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Abstract
This paper introduces a dynamic path planning method for the UAV that can avoid both static and moving obstacles. The
condition with sudden threats can better reflect the real situation of the UAV in the real environment. First of all, the A*
algorithm is adopted to generate an optimal path in a known environment in this method. Then, in the situation of static
sudden threats, a series of candidate paths are generated by the principle of cubic spline second-order continuity. In order
to make the static sudden threat at the center of a cluster of candidate paths, they need to be adjusted. After that, this path
cluster completely surrounds the sudden threat and has symmetry about the sudden threat. When encountering a sudden
threat of movement, factors such as the speed, acceleration and certain parameters of the movement obstacle or the UAV
are considered, and a correlation model of the dynamic sudden threat is established. Finally, the total cost function is
established to select the optimal obstacle avoidance path, and the total cost function contains four sub-cost functions, they
are static security cost function, smoothness cost function, consistency cost function and dynamic security cost function.
The simulation results demonstrate the effectiveness of the proposed method.

Keywords Dynamic path planning · Local path planning · Obstacle avoidance · Cubic spline · Cost function

1 Introduction

The path planning for an unmanned aerial vehicle (UAV)
has been the focus of significant interest from academia,
industry, agriculture and the military all along [1–4]. Path
planning is especially important as the core technology of
UAVs, it can be divided into two parts: global planning
and local planning [5–7]. Global planning, it can also be
seen as static path planning, is to plan the path when all
environmental information is known; and if the environ-
ment is unknown or partially unknown, the local planning
method is adopted for path planning. And local planning
can also be regarded as dynamic path planning. [8–10].
With the continuous development of technology and the
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increasingly complex operational environment, global plan-
ning has gradually failed to meet the complex environment
demand [11–13].

In recent years, many scholars and experts have
studied dynamic path planning of UAVs in the complex
environment. For instance, the bug based algorithms has
the simplest behaviour for obstacle avoidance, such as
Bug1, Bug2 [14] and Tangent Bug [15]. This kind of
algorithms makes UAVs follow the obstacle edge until it is
avoided. These algorithms are easy to implement and can
operate in the controlled environment. However, they have
a serious problem that can cause local minima and block the
movement of the UAV [16]. The dynamic window approach
is an online obstacle avoidance strategy [17]. In the grid
map, this strategy converts the generated motion trajectory
into a value function to calculate the speed, and sends it to
the bottom layer. Whereas, the algorithm lacks the effective
mechanisms for convergen, making it impossibly achieve
the requirement to reach the target location under certain
circumstances [18].

Grid-based approaches and potential field approaches
also have been widely used in solving the dynamic path
planning problem of the UAV. For instance, a novel
hierarchical path planning method is presented in the mobile
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robot navigation problem [19]. This type of method has
all future path information known after planner execution
and before vehicle motion. However, as the complexity
of the environmental situation increases, the amount of
calculations of the method are also multiplied and no longer
applicable. Based on the sparse A* search algorithm for
path planning and the improved artificial potential field, a
method of dynamic trajectory planning for UAV is proposed
[20]. Nevertheless, due to the defect of the potential field
method, when the potential field is balanced, the UAV is
easily trapped.

Another common method for path planning is the
discrete optimization approaches. In the past, a great deal
of literatures in discrete optimization simulation is based on
the probabilistic search techniques of simulated annealing
[21] and evolutionary algorithms [22]. The technology
of optimized development algorithm obtained by hybrid
techniques has been widely adopted. This approach
combines multiple algorithms into a single optimization
strategy [23]. In state-of-the-art techniques, an enhanced
discrete particle swarm optimization path planning for UAV
vision-based surface inspection is presented [24]. This
method can provide a safe and smooth path for autonomous
vehicles or UAVs. However, it can only treat static obstacles.
Moving obstacles are not considered in this method.
Similarly, a path planning method is considered based
on the parallel neural network structure and dynamically
adjustable step size strategy. The proposed algorithm not
only guarantees the safety of the UAV to evade the threat,
but also improves the convergence speed of the algorithm.
That method shows an effective obstacle avoidance method
[28]. Although this method has many merits, the path
smoothness is unsatisfactory and cannot be applied to the
actual situation.

Nevertheless, in the environment with a sudden threat,
there are many issues associated with path planning for
the UAV in practical applications. For example: Firstly,
the algorithm is required to be reasonable to avoid
sudden threats. Secondly, the system should be designed to
reduce the amount of computation and improve the time-
consuming algorithm. Thirdly, consideration must be given
to issues of the smoothness and continuity of a path, and
local dynamics or global constraints [25–27].

