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Abstract
This paper presents an optimization-based approach to estimate the hydrodynamic parameters namely drag and added
mass coefficients from free-running experiments conducted on an in-house developed Anguilliform-inspired robot. The
objective of the optimization problem is to estimate the hydrodynamic parameters that minimize the differences between
the trajectories obtained from the simulations and the physical experiments when operated for identical gait parameters
and controller gains for both the straight and the turning motions. The hydrodynamic parameters obtained from the
developed approach leads to a maximum root-mean-square (RMS) position error of 0.183 BL and a maximum RMS
velocity error of 0.03 BL/s between the trajectories obtained from simulations and experiments. Experimental results suggest
that the parameters estimated using the developed approach can be useful in predicting the robot’s motion accurately.
Accurate robot motion prediction is the fundamental requirement for localization, collision prediction, and motion planning
algorithms which in turn are required for automated inspection, maintenance, and repair of sub-sea structures using
Anguilliform-inspired robots.

Keywords Parameter estimation · Fish-inspired robotics · Underwater robotics · Optimization · Anguilliform-inspired robot

1 Introduction

Anguilliform-inspired robots, due to their slender and
hyper-redundant bodies, can allow automated inspec-
tion, maintenance, and repair of sub-sea structures which
involve exploration of narrow regions [1]. In the afore-
mentioned applications, the capability of dynamics model
based motion prediction is often used for collision predic-
tion [2–4] and motion planning [5–8]. The dynamics of
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Anguilliform-inspired robots is complicated due to their
hyper-redundant structure and interaction with the fluid
environment. Although, dynamics-based motion models for
Anguilliform-inspired robots have been reported in the past
[9–13], the hydrodynamic parameters namely, drag and
added mass coefficients used in such models are often esti-
mated using approximate analytical formulae [14, 15] based
on slender body assumptions owing to which the fidelity
of the motion prediction is not satisfactory resulting in a
large difference between the trajectories obtained by sim-
ulations employing hydrodynamic parameters obtained via
analytical formulae with respect to the physical experi-
ments. Hence, the literature suggests that the estimation
of hydrodynamic parameters using physical experiments
can yield better results as compared to the analytical for-
mulae based hydrodynamic parameters [9]. Most of the
research in the field of hydrodynamic parameter estimation
has been done for unmanned surface vehicles (USVs) and
autonomous underwater vehicles (AUVs) that, to a great
extent, have rigid structure and hence cannot be applied to
hyper-redundant underwater robots having non-rigid struc-
ture.

The only research reported in the area of hydrodynamic
parameter estimation of Anguilliform-inspired robots is
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by Kelasidi et al., [1]. They used a curve fitting
based approach on experimental data to estimate the
hydrodynamic parameters. A comparison of average speeds
obtained from the simulations and the physical experiments
was performed and a maximum error of 12.92% was
reported. However, the reported validation experiments
presented by Kelasidi et al., 2016 were performed for the
robot performing simple straight-line following motion.
An approach for determining hydrodynamic parameters for
underwater hyper-redundant Anguilliform-inspired robots
and a detailed validation of the determined parameters
for complex trajectories involving multiple waypoints
has, thus, not been reported before. This paper reports
an optimization-based approach for the estimation of
hydrodynamic parameters for a wider range of gait
parameters applicable for straight-line as well as turning
motions.

This paper also reports the errors in terms of the dif-
ference between the trajectories obtained from the phys-
ical experiments and the simulations using the estimated
hydrodynamic parameters; it is a more informative mea-
sure of the robot motion compared to the average speed.
It is envisaged that the developed approach can be used
for motion prediction that can be further used in localiza-
tion, collision prediction, and motion planning in automated
inspection, maintenance, and repair of sub-sea structures
using Anguilliform-inspired robots. Hence the major contri-
bution of this paper is the development of a framework for
the determination of hydrodynamic parameter which can be
further incorporated for motion prediction [2].

The physical experiments reported in this paper were
conducted on an in-house developed Anguilliform-inspired
robot. A proportional controller was employed which
determined the required offset in an eel-like gait [9, 16]
for tracking a commanded waypoint. Physical experiments
were conducted in which the robot was programmed to
follow specified waypoints for a range of gait parameters
namely amplitude, frequency, phase-shift, and high-level
controller gain. The corresponding trajectories followed by
the robot were then recorded. The parameter estimation
problem was further formulated as an optimization problem
wherein the objective was to minimize the maximum
of the difference between the robot trajectories obtained
from the physical experiments and the simulations. The
hydrodynamic parameters were then determined by solving
the optimization problem and then tested using several test
cases corresponding to the physical experiments conducted
for different gait parameter combinations than the ones used
for optimization.

A number of physical experiments were performed in
which the robot was operated at four different amplitudes

and four different frequencies. For all the sixteen com-
binations of amplitudes and frequencies, the robot was
commanded to follow straight as well as turning motion.
For straight motion, the waypoint was set at the distance of
1.40 m and at an angle of 0◦ with the X-axis of the global
frame of reference. Similarly, for turning motion the way-
point was set at the distance of 1.40 m and at the angles of
30◦ with the X-axis of the global frame of reference. Out of
the experiments conducted for sixteen gait parameter com-
binations, four were used as training set for determining
the hydrodynamic parameters while the remaining twelve
cases were used for testing/validating the estimated hydro-
dynamic parameters. The trajectory obtained in each of
the aforementioned twenty-four experiments was compared
with that of the one obtained from the developed simulator
utilizing the estimated hydrodynamic parameters to vali-
date the developed approach. This paper also reports two
additional multi-waypoint following physical experiments.

2 RelatedWorks

A detailed review of various fish-inspired robot designs
has been reported by [17]. The problem of hydrodynamic
parameter estimation for an Anguilliform-inspired robot
involves two important aspects, namely, dynamics motion
modeling and the techniques for hydrodynamic parameter
estimation.

2.1 Dynamics MotionModels for Fish-Inspired
Robots

In addition to the two-way coupling between the robot
body and the surrounding fluid, the problem of dynamics
motion modeling of the Anguilliform-inspired robot is
complicated by the hyper-redundancy. Computational Fluid
Dynamics (CFD) has been used to solve this problem
[18, 19]. Although the solutions obtained by CFD have
high accuracy, this method has high computational cost
and hence cannot be directly used in motion planning
and control of robots. To overcome this challenge various
faster approaches have been developed which are based
on Lighthill’s model [20–22] and Morison’s equation [23].
In these approaches, slender body, potential flow models
and viscous friction models are used for improving the
computational performance, however, at the cost of reduced
accuracy.

