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Abstract
The path planning and following control problems of autonomous underwater vehicle (AUV) in three-dimension (3D) are studied
in this paper. In order to realize obstacle avoidance and path optimization, a path planning method based on particle swarm
optimization (PSO) and cubic spline interpolation is developed. The curvature of the path obtained by this method is continuous,
which can not only avoid obstacles but alsomeet the constraint of AUV’s minimum radius of rotation. In the design of kinematics
controller, an optimal guidance scheme based on model predictive control (MPC) is proposed, which takes into account the wave
disturbances. Adaptive dynamical sliding mode control (ADSMC) technology is used to design dynamic controller, which can
effectively overcome the influence of model uncertainties. In order to ensure the stability of the system, the stability condition of
MPC is designed, and the stability of the closed-loop system is analyzed by applying cascade system theory. The control strategy
proposed in this paper is compared with the line-of-sight (LOS) guidance through simulation experiment. The simulation results
demonstrate that the proposed control strategy can not only improve the quality of path following, but also reduce the disturbance
of waves, and thus is more conducive to energy saving.
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1 Introduction

The autonomous underwater vehicle (AUV) is widely used in
military, ocean exploitation and scientific research. Path plan-
ning and path following are two key techniques for AUV to

perform underwater reconnaissance missions. Obstacles often
exist in the underwater environment where AUV works. In
order to ensure the safety of AUV, it is necessary to plan a
reference path to avoid obstacles. Path planning is mainly
divided into static and dynamic planning. The static refers to
a planning that the optimal global path can be obtained in
advance through offline planning when the information of
obstacles is known. On the contrary, if online planning is
required to obtain the local optimal path in real time, that is
dynamic planning. When operated in the open sea, the path of
an AUV is usually described in terms of waypoints, which are
connected by a series of lines [1, 2]. Its advantages are that the
path planning is simple and the computation burden is small.
However, the path made up of straight lines is not smooth
because the derivative at the waypoint is discontinuous. This
problem can be solved by adding an arc between every two
adjacent straight paths [3]. But the curvature of the path is
still discontinuous, which causes the path following control
to be not smooth when the path is switched. The curvature
continuous path can be obtained by replacing arc with
Bessel curve [4]. However, the path obtained by this method
does not pass through the waypoints. To obtain the path with
continuous curvature and can pass through all waypoints, an
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effective method is to use spline interpolation for path plan-
ning. In [5], when the underwater environment information
is not obtained in advance, according to the real-time obsta-
cle information detected by the onboard sensors, real-time
obstacle avoidance of AUV is achieved by adding waypoint
near the obstacle and using spline interpolation technique to
partially modify the original path. In [6], based on the ob-
stacle information detected by the onboard sensors in real
time, the feasible underwater area is approximately defined
by two polygonal chains. Then, the spline interpolation tech-
nique is applied for local path planning, and the parameters
of the local path are optimized online. Therefore, the smooth
path with the minimum curvature in real time can be obtain-
ed. Since the above two methods are dynamic planning, the
online computing burden will be increased, and the config-
uration requirements of AUV onboard sensors are also rela-
tively high. In order to reduce the online computation bur-
den, static planning can be used to obtain the global optimal
path when the environment information is known. In [7, 8],
spline interpolation is adopted to plan smooth path with
continuous curvature. However, both methods assume that
the waypoints are known and do not consider the optimiza-
tion of the path. In order to find the best path, path optimi-
zation is also a hot topic. At present, common path optimi-
zation methods are A* algorithm [9], potential fields [10]
algorithm, and RRT algorithm [4], etc. In addition, intelli-
gent optimization algorithms are also applied to path plan-
ning of robots, such as ant colony algorithm [11], genetic
algorithm [12] and PSO algorithm [13]. However, each op-
timization method also has some shortcomings, so the im-
provement measures for them have been the research focus.
In order to reduce the cost, AUV is often designed in
underactuated. They often lack actuation in certain degrees
of freedom which imposes nonintegrable acceleration con-
straints. Therefore, they have the constraint of minimum
radius of rotation. If the minimum radius of curvature of
the path is less than the minimum radius of rotation of
AUV, the path cannot be effectively tracked. This problem
is not considered in the above literature.

Path following control for ship and AUV is also an ac-
tive field of research. However, the controller design is not
an easy task because AUV’s motions and model are
coupled, nonlinear, and uncertain. In addition, the environ-
ment in which AUV works often has various disturbances,
such as waves. A complete path following control system
is generally composed of guidance and attitude control.
The guidance system belongs to the kinematics controller,
which is used to generate the desired attitude signal. In [14,
15], the line-of-sight (LOS) guidance law is applied for
path following of ships. In order to improve the perfor-
mance of traditional LOS guidance law, LOS guidance
law with time-varying lookahead distance is presented in
[16, 17]. Alternatively, the vector field (VF) guidance law

is also a popular guidance method [18, 19]. The dynamic
controller has also been extensively studied. The prevail-
ing control methods for marine surface vessels and AUV in
path following include proportional-integral-derivative
(PID) control [20, 21], feedback linearizing control tech-
niques [22–24], backstepping method [25, 26], Lyapunov
direct method [27], gain scheduling control theory [28],
adaptive control [29–32], robust control [33–35], sliding
mode control (SMC) [36–40], fuzzy logic control [41],
and neural network control [42], etc. However, AUV is
very susceptible to waves when working near the surface.
If the wave interference cannot be dealt with properly, the
high frequency component will be added to the control
signal and the forward resistance of the AUV will be in-
creased. If the tracking accuracy of the path is blindly pur-
sued, the energy consumption will be greatly increased.
Due to the limited energy carried by the AUV, energy sav-
ing must be considered in order to increase the endurance.
This problem is rarely considered in the above literature. In
[43], MPC is proposed to solve the depth control problem
of AUV when near the surface with wave disturbances.
However, this method only solves the two-dimensional
tracking control in the vertical plane. In practical work,
for many underwater tracking tasks, the location of AUV
only needs to be kept within a certain target region to meet
the requirements. In [44], an adaptive region tracking con-
trol method is proposed to make the AUV converge to the
target region.

Motivated by the above literatures, path planning and
path following control for underactuated AUV are studied
simultaneously in this paper. Assuming that the underwater
environment model is known, cubic spline interpolation
technique and an improved PSO algorithm are used for
global path planning. The smooth path with continuous
curvature can be obtained. The path can avoid the obstacles
and meets the constraint of minimum radius of rotation. In
order to improve the path following performance in the
presence of wave disturbances and model uncertainties,
the kinematics and dynamics controllers are designed
based on the cascade control strategy. In kinematic control-
ler, an optimal guidance scheme is developed based on
MPC, which can effectively improve the quality of path
following and reduce the wave disturbances. Dynamic con-
troller, which is based on adaptive dynamical sliding mode
control (ADSMC) theory, is developed to overcome the
model uncertainties.

The remainder of this article is organized as follows:
The path planning problem is studied in section 2. The
problem of 3D path following control of underactuated
AUV is formulated in section 3. The kinematics and dy-
namics controller are derived in section 4. Simulation ex-
periments are presented in section 5. Conclusions are pre-
sented in section 6.