In this paper, we mainly focused on a local planning after
the global planning. Firstly, the A* algorithm is used for
global planning to obtain the optimal obstacle avoidance
path. Then, the problem when encountering a sudden
threat can be solved by utilizing cubic spline second-order
continuity combined. This method can quickly obtain a
cluster of candidate paths, and help to reduce the calculation
time to achieve real-time. In certain cases, starting and
ending points of candidate paths can be obtained by
finding the intersections between them, and this candidate

path cluster has symmetric properties. When the candidate
paths need to be adjusted, some informations are used
as the basis. The basis for adjusting candidate paths is
that the location information for sudden threats and the
starting and ending points of the candidate path. In this
paper, the sub-cost functions are established, i.e. the static
and dynamic security cost function, the smoothness cost
function and the consistency cost function. These four cost
functions are weighted and combined into a novel total cost
function to evaluate all candidate paths. The candidate path
corresponding to the minimum value of the function is the
optimal path.

In this article, the contributions can be summarized as
follows: This paper utilizes the principle of the discrete
optimization method to plan the path in the dynamic
environment. It provides a theoretical basis for the UAV to
avoid both dynamic threats and static threats. Regardless of
the global planning or the local planning, the smoothness
of the path is taken into account, and the obtained
path is smooth and without spikes. The candidate paths
are obtained by the cubic spline second-order continuity
principle and can surround static threats. When discovering
a dynamic sudden threat, a related model needs to be
established for avoidance. Multiple sub-cost functions are
set up to get the total cost function by weighting, the weights
can be adjusted according to specific needs to obtain the
required path. Moreover, this method can help to reduce
the calculation time to achieve real-time, it also can avoid
unnecessary calculations.

The work of this article is arranged as follows: Section 2
describes the generation principle of the candidate path
cluster, its characteristics under certain circumstances, and
the adjustment principle. The selection rule of the candidate
path is indicated in Section 3. Section 4 introduces the
contents of the overall structure of the framework and
global path planning method. And Section 5 introduces the
simulation results with different environments to verify that
the method is effective; Finally, the conclusion is shown in
Section 6.

2 Generation of Candidate Paths Under
Sudden Threats

When the UAV is flying along the global optimal path, if
it encounters a sudden threat, the UAV cannot continue to
flight along the original planned path, and needs to avoid
local sudden threats. For the convenience of calculation,
both the sudden threat and the known obstacles in this paper
are set to be round. Because of the cubic spline method
has the advantages of short time-consuming and high
efficiency in generating candidate paths, this paper uses
the cubic spline method to generate candidate paths. The
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corresponding cubic spline curve equation is established as
follows [30]:

y = a(x − xT
start )

3 + b(x − xT
start )

2 + c(x − xT
start )

+yT
start , x ∈ (xT

start , x
T
end)

c = 0;
a = cΔx + 2(yT

start − ymid)

Δx3
;

b = 3(ymid − yT
start ) − 2cΔx

Δx2
(1)

yT
start , yT

end , xT
start and xT

end are the starting point
coordinate O(xT

start , y
T
start ) and the ending point coor-

dinate A(xT
end, yT

end) in the planned candidate path,
respectively. xmid is the central abscissa of the sudden
threat, Δx = xmid − xT

start . Parameters a, b and c are cubic
spline parameters. Since c = 0, different a and b correspond
to different candidate paths. There is only one uncertainty
variable ymid in a and b, so setting N different ymid values
will result in N different sets of parameters a and b, so N

different candidate paths will also be generated. As shown
in Fig. 1, the blue path is all candidate paths, the red cir-
cle is a sudden threat, and the purple point is the extreme
point ymid of the candidate path. To facilitate giving the
expression of ymid denotes it as:

ymid = yT
start + ω (2)

The range of values ω and Δω are determined according
to the actual situation. In Fig. 1a, in order to generate more
candidate paths in a smaller range, ω takes a value range
of [-2, 2], and the step size is Δω, i.e. ω takes a value

every 0.5 , and ω takes values respectively [-2,-1.5,-1,-
0.5,0,0.5,1,1.5,2], get a total of 9 candidate paths. In Fig. 1b,
the value of ω is in the range of [-4, 4],the step size is
still Δω = 0.5, and the values of ω is [-4,-3.5,-3,-2.5,-2,-
1.5,-1,-0.5,0,0.5,1,1.5,2,2.5,3,3.5,4] respectively. A total of
17 candidate paths were obtained.