Boyer et al. presented an extension of Lighthill’s large
amplitude elongated body theory (LAEBT) by adding
resistive and axial forces that were neglected in the LAEBT
for 3D swimming [24, 25]. They also approximated the
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effects of the fluid viscosity on the motion of the body.
Ramananarivo et al. used Lighthill’s model to compute
thrust force and thereby the swimming speed of the robot
[26]. Porez et al. presented a dynamics model for a serially
connected mobile multibody system based on the adaptation
of LAEBT [27]. They further used Newton-Euler based
algorithm to solve the forward dynamics of the robot.
Clark et al. [28] and Wang et al. [29] used LAEBT based
dynamics model developed by Wang et al. [30] to determine
the hydrodynamic forces acting on a fish robot while
performing locomotion.

Khalil et al. determined contact forces between fluid
and links of the robot based on Morison’s model [31].
Apneseth et al. made use of Morison’s equation for finding
the motion and acceleration of an articulated eel-like robot
[32]. Kelasidi et al. also made use of Morison’s equations
along with the slender body assumption [9, 33]. Kopman
et al. used Morison’s equation to take into account the effect
of the surrounding fluid on the robot body while performing
locomotion [34].

The drag force acting on the robot body was determined
based on quadratic drag model, according to which the drag
force is proportional to the square of the forward velocity of
the robot [10–13, 35–37]. Kanso et al. presented a motion
model for swimming in a potential flow [38].

In a nutshell, the literature suggests that for low Reynolds
number flows, Lighthill’s resistance model is suitable
while for high Reynolds number flows, Lighthill’s reaction
model based on the theory of slender body is suitable
[39]. For moderate Reynolds number flows Morison’s
equation is most suitable [25]. Often, the slender body
assumption and the use of irrotational and inviscid fluid
flow in the motion models introduces a number of unknown
hydrodynamic parameters. If the hydrodynamic parameters
are not estimated properly then a large discrepancy between
the model and the physical experiments may occur.

2.2 Hydrodynamic Parameter Estimation

In order to obtain an acceptable agreement between the
output of the motion model and the physical robot motion,
the coefficients used in the model need to be estimated.
Several theoretical estimates have been reported by Kelasidi
et al. [9] and Guskova et al. [14]. However, it has been
reported that the parameters used are approximate and must
be estimated via experiments [9].

Ranganathan et al. presented a framework for the
estimation of hydrodynamic parameters of an underwater
system via a mathematical model of the system involving
the hydrodynamics of the system and the dynamics of
the actuator and experiments [40]. They presented an

iterative approach that utilizes the properties of least squares
estimation algorithm along with free decay experiments to
identify the system.

To determine the drag coefficients, Chen et al. performed
several experiments wherein they pulled the robot at
different speeds using a string attached to the robot at one
end and to a motor at the other and determined the drag
force acting on the robot via metric spring scales [41]. They
used the determined drag to establish a relationship between
drag force and velocity and used a least-squares method to
determine the drag coefficient. Chan and Kang performed a
similar experiment to determine the drag coefficients [42].
However, they immersed the robot in water and pulled the
robot via string using external forces provided by different
weights. The displacement-time data was recorded using
an optical encoder and was compared with a theoretical
model to determine the drag coefficients. Raj et al. also
presented a similar method, however, the hydrodynamic
parameters were determined via an optimization-based
approach, wherein a match between displacement time data
obtained via simulations and experiments was presented
[43].

Phamduy et al. used a Blazka-type water tunnel to
measure the flow of water upstream when the robot was
placed in the tunnel at a fixed position [44]. The drag force
acting on the robot was determined by using a load cell.
They then used the classical drag equation [45] to determine
the drag coefficient. Ramananarivo et al. determined the
drag coefficient to minimize the squared difference between
the experimental and simulated motion over a finite time
period for a real fish [26].

For an Anguilliform-inspired robot with multiple joints,
the tunnel experiments and the string-pulling experiments
may result in relative movement of the joints, which may
affect the accuracy of determination of these coefficients.
Using a single link for the determination of these parameters
may result in inaccurate measurement as all the different
links may have different shapes; also the joints may affect
the values of the drag coefficients.

In the field of Unmanned Surface Vehicles (USV) and
Autonomous Underwater Vehicle (AUV) the parameters are
estimated using free-running experiments by minimizing
the error between the known parameters of the vehicle
predicted by the dynamic model and the actual parameter
values [46, 47]. Different algorithms used to reduce this
difference include least squares [46, 48–50] and Least
Squares Support Vector Machines (LS-SVM) [51, 52],
Extended Kalman Filter (EKF) [53], and Prediction Error
Method (PEM) optimization techniques [50]. Eng et al.
[54] used State Variable Filter and Recursive Least Square
(SVF-RLS) estimator in the training phase to estimate
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the unknown parameters and then checked the validity of
the results using fresh data. Other used methods include
captive model experiments [55, 56] and Computational
Fluid Dynamics (CFD) based simulation methods [55, 57].

The complexity of determination of the hydrodynamic
parameters increases when the robot body has a hyper-
redundant structure as in the case of Anguilliform-inspired
robots. Kelasidi et al. developed a curve-fitting approach
for the determination of the hydrodynamic parameters for
underwater snake robot wherein they found the positions of
the center of mass of the robot for a given combination of
amplitude, frequency, phase-shift, and high-level controller
gain and fit a curve between the experimental data and the
simulation data to determine the hydrodynamic parameters
[1]. However, the reported validation experiments were
demonstrated for simple straight-line following. It is to
be noted that in order to develop motion prediction
capabilities, the error between the trajectories obtained from
the experiments and the simulations must be minimized.
The motion prediction capabilities, thus developed, can
be used in localization, collision detection, and model
predictive motion planning.

