
Journal of Intelligent & Robotic Systems
https://doi.org/10.1007/s10846-019-01140-9

A Robot Architecture for Outdoor Competitions

RodrigoW. S. M. de Oliveira1 · Ricardo Bauchspiess1 · Letı́cia H. S. Porto1 · Camila G. de Brito1 ·
Luis F. C. Figueredo1 ·Geovany A. Borges1 ·Guilherme N. Ramos1

Received: 16 July 2019 / Accepted: 17 December 2019
© Springer Nature B.V. 2020

Abstract
Autonomous navigation in unstructured environments is a common topic of research, being motivated by robotic
competitions and involving several sets of skills. We present a modular architecture to integrate different components for
path planning and navigation of an autonomous mobile robot. This architecture was developed in order to participate in
the RoboMagellan competition hosted by RoboGames. It is divided in the organizational, functional and executive levels in
order to secure that the developed system has programmability, autonomy, adaptability and extensibility. Global and local
localization strategies use unscented and extended Kalman filters (UKF and EKF) to fuse data from a Global Positioning
System (GPS) receiver, inertial measurement unit (IMU), odometry and camera. Movement is controlled by a model
reference adaptive controller (MRAC) and a proportional controller. To avoid obstacles a deformable virtual zone (DVZ)
approach is used. The architecture was tested in simulated environments and with a real robot, providing a very flexible
approach to testing different configurations.

Keywords System architecture · Autonomous robot · Robotics competition · Kalman filters · MRAC · Tracking

1 Introduction

Autonomous navigation in unstructured environments is
a task that brings robotics closer to daily applications
like autonomous cars [4, 28, 42, 43]. Robot competitions
encourage the development of robotics in such tasks, and

� Rodrigo W. S. M. de Oliveira
rodrigowerberich@hotmail.com

Ricardo Bauchspiess
ricardobauchspiess@gmail.com

Letı́cia H. S. Porto
leticiahelenasp@hotmail.com

Camila G. de Brito
camilagdebrito@gmail.com

Luis F. C. Figueredo
figueredo@ieee.org

Geovany A. Borges
gaborges@unb.br

Guilherme N. Ramos
gnramos@unb.br

1 Universidade de Brasilia, Brası́lia 70910-900, Brazil

one of the better known is RoboMagellan1 —an outdoor
navigation competition which requires the robot to move in
an unconstrained and unstructured real-world outdoor envi-
ronment with different obstacles. In this paper, we expand
on a previous work on the development of a robot plat-
form to complete the task proposed by the RoboMagellan
challenge [40].

Our robot (Fig. 1) was built on top of a six-wheeled
differential platform with DC gear motors. As for sensing
hardware, we included eleven ultrasonic sensors, a frontal
bar, a camera, a Global Positioning System (GPS) receiver, a
9-axis inertial measurement unit (IMU) and two incremental
encoders, one for each side center motor. We used a
Raspberry Pi 3 as the central processing unit for controlling
the robot and two Arduino Mega 2560 for sensor data and
real time processing.

We developed five modules for our system. A route
planner module is responsible for defining the best path
between the target points. The localization module fuses the
GPS, IMU and odometry data using Extended Kalman Filter
(EKF) and Unscented Kalman Filter (UKF) to provide a
global position for the robot in the map. The vision module
fuses a vision based target tracking algorithm with odometry

1http://robogames.net/rules/magellan.php

/ Published online: 2020March
 

(2020) 99:629–646

7

http://crossmark.crossref.org/dialog/?doi=10.1007/s10846-019-01140-9&domain=pdf
http://orcid.org/0000-0001-8207-0624
mailto: rodrigowerberich@hotmail.com
mailto: ricardobauchspiess@gmail.com
mailto: leticiahelenasp@hotmail.com
mailto: camilagdebrito@gmail.com
mailto: figueredo@ieee.org
mailto: gaborges@unb.br
mailto: gnramos@unb.br
http://robogames.net/rules/magellan.php


Fig. 1 Bruce, the robot

through an EKF providing a local localization for the
robot. Additional sensing is done by the ultrasonic sensors
and the frontal bar, responsible for obstacle detection and
target encounter, respectively. The motion control module is
responsible for making the robot follow the planned path,
using either the information from the localization module
or the vision module, all while avoiding obstacles with a
deformable virtual zone (DVZ) reactive obstacle avoidance
algorithm. All of this is brought together by the navigation
module, which selects which information to use and which
actions to take.

In this paper, we expand the details on our algorithms,
the implementation of each module, and present additional
experimental results for specific modules as well as for the
complete robot architecture, showing the effectiveness of
our approach.

The rest of the paper is organized as follows. We
present related works in Section 2 and describe the
robot’s kinematic modeling in Section 3. In Section 4 we
characterize the system’s architecture and give an overview
of each module that composes the system in Section 5. In
Section 6, we show the experimental results and present
concluding remarks in Section 7.

2 RelatedWorks

The literature on navigation, localization and control is vast
reflecting its importance on real-world applications [4, 12,
39, 42]. Amid navigation, a more challenging problem is
the task of autonomous outdoor unstructured navigation.
In such a scenario, large uncertainties, exogenous noises
and the unpredictability of the environment—e.g., light
variations, terrain conditions, dynamic obstacles, etc—
hampers the prescribed plan to be executed, degrades
the localization system and removes the reliability of
different sensors (high variability of sensor uncertainties).
Due to these challenges, autonomous outdoor navigation
in unstructured environment is still an open problem being
tackled through individual contributions in related areas [11,

14, 15, 19, 20, 22, 30, 41, 45] and through sensor fusion
[6, 17, 18, 29, 32, 33] and system integration [3, 5, 21, 26,
35, 44] .

To increase the performance and reliability of the
localization system, sensor fusion has been widely used in
the literature. Among existing works, it is worth mention
[3, 29] for their contribution on Global Navigation Satellite
System (GNSS) based sensor fusion and navigation. The
work in [29] proposes an adaptive Kalman filter to combine
data from the GNSS and the Inertial Navigation System
(INS) from the inertial measurement unit (IMU) sensors.
Notwithstanding, the amount of information and how to
address and pose the estimation fusion is also a relevant
problem, particularly in a system with large set of different
sensors and reduced computational and consumption power.
To address such issue, the work in [3] addresses the problem
using a Convolutional Neural Network (CNN) to cope with
data from a GPS, a camera and from the odometry readings.
This scheme returns a system that selects data between
odometry and visual systems avoiding fusion analysis and
reducing the computational complexity in run time.