The symmetry of the candidate paths are generated by
(1) and (2) that is analyzed as follows: From (1) and (2), the
values of ω and −ω are substituted respectively:

y1 = 2(yT
start − yT

start − ω)

Δx3
(x − xT

start )
3

+3(yT
start + ω − yT

start )

Δx2
(x − xT

start )
2 + yT

start (3)

y2 = 2(yT
start − yT

start + ω)

Δx3
(x − xT

start )
3

+3(yT
start − ω − yT

start )

Δx2
(x − xT

start )
2 + yT

start (4)

Then the following formula can be obtained: y1 −
yT
start = −(y2 − yT

start )

Therefore, the candidate paths are generated that is
symmetric about sudden threats. The common point
coordinates of many candidate paths are further analyzed
below: when y1 �= y2, two candidate paths can be generated,
namely

y1 = 2(yT
start − yT

start − ω1)

Δx3
(x − xT

start )
3

+3(yT
start + ω1 − yT

start )

Δx2
(x − xT

start )
2 + yT

start (5)

Fig. 1 Candidate path map in the range of (xT
start , xmid )
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y2 = 2(yT
start − yT

start − ω2)

Δx3
(x − xT

start )
3

+3(yT
start + ω2 − yT

start )

Δx2

×(x − xT
start )

2 + yT
start (6)

Substituting x = xT
start into y1 and y2 respectively, y1 =

y2 = yT
start can be obtained, i.e., both y1 and y2 pass

the starting point O(xT
start , y

T
start ), after calculation, y1 =

y2 = yT
start is acquired when x = 1.5Δx + xT

start is
substituted into y1 and y2 respectively, i.e., both y1 and y2
pass the point coordinate (x = 1.5Δx + xT

start , y
T
start ),

this point is called A(xT
end, yT

end), this point is also the end
point coordinate of the candidate path, as shown in Fig. 2a
and b, that is, all candidate paths pass through point A.
i.e., A(xT

end, yT
end).

It should be noted that in Fig. 2a and b, the center line
of the candidate path, i.e., the red line OA in Fig. 2a and
b, coincides with the horizontal axis of the sudden threat.
Since ymid is selected in the vertical axis of the sudden
threat, and the value is symmetric about the center line of the
horizontal axis of the sudden threat, i.e. the candidate path
is symmetric about the center line. As long as | ω |≥ r , the
generated candidate path must surround the sudden threat,
where r is the sudden threat radius.

However, in actual situations, the center line of the
sudden threat is not necessarily parallel to the horizontal
axis of the Cartesian coordinate system, i.e., there is a
non-zero angle α between the center line and the horizontal

axis, as shown in Fig. 3a and b, α = arctan(2/3), ω is set
in the same way as Fig. 1a and b.

It can be seen from Figs. 3 and 4 that generating the
candidate path center line is not the center line of the
sudden threat, so that the candidate path does not easily
surround the sudden threat, as shown in Fig. 4a, even
if the candidate path surrounds the sudden threat, most
candidate paths are often worthless candidate paths, and the
selected evasive path is often not the optimal path, as shown
in Fig. 4b.

In order to ensure that the angle between the candidate
path center line and the center line of the sudden threat
is zero, the rotation of Figs. 3 and 4 is required, and the
rotation angle is α = arctan(2/3) . As shown in Figs. 5
and 6, the candidate paths rotate around point O, making
the candidate path center line coincide with the center line
of the sudden threat, and adjusted coordinate formula of the
candidate paths is as follows:

{
x0(t)=(x−xT

start )×cosα−(y(t)−yT
start )×sinα+xT

start

y0(t)=(x−xT
start )×sinα+(y(t)−yT

start )×cosα+yT
start

(7)

Because the candidate paths are symmetric about the
sudden threat, and both are assigned to A(1.5Δx +
xT
start , y

T
start ) and O(xT

start , y
T
start ). After the candidate

paths are rotated ,there are still symmetry about the sudden
threat, and the sudden threat is at the center of the candidate
paths.