3 Problem Statement and Approach
Overview

Given,

(i) an Anguilliform robot R with N links Li , of length
2l each, serially connected via N − 1 revolute joints
Jj ,

(ii) positions pi = [pxi
, pyi

]T of the centers of mass
and orientations θi of links Li expressed in the
inertial frame of reference �,

(iii) the parametric motion model of R,

ẋ = f(x, τττ , vc;Gp, e), (1)

where x = [θθθ, xCM, θ̇θθ, ˙xCM ]T , θθθ =
[θ1, ..., θn]T ∈ S

n, θi is the orientation of the ith

link of the robot, θ̄ ∈ S
1 is the robot orientation

and is determined as the heading angle of the robot

θ̄ = 1

n

n∑

i=1
θi , xCM ∈ R

2 is the robot position and

is determined as the center of mass of the robot

xCM = 1

n

n∑

i=1
pi, τττ = [τ1, ..., τn−1]T is the control-

ling joint torque vector used for servoing the joint
motors to a commanded position, vc = [vx, vy]T

= [sc cos θc, sc sin θc]T is the velocity of the flow
expressed in inertial frame �, sc is the magnitude
of the flow and θc is the direction of the flow

expressed in the frame � and both the magnitude
and direction of the flow are assumed to be steady,
Gp is the gait parameter, e = [Cf , Cd, Ca, Cm] is
the hydrodynamic parameter where Cf is the coef-
ficients of drag force in the longitudinal direction,
Cd is the coefficients of drag force in the transverse
direction, Ca is the added mass coefficient, and Cm

is the added inertia coefficient,
(iv) αj = Aj sin(ωt+βj )+γ be the desired joint angles

following which R can reach to a commanded goal
location xCM,g (see Fig. 1), computed using an Eel-
like gait generator [9] where the gait parameters

are Aj = A
N − j

N + 1
which is the amplitude of

oscillation of the j th joint, ω is the joint frequency,
βj = (j − 1)β is the phase-shift at joint j , A and β
are parametric constants describing the amplitudes
and phase-shifts, γ is the offset determined using a
proportional controller, Gp = [A, ω, β, kθ ] denotes
a specific gait parameter,

(v) set ζ = {Gp,1,Gp,2, ...Gp,q} of q operating gait
parameters,

(vii) training gait parameter set ζtrain ⊂ ζ ,
(viii) testing gait parameter set ζtest ⊂ ζ ,

(ix) trajectory (xexpCM, ˙xexpCM)|Gp obtained from experi-

ments and trajectory (xsimCM, ˙xsimCM)|Gp obtained from
the simulations (see (iii) and (iv)), where xexpCM

and xsimCM are the positions and ˙xexpCM and ˙xsimCM are
the velocities on the robot trajectory determined
from the physical experiments and the simulations
respectively.

The objective is to determine the hydrodynamic param-
eters corresponding to straight and turning robot motions

Fig. 1 Locomotion of an Anguilliform-inspired robot from the given
start location xCM,s to the goal location xCM,g with a circle of
acceptance of radius r
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referred to in this paper as e∗
1 and e∗

2, respectively. The
hydrodynamic parameters e∗

1 and e∗
2 can be determined by

minimizing the maximum of the differences between the
robot trajectories obtained from the physical experiments
and the simulations for the test trajectories corresponding to
the gait parameters belonging to the training set ζtrain for
straight and turning robot motions, respectively.

The difference between the robot trajectories obtained
from a physical experiment and the corresponding simula-
tion can be determined by first sampling the trajectories and
finding out the weighted sum of the absolute differences
between the velocities and the positions at the sampled
points.

Mathematically, e∗
i (i=1 and i=2) is determined such that,

e∗
i = argmin

ei
[(max

j
(errori(Gp,j)))] (2)

where Gp,j ∈ ζtrain, j = 1, ..., card(ζtrain), card(ζtrain) is
the number of training cases,

errori(Gp,j) = perror + wverror . (3)

The term perror is determined as follows:

perror =
n∑

k=1

||xexpCM,k − xsimCM,k|| (4)

and denotes the total error in the estimation of the positions
on the robot trajectories obtained from the physical
experiments and the simulations.

The term verror is determined as follows:

verror =
n∑

k=1

||ẋexp
CM,k − ˙xsimCM,k|| (5)

and denotes total error in the estimation of the velocities
on the robot trajectories obtained from the physical
experiments and the simulations, xexpCM,k and xsimCM,k are kth

positions, ẋexp
CM,k and ˙xsimCM,k are the kth velocities on the

robot trajectory determined from the physical experiments
and the simulations respectively, n is the number of points
sampled on the robot trajectory, and w is a weighting
parameter used for the optimization. It should be noted

that xsimCM,k and ˙xsimCM,k can be obtained by solving the
discretized parametric motion model (1). Also, numerically
(1) is parameterised in terms of drag and added mass
parameters Cf , Cd , Ca and Cm, which for convenience
can be represented using hydrodynamic parameter vector
e = [Cf , Cd, Ca, Cm]. The objective is to determine e that
satisfies (2). It is to be noted that the suffix i of e specifies
that the hydrodynamic parameter corresponds to straight
robot motion if i = 1 and turning motion if i = 2. Fitness

function makes use of the 2-norm as 1-norm is more prone
to sensing noise as compared to 2-norm.

In order to solve the problem of hydrodynamic parameter
estimation outlined in Eq. 2, following approach was
incorporated.

(i) A physical experimental setup comprising of an
Anguilliform-inspired robot and a vision-based local-
ization system was developed.

(ii) A simulator based on the model developed by [58]
was implemented while incorporating the effects of
localization and communication latency.

(iii) Physical waypoint following experiments for each
gait parameter in ζ were performed and the
corresponding trajectories were recorded.

(iv) An optimization problem for minimizing the max-
imum of the differences between the trajectories
corresponding to ζtrain determined by the physi-
cal experiments and simulations was formulated and
solved using Genetic Algorithm (GA) to determine
the hydrodynamic parameters corresponding to both
straight and turning robot motions.

(v) The estimated hydrodynamic parameters were vali-
dated on ζtest .

In the following sections, each of the aforementioned
step has been explained in details.

4 Experimental Setup

Figure 2a shows Anguilliform-inspired robot developed in
our laboratory.

The dimensions of the robot are designed by taking
inspiration from the anatomy of eels which have an
elliptical cross-section with pointed tail fin. The robot
is fabricated via a combination of rapid prototyping and
laser cutting [59]. The entire body of the Anguilliform-
inspired robot generates a large amplitude undulation which
increases from the head towards the tail. The design of the
robot imparts anisotropic drag which helps in generating
propulsion [58]. All the numerical experiments reported in
this paper are based on its dimensions.

The robot has a head module, four identical body
modules, and a pointed tail that are serially connected
via servomotor actuated revolute joints (see Fig. 2b).
Head module contains an Atmega328 based Arduino Nano
controller board, an XBee transreceiver, an on-board 7.4V,
2200mAh Li-ion based rechargeable battery pack, and
a servomotor. Each of the body modules contain one
servomotor (see Fig. 2b) that actuates a single degree of
freedom revolute joint. The actuating motor was selected
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Fig. 2 Anguilliform-inspired robot developed at MICL, IIT Patna

based on availability to be 12.8 kg-cm (1.26 N-m). The
robot modules were designed to be of elliptical cross-
section based on eel anatomy and the dimensions were so
designed that the motor can be contained within. Further,
the maximum moment to be generated by the motion
to overcome drag was found to be 0.09 N which was
much smaller than the available motor torque. The selected
servomotor had a maximum angular velocity of 8 rad/s
operational at 6 V. The power consumption per motor,
therefore, was about 10 W. The robot specifications have
been summarized in Table 1.