In this work, we take a more general strategy, combining
estimation fusion techniques with a high-level navigation
framework that ensures reliable performance, modularity
and adaptability to different tasks and scenarios. In this
sense, the closest work in the literature is the recent work
of Valls et al. [44] which proposes and presents a complete
system with the integration of key components required
for the navigation of an autonomous race car, i.e., system
design, EKF–based state estimation, LiDAR–based per-
ception, and particle filter-based estimation. This seminal
work is crucial for roboticists and for the development of
the field as only a modicum of papers have formalised a
complete description of robot architecture and navigation
framework. The current work was inspired by importance
and challenges of describing the complete framework of
an autonomous navigation system and the gap in the field
robotics literature.

In this sense, our work also presents a navigation
framework that integrates in a fluid manner the motion
planning and control with the collision avoidance strategies
and the localization scheme. The main difference is the
general design where our focus is mostly on the challenges
inherent of the uncertain and unpredictability of the terrain
and the task, and the required reduced computational and
consumption power, in contrast to [44] whose goal is to
autonomously complete 10 laps of an unknown racetrack as
fast as possible.

In other words, the result herein seeks to analyze and
integrates all aspects of a navigation framework in a concise
manner providing a complete, easy to follow and imple-
ment, and efficient framework for autonomous outdoor
navigation robotics.

J Intell Robot Syst (2020) 99:629–646630



3 SystemModeling

The proposed architecture is based on modules, which work
based on a model of the actual robot. Although Bruce has six
wheels, its kinematic model was simplified into a two-wheel
differential robot, illustrated in Fig. 2, since the wheels on
each side rotate at the same speed.

The kinematic model of the robot may be approximated
by the direct form [16]:

ξ̇ = J (p, γ, θ)ṗ, (1)

in which J is the kinematic model Jacobian matrix, p is the
vector of variables that interferes with the robot’s movement
in the body frame and γ represents the set of geometric
parameters of the robot. The pose ξ = (rx, ry, θ)T , in which
(rx, ry) ∈ R

2 is the robot’s position and θ is the robot’s
angular orientation, is given in the global frame.

For a differential robot, p = (ϕr , ϕl)
T is composed by ϕr

and ϕl which represents the angles of the traction axes of the
right and left wheels respectively. The rotational velocities
of the wheels, ϕ̇r and ϕ̇l , form the ṗ vector. The geometric
parameters of the robot, γ = (r, b)T , represent the radius of
its wheels (r) and half the distance between them (b).

Thus, the kinematic model can be defined as:⎡
⎣

vx

vy

ωz

⎤
⎦ =

⎡
⎣

r
2cos(θ) r

2cos(θ)
r
2 sin(θ) r

2 sin(θ)
r

2b
− r

2b

⎤
⎦

[
ϕ̇r

ϕ̇l

]
, (2)

in which v is the linear velocity of the robot and ω its the
angular velocity [23].

4 System Architecture

To help create and organize our system’s architecture,
we developed our own framework [8, 13, 37, 38]. An

Fig. 2 Differential robot model

autonomous robot’s organizational structure must be able to
predict and adapt to the situations it has before itself. It must
be able to have a real time response to the events presented,
make decisions and take actions in run time [1]; To make
all of this possible a system architecture should have the
following properties: (i) programmability, (ii) autonomy
and adaptability, (iii) reactivity, (iv) consistent behavior, (v)
robustness and (vi) extensibility.

The proposed framework helps to ensure the programma-
bility, autonomy, adaptability and extensibility of the sys-
tem. The other properties must be provided by the actual
architecture implemented.

In this work, the framework focuses on the navigation
problem due to the nature of the RoboMagellan competi-
tion, which emphasizes autonomous navigation and obstacle
avoidance over varied, outdoor terrain. We used the Robot
Operating System (ROS2) and the C++ language to create it.
As shown in Fig. 3, the framework is composed of three dif-
ferent abstraction levels working together, each with its own
responsibility. The organizational, functional and executive
levels work together, communicating through messages.

The organizational level, also known as the finite state
machine (FSM) controller, is responsible for orchestrating
the robot’s behavior. It has two key parts: the FSM
description file and the FSM interpreter. The description
file is an input file that is read at run time and dictates the
robot’s behavior using its four defining sections: actions,
conditions, states and the finite state machine definition.

Actions execute a task and conditions check if an event
happened, so that the FSM can either execute a different
action in the same state or trigger a transition between FSM
states. These are precompiled code segments whose actual
implementations depend on the specific architecture and the
lower levels. They are self contained and must be easy to
understand and use, which allows us to quickly test and
reuse them. The state section simply declares all states the
FSM will have while the FSM definition section describes
each state using the predefined actions and conditions.

The description file is interpreted and its information sent
to the FSM controller, which orchestrates the modules from
the lower level accordingly and keeps track of the robot’s
current FSM state, which communicates with the modules
in the functional level. The modules are responsible for
executing the actions and detecting the conditions. Each
module declares its actions and conditions to create the
library used by the description file. When an action is
required by the FSM controller, a message is sent to the
proper module requesting its execution. When a condition
is triggered, a message is sent from the module to the FSM
controller which may cause a change in the current state.

2https://www.ros.org/

J Intell Robot Syst (2020) 99:629–646 631

https://www.ros.org/


Fig. 3 The Navigational Framework for the system architecture

The modules and the FSM controller run in parallel and
independently, so each can decide and act on what is needed
to accomplish the requested action.

If necessary, modules can exchange messages, but these
must be predefined and well documented. For example,
the trajectory control module receives an itinerary from the
route planner module.

The lowest is the executive level, which is responsible for
converting the computational abstraction into environmental
actuation and vice-versa. It uses three key components: the
actuator interface, the sensor interface and the conversion
layer.