Fig. 2 Candidate path map in the range of (xT
start , x

T
end )
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Fig. 3 Semi-closed candidate path map when α �= 0

3 Choice of Optimal Path Under Sudden
Threat

There is a reasonable selection by setting the cost function
among many candidate paths. The total cost function is set
in this paper considering four factors, namely static security
cost function, smoothness cost function, consistency cost
function and dynamic security cost function. Considered
comprehensively, the goal is to choose a better path to avoid
sudden threats.

3.1 Static Security Cost Function

Safety is the primary factor in the flight of the UAV. The
main factor affecting the safety of the UAV is the detected
obstacles and sudden threats. By calculating the minimum
distance d(n) between the center of the sudden threat and
the corresponding candidate paths, and comparing with the
radius r of the sudden threat, the collision occurs only when
the minimum distance is smaller than the radius of the
sudden threat, as shown in Fig. 7.

Fig. 4 Closed candidate path map when α �= 0
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Fig. 5 Semi-closed candidate path map when α = 0

However, the candidate paths also need to avoid the
known obstacles by calculating the minimum distances t (n)

between the center of all known obstacles and all corre-
sponding candidate paths, and comparing them with the
radius r0 of the known obstacles, only when the minimum
distance is bigger than the radius of the known obstacles,
collision will not happen, as shown in Fig. 7. In the second
candidate path l2 and the third candidate path l3, d(n) < r

are established, so the second and third candidate paths
collide with the sudden threat, and in the first candidate
path l1 and the fourth candidate path l4, d(n) > r are estab-
lished. Therefore, the first and fourth candidate paths do not
collide with the sudden threat, if only the sudden threat fac-
tor is considered, both candidate paths are feasible paths.

However, the first candidate path l1 satisfies t (n) < r0,
so l1 collides with a known obstacle and does not meet the
security requirement, so only the fourth candidate path l4
is a feasible path. I.e., the candidate path is a feasible path
only when both the d(n) > r and t (n) > r0 conditions are
satisfied. n is the number of the candidate paths.

Considering the above two aspects, the result of the
screening can be represented by setting the collision
detection function R. If a candidate path collides with a
obstacle or a sudden threat, R = 1, or R = 0. i represents
the sequence number of the candidate paths, and R[i]
represents the R function value of the i-th candidate path.
The a-d points in Fig. 8 represent candidate paths in
the four cases, they are called Case 1-4 respectively,in

Fig. 6 Closed candidate path map when α = 0
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Fig. 7 Security cost function selection path diagram

Fig. 8 Candidate path map in
four cases

this paper. And a-d in Fig. 9 represent the corresponding
values of the four collision detection functions R of Fig. 8
a–d, respectively. For example, in Fig. 8a, there are 9
candidate paths from top to bottom, respectively, and the
corresponding values of the collision detection function R

are 0, 0, 0, 1, 1, 1, 1, 1, 1 respectively, as shown in Fig. 9a,
and other cases are equally available.

In order to make the collision detection function R

more closely expresses the security level. The collision
detection function R is convoluted by the discrete Gaussian
convolution method to achieve the purpose. It has more
effective detection of the collision detection function. If
only collisions are considered, several paths with the same
effect will appear. For instance, the third candidate path
sorted from top to bottom in Fig. 8d is similar to the fourth
candidate path case. However, the third distance is closer
to the obstacle and its curvature is greater, so that the
possibility of hitting the obstacle is higher. Therefore, it
may be an inappropriate choice to regard it as the optimal
path only by the criterion of the function R. Therefore, in
this paper R function is convolved by adopting the discrete
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Fig. 9 Collision detection
function R value

Gaussian convolution method, the following expression is
obtained:

fsaf e(i) =
N∑

k=−N

gi[k]R[k + i] (8)

In this formula, fsaf e(i) is the security cost function of
the i-th candidate path, and the number of candidate paths
is 2N + 1. gi[k] is a discrete Gaussian function whose
expression is as follows:

gi[k] = 1√
2πσ

e
− (k−i)2

2σ2 (9)

Where σ is the standard deviation of collision risk,
determining the effective range of collision detection.
Figure 10 is a figure of the security cost function for the four
cases of Fig. 9.

In Fig. 10, σ = 0.5, and Fig. 10a–d correspond to the
four cases of Fig. 9a–d, respectively. It can be seen from
Fig. 10a that the value of the second candidate path is the
smallest. Nevertheless, the second candidate path is clearly

not the best choice in Fig. 8a. Comparing with the collision
detection function, although the effect of the security cost
function is better than the former, it is inevitable that
the effect will be unsatisfactory sometimes. In order to
further improve the total cost function, other factors must be
considered.