The developed robot was negatively buoyant and hence
capable of swimming just below the surface of the water.
Figure 2c shows the center of gravity and center of buoyancy
of the robot when the robot lies still in the water. Currently,
the robot can operate just below the water surface and can
perform 2D motion. However, in the future, pectoral fins

Table 1 Robot specifications

Length of the robot 0.65 m

Major Diameter (2a) 0.074 m

Minor Diameter (2b) 0.064 m

Mass of the robot 1.75 kg

Number of links 6

Degrees of freedom 5

can be added to make the robot move deep into the water
and thereby perform 3D motion.

Figure 3 shows the experimental setup used for waypoint
following. The setup consists of an overhead camera which
is used to localize the robot. For the overhead camera, a
pixel of the acquired image represents 0.0038 m. Thus, the
accuracy of the vision system was ±0.0019 m. A desktop
computer was used to send the values of the gait parameters
which include the amplitude, frequency, phase-shift and
the high-level controller gain. These parameters were sent
wirelessly via XBee module which has a communication
frequency of 2.4 GHz.

A water pump with a flow rate of 0.0004 m3/s and outlet
pressure of 2.1×105 Pa was employed for generating the
flow in the setup. The flow at the outlet of the pump was
distributed into two outlet pipes each of length 1.5 m as
shown in Fig. 3. Holes of diameter 7 mm were drilled at
an equal spacing in each of these pipes in order to develop
a uniform unidirectional ambient flow having a maximum
magnitude of 0.08 m/s in the tank. A suction pipe was used

Fig. 3 Experimental setup
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for creating low pressure near the inlet and thereby inducing
flow in the tank.

5Modeling and Simulation

5.1 MotionModeling

The kinematics of Anguilliform-inspired robots are often
represented using N-link swimmer model having N − 1
revolute joints (see Fig. 4) [16, 23]. The forces acting on
the Anguilliform robot include the linear and the nonlinear
drag forces (resistive fluid forces), the added mass effect
(reactive fluid forces), the fluid moments and effects due to
ambient flow [16].

Let us suppose that the centroid of the ith link is located
at pi = [xCM,i, yCM,i]T and oriented θi radians with respect
to the global frame of reference � where i = 1, ..., N , and
αj be the joint angles where j = 1, ..., N − 1. The motion
model used in this paper is based on Morison’s equation and
Newton-Euler’s method [16]. The parametric motion model
is expressed in state-space form using Eq. 1.

Equations 6 is used to determine ¨xCM

¨xCM = −Mp

[
aTμnS2θ −aTμnSθCθ

−aTμnSθCθ aT μnC2
θ

]

Mk

−Mp

[ −aTμnSθCθ −aT μnS2θ
aT μnC2

θ aT μnSθCθ

] [
vax
vay

]

θ̇ + Mp

[
aT fDx
aT fDy

]

(6)

where,

Mk =
[

lKT (Cθ θ̇̇θ̇θ
2 + Sθ θ̈̈θ̈θ

lKT (Sθ θ̇̇θ̇θ
2 − Cθ θ̈̈θ̈θ)

]

(7)

Mp =
[

m11 m12

m21 m22

]

=
[

nm + aT μnSθ
2a −aT μnSθCθa

−aT μnSθCθa nm + aT μnCθ
2a

]−1

(8)

Fig. 4 Mathematical model of Anguilliform-inspired robot

and

a = [1 . . . 1]T ∈ R
N

The terms Fdx = FI
dx + FII

dx. Fdy = FI
dy + FII

dy are drag

forces in X and Y directions. FI
dx, FI

dy and FII
dx, FII

dy are the
effects of linear and non-linear drag forces respectively.
[
FI
dx

FI
dy

]

= −
[

ct (Cθ )
2 + cn(Sθ )

2 (ct − cn)SθCθ

(ct − cn)SθCθ ct (Sθ )
2 + cn(Cθ )

2

]

[
ṗx − vx
ṗy − vy

]

(9)

[
FII
dx

FII
dy

]

= −
[

ctCθ −cnSθ

ctSθ cnCθ

]

sgn(vra)
[
vrx

2

vry
2

]

(10)

where

vra =
[
vrx
vry

]

=
[
Cθ Sθ

−Sθ Cθ

] [
ṗx − vx
ṗy − vy

]

(11)

Sθ = diag(sinθθθ), sinθθθ = [sin θ1 . . . sin θN ]T ∈ R
N (12)

Cθ = diag(cosθθθ), cosθθθ = [cos θ1 . . . cos θN ]T ∈ R
N (13)

K = AT (DDT )−1D (14)

V = AT (DDT )−1A (15)

A =
⎡

⎢
⎣

1 1
. . .

. . .
1 1

⎤

⎥
⎦

(N−1)×N

(16)

D =
⎡

⎢
⎣

1 −1
. . .

. . .
1 −1

⎤

⎥
⎦

(N−1)×N

(17)

vx = [vx,1, . . . , vx,N ]T ∈ R
N , vy = [vy,1, . . . , vy,N ]T ∈

R
N , and [vx,i , vy,i]T is the flow velocity expressed in frame

�. It is to be noted that the flow considered is an uniform
ambient flow having velocity vc, hence, vx,1 = vx,N =
...vx,N = sc cos(θc) and vy,1 = vy,N = ...vy,N = sc sin(θc).
px = [px,1, . . . , px,N ]T and py = [py,1, . . . , py,N ]T , and
[px,i , py,i]T is the position of the center of mass of each

link in �. Coefficients ct = 1

2
ρπCf

(b + a)

2
2l and cn =

1

2
ρCd2a2l, are drag force parameters, ρ is the density of the

fluid, 2l is the length of each link, 2a is the major diameter
of the link, 2b is the minor diameter of the link, Cf is
the coefficients of drag force in the longitudinal direction

J Intell Robot Syst (2020) 99:837–857 843



and Cd is the coefficients of drag force in the transverse
direction.

Link angular acceleration vector θ̈θθ can be determined
using Eq. 18.