Both interfaces are responsible for direct communication
with the physical sensors and actuators. They provide all the
information to the conversion layer, which then transforms
it into an abstract representation that is sent to the higher
levels. The executive level makes the Navigational Frame-
work really extensible since it is the only part that needs to
be updated in case of changes in hardware - the other levels
work in higher abstraction and may remain unchanged.

Low level, hardware specific modules, such as a speed
controller, are also in the executive level. The conversion
layer can introduce small delays in sensor readings, so
modules that do not allow any delays belong in the executive
level to avoid these delays.

From the Navigational Framework, a specific architec-
ture for the RoboMagellan challenge can be specified, as
shown in Fig. 4. The final robotic system for Bruce is com-
posed of 5 modules in the functional level, each detailed in
the following sections.

5 SystemModules

The modules define how the robot handles specific tasks
related to its objective of autonomous navigation and
obstacle avoidance in outdoor terrain.

5.1 Navigation Control Module

The navigation control module in the organizational level
implements a FSM with eight states shown in Fig. 5, where
the initial and final states are colored in green and red,
respectively. It uses the actions and conditions provided by
the other modules to control the robot’s behavior, either by
activating or deactivating modules, passing parameters to
them and controlling how the system operates (actions) or
by launching events triggered by the modules or sensors,
representing the changes on the environment or that a
module has achieved its goal (conditions).

In the “Wait start button” state, all systems are off and
the robot is waiting for a button press to define the system’s
coordinate system or to start executing the algorithm. The
“Define coordinate system origin” state uses the localization
and route planner modules to check if the robot is inside
the environment’s map and define its coordinate system’s
origin.

Fig. 4 Bruce’s architecture for
the RoboMagellan competition.
Blue modules are implemented
in the Raspberry, green modules
are implemented in Arduino
number 1 and purple modules in
Arduino number 2

J Intell Robot Syst (2020) 99:629–646632



Fig. 5 The robot FSM diagram that describes the behavior the
navigation module must execute

The “Setup” state waits for a valid position estimate
from the localization module, after which the “Plan
route” state requests a global plan from the route planner
module to transition to the “Long approach” state. It
continuously communicates with the the trajectory control
and localization modules in the functional level and the
lower levels through the conversion layer to follow the
plan.

When an obstacle is detected by the sensors, it switches
to “Obstacle avoidance” state. The trajectory control pro-
vides reactive obstacle avoidance, which adds the detected
objects to the local map so it may be partially adapted to
create a new route around them. If this leads to the robot
straying for more than ten meters from the global plan, the
machine transitions back to the “Plan route” state in order
to adapt to the changes - a reactive approach to the dynamic
environment.

When the robot detects it is less than five meters from the
target, it switches to “Short approach” state which searches
for the target using the vision module and moves towards it
with the approach control module. The goal is considered to
have been reached after the contact sensors are activated and
the vision module decides it is reasonable that the contact is
with target according to its readings, triggering the “Finish”
state which deactivates the robot.

5.2 LocalizationModule

Autonomous navigation implies that the robot recognizes
its position as well as its movement in its surrounding
environment. To achieve this, we fused data from GPS,
IMU and incremental encoders to obtain the robot’s
three-dimensional position and attitude. Considering our
nonlinear system, we evaluated the data through an extended
Kalman filter (EKF) and an unscented Kalman filter

(UKF) [24, 36]. For further details on sensor fusion, readers
are also referred [6, 33, 36].

We used the GPS receiver to obtain both the robot’s
velocity (vn) and position (rn) in the global navigation
frame North-East-Down (N frame). The IMU is equipped
with a triaxial gyroscope, an accelerometer and a mag-
netometer, and provides the angular velocity (ωb

nb), the
specific force (fb), and the magnetic field (mb) in the robot
body coordinate frame (B frame).

The robot’s acceleration is then integrated in the standard
GPS/IMU fusion to estimate the robot’s three-dimensional
velocity. The incremental encoders provide the angular
velocities of the robot’s wheels (ϕ̇), which enables the
odometry to be computed and, thus, to estimate the robot’s
two-dimensional velocity.

Experimentally, we observed that the IMU solution errors
grew faster than those obtained from the odometry and
that the vibration caused by uneven and harsh terrains
further increased the degradation in the IMU solution. Thus
we opted to use the odometry’s two-dimensional velocity
instead of the IMU’s three-dimensional one.

Therefore, the localization model may be summarized
by the following state and measurement equations, respec-
tively:

xk = f (xk−1,uk) + wk, wk ∼ N (0,Qk), (3a)

yk = h(xk) + vk, vk ∼ N (0,Rk), (3b)

where x is the state vector, y is the measurement vector,
wk and vk are, respectively, the process and measurement
noises, of Gaussian nature with zero mean and Q and R
covariances, f is the function that models the process and h

models the measurement.
The state vector x and the input vector u are defined

as:

x = [
qb

n rn vn
]T

(4a)

u = [
ωb

nb ϕ̇
]T

, (4b)

in which qb
n is the attitude quaternion, rn is the position and

vn is the robot’s velocity in the N frame, ωb
nb is the gyro-

scope measurement and ϕ̇ is the odometry measurements.
The function f (Eq. 3a), which models the process [13,

14], is detailed by Eq. 2 together with:

qk = e− 1
2W�tqk−1, (5a)

rk = rk−1 + vk−1�t, (5b)

vz,k = vz,k−1, (5c)

in which W is the skew-symmetric matrix of the angular
velocities [14, 23].

J Intell Robot Syst (2020) 99:629–646 633



Function h in Eq. 3b is given by the identity

y = I10×10
[
qb

n rn vn
]T

, (6)

in which the position and velocity are provided by the GPS
receiver and attitude quaternion is estimated by processing
the accelerometer and gyroscope readings with the TRIAD
algorithm [9].

The whole process is illustrated in Fig. 6. To fuse the
data, we evaluated both the EKF and the UKF, in which
x̂ represents the state vector estimation and P represents
its covariance matrix. While the EKF is the most widely
used in localization problems [7, 17], it may present
filter divergence if the errors are not within the linear
region. Therefore, we also implemented the UKF [34], and
compared the results with the ones obtained with the EKF.
The complete algorithm for both filters can be found in [13].