3.2 Smoothness Cost Function

The smoothness cost function of the UAV is further
considered below. A smooth path allows the UAV to
fly stably, so smoothness is also a factor that must be
considered. The path’s smoothness is related to its curvature
directly. In this paper, the square of the curvature is
used to integrate on the path as the smoothness cost
function fsmooth(i). The expression is as follows:

fsmooth(i) =
∫

K2
i (x)dx (10)

Where Ki(x) is the curvature of the i-th candidate path at
the x position, and the upper and lower limits of the integral
are the starting and ending points of the candidate path.

The smoothness cost function represents the degree of
bending of the candidate path. The higher the degree of
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Fig. 10 Static security cost
function value diagram

bending, the larger of the angle of the UAV that needs to be
turned. On the contrary, the smoothness is better.

In addition, it is also necessary to consider the maximum
deflection angle that the UAV can withstand, which is a
factor that must be considered due to its own factors.

The constraint expression of deflection angle is as
follows: θi ≤ θmax, i = 1, 2, · · · , Nh. Where:

θi = arccos

[
(xi − xi−1, yi − yi−1)

‖ xi − xi−1, yi − yi−1 ‖
· (xNh

− xi, yNh
− yi)

T

‖ xNh
− xi, yNh

− yi ‖
]

(11)

From Fig. 11, it can be seen that Fig. 11a and c corre-
spond to the case of Fig. 8a and c, and both of the fifth
candidate paths are minimum; Fig. 11b and d correspond to
the cases of Fig. 8b and d, both of which are the ninth can-
didate path is the smallest. However, neither the fifth can-
didate path nor the ninth candidate path is the best choice,
the reason is that the two paths do not meet the security
requirements. Therefore, it is necessary to consider the cost
function of both security and smoothness comprehensively.

Figure 12 is a cost function diagram that considers both
security and smoothness. Figure 12a corresponds to the case
of Fig. 8a, and that is compared with the second candidate

path (Fig. 10a) that only considers security and the fifth
(Fig. 11a) that only considers smoothness. Figure 12a
considers the influence of the above two factors, and the
second candidate path is still selected as the optimal path.
Figure 12b corresponds to the case of Fig. 8b, it is compared
with the fourth candidate path (Fig. 10b) obtained by
only considering security and the ninth (Fig. 11b) only
considering smoothness. The influence of the above two
factors is considered by Fig. 12b. Then the sixth candidate
path is the best path. In other cases, the same situations
are available. According to the above comparison, it can be
concluded that the path effect obtained by considering the
two aspects is more ideal than considering only the safety
or smoothness.

3.3 Consistency Cost Function

Consistency is a characteristic that emphasizes the con-
nection between the candidate paths and the original path.
If there is a sudden change between the candidate paths
and the original path, a sharp turn will happen. Not only
it will affect the smoothness but it will also cause unex-
pected things like security issue. The consistency cost
function mainly considers two aspects: on the one hand,
the Euclidean distance between the candidate paths and
the location of the original obstacle avoidance path, on the
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Fig. 11 Smoothness cost
function value map

Fig. 12 Cost function value map
for comprehensive security and
smoothness
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Fig. 13 Schematic diagram of coherent cost function parameters

other hand, the absolute value of the difference about the
deflection angles of the two paths, its expression is:

fcoherence(i) = λ1

xT
start − xmid

∫ xT
start

xmid

×
√

(x0(t) − x)2 + (y0(t) − yyuan(x))2dx

+λ2Δθi (12)

In this formula, Δθi(t) = ‖θ1(t)−θ2(t)‖
‖xT

start−xmid/0.05‖ , λ1 + λ2 =
1, θ1(t) is the deflection angle between the original path

Fig. 14 Consistency cost
function value graph

and the x-axis, θ2(t) is the deflection angle between the
tangent of the candidate path and the x-axis ; as shown in
Fig. 13, yyuan(x) is expressed as the ordinate of the original
obstacle avoidance path that is the green path. And the
black path represents a candidate path. The consistency cost
function value graph is Fig. 14.

After analyzing the above three cost functions, compre-
hensive consideration of security, smoothness and consis-
tency is obtained, and Fig. 15a-d corresponds to the case of
Fig.8a–d.