892 J Intell Robot Syst (2020) 99:891–908



2 Path Planning

2.1 Cubic Spline Interpolation

Given a finite number of waypoints, a path with continuous
curvature can be obtained by cubic spline interpolation. If
given Ns + 1 waypoints(ξk, ηk, ζk), (k = 0, 1,⋯Ns) in the fixed
coordinate system, then Ns-segment splines can be generated
which can be expressed as the following cubic polynomial by
the parameter ω∈[0, 1],

ξk ωð Þ
ηk ωð Þ
ζk ωð Þ

264
375 ¼

aξk bξk cξk dξk
aηk bηk cηk dηk
aζk bζk cζk dζk

24 35 1 ω ω2 ω3
� �T

;

k ¼ 0; 1;⋯;Ns−1ð Þ:

ð1Þ

Since the calculation method of the spline in three coordi-
nate directions is the same, taking the ξ-axis direction as an
example, the k-segment spline curve can be expressed as

ξk ωð Þ ¼ aξk þ bξkωþ cξkω
2 þ dξkω

3. The remaining task is to

compute the parameters aξk ; b
ξ
k ; c

ξ
k ; d

ξ
k ; k ¼ 0; 1;⋯;Ns−1ð Þ.

According to the boundary conditions of each segment spline,
the following equation can be obtained

ξk 0ð Þ ¼ aξk ;

ξk 1ð Þ ¼ aξk þ bξk þ cξk þ dξk ;

ξ
0
k 0ð Þ ¼ Dk ¼ bξk ;

ξ
0
k 1ð Þ ¼ Dkþ1 ¼ bξk þ 2cξk þ 3dξk ;

8>>>><>>>>: ð2Þ

where ξ
0
k ωð Þ ¼ dξk ωð Þ=dω.

Sinceξk 0ð Þ ¼ ξk ,ξk 1ð Þ ¼ ξkþ1, we can get

ξkþ1 ¼ ξk þ Dk þ cξk þ dξk ;
Dkþ1 ¼ Dk þ 2cξk þ 3dξk :

(
ð3Þ

Then, the eq. (2) can be rewritten as

aξk ¼ ξk ;
bξk ¼ Dk ;

cξk ¼ 3 ξkþ1−ξk
� �

−2Dk−Dkþ1;

dξk ¼ −2 ξkþ1−ξk
� �þ Dk þ Dkþ1:

8>>><>>>: ð4Þ

Next, we need to calculate the parameterDk, (k = 0, 1,⋯Ns)
in the eq. (4). Since the second derivative of the spline is
continuous, we can get that

ξk−1" 1ð Þ ¼ 2cξk−1 þ 6dξk−1 ¼ ξ
″

k 0ð Þ ¼ 2cξk ;
k ¼ 1;⋯;Ns−1ð Þ:

ð5Þ

Put the last two equations in (4) into eq. (5), and then we
can get

Dk−1 þ 4Dk þ Dkþ1 ¼ 3 ξkþ1−ξk−1
� �

;
k ¼ 1;⋯;Ns−1ð Þ: ð6Þ

In addition, according to the natural boundary conditions

ξ
″
0 0ð Þ ¼ 0; ξ

″
Ns−1 1ð Þ ¼ 0, we can get that

2D0 þ D1 ¼ 3 ξ1−ξ0ð Þ;
DNs−1 þ 2DNs ¼ 3 ξNs

−ξNs−1
� �

:

�
ð7Þ

Finally, eqs. (6) and (7) can be rewritten as matrix form in
the following

2 1 0 0 0 0
1 4 1 0 0 0
0 1 4 1 0 0
0 0 ⋱ ⋱ ⋱ 0
0 0 0 1 4 1
0 0 0 0 1 2

26666664

37777775
D0

D1

D2

⋮
DNs−1
DNs

26666664

37777775 ¼

3 ξ1−ξ0ð Þ
3 ξ2−ξ0ð Þ
3 ξ3−ξ1ð Þ

⋮
3 ξNs

−ξNs−2
� �

3 ξNs
−ξNs−1

� �

26666664

37777775 ð8Þ

2.2 PSO Algorithm

2.2.1 Traditional PSO Algorithm

PSO algorithm is widely used because it has the advantages of
fewer parameters, fast convergence, no decoding required, and
so on. It is based on group and moves individuals in the group to
good areas according to their fitness to the environment. It
regards each individual as a particle flying at a certain speed in
the DPSO-dimensional search space. Let’s define the number of
particles as NPSO, the current speed and position of the particles

are vi ¼ vi;1; vi;2;⋯; vi;DPSO

� �T and xi ¼ xi;1; xi;2;⋯; xi;DPSO

� �T
,

(i = 1, ⋯, NPSO), the optimal position obtained by individual

ispi ¼ pi;1; pi;2;⋯; pi;DPSO

� �T
, the best position obtained by

the group is pg ¼ pg;1; pg;2;⋯; pg;DPSO

� �T
. In every generation

of evolution, the speed and position of the particles are updated
as following

vi; j t þ 1ð Þ ¼ wivi; j tð Þ þ b1r1 pi; j−xi; j tð Þ
h i

þ b2r2 pg; j−xi; j tð Þ
h i

;

xi; j t þ 1ð Þ ¼ xi; j tð Þ þ vi; j t þ 1ð Þ;
i ¼ 1;⋯;NPSOð Þ; j ¼ 1;⋯;DPSOð Þ;

8>>>><>>>>: ð9Þ

where wi > 0 is inertia weight, b1 > 0 is the learning parameter
based on individual experience, b2 > 0 is the learning parameter
based on group experience, r1∈[0, 1] and r2∈[0, 1]are random
values.
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2.2.2 Improved PSO Algorithm (IPSO)

Although the traditional PSO algorithm converges quickly, it
is easy to fall into local optimum, i.e. premature problem. In
view of the shortcomings of the algorithm, researchers have
made various improvements. Inertia weightw determines how
much the particle inherits its current velocity. A larger inertia
weight is conducive to improving the global search ability,
while a smaller inertia weight is conducive to improving the
local search ability. In order to improve the optimization abil-
ity of the algorithm, the inertial weight can be adjusted accord-
ing to the fitness of particles. However, it is often not enough
to improve the premature problem only by adaptive inertia
weight method. Therefore, some researchers proposed the
ideas of introducing particle swarm concentration parameters,
and adjusting selection probability or topological structure,
while others combine particle swarm optimization with genet-
ic algorithm or other optimization methods. In this article, in
order to balance the global search ability and local search
ability of the algorithm, the PSO algorithm is improved as
follows:

Half of the particles in front are defined as global search
particle, and the other half is defined as local search particle.
The global search particle uses the larger inertia weight wmax,
while the local search particle uses the smaller inertia weight
wmin.

In the evolution of each generation, half of the global
search particle with better fitness will be directly selected as
the local search particle, while the remaining half of the local
search particle will select the global search particle according
to the probability. The probability of each global search parti-
cle being selected is calculated as follows

Ps
i ¼

1
NPSO

2
−1

1−
fit xið Þ

∑
NPSO=2

i¼1
fit xið Þ

0BBB@
1CCCA; i ¼ 1;⋯;

NPSO

2

	 

: ð10Þ

In order to increase the diversity of the group and improve
the local search ability, in the evolution of each generation, the

crossover operation is carried out for every two adjacent local
search particles as following

xi ¼ r3xi þ 1−r3ð Þxiþ1;
xiþ1 ¼ r3xiþ1 þ 1−r3ð Þxi; i ¼ NPSO

2
þ 1;

NPSO

2
þ 3;⋯;NPSO−1

	 

;

�
ð11Þ

where r3∈[0, 1] are random values. Because local search par-
ticles are all superior individuals in the current population,
better individuals may be produced after crossover operation.

In the process of evolution, if the individual optimal value

of a global search particle is not improved for successive GL

generations, the particle will be reinitialized.