5.3 Motion and Trajectory Control Module

An autonomous mobile robot must try to follow a trajectory
in a dynamic environment without hitting any obstacles.
Bruce’s motion and trajectory control module, presented
in Fig. 7, is responsible for this. The module is composed
of four layers: trajectory tracking control, reactive obstacle
avoidance, velocity control and approach control.

Firstly, in the trajectory tracking control layer, the motion
planner generates the path in the shape of line segments,
from the route points calculated by the route planner
module, to compose the robot’s planned trajectory.

These segments are input into the reference model for
Bruce, called virtual robot, which is a simulation that has the

real robot’s kinematic model and executes its motion ideally
since he moves with a constant speed through the planned
path segment and does not suffer any interference in his
movement, as if in an ideal environment (no slippage, errors,
etc.). Then, the trajectory controller acts by making the
real robot follow the movement performed by the reference,
based on [23].

The purpose of the trajectory controller is actually to
minimize the error between the virtual robot’s position (rr ),
and the vehicle’s actual perceived position (r). The error is
computed by:
⎡
⎣

ε1

ε2

ε3

⎤
⎦ =

⎡
⎣

cos(θ) sin(θ) 0
− sin(θ) cos(θ) 0

0 0 1

⎤
⎦

⎡
⎣

rrx − rx
rry − ry
θr − θ

⎤
⎦ . (7)

The trajectory controller calculates the error and provides
the velocity vector Vq, that would make the real robot reach
the reference model. This vector Vq is calculated according
to the control laws [22, 38]

Vq =
[

v

ω

]
=

[
vr cos(ε3) + K1ε1

ωr + vrK2ε2 + K3 sin(ε3)

]
, (8)

where vr and ωr are, respectively, the virtual robot’s linear
and angular velocities, v and ω are, respectively, the real
robot’s linear and angular velocities, and K1, K2 and K3 are
positive constants.

The stability of this controller can be verified through
the Lyapunov criteria [22, 23, 38]. A candidate function is
defined by:

V0(ε1, ε2, ε3) = 1

2

(
ε2

1 + ε2
2

)
+ 1 − cos ε3

K2
, (9)

Fig. 6 Localization module diagram

J Intell Robot Syst (2020) 99:629–646634



Fig. 7 Motion and trajectory
control module’s control
architecture diagram

so that V0(ε1, ε2, ε3) is always a real positive function and
equals to zero if ε1, ε2, and ε3 are null. In addition, it can be
verified that its derivative satisfies the inequality

d

dt
V0(ε1, ε2, ε3) = ε1

dε1

dt
+ ε2

dε2

dt
+ ε3

dε3

dt

sin ε3

K2

= −K1ε
2
1 − K3 sin2 ε3

K2
≤ 0. (10)

The motion planner also determines which of the path
segments should be tracked at any instant, thus it is crucial to
correctly identify when to switch from the current segment
being followed to the next segment in the plan.

In order to recognize if a path segment λi is the current
one, a new coordinate axis, XbxYb, is defined with its origin
at the end point of λi , Pb = (xb, yb), as shown in Fig. 8.
Then we simply transform the robot’s position, (rx, ry), into
this new coordinate system and verify if its position has a
negative xb axis component.

The point (rx, ry) ∈ XxY will belong to the path segment
λi if

cos(α) ∗ (rx − xb) + sin(α) ∗ (ry − yb) < 0. (11)

Thus, when the goal point in the current segment is
achieved, the new path segment is defined between the
robot’s current position and the next route point.

Fig. 8 Path segment being followed

The obstacle avoidance module executes in parallel to tra-
jectory tracking control, applying the Deformable Virtual Zone
(DVZ) [15, 16], a reactive obstacle avoidance algorithm.
This method considers a protective zone around the robot,
which is deformed by the presence of an obstacle, as shown
in Fig. 9, and allowing it to act in a dynamic environment.

When the protective zone is deformed, the virtual robot’s
speed calculation is updated to avoid collision [16, 38], as
follows:

Vq′
r,k =

[
vr,k

ωr,k

]
=

[
vr,k−1

ωr,k−1

]
+

[
Ktfk cos(σk)

Kr sin(σk)

]
, (12)

where fk is the deformation vector’s sum module, σ is its
orientation and Kt and Kr are positive constants.

The motion and trajectory control module combines
these two layers, following the path segments when no
obstacle is present and reacting to avoid one while the route
planner creates a new path that considers it.

When close to the target position, the approach control
layer takes charge and a proportional controller receives as
input the distance D and orientation ψ of the target relative
to the robot in order to regulate its speed [38]. The velocity
vector is calculated by:

Vq′′ =
[

v

ω

]
=

[
KdD

Kψψ

]
, (13)

where Kd and Kψ are positive constants.

Fig. 9 Obstacle deforming the DVZ region

J Intell Robot Syst (2020) 99:629–646 635



The motion related modules output the velocity vector
Vq in the same format, which is then input into the
velocity controller to keep the robot at the reference speed
needed to execute the desired path. There are, however,
several unforeseen situations in an open environment, which
interfere with the robot’s motion.

In order to surpass the challenges inherent to the rough
terrain and unknown environment, while maintaining an
overall satisfactory performance in the competitive nature of
RoboMagellan, this module uses a model reference adaptive
controller (MRAC) [10]. The general idea of MRAC is
to create a closed loop controller with parameters that are
updated to change the system response. The output of the
system is compared to a desired output of a reference model
and an error signal is generated. The controller parameters
are updated based on this error through adaptive rules based
on Lyapunov stability theory, aiming for the parameters
converge to values that make the responses match. This is
illustrated in Fig. 10.

The controller design was based on the first-order
representation of the robot’s propulsion systems in the
Laplace domain, given by:

G(s) = Φ(s)

U(s)
= h

s + a
, (14)

which relates the wheels’ rotational speed Φ(s) to the
motor’s input voltage U(s). h and a are real constants
calculated by system identification methods. This model
suits both wheels of the robot’s model.