It can be seen from Fig. 15a that the most ideal candidate
path is the third candidate path, which is better than the
result of combination of security and smoothness, because
the third candidate path is more stable and safer with the
requirements than the second candidate path. Similarly, the
seventh item in Fig. 15b is the best candidate path, the
seventh item in Fig. 15c is the best candidate path, and the
eleventh in Fig. 15d is the best candidate path. They all get
better results.

3.4 Dynamic Security Cost Function

The path obtained by weighting with the above three
cost functions is only applicable to static or non-moving
obstacles and sudden threats. The obtained path is not
suitable for environments with the dynamic sudden threat.

J Intell Robot Syst (2020) 99:909–931 919



Fig. 15 Cost function graph for
integrated security, smoothness
and consistency

Once a dynamic threat is encountered, obtaining the best
path will no longer be the optimal choice. The dynamic
sudden threat can be detected by devices such as sensors,
but all motion trajectories of dynamic sudden threats cannot
be obtained, so real-time monitoring is required [7]. The
algorithm runs for a short time, the dynamic sudden threat
during this period can be seen as a moving obstacle for
uniform linear motion. Therefore, the dynamic sudden
threat is set to have a constant velocity. And it is set to
be a plane circle along the trajectory of the road, i.e., the
moving direction is the same as the tangential direction of
the original obstacle avoidance path. Its physical meaning
can be understood as the following situation.

If our UAV encounters a search of an enemy mobile UAV,
the enemy UAV can be assumed as a circle with a certain
radius that moves in a direction along. As shown in Fig. 16,
it moves from point P0 to point P1.

It can be seen from Fig. 16 when the dynamic sudden
threat moves from point P0 to point P1, it may collide with
the candidate path, and the point which the collision may
occur is the collision point.

To simplify the problem, the selection of collision points
is divided into two cases. When the moving obstacle moves
on the left side of the UAV, the intersection points of the
bottom movement trajectory of the movement obstacle near
the side of the UAV and the candidate paths are set as the

collision points. And the red line indicates the movement
trajectory in Fig. 17a and c, the pink points indicate the
collision points. When the moving obstacle moves on the
right side of the UAV, the top movement trajectory of the
moving obstacle near the side of the UAV is intersects
with the candidate paths, the intersection points are set as
the collision points as shown in Fig. 17b and d, the red

Dynamic threat

Threat

Dynamic threat

Collision point

Fig. 16 Dynamic burst threat Mobility Diagram
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Fig. 17 Schematic diagrams of
four dynamic sudden threat
movements

(a) (c)

(d) (e)

line indicates the movement trajectory, the points of pink
represent the collision points.

The four cases of Fig. 17 are combined with the four
cases of Fig. 8 to obtain eight cases as shown in Fig. 18a–
h. In Fig. 18, blue paths are the candidate paths, green path
is the original obstacle avoidance path, small hollow circles
are known obstacles.

It can be seen in Fig. 15a–d that the optimal paths are
obtained as r3 and r7 by the security cost function, the
smoothness cost function and the consistency cost function
without considering the dynamic sudden threat, but some
optimal paths are collided with dynamic sudden threats.
In order to avoid collisions ,necessary factors such as the
speed and acceleration of the UAV must be considered. If
a dynamic sudden threat flies along a path, it is likely to
collide with the UAV at the point of collision. Therefore, the
factors of the speed and acceleration need to be considered.

The acceleration of the UAVs candidate path can be
expressed as:

a(ri) = 2(Sc − Sg)v
2
0/(Δs(ri) − Sc)

2 (13)

In this formula, Sc represents the sum of the radius of the
dynamic sudden threat and the overall radius of the UAV, Sg

is the distance between the UAV and the dynamic sudden
threat; Δs(ri) is the arc between the starting point and the
collision point in the candidate path; v0 is the speed of the
UAV, which is set to 8m/s in this paper.

Sg =
{

S0, S0 ≥ Δs(ri)

Δs(ri), others
(14)

In this formula, S0 is the distance between the UAV and
the dynamic threat.

