converge faster but also would
result in converging to local optimal solutions; on the
contrary, it would take a large amount of computation
time in finding global optimal solutions for path planners
with smaller values of c1 and c2 in PSO or larger values
of T0 and α in SA. Since each algorithm has its own
particular parameters, the parameter values in SA and PSO
are selected based on the suggestions in literatures [22, 38],
where these parameter values have been proven to provide
good performance.
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Table 1 Parameter value

Parameters Value

Water-referenced 2m/s

speed of UMV

Start point (40,45)

Final point (40,15)

Iterations 300

Population size Conventional evolutionary algorithms 2500

EGEA 500

SA Initial temperature T0 10

Temperature reduction rate α 0.96

Initial movement range η 15

Damping ratio ηdamp 0.97

PSO Constant coefficient c1 and c2 2

Initial weight factor w 1

Damping ratio wdamp 0.99

Fig. 3 Globally planned trajectory generated by MILP of case 1.
The color map corresponds to ocean temperature magnitude. The
temperature rises as the color turns from blue to yellow. The start and
final points are represented in yellow square and green pentagram. (For
interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article)

Fig. 4 Globally planned trajectories generated by IEGSA, WEGSA
and SA of case 1

Fig. 5 Globally planned trajectories generated by IEGPSO, WEGPSO
and PSO of case 1

Fig. 6 Convergence curve of IEGSA, WEGSA, SA, IEGPSO,
WEGPSO and PSO based on mean total sampling value of case 1

Fig. 7 Comparison of path planners based on case 1 in 50-runs Monte
Carlo simulations
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Table 2 Performance comparison of MILP, IEGSA, WEGSA, SA, IEGPSO, WEGPSO and PSO based path planners of CASE 1

Algorithms Max SV Mean SV Std SV TD (km) SV/km MET(s)

MILP 959 / / 66.57 14.41 8.35

IEGSA 1311(36.7%) 1291(34.6%) 8.97 69.90 18.76(30.2%) 617

WEGSA 1341(39.8%) 1328(38.5%) 2.53 69.99 19.16(33.0%) 682

SA 1299(35.5%) 1281(33.6%) 6.97 69.77 18.62(29.2%) 626

IEGPSO 1335(39.2%) 1312(36.8%) 10.95 69.92 19.09(32.5%) 602

WEGPSO 1326(38.3%) 1310(36.6%) 14.13 70.00 18.94(31.4%) 774

PSO 1326(38.3%) 1311(36.7%) 7.79 69.96 18.95(31.5%) 551

(The percentage value in bold font indicate the percentage of improvement of the proposed EGEA path planners compared to MILP)

4.1 CASE 1: Path Planning for Single UMVwith Fixed
Start Point and Final Point

In case 1, an UMV, whose maximum range is only 70km,
is set to start from a given position to collect as much
information as possible before arriving the destination.
Global off-line paths computed by MILP and three versions
of SA and PSO are illustrated in Figs. 3, 4 and 5,
respectively. As can be seen on Fig. 6, PSO converges faster
than SA in each version. As for different selection methods,
WPES is the first to converge, while conventional method
is the last. The reason is that the population of conventional
method is five times that of WPES, which increase the
diversity of results but slow down the convergence speed.
As can be seen on Fig. 7, as for mean sampling value,
the difference between three versions of SA is larger than
that of PSO, which demonstrates that the proposed schemes
provide more positive effect for SA than PSO.

Statistic results are recorded in Table 2, where the
percentage of improvement of each EGEA over MILP is
presented in brackets. Travel distance of the UMV in each

Fig. 8 Globally planned trajectory generated by MILP of case 2.

algorithm is within the maximum range of the UMV, which
indicates that each algorithm can generate trajectory that
guarantees the UMV to reach its destination before it runs
out of energy. It can be observed from the Table 2 that
WEGSA generates trajectory with the most sampling value
(39.8% more than that of MILP), the most sampling value
collected per kilometer (33.0%more than that of MILP) and
the smallest standard deviation, while conventional SA and
IEGSA perform poorly in finding high ocean temperature
zones, as the mean sampling value of both are relatively low.
On the other hand, each version of PSO gains similar mean
sampling value, and conventional PSO performs better than
the other two versions with regard to standard deviation and
execution time. In addition, mean execution time for MILP
method is much less than the proposed EGEA planner, due
to the characteristics of MILP that searches the trajectory
greedily without iteration. Undoubtedly, this leads to much
less sampling value collected in the planned trajectory of
MILP than the planned trajectory of EGEA. This research
focuses on developing an effective global offline path

Fig. 9 Globally planned trajectories generated by IEGSA, WEGSA
and SA of case 2
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Fig. 10 Globally planned trajectories generated by IEGPSO, WEG-
PSO and PSO of case 2

planner for ocean sampling and execution time is one of the
index. Since the mean sampling value, the sampling value
collected per kilometer and the standard deviation reflect the
searching ability and stability, it can be concluded that the
WEGSA achieves better searching ability and stability than
other algorithms in spite of longer execution time compared
to other algorithms.