Analogously, the reference model is represented by:

Gm(s) = Φm(s)

Φ∗(s)
= hm

s + am

, (15)

which relates its wheels’ rotational speed Φm(s) to the
desired input velocity Φ∗(s). Here, hm and am are real
constants chosen for the reference model in order to make it
achieve a desired behaviour.

Fig. 10 MRAC’s block diagram

The controller combines a control law with an adaptive
law, generating real-time estimations of its parameters [10,
38]. The control signal is set by a linear combination of
the input signal Φ∗(s), the plant output signal Φ(s) and the
controller parameters ρ1 and ρ2. Thus, the system follows
the reference model with a control law given by:

U(s) = ρ1Φ
∗(s) − ρ2Φ(s) = hm

h
Φ∗(s) − am − a

h
.Φ(s).

(16)

These parameters ρ1 and ρ2 are adjusted according to the
error [10, 38]:

e(t) = ϕ̇(t) − ϕ̇m(t). (17)

The adaptive law incorporates stability guarantees,
because it satisfies the Lyapunov criteria [10]. Therefore,
Lyapunov’s function candidate is defined by [10]:

V (e, ρ1, ρ2) = 1

2

(
e2 + 1

hγ
(hρ2 + a − am)2

+ 1

hγ
(hρ1 − hm)2

)
, (18)

such that

dV

dt
= −ame2(t) + 1

γ
(hρ2 + a − am)

(
dρ2

dt
−γ ϕ̇(t)e(t)

)

+ 1

γ
(hρ1 − hm)

(
dρ1

dt
+ γ ϕ̇∗(t)e(t)

)
. (19)

With the rules of adapting the parameters given by
[10, 38]

dρ1

dt
= −γ ϕ̇∗(t)e(t), (20)

dρ2

dt
= γ ϕ̇(t)e(t), (21)

the function V (e, ρ1, ρ2) satisfies the Lyapunov criteria

dV

dt
= −ame2(t) < 0. (22)

The outputs of this layer are the control signals, uk , for
each motor to keep the robot’s right and left wheels at the
desired angular velocities, ϕ̇∗

r and ϕ̇∗
l . These can be obtained

from Vq by

[
ϕ̇∗

r

ϕ̇∗
l

]
=

⎡
⎢⎣

1

r

b

r
1

r
−b

r

⎤
⎥⎦

[
v

ω

]
. (23)

Thus, it is expected that the system follows the reference
model with the control laws given by [10, 38]

ur,k = ρ1,kϕ̇
∗
r,k − ρ2,kϕ̇r,k,

ul,k = ρ1,kϕ̇
∗
l,k − ρ2,kϕ̇l,k, (24)

J Intell Robot Syst (2020) 99:629–646636



in which ρ1 and ρ2 are the parameters to be adapted for each
wheel according to the following adaptation law

ρ1,k = ρ1,k−1 − Tvγ ϕ̇∗
k (ϕ̇k − ϕ̇m,k),

ρ2,k = ρ2,k−1 − Tvγ ϕ̇k(ϕ̇k − ϕ̇m,k), (25)

in which Tvγ is the adaptation gain.

5.4 VisionModule

The RoboMagellan competition rules establish that the
robot must make its way through an outdoor course going
to various GPS centered orange cones as waypoints. There
are no restrictions to the time of the day a round takes
place. To identify and track the target cone for a smoother
approximation, a vision module is part of the architecture.
Its goal is to minimize the distance estimation error, track
time, and be robust to changes in lighting conditions [8].
The maximum distance update time was defined as 100 ms
in accordance to the motion module.

The target cone’s shape and color were used for its
identification in the environment. To this purpose, we
adapted the combined single linkage and centroid linkage

region growing technique [25] to obtain segments with the
target’s color with reduced computational cost, while main-
taining robustness to lighting and background conditions.

To improve segmentation quality, as a preprocessing step,
we applied a sequence of erosion, median and dilatation
filters, smoothing segments surfaces and removing bright
spots, making the target segment more homogeneous.
Applying the median filter prior to the dilatation filter
improved bright spots removal in comparison to a median
and opening filter combination. We then change the image
to the CIELAB color space [27], which is more invariant to
lighting conditions.

To segment possible target cones in the image, we first
define how similar each pixel is to the target cone’s color,
according to Algorithm 1, in which a return value of 1
is the most similar. We will refer to this value as color
similarity for the rest of the paper. The internal constants
of the algorithm were manually tuned to fit the target cones
color. To avoid the cost of repeatedly computing this, each
possible similarity value is computed off-line and stored in
a map data structure, to be quickly retrieved when necessary
during execution.

Afterwards, we sweep the image and whenever we find
a pixel with color similarity above a threshold value th we
obtain a segment starting from that point applying a region
growing technique. Empirically, the value th = 0.8 provided
better segmentation for an acceptable computational cost,
and was used in all experiments.

In the region growing, a pixel is added to the growing
segment if it is adjacent to a pixel in the growing segment,
the euclidean distance between these pixels colors is below
a threshold te and if its color similarity is above a value

tg . Also empirically, we found that the values te =
0.025 and tg = 0.5 allowed us to obtain the target
segment without significant shape loss. This color similarity
approach replaces the centroid criteria linkage in [25],
avoiding the computational cost of online updates to the
centroid value without significant shape loss to the segment.
Each pixel added to the segment has its similarity value
changed to 0 to indicate it has already been processed.

For each segment obtained, we calculate its principal
components (x, y) and align them with the x and y axes. We

J Intell Robot Syst (2020) 99:629–646 637



then regress two lines to the segment right and left limits,
given the target’s simple trapezoidal form, the segment
shape is verified by angle formed between those lines plus
the height/width ratio of the segment. If the shape criteria
is accepted, we try and measure the targets position in the
robot’s body frame coordinates.

To get the target’s distance to the robot, we first obtain an
a priori distance

dprior = Htarget

tan(Sf v)
(26)

in which Htarget is the targets height in meters and Sf v is the
segments field of view, obtained by multiplying the segment
height in pixels by the field of view of a pixel.