2.3 Path Optimization Based on IPSO Algorithm
and Cubic Spline Interpolation (IPSO-SP)

2.3.1 The Encoding of Particle Position and Speed

Particle positions are encoded using the coordinates of the
waypoints. Since the two endpoints of the path (ξk, ηk, ζk), (k
= 0, Ns)are known, we only need to determine the remaining
Ns − 1 waypoints (ξk, ηk, ζk),(k = 1, ⋯Ns − 1). Firstly, the
algorithm needs to initialize the waypoints. The initial coordi-
nates of the waypoints are randomly obtained around the Ns −
1 average points between the two endpoints as following

ξi;k ¼ ξ0 þ
ξNs

−ξ0
Ns

k þ r4ð Þ;
ηi;k ¼ η0 þ

ηNs
−η0
Ns

k þ r4ð Þ;

ζi;k ¼ ζ0 þ
ζNs

−ζ0
Ns

k þ r4ð Þ;
i ¼ 1;⋯;NPSOð Þ; k ¼ 1;⋯Ns−1ð Þ;

8>>>>>>><>>>>>>>:
ð12Þ

where r4 is random values varying in the range of [-0.5, 0.5].
The position information of particles can be represented by the
following matrix

XPSO ¼ x1 x2 ⋯ xNPSO½ �T

¼
ξ1;1 ⋯ ξ1;Ns−1 η1;1 ⋯ η1;Ns−1 ζ1;1 ⋯ ζ1;Ns−1
ξ2;1 ⋯ ξ2;Ns−1 η2;1 ⋯ η2;Ns−1 ζ2;1 ⋯ ζ2;Ns−1
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

ξNPSO;1 ⋯ ξNPSO;Ns−1 ηNPSO;1 ⋯ ηNPSO;Ns−1 ζNPSO;1 ⋯ ζNPSO;Ns−1

2664
3775: ð13Þ

The number of rows in the matrix (13) isNPSO. The number
of columns in the matrix (13) is DPSO = 3 × (Ns − 1), which
represents the dimension of the particle. If the ζ-coordinate is
ignored in the matrix (13), then the three-dimensional path

planning is simplified to the two-dimensional path planning
in horizontal plane. If the η-coordinate is ignored in the matrix
(13), then the three-dimensional path planning is simplified to
the two-dimensional path planning in vertical plane. The
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encoding of particle speed has the same form as that of posi-
tion. The initial speed of particles is generated randomly with-
in [-Vmax, Vmax], where Vmax is the maximum speed of
particle.

2.3.2 The Selection of Fitness Functions

In order to improve the path optimization ability when there
are obstacle avoidance requirements and curvature con-
straints, the fitness function is selected as following

FPSO ¼ L 1þ N1 þ N 2ð Þ ð14Þ
where

L ¼ ∑
Ns=Δω−1

i¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξsiþ1−ξ

s
i

� �2 þ ηsiþ1−ηsi
� �2 þ ζsiþ1−ζ

s
i

� �2q
;

N 1 ¼ ∑
Ns=Δω

i¼0
noi ;N2 ¼ ∑

Ns=Δω

i¼0
nci ;

noi ¼
1 ;when ζsi > ζei
0 ;when ζsi ≤ζ

e
i
; nci ¼

1 ;when csi > cmax

0 ;when csi ≤cmax
:

��
The ξsi ; η

s
i ; ζ

s
i

� �
represents the coordinates of the sampling

point numbered i in fixed coordinates. The sampling interval
of the sampling points on the path is Δω. The ζei represents the
depth of water at the sampling point numbered i. The csi rep-
resents the curvature of the path at the sampling point num-
bered i. The cmax represents the maximum allowable curvature
of the path. The L in the fitness function represents the length
of the path.N1 is the number of sampling points which fall into
obstacles. N2 is the number of sampling points on the path
whose curvature does not meet the constraint conditions.

In the process of algorithm evolution, some illegal solu-
tions are often generated. The traditional method is to discard
the illegal solution, but this will reduce the efficiency of the
algorithm. In fact, some illegal paths may evolve to eligible
paths. The fitness function (14) preserves the path with better
adaptive value and lower illegal degree, thus improving the
efficiency of the algorithm.

2.3.3 The Steps of the IPSO-SP Algorithm

The path planning process based on IPSO-SP is listed as
follows:

Step1: Set the number of waypoints Ns + 1, the number of
particles NPSO, learning parameters b1 and b2, inertia weight
wmin and wmax, the maximum speed Vmax, the maximum num-

ber of iterations Gg, premature judgment parameters GL.
Step2: Set the number of iterationsGg = 0, GL, i = 0, (i = 1,

⋯, NPSO/2). The position and velocity of particles are initial-
ized according to the eqs. (12) and (13).

Step3: The parameters of the splines determined by each
particle are calculated according to the eqs. (4) and (8). The

fitness of each particle is calculated according to eq. (14). The
position information and the fitness of each particle are stored
as the individual optimum pi, (i = 1,⋯, NPSO). The individual
with optimal fitness values is stored as the global optimum pg.

Step4: Half of the global search particles with better fitness
are selected as the local search particles, while the remaining
half of the local search particles select the global search parti-
cle according to the probability based on eq. (10). The local
search particles are updated based on eq. (9) with w = wmin.

Step5: The parameters of the splines determined by each
local search particle are calculated according to the eqs. (4)
and (8). The fitness of each local search particle is recalculated
according to eq. (14). If the latest individual fitness is better
than its individual optimal value, then the individual optimal
information pi, (i = NPSO/2 + 1, ⋯, NPSO) is updated. If the
fitness of local search particle is better than the global opti-
mum, then the global optimum information pg is updated.

Step6: The crossover operation is carried out for every two
adjacent local search particles according to eq. (11). The pa-
rameters of the splines determined by each local search parti-
cle are recalculated according to the eqs. (4) and (8). The
fitness of each local search particle is recalculated according
to eq. (14). If the latest individual fitness is better than its
individual optimal value, then the individual optimal informa-
tion pi, (i = NPSO/2 + 1, ⋯, NPSO) is updated. If the latest
individual fitness is better than the global optimum, then the
global optimum information pg is updated.

Step7: If the individual optimum of a global search particle
is not improved, thenGL, i =GL, i + 1. Otherwise, setGL, i = 0.

If GL;i ¼ GL, (i = 1,⋯, NPSO/2), then the global search parti-
cle is reinitialized, and set GL, i = 0.

Step8: The global search particles are updated based on eq.
(9) with w = wmax. The parameters of the splines determined
by each global search particle are recalculated according to the
eqs. (4) and (8). The fitness of each global search particle is
recalculated according to eq. (14). If the latest individual fit-
ness is better than its individual optimal value, then the indi-
vidual optimal information pi, (i = 1,⋯,NPSO/2) is updated. If
the latest individual fitness is better than the global optimum,
then the global optimum information pg is updated.

Step9: Gg = Gg + 1. If Gg ¼ Gg is satisfied, then the iter-
ation is ended and the optimal solution is output. Otherwise,
return to step4.

3 Analysis of Path Following Problem

The underactuated AUV studied in this paper is equippedwith
a propeller to control the surge speed, a pair of horizontal
rudder to control the pitch, and a pair of vertical rudder to
control the yaw, respectively. The AUV is not equipped with
driving force in the lateral and vertical directions.