4.2 CASE 2: Path Planning for Single UMVwith Fixed
Start Point and Free Final Point

In case 2, an UMV, whose maximum range is only 70km,
is set to start from a given position to collect as much
information as possible before fuel is depleted. Global off-
line paths computed by MILP and three versions of SA and

Fig. 11 Convergence curve of IEGSA, WEGSA, SA, IEGPSO,
WEGPSO and PSO based on mean total sampling value of case 2

PSO are illustrated in Figs. 8, 9 and 10, respectively. As
can be seen on Figs. 11 and 12, similar to the fixed final
point case, PSO converges faster than SA in each version;
WPES is always the first to converge, while conventional
method is the last; the difference between three versions of
SA is larger than that of PSO in terms of mean sampling
value.

Comparisons between the resulted trajectories and their
qualities are shown in Table 3. It can be observed that the
performance of MILP is poorer than other techniques. The
reason is that MILP plans the trajectory without looking
forward, hence, prone to fall into local optimum. It can be
noted that the stability of PSO is poorer than SA for free
final point case. Meanwhile, searching ability of WEGSA
outperforms other algorithms, but stability and execution
time of WEGSA are not as good as the other two versions of
SA. Since the purpose of this research is to collect as much
sampling information as possible in the region of high ocean
temperature, the first priority is to select the algorithm with
most sampling value and that refers to WEGSA.

4.3 CASE 3: Path Planning for Multi-UMVs with Fixed
Start Point and Final Point

In case 3, two vehicles are deployed to take measurements
in the given research region with fixed start point and final
point, assuming that the maximum range of one UMV
is 50km while the other is 60km. Global off-line paths
computed by MILP and three versions of SA and PSO are
illustrated in Figs. 13, 14 and 15, respectively. As can be
seen on Fig. 16, the curve tendency is similar to the single
UMV case. In Fig. 17, it should be noted that the distribution
of the results of sampling value of WEGSA is very tight,
while that of WEGPSO is the most spread out.

Fig. 12 Comparison of path planners based on case 2 in 50-runsMonte
Carlo simulations
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Fig. 13 Globally planned trajectories generated by MILP of case 3

Fig. 14 Globally planned trajectories generated by IEGSA, WEGSA
and SA of case 3

Fig. 15 Globally planned trajectories generated by IEGPSO, WEG-
PSO and PSO of case 3
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Fig. 16 Convergence curve of IEGSA, WEGSA, SA, IEGPSO,
WEGPSO and PSO based on mean total sampling value of case 3

From the statistic results shown in Table 4, the maximum
sampling value of WEGSA is the most among all
other EGEA from 50-runs Monte Carlo simulation and
dramatically 48.0% more than that of MILP. In addition,
the sampling value collected per kilometer of WEGSA is
41.6% more than that of MILP, which shows the efficiency
of the proposed EGEA path planners. It is obvious that
WEGSA plans the paths with the most sampling value,
the lowest standard deviation and the least execution time
compared with those of other evolutionary methods, which
further demonstrates the high performance and robustness
of WEGSA.

Fig. 17 Comparison of path planners based on case 3 in 50-runsMonte
Carlo simulations Ta
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Fig. 18 Globally planned trajectories generated by MILP of case 4

Fig. 19 Globally planned trajectories generated by IEGSA, WEGSA
and SA of case 4

Fig. 20 Globally planned trajectories generated by IEGPSO, WEG-
PSO and PSO of case 4

Fig. 21 Convergence curve of IEGSA, WEGSA, SA, IEGPSO,
WEGPSO and PSO based on mean total sampling value of case 4.