θ̈̈θ̈θ = Mθ
−1[DT τττ−Wθ θ̇̇θ̇θ

2−Vθ θ̇̇θ̇θ−�3|θ̇θθ |θ̇θθ−KDxfDx−KDyfDy]
(18)

where

Mθ = J + ml2SθVSθ + ml2CθVCθ + �1 + l2μnK1KT Sθ

+l2μnK2KT Cθ (19)

Wθ = ml2SθVCθ − ml2CθVSθ + l2μnK1KT Cθ

−l2μnK2KT Sθ (20)

Vθ = �2 − lμnK2Va
x − lμnK1Va

y (21)

Va
x = diag(vx,1, . . . , vx,N ) ∈ R

N×N , Va
y =

diag(vy,1, . . . , vy,N ) ∈ R
N×N and μn = ρπCaa

22l,

KDx = lμnm11A1aaT − lμnm21A2aaT − lSθK
KDy = lμnm12A1aaT − lμnm22A2aaT + lCθK

(22)

K1 = A1 + μnA1aaT (m12SθCθ − m11Sθ
2)

−μnA2aaT (m22SθCθ − m21Sθ
2) (23)

K2 = A2 − μnA1aaT (m11SθCθ − m12Cθ
2)

+μnA2aaT (m21SθCθ − m22Cθ
2) (24)

A1 = SθKSθ
2 + CθKSθCθ (25)

A2 = SθKSθCθ + CθKCθ
2 (26)

�1 = λ1IN, �2 = λ2IN and �3 = λ3IN. The coefficients
ct , cn, λ2, λ3 are drag force parameters, μn and λ1 are added
mass parameters, J=J IN, L = lIN, M = mIN, 2l is the

length of each link, m is the mass of each link, J = 1

3
ml2 is

the moment of inertia of each link and Ca is the added mass
coefficient.

λ1 = 1

12
ρπCm(a2 − b2)2l3 (27)

λ2 = 1

6
ρπCf (a + b)l3 (28)

λ3 = 1

8
ρπCf (a + b)l4 (29)

where Cm is the added inertia coefficient. It is to
be noted that unlike terrestrial snake robots there is

no similar non-holonomic kinematic constraint on their
underwater counterparts. However, in order for it to generate
propulsion, the robot structure has anisotropic drag which
is implemented in the model using the coefficients Cf and
Cd such that Cf �= Cd to ensure forward motion [58]. The
terms ẋCM and θ̇θθ can be obtained from Eqs. 6 and 18 by
integrating ẍCM and θ̈θθ . Various other multi-body dynamics
schemes have been developed and can also be used for
developing the model for Anguillifrom-inspired robots [60,
61].

5.2 Motion Control

A two-layered control-architecture that includes a high-level
proportional motion controller and a low-level PD controller
has been employed (see Fig. 5). PD-based controller has
been reported in the literature with a proof of stability in the
case of Anguilliform-inspired robots by Kelasidi et al. [62]
and hence has been chosen as the low-level controller.

For waypoint-following, the high-level proportional
motion controller uses the reference heading angle gen-
erated based on a line-of-sight (LOS) guidance law to
converge the robot’s heading angle (θ̄ ) towards the reference
heading angle (θref ) [63] (see Fig. 1).

The high-level controller determines the desired j th joint
angle αj computed using an Eel-like gait generator [9] via
(30) (see Fig. 5).

αj = Aj sin(ωt + βj ) + γ (30)

where the gait parameters are Aj = A
N − j

N + 1
which is

the amplitude of oscillation of the j th joint, ω is the joint
frequency, and βj = (j − 1)β is the phase-shift at joint j .
A and β are parametric constants describing the amplitudes
and phase-shifts, and γ is the offset determined using a
proportional controller. Henceforth, the parameter A will
be referred to as amplitude and β as the phase-shift in this
paper.

The offset γ is determined using a proportional
controller,

γ = kθ (θref − θ̄ ) (31)

where kθ is the high-level controller gain and θref is the
waypoint angle computed using Eq. 32.

θref = tan−1 yCM,g − yCM

xCM,g − xCM

(32)

where xCM,g = [xCM,g , yCM,g]T is the goal location and
xCM = [xCM , yCM ]T is the position of center of mass of the
robot (see Fig. 1).
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The low-level PD controller determines the required
motor torque which allows the robot to achieve the desired
heading angle. The joint torques are calculated from the
reference joint angle αj to control the link angles according
to Eq. 33.

τττ = kpeα + kd ėα (33)

where eα = ααα − ααα∗, ααα∗ is the actual joint angle, and kp

and kd are proportional and derivative gains respectively.
The gains kθ , kp and kd are tuned manually. The process
of estimation of the low-level gains has been provided
in Supplementary Data 1. It should be noted that, for
simplicity, PD controller has been employed in this paper.
Any other non-linear controller [64–66], however, can be
easily integrated into the developed framework.

5.3 Dynamics Simulation

A dynamics simulator which incorporates the model
presented in Sections 5.1 and 5.2 has been developed and the
details are provided in this section. The control frequency
has been modeled in the developed simulator to account
for the latency caused due to image processing based
localization and wireless communication. The simulation
time-step should always be smaller than the control time-
step to capture the dynamics of the robot. The camera data
is sampled at 30 fps i.e., with a sampling period of 0.033 s.
The computations taking place during the execution of the
high-level control-loop comprise of: 1) image acquisition,
2) image-based localization, 3) transmitting the desired
joint angles via X-Bee, and 4) executing the commanded
joint angles by the robot using the low-level control loop.
The maximum computation time for the control time-
step was experimentally found to be approximately 0.3 s
which varies based on the availability of computational
resources. The execution of the high-level control loop takes
place after the completion of the execution of the low-
level control loop, i.e. the joints reaching their respective
commanded positions. The system remains stable because
the completion of the low-level control loop execution is
ensured by inserting a predetermined time-delay before the
high-level control loop is executed.

To take into account the variations in the robot
motion, the simulation time-step should be significantly
small compared to the control time-step which has been
experimentally found to be 0.3s. The simulation time-
step depends upon the maximum robot speed, the flow
speed, and the obstacle density. For the purpose of the
reported robot and the test environment, the time-step was
determined by trial-and-error to be 0.01 s.

The steps used in the simulation of the robot are
enumerated below.

(i) τττ is determined using Eq. 33.
(ii) The values of θ̈θθ is further determined from Eq. 18. θ̈θθ

is then used to calculate the values of θθθ by using RK4.
(iii) ẍCM is determined from Eq. 6 and further RK4 is

applied to determine xCM.