J Intell Robot Syst (2020) 99:891–908 895



3.1 Kinematics and Dynamics Modeling

As shown in Fig. 1, the equations of motion for AUV in 3D
can be built base on fixed coordinate system {I} : E − ξηζ and
moving coordinate system{B} : O − xyz. The center of buoy-
ancy (CB) of AUV is set to the origin of {B} coordinate sys-
tem. Since the roll is very small and needn’t to be controlled,
the kinematics and dynamics model of AUV can be simplified
as the following,

η˙ ¼ J ηð Þvr þ vw ð15Þ
Mv˙ r þ C vrð Þvr þ D vrð Þvr þ g ηð Þ ¼ τ þ d ð16Þ
where η ¼ ξ η ζ θ ψ½ �T , the (ξ, η, ζ) are the coordi-
nates of CB defined in {I} frame, the (θ, ψ) are the attitude
angles of AUV defined in {I} frame, θ represents the pitch
angle, ψ represents the yaw angle. The J(η) represents the
rotation transformation from {B} frame to {I} frame,

J ηð Þ ¼ J 1 ηð Þ 03�2

02�3 J 2 ηð Þ
� 

; J 2 ηð Þ ¼
1 0

0
1

cosθ

" #
;

J 1 ηð Þ ¼
cosψcosθ −sinψ cosψsinθ
sinψcosθ cosψ sinψsinθ
−sinθ 0 cosθ

24 35: ð17Þ

The vr ¼ ur vr wr q r½ �T represents the relative ve-
locity between fluid and AUV which defined in the {B}
frame, where (ur, vr, wr) are the surge, sway, heave
relative velocities, and (q, r) are the pitch, yaw rates. The

vw ¼ uw vw ww 0 0½ �T represents the velocity of
wave which satisfies bounded conditionjvwj≤vw. The sys-
tem matrices M = MT, C(v) = −C(v)T, D(v) > 0. The restor-

ing moment is defined as g ηð Þ ¼ 0 0 0 MHS 0½ �T ,
the pitch restoring moment MHS = − zgG sin θ, where zg

is distance between the center of mass and the CB, G is the

gravity of AUV. The τ ¼ X τ 0 0 δs δr½ �T represents
the control signal, Xτ is the thrust of propeller, δr is the
vertical rudder angle, and δs is the horizontal rudder angle.
Vector d describes the model uncertainties. In order to
make it convenient for the dynamic controller design, dy-
namic eq. (16) can be simplified as following,

u˙ r ¼ Fuur þ FXX τ þ du;
v˙ r ¼ Fvvr þ dv;
w˙ r ¼ Fwwr þ dw;
q˙ ¼ Fqqþ FMMHS þ FMkδδs þ dq;
r˙ ¼ Frr þ FNkδδr þ dr;

8>>>><>>>>: ð18Þ

where

Fu ¼
X u þ X ujujjurj

m−X u̇
; FX ¼ 1

m−X u̇
; Fv ¼

Yv þ Yvjvjjvrj
m−Y v̇

;

Fw ¼ Zw þ Zwjwjjwrj
m−Zẇ

; Fq ¼
Mq þMqjqjjqj

Iy−Mq̇
; FM ¼ 1

I y−Mq̇
;

Fr ¼
Nr þ N jrjrjrj

I z−Nṙ
; FN ¼ 1

I z−Nṙ
:

.

The symbol m represents the mass of the AUV. The Iy, Iz
denote the moment of inertia. TheX{•}, Y{•}, Z{•}, M{•},
N{•}represent the hydrodynamic parameters. kδ is the lift coef-
ficient of the rudder. The di, (i = u, v, w, q, r) are model
uncertainties.

3.2 Error Model of Path Following

As shown in Fig. 1, the virtual target and the tracking errors
are defined in the Serret-Frenet frame {SF} : P − xFyFzF. The
control objectives can be expressed as following

f limt→∞
ur tð Þ ¼ urd; lim

t→∞
xe tð Þ ¼ 0; lim

t→∞
ye tð Þ ¼ 0;

lim
t→∞

ze tð Þ ¼ 0; lim
t→∞

θe tð Þ ¼ 0; lim
t→∞

ψe tð Þ ¼ 0;

ð19Þ

where urd is the desired constant relative surge velocity, (xe, ye,
ze, θe, ψe) are tracking errors defined in the {SF} frame. The P,
which is the origin of {SF} frame, is the virtual target. The uF
denotes the surge velocity of P along the path. The position
and attitude of P in {I} frame are defined as
PP ¼ ξP ηP ζP θF ψF½ �, and the position and attitude
of O in {I} frame are defined as Po ¼ ξo ηo ζo θ ψ½ �.
Then, we can calculate the tracking errors as following

Pe ¼ xe ye ze θe ψe½ �T ¼ RF
I PO−PPð Þ ð20Þ

where RF
I represents the rotation transformation from {I}

frame to {SF} frame

RF
I ¼ R1 03�2

02�3 R2

� 
;R2 ¼ 1 0

0 cosθF

� 
;

R1 ¼
cosψFcosθF sinψFcosθF −sinθF

−sinψF cosψF 0
cosψFsinθF sinψFsinθF cosθF

24 35: ð21Þ

Fig. 1 Path following schematic diagram of AUV
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The rotation matrix R1 and R2 satisfy the properties

R˙ 1 ¼ S1R1;R˙ 2 ¼ S2R2;χTS1χ ¼ 0;χ∈ℜ3,

S1 ¼
0 r F −qF

−r F 0 −r F tanθF

qF rF tanθF 0

24 35;
S2 ¼ 0 0

0 −qF tanθF

� 
:

Defining PO1 ¼ ξO ηO ζO½ �T , PP1 ¼ ξP ηP ζP½ �T ,
Pe1 ¼ xe ye ze½ �T ; then we can get Pe1 = R1(PO1 − PP1),
pre-multiply the derivative of Pe1 by PT

e1, then

PT
e1P

˙
e1 ¼ PT

e1 R˙ 1 PO1−PP1ð Þ þ R1 P˙ O1−P˙ P1
� �� �

¼ PT
e1S1Pe1 þ PT

e1R1 P˙ O1−P˙ P1
� �

¼ PT
e1R1 P˙ O1−P˙ P1

� �
:

ð22Þ

Eliminate PT
e1 on both sides of the eq. (22) we can get the

results

P˙ e1 ¼ R1 P˙ O1−P˙ P1
� � ð23Þ

Using the relations

R1P˙ P1 ¼ uF 0 0½ �T ;

R1P˙ O1 ¼ R1 J 1 ηð Þ
ur
vr
wr

24 35þ
uw
vw
ww

24 358<:
9=;

¼
cosψecosθe −sinψe cosψesinθe
sinψecosθe cosψe sinψesinθe
−sinθe 0 cosθe

24 35 ur
vr
wr

24 35þ
uwf
vwf
wwf

24 35
¼

urcosψecosθe þ dx
ursinψecosθe þ dy
−ursinθe þ dz

24 35;
dx
dy
dz

24 35 ¼
−vrsinψe þ wrcosψesinθe þ uwf
vrcosψe þ wrsinψesinθe þ vwf

wrcosθe þ wwf

24 35; uwf
vwf
wwf

24 35 ¼ R1

uw
vw
ww

24 35:

The (uwf, vwf, wwf) are velocities of wave in {SF} frame.
Due to the lack of driving force, the vr and wr are very small.
So the velocities of wave are the dominant part of di, (i = x, y,
z). It can be assumed that jdij≤vw. Then, eq. (23) can be
rewritten as

P˙ e1 ¼
x˙ e
y˙ e
z˙ e

24 35 ¼
urcosψecosθe−uF þ dx
ursinψecosθe þ dy
−ursinθe þ dz

24 35 ð24Þ

Defining

PO2 ¼ θ ψ½ �T ;PP2 ¼ θF ψF½ �T ;Pe2 ¼ θe ψe½ �T ,
sincePe2 = R2(PO2 − PP2), the derivative of Pe2 can be com-
puted as

P˙ e2 ¼ R˙ 2 PO2−PP2ð Þ þ R2 P˙ O2−P˙ P2
� �

¼ S2Pe2 þ R2 P˙ O2−P˙ P2
� �

¼
q−qF

−qFψetanθF þ cosθF

cosθ
r−r F

" #
; ð25Þ

where qF and rF are the pitch and yaw rates of {SF} frame.