4.4 CASE 4: Path Planning for Multi-UMVs with Fixed
Start Point and Free Final Point

In case 4, two vehicles are deployed to take measurements
in the given research region with fixed start point and
free final point, assuming that the maximum range of one
UMV is 50km while the other is 60km. Global off-line
paths computed by MILP and three versions of SA and
PSO are illustrated in Figs. 18, 19 and 20, respectively.
Figures 21 and 22 shows simulation results of case 4,
which demonstrate that the searching ability of WEGSA
outperforms other methods.

Fig. 22 Comparison of path planners based on case 4 in 50-runsMonte
Carlo simulations
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Table 5 Performance comparison of MILP, IEGSA, WEGSA, SA, IEGPSO, WEGPSO and PSO based path planners of CASE 4

Algorithms Max SV Mean SV Std SV TD (km) SV/km MET(s)

MILP 665+851=1516 / / 48.70+59.53=108.23 14.01 11.76

IEGSA 934+1058=1992(31.4%) 1941(28.0%) 15.11 49.80+59.84=109.64 18.17(29.7%) 1251

WEGSA 973+1104=2077(37.0%) 2049(35.2%) 20.06 49.94+59.88=109.82 18.91(35.0%) 1250

SA 911+1032=1943(28.2%) 1913(26.2%) 13.71 49.84+59.91=109.75 17.70(26.3%) 1263

IEGPSO 954+1101=2055(35.6%) 1983(30.8%) 34.69 50.00+59.96=109.96 18.69(33.4%) 1266

WEGPSO 957+1082=2039(34.5%) 1975(30.3%) 36.00 49.68+59.97=109.65 18.60(32.8%) 1266

PSO 950+1098=2048(35.1%) 1990(31.3%) 28.30 49.98+59.94=109.92 18.63(33.0%) 1259

(The percentage value in bold font indicate the percentage of improvement of the proposed EGEA path planners compared to MILP)

Detailed simulation results are listed in Table 5. Although
standard deviation of WEGSA is a little larger than the other
two versions of SA, WEGSA finds the optimized paths
quickly and returns the most sampling value. In addition, the
standard deviation of PSO for each version is too large to be
used to solve this problem. Therefore, WEGSA is superior
to all other algorithms in this case study.

4.5 Discussions

Based on the results of the above four case studies,
two issues need to be discussed here. Firstly, it can be
observed that MILP performs worst when compare to the
proposed six EGEA. The reason is that MILP without
heuristic information cannot search the workspace in an
effective manner, consequentially, it returns sub-optimal
solutions. Secondly, the GIES method gives the best results
for the PSO algorithm, while the WPES method for the
SA algorithm. This is due to the difference between
the principle of SA and PSO. Each particle in PSO is
manipulated to keep track of its own best position, which
refers to pbest in Eq. 9. However, the proposed WPES
method intends to select and keep particles with good
solutions and abandon particles with poor solutions, which
causes constantly huge changes in the best position of each
particle and results in disturbing the inheritance of particle
itself. On the other hand, GIES method can help each
particle to select its best child and keep track of its own
best position in iterations. Hence, PSO integrated with GIES
method can produce better solutions than PSO integrated
with WPES method. When it comes to SA, the principle of
SA is always to keep child individuals of the next generation
with better solutions and to accept child individuals with
worse solutions in a certain probability. Both GIES and
WPES methods have positive effects on searching global
optimized solutions for SA. Since WPES method focuses

on selecting the whole population elitists, WPES method is
preferable to SA.

5 Conclusion

This paper presents a novel elite group-based evolutionary
algorithm for maximum ocean sampling of multi-UMVs.
Simulated annealing and particle swarm optimization are
introduced in this research to solve the adaptive ocean
sampling problem. Simulations have been conducted to
find offline optimized trajectories with maximum sampling
value in the regions of high scientific interest with
constrained energy of UMVs in an available cost map.
Based on the results of four case studies, the WEGSA
shows its potential of generating optimized trajectories
with more sampling value, lower standard deviation and
less execution time than those of other techniques. More
specifically, WEGSA shows higher searching accuracy,
stronger robustness and faster convergence when solving
the path planning problem associating with adaptive ocean
sampling.

Future work involves to apply realistic ocean currents
information into the proposed scheme and take collision
avoidance into consideration. Another extension of this
work is to develop on-line path re-planning strategy for
adaptive ocean sampling of UMVs and to extend the
proposed scheme to 3D workspace. Furthermore, a robust
and intelligent navigation, guidance and control (NGC)
system is vital for UMV. The integration of the path
planning module with control module is a another potential
work in the future.
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