Taking several of these a priori measures in known
distances, we obtained a quadratic regression that related
these a priori measures to a posteriori measures with better
precision. Here we apply another quality criteria: if the
distance is above a set maximum distance value, we reject
that measure, as its accuracy has reduced confidence. We
defined that maximum distance as 15 meters.

The targets angle of view is obtained by interpolating the
segments center pixels column in the image horizontal field
of view; x and y positions are obtained using trigonometric
relations with the targets a posteriori distance and angle of
view. The first (x,y) value initializes an extended Kalman
filter tracker, using the robot’s odometry in the prediction
stage. The prediction stage equations are

xB,k+1|k = xB,k|k + T ẋB,k|k,
ẋB,k+1|k = − sin (ωzT ) ωzxB,k|k − sin (ωzT ) ωzC

− cos (ωzT ) ωzyB,k|k − cos (ωzT )
Vl + Vr

2
,

yB,k+1|k = yB,k|k + T ẏB,k|k,

ẏB,k+1|k = cos (ωzT ) ωzxB,k|k − sin (ωzT ) ωzyB,k|k

+ cos (ωzT ) ωzC − sin (ωzT )
Vl + Vr

2
, (27)

in which C is the distance from the camera to the center
of the robot, Vl and Vr are the left and right wheel speeds,
respectively, and T is the elapsed time between predictions.

Using the inverse procedure to get x,y position from
a segment, we obtain the predicted bounding box for
the target in the image. Using the predicted x,y position
variances, we define xmin, xmax, ymin, ymax values, which
we use to define a larger bounding box, limiting the
positions in which we expect the target to be found in
the image. This second bounding box we use as region of
interest in which we apply the vision algorithm measuring
the targets position.

As a way of controlling the vision algorithm efficiency,
we defined a maximum image region size to be processed by

the algorithm and resize regions of interest bigger than that
size to it. To get our desired 10 Hz we defined that maximum
size to 15000 pixels, which translated to the target being
roughly 2 meters away from the robot. The big difference
between this value and the maximum accepted distance
shows that we could easily increase the algorithm frame rate
if necessary.

Before applying the Kalman filter update step, we
evaluate the quality of the vision measurement. We do so by
calculating the Mahalanobis’ distance between the predicted
position and the measurement position. If the distance is
greater than 5.991, the 95% in the χ2

2 table, the measure is
discarded, otherwise we apply the update step of the Kalman
filter. If five successive measures are discarded this way, the
tracking is abandoned, and the vision algorithm starts anew,
searching the entire camera frame.

The x and y position values obtained after the update step
of the Kalman filter are then transformed to a distance and
an angle value, which are sent to be used by the motion
module. The detailed algorithm can be found in [8].

5.5 Route Planner Module

The route planner utilizes a bi-dimensional cost map
generated by a geo-referenced image obtained from satellite
images. To provide some a priori knowledge about possible
obstacles like fences, buildings, and others, these elements
are manually marked in the map and the remaining parts
are considered as free space. The resulting cost map is
given as input to the Rapidly-Exploring Random Tree
(RRT) algorithm [31]. We exploited standard RRT planning
strategies with local planner given by line segments which
were tracked by the real-time adaptive controller.

The cost map is transformed into a configuration space C,
as illustrated in Fig. 11 where the obstacles are represented

Fig. 11 C configuration space, represented as a continuous cost map

J Intell Robot Syst (2020) 99:629–646638



Fig. 12 EKF and UKF for
attitude filtering in a closed path

in black. The algorithm creates a route by randomly
exploring a tree structure representing the space. The search
tree grows as new positions are added, with obstacles
forming leaf nodes, until a position close enough to the goal
is reached.

Although this not an optimal algorithm, it provides good
enough solutions very quickly, which is a better approach
to work in a dynamic environment. The choice for a
simpler solution yet quick solution was due to the nature
of the autonomous navigation task in outdoors, that is, the
large uncertainties within the environment. Implementations
using B-splines, C-splines and even advanced geometrical
Interpolation strategies could smooth the trajectory to the

robot kinematics yet they would still be highly dependent
on the adaptive control solution in real-world applications.
For better comprehension of the interpolation complexity
in this scenario, and possible improvements in planning
(in exchange of additional computational complexity), the
authors refer the reader to the excel work of Allmendinger
et al. [2].

6 Experimental Results

This section presents a series of real-robot experiments in
unconstrained outdoor environments. The tasks presented

Fig. 13 Frame with target
identification after sunset.
Zoomed in on top left corner

J Intell Robot Syst (2020) 99:629–646 639



Fig. 14 Frame with target
identification. Zoomed in on top
left corner

herein aimed at validating the proposed robot architecture
in such complex scenario and to evaluate the performance
of different modules from the system framework. This
section is organized by trials and quantitative assessment
from different modules. Lastly, we also included a simulated
task to analyze the performance of the closed-loop system
stemming from module modifications in a controlled
simulated environment.

6.1 Localizationmodule

The localization module was evaluated by performing tests
in which the robot was remotely controlled to perform
closed paths, measuring the distances between the start and
finish points to assess the algorithms. Due to unforeseen
communication delays from the GPS receiver, which
degraded the efficiency of the GPS data in real-time, only

Fig. 15 Target’s estimated trajectory by the vision module with
tracking correction

the attitude filter was active and the velocity and position
values were estimated using odometry. The filter was
able to compensate the lack of GPS data, as shown in Fig. 12
— that is, the shape and distance travelled after the filtering
is similar to the real ones travelled by the robot, the final
point being close to the origin, the expected finish point.

Figure 12 shows a comparison between the EKF and
the UKF approaches for one of the tests, in which we may
observe that the UKF performed slightly better than the
EKF, with the final point being closer to the origin. Further
testing for comparing of the computational cost in real-time
applications is undergoing.

6.2 VisionModule

The robustness of the vision module when dealing with
unstructured environments was evaluated by performing
several target identification tests in different conditions.
Ambient illumination is a key factor, so we tested the

Fig. 16 Mahalanobis’ distance for the experiment

J Intell Robot Syst (2020) 99:629–646640



Fig. 17 Target’s estimated trajectory by the vision module

algorithms in different situations, such as night time, as
illustrated in Fig. 13. Despite the unfavorable conditions, the
module successfully identified the target.