4 Controller Design

4.1 The Design of Virtual Target

The uF, which is the speed of the virtual target, will be de-
signed to stabilize the along-track error xe. Firstly, the uncer-
tainty dx is estimated by the nonlinear observer as follows

dx̂ ¼ dxp þ kxpxe;
d˙ xp ¼ −kxpdxp−kxp urcosψecosθe−uF þ kxpxe

� �
;

�
ð26Þ

where kxp > 0, d ̂x is the estimate value of dx. Define the esti-

mation error as edx ¼ dx−dx̂, then we can get

ed:x ¼ d˙ x−d ̂
:

x ¼ d˙ x− d˙ xp þ kxpx˙ e
� �

¼ d˙ x− −kxpdxp−k2xpxe þ kxpdx
� �

¼ d˙ x−kxpedx
≤−kxpedx þ d˙ x;

ð27Þ

where d
:

x is the upper bound of theḋx, which satisfies the con-

ditionsjḋxj≤d
:

x. The Lyapunov function is selected as

V1 ¼ 1

2
x2e þ

1

2
ed2x : ð28Þ

Designing the control law as follows

uF ¼ urcosψecosθe þ k1xe þ dx̂ þ ε1sgn xeð Þ;
ε1 ¼ k2 1−e−k3jxej

� �
;

(
ð29Þ

where k1 > 0, k2 > 0, k3 > 0, the sgn is sign function. In order to
reduce the chattering, the switch gains ε1 is adjusted between
0 to k2 based on the tracking error. Then, the derivative of V1

becomes

V˙ 1 ¼ xex˙ e þ edxed˙ x
¼ xe urcosψecosθe−uF þ d ̂x

� �
−kxped2x þ xeedx þ edxd˙ x

≤xe urcosψecosθe−uF þ d ̂x
� �

− kxp−1
� �ed2x þ 1

2
x2e þ

1

2
d˙
2

x

≤− k1−
1

2

	 

x2e− kxp−1

� �ed2x−ε1jxej þ 1

2
d˙
2

x

≤−2kV1V1 þΔV1 ;
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wherekV1 ¼ min k1− 1
2

� �
; kxp−1
� �� �

;ΔV1 ¼ 1
2 d
˙ 2
x .

The V1 is uniformly bounded as long as the requirements k1
> 0.5, kxp > 1are fulfilled. In fact, the conditions are very
conservative. Since the spline is parameterized by ω, the up-
date law of ω can be calculated by the following equation

ω˙ ¼ uFffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ0k ωð Þ2 þ ηk

0 ωð Þ2 þ ζk
0 ωð Þ2

q ð30Þ

4.2 The MPC Guidance Law

Traditional LOS guidance, which imitates the actions of a
helmsman, has several nice properties. However, it is sensitive
to the disturbance of waves. MPC is known as an
optimization-based control method. In addition, there have
been many studies on the stability analysis of MPC, such as
literature [45, 46]. Next, MPC will be applied to design the
guidance law, which can make up for the deficiency of tradi-
tional LOS guidance. Considering that the response of the
dynamic controller to input has a certain delay. The response
of the dynamic controller to the desired attitude is approximat-
ed by the following equations

θ˙ e ¼ 1

T 1
θed−θeð Þ;ψ˙ e ¼

1

T 2
ψed−ψeð Þ ð31Þ

where T1 > 0 and T2 > 0 are adjustable time constant, θed and
ψed are the desired approach angles in vertical and horizontal
planes.

4.2.1 The Predictive Model

According to the Eqs. (24) (31), the control objective can be
equivalent to the stabilization control problem for the follow-
ing error variables

y˙ e
z˙ e
θ˙ e
ψ˙ e

2664
3775 ¼

ursinψecosθe þ dy
−ursinθe þ dz
1

T 1
θed−θeð Þ

1

T2
ψed−ψeð Þ

2666664

3777775 ¼

urkyψe þ dy
−urkzθe þ dz
1

T 1
θed−θeð Þ

1

T 2
ψed−ψeð Þ

2666664

3777775 ð32Þ

where ky ¼ sinψe
ψe

cosθe; kz ¼ sinθe
θe

. In this paper, ky is set to ky =

cos θe when jψej≤ π
12, kz is set to kz = 1 when jθej≤ π

12.
The system (32) can be can be written as

x˙ ¼ f x; uð Þ ð33Þ

where x ¼ ye ze θe ψe½ �T is state variables, u ¼
θed ψed½ �T is input variables. Obviously, the equilibrium
points of system (33) are x = 0 and u = 0. Then, we can
discretize the system as follows

xkþ1;k ¼ Akxk;k þ Bkuk;k ;
yk;k ¼ Ckxk;k ;

�
ð34Þ

Ak ¼

1 0 0 Turdky
0 1 −Turdkz 0

0 0 1−
T
T1

0

0 0 0 1−
T
T2

2666664

3777775;Bk ¼

0 0
0 0
T
T1

0

0
T
T2

2666664

3777775;Ck ¼ I4;

where T represents the sampling time.
Using the predictive model (34), the predictive value of the

state variables are

xkþ1;k ¼ Akxk;k þ Bkuk;k ;
xkþ2;k ¼ Akxkþ1;k þ Bkukþ1;k

¼ A2
kxk;k þ AkBkuk;k þ Bkukþ1;k ;

xkþ3;k ¼ Akxkþ2;k þ Bkukþ2;k

¼ A3
kxk;k þ A2

kBkuk;k þ AkBkukþ1;k þ Bkukþ2;k ;
⋮

xkþNp;k ¼ ANp

k xk;k þ ANp−1
k Bkuk;k þ⋯þ ANp−Nc

k BkukþNc−1;k ;

where Nc, Np represent the control horizon and the prediction
horizon. Then, the predictive value of the output variables can
be calculated as.

ykþ1;k ¼ CkAkxk;k þ CkBkuk;k ;
ykþ2;k ¼ CkA2

kxk;k þ CkAkBkuk;k þ CkBkukþ1;k ;

ykþ3;k ¼ CkA3
kxk;k þ CkA2

kBkuk;k þ CkAkBkukþ1;k þ CkBkukþ2;k ;
⋮

ykþNp;k ¼ CkA
Np

k xk;k þ CkA
Np−1
k Bkuk;k þ⋯þ CkA

Np−Nc

k BkukþNc−1;k ;

Finally, it is rewritten into the matrix form as

Ykþ1;k ¼ Ψxk;k þΘUk;k ð35Þ
where

Ykþ1;k ¼

ykþ1;k
ykþ2;k
ykþ3;k
⋮

ykþNp;k

266664
377775;Uk;k ¼

uk;k
ukþ1;k

ukþ2;k

⋮
ukþNc−1;k

266664
377775;Ψ

¼

CkAk

CkA2
k

CkA3
k

⋮
CkA

Np

k

266664
377775;