The speed of the UAV is constrained in reality, such as the
influence of the curvature of the path, the impact of safety,
and the maximum speed limit that the UAV can reach. The
final speed is expressed as follows:

vlim(ri) = min[vsm(ri), vsa(ri), vsign] (15)

In this formula, vsm(ri) represents the speed of the UAV’s
candidate path that is affected by its curvature, which can be
expressed as:

vsm(ri) =
√

| al |max

max k(ri)
(16)
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Fig. 18 Candidate path Graph in
eight cases

(a) (b)

(c) (d)

(e) (f)

(g) (h)

vsa(ri)indicates the speed of the UAVs candidate path
under the influence of security factors. Its expression is as
follows:

vsa(ri) = vk − ksaf ef
2
saf e(ri)vk (17)

In this formula, | al |max is the lateral acceleration, it
is set to 5000, max k(ri) is the maximum curvature of the
candidate path, ksaf e is the safety gain, in this paper it is
set to 0.9; vk is the reference speed of the path, it is set
to 50.
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Fig. 19 Dynamic security cost
function value graph in eight
cases

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Velocity has certain limits, so acceleration has limitations
as velocity too, the restrictions are as follows:

a(ri) ≤ 0.5(v2lim(ri) − v20)

(Δs(ri) − Sg)
(18)

In order to make the acceleration in the continuous
planning step similar, the Gaussian filtering method is used
to process the acceleration.

In the dynamic security cost function, acceleration is a
very important factor, so the established cost function is
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related to acceleration. The dynamic security cost function
can be expressed as:

fdynamic(ri , a(ri)) =| a(ri) | Δs(ri) − Sg | a(ri) | (19)

The function graph is obtained by using the dynamic
security cost function that is shown in Fig. 19. It can be seen
from the Fig. 19a that the value from r1 ∼ r3 is much higher
than other candidate paths, and it also shows that the three
candidate paths are easy to collide with the dynamic sudden
threat. The function value of r6 is the smallest, so r6 is the
optimal path when only the dynamic security cost function
is considered. However, we can know from Fig. 18a that r6
is not the optimal path for this plan, so other cost functions
should be added together, as the same with the other case.
Thus, the total cost function is introduced.

3.5 Total Cost Function

The four cost functions are obtained now, and a total cost
function is designed. The candidate path corresponding to
the minimum value of the function is the optimal path. The
total cost function of the design can be expressed as:

fz(ri, a(ri)) = β1fsaf e(ri) + β2fsmooth(ri)

+β3fcoherence(ri) + β4fdynamic(ri, a(ri))

(20)

In this formula, β1 + β2 + β3 + β4 = 1, β1, β2, β3

and β4 are the weights of the static security cost function,
the smoothness cost function, the consistency cost function,
and the dynamic security cost function, respectively. If the
total cost function is considered to focus on security, the
following conditions should be met:

β1 > max{β2, β3, β4} (21)

Other situations are equally available.

4 Overall Structure of the Framework
and Global Path PlanningMethod

4.1 Overall Structure of the Framework

The overall process of this paper is shown in Fig. 20.
Step1: First, the environment information is set and the
location of the starting point, target point and obstacles are
got. Step2: The global path planning for the UAV bases
on A* algorithm. Using the A* algorithm to generate a
path from the starting point to the target point, you can
completely avoid the obstacles and then smooth it. Step3:
When a sudden threat is detected, a series of candidate
paths are generated according to the cubic spline curve
equation. Then, the candidate paths are adjusted as required.
Step4: The target total cost function is set to select the
optimal path.

Fig. 20 Overall flow chart
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4.2 Global Path PlanningMethod

In an environment with known obstacles, an optimal path
is generated for avoiding obstacles. This paper uses A*
algorithm to plan the path, the A* algorithm flow chart is
shown in Fig.21.

The A* algorithm adopts the idea of heuristic search and
evaluates each search path in the state space to get the best
path, and then searches from this path to the target [31]. Its
cost function is expressed as follows F = G + H , F is
the evaluation function, G is the shortest path value from
the starting position to the current location of the node,
and H is the shortest path of the currently located node to
the target point [32]. The A* algorithm can obtain discrete
points in the optimal path, and these points can ensure that
they are not in obstacle interior or not contacted with the
obstacle boundary. Then these points are connected into a
polyline to get an optimal path that completely avoids the
obstacle. At last, the path is smoothed so that it has no
vertices.

5 Experimental Results and Analysis

5.1 Comprehensive Analysis

In this paper, two cases are considered. According to the A*
algorithm, two optimal trajectories are obtained, as shown
in Fig. 22a and b, then the two paths are smoothed to obtain
two smooth optimal paths, as shown in Fig. 22c and d.

After the UAV meets the sudden threat, the local path
planning is needed, in this paper, two kinds of 9 candidate
paths and 17 candidate paths are considered respectively.
They are combined to get the four cases of a-d in Fig. 23.