This process is continued until ||xCM,g − xCM|| < r where
r is the radius of acceptance. The length of an Anguilliform
robot is large and therefore denoting a particular point on
the robot as one representing the entire robot is incorrect.
Hence it was assumed that if up to 23% of the body
length has reached near the goal then the robot has reached
the goal. Hence, the radius of acceptance is chosen to be
approximately equal to 0.15 m (0.23 BL).

6Waypoint-Following Experiments

Various physical experiments were performed in which the
robot was operated at four different gait amplitudes (A =
0.61 rad, 0.69 rad, 0.78 rad, 0.87 rad) and frequencies (ω =
2.7 rad/s, 3.1 rad/s, 3.5 rad/s, 3.9 rad/s). Due to the physical
constraints of the robot, the amplitude of oscillation of the
links can vary from 0 degree (0 rad) to 50 degrees (0.87 rad).
However, experimentally it was found that if the amplitude
was less than 35 degrees (0.61 rad) then no forward motion
was achieved by the robot. Hence, the gait amplitudes were
discretized into four equal intervals in between 35 degrees
(0.61 rad) and 50 degrees (0.87 rad). Similarly, for the
frequencies less than 155 degrees/s (2.7 rad/s), no forward
motion was achieved in the robot. Hence the frequencies
were discretized into four equal intervals in between 2.7
rad/s and 3.9 rad/s.

Fig. 5 The control scheme used
to control the motion of the robot
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The robot was commanded to follow straight and turning
motion for each of the aforementioned sixteen combinations
of gait amplitudes and frequencies. The waypoints were set
at the distance of 1.40 m (2.2 BL) and at the angles of 0◦
(to represent straight motion) and 30◦ (to represent turning
motion) to the global X-axis, respectively. Thus, thirty-two
experiments were performed and the robot trajectories in
each case were recorded. The value of phase-shift β was set
as 1.04 rad for the aforementioned experiments. Also, the
high-level controller gain kθ for straight as well as turning
motion were manually tuned and the determined values
were 0.1 and 0.37 respectively. It should be noted that, a
moving median filter was applied over the sensor data to
remove the noise.

The four training cases ζtrain were selected by consid-
ering the physical experiments conducted for the extreme
values of gait amplitude and frequency, i.e., (1) A = 0.61
rad, ω = 2.7 rad/s, (2) A = 0.61 rad, ω = 3.9 rad/s, (3) A =
0.87 rad, ω = 2.7 rad/s, and (4) A = 0.87 rad, ω = 3.9 rad/s.
Hence, ζtrain = {[0.61, 2.7], [0.61, 3.9], [0.87, 2.7], [0.87,
3.9]}. The test cases used for validation of the estimated
hydrodynamic parameters corresponding to the remaining
twelve cases. Hence, ζtest = {[0.61, 3.1], [0.61, 3.5], [0.69,
2.7], [0.69, 3.1], [0.69, 3.5], [0.69, 3.9], [0.78, 2.7], [0.78,
3.1], [0.78, 3.5], [0.78, 3.9], [0.87, 3.1], [0.87, 3.5]}.

The turning angle of 30◦ was selected based on the space
constraints posed by the physical experimental setup. The
developed framework, however, is flexible to incorporate
more number of levels of turning.

7 Estimation of Hydrodynamic Parameters
(Cf , Cd, Ca and Cm)

To estimate the hydrodynamic parameters, a training set
ζtrain was considered for both straight and turning motion.
The weight w corresponding to each element of ζtrain

was set to 5. In each training case, the error in the

trajectories obtained from the simulations and free-running
physical experiments conducted for identical waypoints,
gait parameters, and controller gains were determined.

The hydrodynamic parameter estimation problem was
then formulated as the minimization of the objective
function which was defined as the maximum error in
the trajectories among the four test cases. A closed-form
solution of the hydrodynamic parameters using a least-
squares approach is not possible due to the implicit nature of
the model. Hence, Genetic Algorithm (GA) based approach
has been used for hydrodynamic parameter estimation.

The difference between the robot trajectories is computed
by sampling points on the robot trajectories obtained
from simulations and physical experiments and finding
out the weighted sum of the absolute differences between
the velocities and the positions at the sampled points
obtained via simulations and experiments. The testing was
then carried out for ζtest for both straight and turning
motion.

To determine the fitness functions, first the trajectories
obtained from the physical experiments were sampled into n

= 7 time intervals and the simulations and experiments were
compared at the exactly same time stamps.

To have a check on the poor quality solutions, conditions
were added in the fitness function to penalize extremely
long travel times, ill-conditioned matrices, and self-
collisions (see Eq. 34). The fitness function fi was defined
for both straight (i = 1) and turning motion (i = 2) as

fi =

⎧
⎪⎨

⎪⎩

max
j

(errori(Gp,j)) if t ≤ Tmax,

H1L if t > Tmax,
H2 if Mθ is an ill-conditioned matrix,
H3 if self-collision occurs,

(34)

where t is the travel time required by the robot to
reach the specified waypoint and Tmax is the maximum
allowable travel time for which the evaluation shall run. The
conditions used in Eq. 34 have been explained in Table 2.

Table 2 Values of fitness under
different conditions Fitness Value Condition

max
j

(errori (Gp,j)) If the robot reaches the specified waypoint at time t ≤ Tmax .

H1L If the travel time required by the robot is more than Tmax

then the fitness value is set to H1L where H1 is a large
number and L is the distance between robot position at Tmax

and the corresponding waypoint location.

H2 From the dynamics, it can be seen that when the matrix
Mθ (see Eq. 18) becomes ill-conditioned it leads to a poor
solution. The rank of the matrix is determined to find its ill-
conditioning. If the rank(Mθ ) < N the fitness value is set to
be H2 which is a large number and N is the number of links
of the robot.

H3 If self-collision occurs.
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Fig. 6 Fitness versus generation

The numerical values of H1, H2 and H3 were set as 106,
1016 and 1014 respectively in the simulations reported in
this paper. However, any set of large values satisfying the
inequality H2 > H3 > H1 may be used.

The inequalities between the values of H1, H2 and H3 are
determined based on the following considerations.

(i) H2 is given the largest numeric value to severely
penalize random solutions that may lead to ill-
conditioned matrices during the evaluation of fitness
function using simulations.

(ii) Self-collision, less preferred over long travel time, has
been penalized more by setting the value of H3 > H1.

The fitness functions (see Eq. 34) were formulated
for straight and turning motion, and the optimization
problems were solved using Matlab’s Genetic Algorithm
(GA) toolbox. The computational complexity of estimation
depends on the population size and the number of
generations used. The population size was chosen as 150,
while the optimization routine was executed over 130
generations (see Fig. 6). The crossover function used was
‘scattered’.