Θ ¼

CkBk 0 0 ⋯ 0
CkAkBk CkBk 0 ⋯ 0
CkA2

kBk CkAkBk CkBk ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮

CkA
Np−1
k Bk CkA

Np−2
k Bk CkA

Np−3
k Bk ⋯ CkA

Np−Nc

k Bk

266664
377775
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4.2.2 The Control Constraint

Here, the control constraints are considered as

umin≤ukþt;k ≤umax; t ¼ 0; 1;⋯Nc−1; ð36Þ

umin ¼ −
π

4
−
π

2

h iT
; umax ¼

π

4

π

2

h iT
:

The constraints conditions (36) can be translated into linear
inequalities as following

M 1

−M 1

� 
Uk;k ≤

Nmax

Nmin

� 
;

M 1 ¼ INc⊗I2;Nmax ¼ 1Nc⊗umax;
Nmin ¼ −1Nc⊗umin; 1

T
Nc

¼ 1 1 1 ⋯ 1½ �1�Nc
:

ð37Þ

The symbol ⊗ represents the kronecker product.
The next step is to design stability condition to ensure the

stability of the MPC. Consider the Lyapunov function

V2 ¼ 1

2
y2e þ z2e
� � ð38Þ

First, let’s assume that ur = urd, θe = θed,ψe =ψed and ignore
the uncertain terms, then according to the error eq. (24), the
derivative of V2 is equal to

V˙ 2 ¼ yey
˙
e þ zez˙ e

¼ yeurdsinψedcosθed−zeurdsinθed
¼ kψjyejurd

sinψed

ψed
cosθed þ kθjzejurd sinθedθed

;
ð39Þ

where kψ = sgn(ye)ψed, kθ = − sgn(ze)θed. Obviously, as long
as conditions kψ ≤ 0 and kθ ≤ 0 are satisfied, then V˙ 2≤0. The
stability condition can be translated into linear inequalities as
following

kθ ¼ M 2Uk;k ≤0;
kψ ¼ M 3Uk;k ≤0;

M 2 ¼ −sgn zeð ÞCθ;Cθ ¼ 1 01� Nc−1ð Þ
� �

⊗ 1 0½ �;M3 ¼ sgn yeð ÞCψ;Cψ ¼ 1 01� Nc−1ð Þ
� �

⊗ 0 1½ �:
�

ð40Þ

The stability condition parameterize by parameter vectorUk,k,
making it convenient to solve the optimization problem.

4.2.3 Optimization with Control Constraint

The cost function at time k can be selected as

J k;k ¼ YT
kþ1;kQYkþ1;k þ UT

k;kRUk;k ð41Þ

where Q ¼ INp⊗Q,R ¼ INc⊗R,Q = diag (Q11, Q22, Q33,

Q44) and R = diag (R11, R22)are positive definite weighting
matrices. In order to reduce the ocean wave disturbances, the
weight coefficient will be adjusted as following

Q11 ¼ Qmax ; jyej≥ΔL

Qmin ; jyej < ΔL
;Q22 ¼ Qmax ; jzej≥ΔL

Qmin ; jzej < ΔL

��
ð42Þ

where Qmin ≥ 0,Qmax > 0 are the weight coefficient,ΔL ≥ 0 is
the boundary layer distance.

To find the optimalUk,k that will minimize Jk,k, by inserting
e q . ( 3 5 ) i n t o e q . ( 4 1 ) , J k , k i s e x p r e s s e d a s

J k;k ¼ Ψxk;k
� �TQΨxk;k þ UT

k;kEUk;k þ 2UT
k;k F, w h e r e

E ¼ ΘTQΘþ R; F ¼ ΘTQΨxk;k .

Since Ψxk;k
� �TQΨxk;k is constant, the optimization process

of MPC is equivalent to solving the quadratic programming
problems

min
Uk;k

J k;k ¼ UT
k;kEUk;k þ 2UT

k;k F; s:t:

M 1

−M 1

M 2

M 3

2664
3775Uk;k ≤

Nmax

Nmin

0
0

2664
3775

ð43Þ

By solving eq. (43), we can get the control vector Uk, k.
Then, the first element of the control sequence uk, k is imple-
mented as the actual control input. When the next sample
period arrives, the more recent measurement is taken to form
the state vector for calculation of the new sequence of control
signal. This procedure is repeated in real time to give the
receding horizon control law.

4.3 The Dynamic Controller

4.3.1 The Control of Relative Surge Velocity

Define error variables eur ¼ ur−urd, then choosing sliding
mode function as follows

s1 ¼ c1eur þ eu˙ r ¼ c1eur þ Fuur þ FXX τ þ du ð44Þ
where c1 > 0. Since urd is constant, the system can be consid-
ered as autonomous. So we can assume that di, (i = u, v, w, q,

r)are slowly varying. Define edu ¼ du−d̂u, whered̂u is the es-
timate values of du. Consider the Lyapunov function
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V2 ¼ 1

2
eu2r þ 1

2k4
ed2u þ 1

2
s21 ð45Þ

Designing the control law and adaptive law as

X˙ τ ¼ 1

FX

h
−c1 Fuur þ FXX τ þ dû

� �
−Fuu˙ r−eur

−k5s1−ε2sgn s1ð Þ
i
;

d ̂˙ u ¼ k4c1s1; ε2 ¼ k2 1−e−k3js1j
� �

;

8>>>><>>>>: ð46Þ

where k4 > 0, k5 > 0.
Differentiating V2 with respect to time, then.

V˙ 2 ¼ eureu˙ r− 1

k4
edud̂˙ u þ s1s˙ 1

¼ eurs1−c1eu2r− 1

k4
edud̂˙ u þ s1 c1 Fuur þ FXX τ þ duð Þ þ Fuu˙ r þ FXX˙ τ

� �
¼ eurs1−c1eu2r þ edu −

1

k4
d ̂˙ u þ c1s1

	 

þs1 c1 Fuur þ FXX τ þ dûÞ þ Fuu˙ r þ FXX˙ τ

� i
¼ −c1eu2r−k5s21−ε2js1j≤0:h

The speed of the propeller can be calculated according to
the hydrodynamic model as following

np ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X τ

KTρD4
p

s
ð47Þ

where KT, ρ, DP denote thrust coefficient, fluid density, diam-
eter of the propeller, respectively.

4.3.2 The Control of Pitch Angle

Define error variables eθe ¼ θe−θed, consider Lyapunov func-
tion as

V3 ¼ 1

2
eθ2e ð48Þ

Differentiating V3 with respect to time, we can get

V˙ 3 ¼ eθeeθ˙ e ¼ eθe q−qF−θ˙ edð Þ. Designing the desired value of

(a) (b)

(c) (d)
Fig. 2 Path planning results. (a) The paths are displayed in three-dimensional space. (b) The paths are shown in horizontal plane. (c) The curvature of the
paths. (d) The fitness curves
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the pitch rate as qd ¼ θ˙ ed þ qF−k6eθe, thenV˙ 3 ¼ −k6eθ2e þ eθeeq,
where k6 > 0, eq ¼ q−qd . Choosing sliding mode function as
follows

s2 ¼ c2eqþ eq˙ þ eθe
¼ c2eqþ Fqqþ FMMHS þ FMkδδs þ dq−q˙ d þ eθe; ð49Þ

(a) (b)

(c) (d)

(e) (f)