The target’s surroundings might also pose a difficulty,
so we experimented in conditions where the target might
be camouflaged, as shown in Fig. 14. The module also
identified the target successfully in this case.

To assess target tracking, we performed a short experi-
ment in which a hard turn is forced (manually, via remote
control) while the robot is tracking the target. The code was

adapted so that if the algorithm failed to detect the target
within the region of interest, a second attempt would be
performed on the entire image, giving us graphic informa-
tion of where the object should have been found. Figure 15
shows the estimated trajectory for this experiment, where
pink circles indicate the detection considering the whole
image. Figure 16 shows the Mahalanobis distance calcu-
lated for this, where the red line indicates the distance
threshold defined in Section 5.4. The red and pink circles in
Fig. 15 are the points for which the Mahalanobis distance

Fig. 18 Velocity of the robot’s
wheels with respect to the
trajectory controller based on
MRAC

J Intell Robot Syst (2020) 99:629–646 641



Fig. 19 Errors between the right
and left wheel velocities and
their respective references

was above the defined threshold. As may be observed in
those images, after five frames without valid measures, the
tracking error is identified and corrected. This experiment
shows the importance of the Mahalanobis distance test in
detecting errors in the tracking and guaranteeing that the
target is being correctly tracked.

Using our standard algorithm we performed a new batch
of experiments. Figure 17 presents the results for one
of these experiments, illustrating how the filter smooths
the measurements and improves the final accuracy of the
odometry.

6.3 Motion and Trajectory Control Module

To evaluate Bruce’s propulsion systems, it was suspended
so that the wheels did not touch the ground and a reference
speed was provided for them.

Figure 18 depicts the time-response and convergence of
the measured robot’s wheels velocities (in black) compared
to the reference velocity input (in gray). It is clear that the
speed controller presented negligible error in steady state.
The transient state, on the other hand, was slow and slightly
oscillatory, as expected for the chosen control methodology.
The delay presented in Fig. 18 reflects the internal
robot dynamics and the response time of the closed-loop
system—in other words, it is the mobile robot closed-loop
inherent delay required to achieve a given velocity from an
acceleration input.

The errors between the wheel speeds and their references
is shown in Fig. 19. Since the robot is kept at the

reference speed during the steady state, these results show
that the MRAC speed controller provides a satisfactory
performance.

6.4 Route Following

To evaluate the “Long approach” state, we suspended the
robot and used only its odometry to estimate its position,
as shown in Fig. 20. The black areas are obstacles, the
route planner’s path is magenta, the virtual robot’s course

Fig. 20 Long Approach Test Results

J Intell Robot Syst (2020) 99:629–646642



Fig. 21 The map utilized in the
simulation

calculated by the motion planner is in blue and the real
robot’s estimated path is red.

In the experiment, Bruce followed the first seven
segments as planned, yet uncertainties in the terrain pushed
the system out of the prescribed trajectory in 8th segment.
The system then planned a new route (segments 9 and 10)
to adapt to this situation and successfully reach the goal—
even with additional uncertainties in the final segments.
Note also that the non-smoothness in the transition between
segments, particularly, between 3 and 6, refers to the
planning strategy based on standard RRT. It is however
noticeable the effectiveness of the adaptive controller in
completing the curved trajectory satisfying the robot non-
holonomic constraints.

6.5 Simulation Test Results

The proposed framework’s greatest advantage is its flexibil-
ity in handling the architecture. To test this, we changed the
executive level and evaluated the functional and organiza-
tional levels’ behavior.

To this end, we simulated the RoboMagellan environ-
ment as closely as possible, as shown in Fig. 21. From the
georeferenced map of the competition’s ground (top left)
we built the robot’s cost map (top right) and the simulation
environment in Gazebo (bottom). We used the Pioneer 3-AT
in the simulation, whose structure is very similar to Bruce’s.
Since they are both nonholonomic differential robots.

The test consisted of finding and reaching three different
target cones. The routes planned for each target are shown
in Fig. 22, with the first cone at the top left, the second at
top right, and the third in the bottom part of the figure.

The robot successfully reached the first two target cones,
but failed to complete the challenge due to a collision with a
wall. In the simulated tests, the obstacle avoidance modules
were turned off and the robot used only its odometry
to navigate. Since a simple reactive behavior could have
prevented this failure, this test demonstrates a flaw of a
purely deliberative system.

Figure 23 presents the path calculated by the route
planner (in red) and the actual path executed (in blue) to
reach the first cone. The trajectory control module had to
make adjustments in the first segment because the path
calculated did not consider the robot as nonholonomic.
Once the robot corrected its orientation, at the end of the
first segment in the reference, the rest of the plan is followed
perfectly.

Fig. 22 The planned paths between the 3 traffic cones

J Intell Robot Syst (2020) 99:629–646 643



Fig. 23 Robot following the
reference model

7 Conclusions

Mobile robot competitions propose new challenges every
year and these contribute with the advances in the field
of robotics. To tackle the RoboMagellan competition, in
which the participants must locate and reach specific
targets, we built a robot and proposed a framework for
quickly developing system architectures, upon which we
created a system capable of autonomously navigate outdoor
environments.

The framework was tested in real and simulated
environments, showing that the proposed system is able
to successfully handle the changes in the environment
conditions and elements. The modular approach taken
enabled different configurations of software and hardware
components to be quickly tested, and provides flexibility for
future developments.

Several improvements are currently under investigation.
The route planner module will incorporate the robot’s
orientation and the knowledge that it is nonholonomic.
New modules in the executive level, to handle different
sensors and actuators available, will be tested and different
algorithms for the functional levels are being investigated.
Finally, we plan to test the framework in other robots to
further test its flexibility.