GA was successfully converged for both straight and
turning motion. The fitness evaluation of Genetic Algorithm
(GA) was observed to reach a steady state which can
be seen from the results of individual optimization (see
Fig. 6). As the fitness reaches a steady state the solution
is bound to reach a near-optimal condition. However, being
a metaheuristic technique there cannot be a mathematical
guarantee that the solution obtained by GA is optimal.
Hence for the practical purpose near-optimal solution can
be assumed to be acceptable.

Table 3 presents the values of hydrodynamic parameters
obtained via optimization and the corresponding fitness
values. A comparison of the positions of the robot along
the trajectories obtained via the experiments and the
simulations for ζtrain has been provided in Supplementary
Data 4.

It is to be noted that due to the image-processing based
measurement, uncertainties of ±0.0019 m and ±0.1 s in
localization and estimation of time exists. The uncertainties
in the determined hydrodynamic parameters have been,
thus, estimated to be of the order of ±0.0001.

8 Validation

In order to validate the estimated values of hydrody-
namic parameters determined in Section 7, the trajectories

Table 3 Optimized hydrodynamic parameters for straight and turning robot motion

Motion Optimized hydrodynamic parameters Fitness value

Cf Cd Ca Cm

Straight 0.008 0.776 0.618 0.007 0.8984

Turning 0.009 0.978 1.169 0.001 1.8814
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Fig. 7 Comparison of the
positions of the robot along the
trajectories obtained via
experiments and simulations for
straight motion

obtained from the experiments and the simulations
were compared for ζtest for both straight and turning
motion.

8.1 Comparison of Robot Trajectories

The robot trajectories obtained via the experiments and the
simulations for twelve test cases were compared for both

straight and turning motion. Figures 7 and 8 shows the
positions of the robot over the trajectories for four test cases
(A = 0.61 and ω = 3.1, A = 0.69 and ω = 3.1, A = 0.78 and ω

= 3.1, and A = 0.87 and ω = 3.1) each corresponding to the
straight and the turning motions respectively. For brevity,
the rest of the eight cases corresponding to the straight and
the turning motions have been presented in Appendix A (see
Figs. 12 and 13).

Fig. 8 Comparison of the
positions of the robot along the
trajectories obtained via
experiments and simulations for
turning motion
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In four out of twelve cases (A = 0.61 and ω = 3.1, A =
0.69 and ω = 3.1, A = 0.69 and ω = 3.9, and A = 0.78 and
ω = 2.7) for turning motion, it does appear that the paths
obtained via the experiments are linear but in other cases it
does go in a non-linear fashion based on which the observed
linear paths may be considered to be a chance occurrence.

The root-mean square (RMS) errors Ex between the
positions and the velocities sampled from the robot
trajectories obtained via the simulations and the physical
experiments for both straight and turning motions were
determined using

Ex = 1

n

n∑

k=1

||(xexpCM,k − xsimCM,k)|| (35)

where, n = 35, xexpCM,k is the kth sampled position on the
robot trajectory determined from the physical experiments
and xsimCM,k is the kth sampled position on the robot trajectory
determined from the simulations. Ex was computed for
each gait parameter combination, and straight and turning
motion.

Similarly, the RMS errors Ev in velocities were then
computed using

Ev = 1

n

n∑

k=1

||(ẋexpCM,k − ẋsimCM,k)|| (36)

where, n = 35, ẋexp
CM,k is the kth sampled velocity on the

robot trajectory determined from the physical experiments

and ˙xsimCM,k is the kth sampled velocity on the robot trajectory
determined from the simulations. Ev was computed for each
gait parameter combination, and for straight and turning
motion.

The consistency and the accuracy of the estimated
parameters were determined based on the RMS errors

between the positions and velocities over the trajectories
obtained via the simulations and the experiments. From
Figs. 7, 8, 12 and 13 it can be seen that the variations
between the simulation and the experimental trajectories are
random.

Table 4 shows the RMS errors Ex and Ev corresponding
to the positions and velocities respectively obtained for the
testing cases.

The RMS error in positions depends upon the accuracy
of the experimental runs and the radius of the circle of
acceptance which is 0.23 BL. Thus, the RMS error below
0.23 BL is acceptable. A maximum RMS error in the
position of 0.082 BL and 0.183 BL were obtained for
straight and turning motions respectively and are hence
acceptable. Similarly, a maximum RMS error in velocities
of 0.03 BL/s and 0.02 BL/s were obtained for straight
and turning motion respectively and is acceptable. Hence,
the determined parameters are consistent over the gait
parameter range.

8.2 Multi-waypoint Following Experiments

To validate the obtained values of the hydrodynamic param-
eters, a comparison was made between the simulations and
the physical experiments wherein the robot was commanded
to follow a path comprising of a sequence of waypoints.
This section presents the results of the comparison of the tra-
jectories obtained from the simulations and the experiments
for two such paths comprising of a sequence of three way-
points each. The gait parameters in the reported experiments
and simulations were set as A = 0.87 rad, ω = 3.9 rad/s, β =
1.04 rad, and kθ = 0.37.

Path 1: The robot was initially placed at (0.00 m, 0.00
m) and was commanded to follow a path comprising of a

Table 4 RMS errors for testing cases for different gait parameters, and for straight and turning motion

Gait parameters Straight motion Turning motion

Amplitude (rad) Frequency (rad/s) Ex (BL) Ev (BL/s) Ex (BL) Ev (BL/s)

0.61 3.1 0.034 0.01 0.136 0.02

3.5 0.060 0.02 0.100 0.01

0.69 2.7 0.029 0.02 0.183 0.02

3.1 0.016 0.01 0.069 0.01

3.5 0.024 0.01 0.135 0.02

3.9 0.025 0.01 0.112 0.01

0.78 2.7 0.082 0.03 0.154 0.02

3.1 0.022 0.02 0.051 0.02

3.5 0.034 0.02 0.179 0.02

3.9 0.074 0.02 0.145 0.02

0.87 3.1 0.040 0.03 0.159 0.02

3.5 0.021 0.02 0.061 0.02
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Fig. 9 Comparison of the robot
trajectories obtained via
simulation and physical
experiment for path 1 (a video
of this comparison can be found
in Multimedia Extension 1)

sequence of three waypoints which were placed at (0.43 m,
0.25 m), (0.93 m, 0.25 m) and (1.37 m, 0.5 m) (see Fig. 3a).
The RMS error between the positions over the trajectory
obtained via simulation and experiment was 0.01 BL and
the RMS error between the velocities over the trajectories
obtained via simulation and experiment was 0.005 BL/s.
Figure 9b and c show the variation of x-coordinates and
y-coordinates with time obtained via the experiments and
simulations for Path 1. Figure 9d show the comparison
of the variation of the heading angle with respect to time
obtained via experiments and simulations for Path 1.