(g) (h)
Fig. 3 Simulation results of path following in still water. (a) The
simulation results are displayed in three-dimensional space. (b) The
simulation results are displayed in horizontal plane. (c) The simulation
results are shown in vertical plane. (d) The along-track error. (e) The
lateral error. (f) The vertical error. (g) The pitch angle error. (h) The

yaw angle error. (i) The desired pitch angle error. (j) The desired yaw
angle error. (k) The stability condition. (l) The surge relative velocity of
AUV. (m) The speed of the virtual target. (n) The sway relative velocity
of AUV. (o) The heave relative velocity of AUV. (p) The speed of the
propeller. (q) The horizontal rudder angle. (r) The vertical rudder angle
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(k) (l)

(m) (n)

(o) (p)

(q) (r)

(i) (j)

Fig. 3 (continued)
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where c2 > 0. Define edq ¼ dq−d̂q, whered̂q is the estimate
values of dq. Consider the Lyapunov function

V4 ¼ V3 þ 1

2
eq2 þ 1

2k7
ed2q þ 1

2
s22 ð50Þ

Designing the control law and adaptive law as

δ˙ s ¼ 1

FMkδ

h
−c2 Fqqþ FMMHS þ FMkδδs þ d ̂q−q˙ d

� �
−Fqq˙ −FMM˙ HS þ q

˙̇

d−eθ˙ e−eq−k8s2−ε3sgn s2ð Þ
i
;

d ̂˙ q ¼ k7c2s2; ε3 ¼ k2 1−e−k3js2j
� �

;

8>>>><>>>>:
ð51Þ

where k7 > 0, k8 > 0, then, the derivative of V4 becomes

V˙ 4 ¼ V˙ 3 þ eqeq˙ − 1

k7
edqd ̂˙ q þ s2s˙ 2

¼ −k6eθ2e−c2eq2 þ eqs2 þ edq −
1

k7
d ̂˙ q þ c2s2

	 

þs2

h
c2 Fqqþ FMMHS þ FMkδδs þ d̂̂q−q˙ d
� �

þFqq˙ þ FMM˙ HS þ FMkδδ˙ s−q
˙̇

d þ eθ˙ ei
¼ −k6eθ2e−c2eq2−k8s22−ε3js2j≤0:

4.3.3 The Control of Yaw Angle

Define error variables eψe ¼ ψe−ψed, consider Lyapunov func-
tion as

V5 ¼ 1

2
eψ2

e ð52Þ

Designing the desired value of the yaw rate as

rd ¼ ψ˙ ed þ qFψetanθF þ r F−k9eψe

� �
cosθ=cosθF , t h e n

V˙ 5 ¼ −k9eψ2

e þ krer, where k9 > 0, kr ¼ eψecosθF=cosθ,er ¼ r−rd . Choosing sliding mode function as

s3 ¼ c3er þer˙ þ kr ¼ c3er þ Frr þ FNkδδr þ dr−r˙ d þ kr ð53Þ

where c3 > 0. Defineedr ¼ dr−d̂r, whered̂r is the estimate
values of dr. Consider the Lyapunov function

V6 ¼ V5 þ 1

2
er2 þ 1

2k10
ed2r þ 1

2
s23 ð54Þ

Designing the control law and adaptive law as

δ˙ r ¼ 1

FNkδ

h
−c3 Frr þ FNkδδr þ d ̂r−r˙ d

� �
−Frr˙ þ r

˙̇

d−k˙ r−er−k11s3−ε4sgn s3ð Þ
i
;

d̂̂˙ r ¼ k10c3s3; ε4 ¼ k2 1−e−k3js3j
� �

;

8>>>><>>>>: ð55Þ

where k10 > 0, k11 > 0, then, the derivative of V6 becomes

V˙ 6 ¼ V˙ 5 þerer˙ − 1

k10
edrd ̂˙ r þ s3s˙ 3

¼ −k9eψ2

e−c3er2 þers3 þ edr −
1

k10
d ̂˙ r þ c3s3

	 

þs3 c3 Frr þ FNkδδr þ dr̂−r˙ d

� �
þ Frr˙ þ FNkδδ˙ r−r

˙̇

d þ k˙ r
h i

¼ −k9eψ2

e−c3er2−k11s23−ε4js3j≤0:

4.4 Stability Analysis of Closed-Loop Systems

According to control law (29), error eq. (24) can be rewritten
as

P˙ e1 ¼
x˙ e
y˙ e
z˙ e

24 35

¼
−k1xe−ε1sgn xeð Þ þ edx

urd þ eur� �
sin ψed þ eψe

� �
cos θed þ eθe� �

þ dy

− urd þ eur� �
sin θed þ eθe� �

þ dz

26664
37775
ð56Þ

Then, the Eq. (56) can be expanded as following by apply-
ing the trigonometric properties,

P˙ e1 ¼ Ae þ Bede1 þ de2 ð57Þ

Ae ¼
−k1xe−ε1sgn xeð Þ
urdsinψedcosθed

−urdsinθed

24 35;Be ¼
1 0 0 0
0 B22 B23 B24

0 B32 B33 0

24 35;
de1 ¼ edx eur eθe eψe

h iT
; de2 ¼ 0 dy dz½ �T ;B22 ¼ sinψecosθe;

B23 ¼ urdsinψedcoseψe cosθed
coseθe−1� �

eθe −sinθed
sineθeeθe

24 35;
B24 ¼ urdsinψedcosθed

coseψe−1
� �

eψe

þ urdcosψedcosθe
sineψeeψe

;

B32 ¼ −sinθe;B33 ¼ urdsinθed
1−coseθe� �

eθe −urdcosθed
sineθeeθe :

The system (57) can be equivalent to the Ṗe1 ¼ Ae

perturbed by the de1 and de2. Since the stability of P˙ e1 ¼
Ae is guaranteed by the kinematics controller, moreover, de1
is uniform global asymptotic stability andBe,de2are bounded,
the Pe1 is uniformly ultimately bounded (UUB) can be
concluded.
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5 Simulation Results

5.1 Path Planning Based on IPSO-SP

The path in horizontal plane starts at (ξ0, η0, ζ0)= (0, −10m,
5m)and ends at ξNs

; ηNs
; ζNs

� � ¼ (100, −100m, 5m). The
depth is set to 5 m and does not participate in optimization.
The underwater environment information is modeled as fol-
lows

ζe ξ; ηð Þ ¼ 10− ∑
12

i¼1
Ho ið Þe−kξ ið Þ ξ−ξo ið Þ½ �2−kη ið Þ η−ηo ið Þ½ �2 ð58Þ

ξo ¼ 20; 50; 80; 10; 40; 70; 30; 60; 90; 20; 50; 80½ �;
ηo ¼ − 80; 80; 80; 60; 60; 60; 40; 40; 40; 20; 20; 20½ �;
Ho ¼ 11; 4; 11; 8; 14; 4; 4; 11; 8; 11; 8; 11½ �;
kξ ¼ kη ¼ 0:01� 1; 5; 1; 5; 2; 5; 5; 1; 5; 1; 5; 1½ �:

The ζe(ξ, η) represents the depth of water at any location.
The (ξo, ηo) represents the coordinates of the center of the
obstacle in the horizontal plane. The Horepresents the height
of obstacles. The kξand kηrepresent the slope of obstacles.
Since the minimum turning radius of AUV is 10 m, the max-
imum allowable curvature of the path is cmax = 0.1. The main
parameters of the IPSO-SP algorithm are set asNs = 5,NPSO =
20, b1 = 2, b2 = 2, wmax = 0.8, wmin = 0.5, Vmax =

1,Gg ¼ 200,GL ¼ 10, Δω = 0.02. The results of path planning
are shown in Fig. 2. Paths 1–3 are results of planning with the
traditional PSO algorithm and paths 4–6 are the results of
planning with the improved PSO (IPSO) algorithm. The plan-
ning results show that both methods can work out qualified
paths under the premise of sufficient iteration times. All paths
can avoid obstacles and the maximum curvature meets the
constraints. The average fitness values of the two methods
are 151.2 and 141.4, respectively. The traditional PSO algo-
rithm has a short convergence time. However, the optimiza-
tion results are basically not improved in the later stage, which
indicating that the algorithm falls into the premature problem.
Although the convergence rate of the IPSO algorithm is a little
slower, it can effectively improve the premature problem, so
that a better path can be obtained.