After obtaining the total cost function, the best path
that meets the requirements is obtained by giving the
appropriate weights. The chosen values for the weights
in this paper are 0.65, 0.15, 0.1, and 0.1, respectively.
Different weight combinations will appear in different
focuses. Through the total cost function, 8 kinds of cost
function value (Fig. 24) and final effect (Fig. 25) are
obtained. Figure 25a–h correspond to Fig. 24a–h, and the

Fig. 21 A* algorithm flow chart
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Fig. 22 Path planning diagram
based on A* algorithm

(a) (b)

(c) (d)

Fig. 23 Four-case candidate
path generation graph

(a) (b)

(c) (d)
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candidate paths corresponding to the minimum value of
the total cost function value is selected as the best path,
i.e., the path is marked with red in Fig. 25. Both Fig. 25a
and c are case 1, but the difference is the location of the

dynamic threat, so the optimal path chosen is different.
Other situations are similar.

A comparative analysis of dynamic threats and no
dynamic threats will be conducted in Table 1.

Fig. 24 Total cost function
graph

(a) (b)

(c) (d)

(e) (f)

(g) (h)
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Fig. 25 Final effect graph

(a) (b)

(c) (d)

(e) (f)

(g) (h)
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Table 1 Dynamic sudden
threat comparison table i − th candidate path Case1 Case2 Case3 Case4

No dynamic threats 3rd 7th 7th 11th

Dynamic threat (left) 7th 11th 7th 11th

Dynamic threat (right) 3rd 7th 3rd 7th

(a) (b)

Fig. 26 The method proposed by us is compared with the method

(a) (b)

Fig. 27 The method proposed by us is compared with the method

J Intell Robot Syst (2020) 99:909–931 929



It can be seen from the table that after adding a dynamic
sudden threat, some of the optimal paths change. After the
change, it can satisfy the safe and smooth path to avoid the
dynamic sudden threat and meet the requirements of the
path.

5.2 Running Time

In this paper, the experimental hardware is Intel(R)
Core(TM) i5-3470 CPU@ 3.20GHz, 4.00GB memory. The
path generation is obtained by Matlab 2013 simulation.
It is known from experiments, the time to generate the
candidate paths is about 0.465809s, the selection time
is about 1s, and the sum of the time is about 1.5s. Of
course, different hardware and other conditions will produce
different runtimes.

5.3 Comparison with the Existing Techniques

To demonstrate the effectiveness of the proposed method,
we compare our approach with other two recent obstacle
avoidance methods[28, 29]. In the same situation, the two
methods simultaneously evade sudden threats. In this paper,
two representative conditions of Fig. 25c and e are selected
for comparative simulation with [28]. Figure 25a and g are
adopted to compare with the approach[29]. Through these
two examples, a general conclusion can be obtained.

In Figs. 26 and 27, the blue-green path is the approach
[28]. Similarly, the pink path is the approach[29]. The
red path in the candidate path cluster is our approach. By
comparison, we can see that the generated path by our
method is smoother and can avoid both static and dynamic
threats. Moreover, the simulation effect of the other methods
show that the distance between their obstacle avoidance path
and the sudden threat is closer than our obstacle avoidance
path, so that they hardly meet the security requirements.
Our approach is compared with the other two approaches,
as shown in Figs. 26 and 27.

6 Conclusion

This paper proposes a dynamic path planning method for
the UAV under sudden threats. Firstly, the A* algorithm
is used to plan the optimal path for obstacle avoidance
in the environment of known obstacle information. Then,
when a sudden threat is encountered, the corresponding
parameters are set according to the cubic spline second-
order continuity, and multiple candidate paths are generated.
The symmetry of candidate paths and the coordinates of
common points of many candidate paths are analyzed. Static
security, smoothness, consistency and dynamic security
cost functions are further established to optimize candidate

paths. Eventually, the total cost function is established, and
the optimal path of the total cost function is given. The
path planning from the starting point to the ending point is
realized. In the listed cases, the experimental results show
an obtained path that meets all requirements. Additionally,
this method has the characteristics of short time-consuming
and strong real-time. Since this article only considers the
case where the dynamic threat and the static threat are both
circular, there are no situations involving other threats. In
order to make the UAV adapt to the operational environment
better, how to consider the path planning of multiple sudden
threats coexist that will be an issue that needs further
research in the future.
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