Path 2: The robot was initially placed at (0.00 m, 0.00
m) and was commanded to follow a path comprising of a
sequence of three waypoints which were placed at (0.35
m, 0.2 m), (0.69 m, 0.4 m), and (1.07 m, 0.4 m) under
influence of ambient flow of magnitude 0.03 m/s (0.05
BL/s) acting along 180◦ to the global X-axis (see Fig. 10a).
The RMS error between the positions over the trajectory
obtained via simulation and experiment was 0.01 BL and the
RMS between the velocities over the trajectory obtained via
simulation and experiment was 0.004 BL/s. Figure 10b and
c show the variation of x-coordinates and y-coordinates with
time obtained via the experiments and simulations for Path
2. Figure 10d show the comparison of the variation of the

heading angle with respect to time obtained via experiments
and simulations for Path 2.

To estimate the effects of variation in inputs, a number
of waypoint following experiments were considered. While
following the waypoints, the robot speed varies from 0 m/s
to 0.093 m/s (0.14 BL/s) and it was found that trajectories
were followed with a maximum RMS error in position of
0.31 BL and a maximum RMS error in velocity of 0.03
BL/s showing an acceptable level of deviation. Computation
of errors for following multiple waypoints between the
simulated and physical robot has not been reported earlier
for Anguilliform-inspired robots.

8.3 Application of the Determined Hydrodynamic
Parameters in Generation of Motion Primitives for
Model Predictive Trajectory Planning

To demonstrate the application of motion prediction, an
example of motion planning employing model predictive
path planning approach has been presented. In this example,
the simulated Anguilliform-inspired robot is commanded
to reach a specified goal location while avoiding multiple
obstacles wherein the goal is to determine a collision-free
path between the start and the goal locations.
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Fig. 10 Comparison of the robot
trajectories obtained via
simulation and physical
experiment under the influence
of ambient flow acting along
180◦ to the global X-axis for
path 2 (a video of this
comparison can be found in
Multimedia Extension 2)

To solve the problem of trajectory planning following
steps are involved [2]:

(i) A dynamically feasible action set is generated
using the dynamics simulator reported in this paper.
The action sets are generated for discretized flow
directions and waypoint pose. Figure 11a shows three
actions corresponding to the flow acting along 0◦.
Similar actions are generated for all the discrete
ambient flow direction which in the case of the
example has been chosen to be eight, varying from
0◦ to 315◦.

(ii) The generated action set is then used to compute
motion primitives which are further used to develop
a search-tree. To determine the regions of the
possible collision for each of the actions, a convex
hull around the region encompassed by the robot
while executing the action is determined. Figure 11b
shows the convex hulls obtained for eight discretized
ambient flow directions. During the construction of
the search-tree, the motion primitives are chosen
based on the relative flow direction with respect to
the orientation of the robot [2].

(iii) An admissible simulation-based heuristic is further
designed to improve the computational performance
of the robot.

(iv) Finally, search algorithms such as A*, D*, etc [2,
8, 67, 68] is used to determine a collision-free,
dynamically feasible optimal trajectory between the
specified start and the goal location.

9 Conclusion

This paper presents an optimization-based approach for the
estimation of hydrodynamic parameters and the validation
of the same on an in-house developed Anguilliform-
inspired robotic platform. Fitness functions were designed
for optimization as the maximum of the difference between
the robot trajectories obtained from the experiments and
the simulations for the test trajectories corresponding to the
identical gait parameter set, for the straight and the turning
motions. Penalties were incorporated for the occurrence
of extremely long travel times, ill-conditioned matrices
and self-collisions during the simulations into the fitness
function.
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Fig. 11 Model Predictive Trajectory Planning

The determined parameters were then tested on twenty-
four different test cases, twelve for straight motion and
twelve for turning motion (different from the eight training
cases). Also, to validate the developed approach different
experiments were performed. The maximum RMS error in
the position of 0.082 BL and a maximum RMS error in the
speed of 0.03 BL/s were obtained for the straight motion.
Similarly, for the turning motion, a maximum RMS error in
the position of 0.183 BL and a maximum RMS error in the
speed of 0.02 BL/s were obtained. Hence, the determined
parameters are consistent over different gait parameters.
Compared to the literature [1], the reported approach has
been validated for both straight and turning motions. Also,
for a wider range of gait parameters and a more detailed
comparison of trajectories obtained has been presented here
instead of a simple comparison of average speeds.

The hydrodynamic parameters obtained by the developed
approach are also validated by performing the experiments
wherein the physical robot was commanded to follow
multiple waypoints both in the absence and the presence of
ambient flow. A close agreement between the trajectories

obtained by the simulations and the experiments was found
and the maximum RMS error between the positions over the
trajectories obtained via simulations and experiments was
0.01 BL and the RMS error between the velocities over the
trajectories obtained via simulations and experiments was
0.005 BL/s. Hence, the hydrodynamic parameters estimated
via the approach reported in this paper can be used for
predicting the robot trajectories using the simulation for any
given sequence of waypoints with an acceptable level of
fidelity both in the presence and in the absence of ambient
flow.

The developed dynamics simulations incorporating the
optimized hydrodynamic parameter can be further used
in motion prediction and can be integrated with model
predictive planning framework for dynamically feasible
trajectory planning of Anguilliform-inspired robots [2] and
has been presented via example in this paper.
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Appendix A: Robot Trajectories Obtained via Experiments and Simulations for Straight
and TurningMotion

Fig. 12 Comparison of the positions of the robot along the trajectories obtained via experiments and simulations for straight motion
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Fig. 13 Comparison of the positions of the robot along the trajectories obtained via experiments and simulations for turning motion
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Appendix B: Index to Supplementary Materials

Supplementary materials File type Description

Multimedia Extension #1 Video Comparison of the trajectories obtained from the experiment and the
simulation for Path: 1

Multimedia Extension #2 Video Comparison of the trajectories obtained obtained from the experiment
and the simulation for Path: 2

Supplementary Data 1 .pdf Estimation of low-level controller gains (kp and kd )
Supplementary Data 2 .xlsx Fitness versus generation for straight motion
Supplementary Data 3 .xlsx Fitness versus generation for turning motion
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