5.2 Path Following in Still Water

Firstly, path following control simulation experiment is per-
formed when there is no environmental disturbance. The
AUV model is the REMUS 100 [47]. The controller designed
parameters are set as kxp = 1.1, k1 = 0.6, k2 = 0.2, k3 = 30, k4 =
0.1, k5 = 0.1, k6 = 0.1, k7 = 0.1, k8 = 0.1, k9 = 0.1, k10 = 0.1, k11
= 0.1, T = 0.1, T1 = 1, T2 = 1, Nc = 3, Np = 6,Qmax = 1,Qmin =
0.02,Q33 = 2,Q44 = 1, R11 = 1, R22 = 1, ΔL = 0, c1 = 2 c2 = 0.3,
c3 = 0.3. Since the first path (path1) has the greatest curvature,
it is selected as the desired path, which is more convenient to

verify the tracking performance of the controller. The initial
states of the AUV are Po 0ð Þ ¼ 0 0 3 0 −π=2½ �. The
desired forward speed urd is set to 1 ms−1. Two different guid-
ance laws are applied. The first is theMPC guidance laws. The
second one is LOS guidance law and two different lookahead
distance 5 m (LOS-1) and 15 m (LOS-2) are adopted in sim-
ulation. The simulation results are displayed in Fig. 3.
According to Figs. 3a-h, we can see that path following results
of both the MPC and LOS guidance law is nearly ideal except
in the early stages. Position errors and attitude errors can be
stabilized to zero. When the lookahead distance is small, the
LOS guidance law is prone to overshoot. On the contrary, the
position errors converge slowly. We can also see that position
errors converge faster and have no overshoot when MPC
guidance law is applied. Figs 3i-k show the desired approach
angles and the MPC stability condition. Obviously, they all
satisfy the constraints in Eq. (43). Figures 3l-o show the ve-
locities of AUVand virtual target. The surge relative velocity
of AUV and the speed of the virtual target converge to the
expected value. At the same time, it can be seen clearly that
the heave and sway relative velocities are convergent and very
small because there are no driving forces in the lateral or
vertical directions. Figures 3p-r are the actual control inputs
of AUV. Due to the smooth path, the rudder angles and speed
of the propeller are very stable.

5.3 Path Following with Wave Disturbances

The AUV is often disturbed by waves when it travels close
to the surface of the water. Next, path following control
simulation experiment is performed with wave distur-
bances. The wave height is set as 1 m. Firstly, the path
following control is simulated by using LOS guidance
law. Then, according to the control results of LOS guid-
ance law, the boundary layer distance is set as ΔL = 0.5,
and the MPC guidance law is applied to carry out the path
following control simulation. Other designed parameters
of the controller remain unchanged. The simulation exper-
iment results are displayed in Fig. 4. We can see that both
controllers can achieve the path following task, but the
tracking accuracy is decreased due to the disturbance of
waves. Although all tracking errors fluctuate, the lateral
and vertical tracking errors converge within the boundary
layer. Due to the fluctuation of lateral and vertical tracking
errors, both the attitude errors of AUV and desired ap-
proach angles fluctuate frequently when LOS guidance
law is adopted. In order to track the desired approach
angles, the rudder angles also fluctuate frequently, which
causes the fluctuation of lateral and vertical relative veloc-
ities. But the amplitudes of the lateral and vertical relative
velocities are very small. Since waves mainly affect the
absolute velocity, but not the relative velocity. Therefore,
the velocity of the virtual target has some fluctuations.
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However, the surge relative velocity of AUV can converge
to the expected value smoothly and the speed of the
thrusters is also very stable. When MPC guidance law is
adopted, the stability of attitude errors, desired approach

angles, rudder angles, and relative velocities are obviously
improved. Compared with LOS guidance law, the mean
square error of horizontal rudder and vertical rudder an-
gles are reduced by 49% and 46%, and the integral of

(a) (b)

(c) (d)

(e) (f)

(g) (h)
Fig. 4 Simulation results of path following with wave disturbances. (a)
The simulation results are displayed in three-dimensional space. (b) The
simulation results are displayed in horizontal plane. (c) The simulation
results are shown in vertical plane. (d) The along-track error. (e) The
lateral error. (f) The vertical error. (g) The pitch angle error. (h) The

yaw angle error. (i) The desired pitch angle error. (j) The desired yaw
angle error. (k) The stability condition. (l) The surge relative velocity of
AUV. (m) The speed of the virtual target. (n) The sway relative velocity
of AUV. (o) The heave relative velocity of AUV. (p) The speed of the
propeller. (q) The horizontal rudder angle. (r) The vertical rudder angle
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(k) (l)

(m) (n)

(o) (p)

(q) (r)

(i) (j)

Fig. 4 (continued)
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square of horizontal rudder and vertical rudder angles are
reduced by 73% and 71%, respectively.

6 Conclusion

The path planning and following control problems of
underactuated AUVare studied in this paper. To plan the op-
timal global path when the underwater environment model is
known, the IPSO-SP algorithm is proposed based on PSO
algorithm and cubic spline interpolation technology, which
can be used to plan smooth paths that meet obstacle avoidance
requirements and curvature constraints. The path following
controller, which combines MPC and ADSMC, is designed
to improve system performance. First, the virtual target and
MPC guidance law are developed in the kinematic controller.
The virtual target is singularity-free for all regular paths. The
MPC guidance law provides the optimal approach angles for
the dynamic controller. The weights of lateral and vertical
errors in the MPC guidance law are adjusted based on the
boundary layer to reduce the wave disturbances. When the
tracking errors are within the boundary layer, the weight co-
efficients Q11 and Q22 will take the minimum value, so as to
reduce the control requirements for position errors and in-
crease the control requirements for attitude errors. In this
way, AUV can go forward as far as possible with the wave,
avoid blindly overcoming the disturbance of waves, thus mak-
ing the rudder angles more stable and reducing the energy
consumption of the actuator. In order to reduce the computa-
tional burden, the linear time-varying MPC is applied. The
simulation is implemented inMatlab and the eq. (43) is solved
by QP algorithm on a PC (CPU: Intel i5-3230M, 2.6GHz;
RAM: 4GB). The average time used to calculate MPC guid-
ance law is within 10 ms. So the controller can meet the real-
time requirement of path following. Because the kinematics
level is not affected by the model uncertainties, the prediction
effect can be guaranteed. Then, the dynamic controller is de-
signed based on ADSMC which can improve the robustness
of the system. The dynamic controller is implemented by
using relative velocity, thus it is better for energy saving.
Furthermore, relative velocity is easier to be measured and
relative velocity sensors can provide more accurate results
than absolute velocity measurements. This approach can also
be extended to path planning and following of other un-
manned vehicles.
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