References

1. Alami, R., Chatila, R., Fleury, S., Ghallab, M., Ingrand, F.: An
architecture for autonomy. Int. J. Robot. Res. 17(4), 315–337
(1998)

2. Allmendinger, F., Eddine, S.C., Corves, B.: Coordinate-invariant
rigid-body interpolation on a parametric c1 dual quaternion curve.
Mech. Mach. Theory 121, 731–744 (2018). https://doi.org/10.
1016/j.mechmachtheory.2017.11.023

3. Atsuzawa, K., Nilwong, S., Hossain, D., Kaneko, S., Capi, G.:
Robot navigation in outdoor environments using odometry and
convolutional neural network. In: IEEJ international workshop on
sensing, actuation, motion control, and optimization (SAMCON)
(2019)

4. Bacha, A., Bauman, C., Faruque, R., Fleming, M., Terwelp, C.,
Reinholtz, C., Hong, D., Wicks, A., Alberi, T., Anderson, D., et al.:
Odin: Team victortango’s entry in the DARPA urban challenge. J.
Field Robot. 25(8), 467–492 (2008)

5. Baklouti, E., Amor, N.B., Jallouli, M.: Reactive control architec-
ture for mobile robot autonomous navigation. Robot. Auton. Syst.
89, 9–14 (2017)

6. Bar-Shalom, Y., Campo, L.: The effect of the common pro-
cess noise on the two-sensor fused-track covariance. IEEE
Trans. Aerosp. Electron. Syst. AES-22(6), 803–805 (1986).
https://doi.org/10.1109/TAES.1986.310815

7. Barshan, B., Durrant-Whyte, H.F.: Inertial navigation systems for
mobile robots. IEEE Trans. Robot. Autom. 11(3), 328–342 (1995)

8. Bauchspiess, R.: Sistema de visão para rastreamento de objetos
alvo para robô móvel. Undergraduate thesis, Universidade
de Brası́lia, Brasilia, Brazil. http://bdm.unb.br/handle/10483/36
(2017)

9. Black, H.D.: A passive system for determining the attitude of a
satellite. AIAA J. 2, 1350–1351 (1964)

10. Borges, G.A.: Um sistema Óptico de reconhecimento de
trajetórias para veı́culos automáticos. Universidade Federal da
Paraı́ba, Master’s thesis (1998)

11. Borges, G.A., Lima, A.M., Deep, G.S.: Design of an output
feedback trajectory controller for an automated guided vehicle. In:
XIII Congresso Brasileiro de Automática (2000)

12. Breuer, T., Macedo, G.R.G., Hartanto, R., Hochgeschwender,
N., Holz, D., Hegger, F., Jin, Z., Müller, C., Paulus, J.,
Reckhaus, M., et al.: Johnny: An autonomous service robot for
domestic environments. J. Intell. Robot. Syst. 66(1-2), 245–272
(2012)

13. de Brito, C.G.: Desenvolvimento de um sistema de localização
para robôs móveis baseado em filtragem bayesiana não-linear.
Undergraduate thesis, Universidade de Brası́lia, Brasilia, Brazil.
http://bdm.unb.br/handle/10483/19285 (2017)

14. Bó, A.P.L.: Desenvolvimento de um sistema de localizacão 3d
para aplicacão em robôs aéreos. Master’s thesis, Universidade de
Brasilia, Brasilia Brazil (2007)

15. Cacitti, A., Zapata, R.: Reactive behaviours of mobile manipula-
tors based on the dvz approach. In: IEEE International conference
on robotics and automation, 2001. Proceedings 2001 ICRA, vol.
1, pp. 680–685. IEEE (2001)

16. Chavez, J.R.M.: Zona virtual deformável com filtro de partı́culas
no rastreamento de obstáculos em robótica móvel. Mestrado em
sistemas mecatrônicos, Universidade de Brası́lia (2014)

17. Chenavier, F., Crowley, J.L.: Position estimation for a mobile
robot using vision and odometry. In: Proceedings 1992 IEEE
international conference on robotics and automation, pp. 2588–
2593, vol.3 (1992)

18. Crassidis, J.L.: Sigma-point Kalman filtering for integrated GPS
and inertial navigation. IEEE Trans. Aerosp. Electron. Syst. 42(2),
750–756 (2006)

19. Cristóforis, P.D., Nitsche, M., Krajnı́k, T., Pire, T., Mejail,
M.: Hybrid vision-based navigation for mobile robots in mixed
indoor/outdoor environments. Pattern Recogn. Lett. 53, 118–128
(2015). https://doi.org/10.1016/j.patrec.2014.10.010. http://www.
sciencedirect.com/science/article/pii/S0167865514003274

J Intell Robot Syst (2020) 99:629–646644

https://doi.org/10.1016/j.mechmachtheory.2017.11.023
https://doi.org/10.1016/j.mechmachtheory.2017.11.023
https://doi.org/10.1109/TAES.1986.310815
http://bdm.unb.br/handle/10483/36
http://bdm.unb.br/handle/10483/19285
https://doi.org/10.1016/j.patrec.2014.10.010
http://www.sciencedirect.com/science/article/pii/S0167865514003274
http://www.sciencedirect.com/science/article/pii/S0167865514003274


20. Faisal, M., Hedjar, R., Sulaiman, M.A., Al-Mutib, K.: Fuzzy
logic navigation and obstacle avoidance by a mobile robot in an
unknown dynamic environment. Int. J. Adv. Robot. Syst. 10(1), 37
(2013). https://doi.org/10.5772/54427

21. Fiack, L., Cuperlier, N., Miramond, B.: Embedded and real-
time architecture for bio-inspired vision-based robot navigation. J.
Real-Time Image Proc. 10(4), 699–722 (2015)

22. Fukao, T., Nakagawa, H., Adachi, N.: Adaptive tracking control
of a nonholonomic mobile robot. IEEE Transactions on Robotics
and Automation 16(5) (2000)

23. Fukao, T., Nakagawa, H., Adachi, N.: Adaptive tracking control of
a nonholonomic mobile robot. IEEE Trans. Robot. Autom. 16(5),
609–615 (2000)

24. Gustafsson, F., Hendeby, G.: Some Relations Between Extended
and Unscented Kalman Filters. IEEE Trans. Signal Process. 60(2),
545–555 (2012). https://doi.org/10.1109/TSP.2011.2172431

25. Haralick, R.M., Shapiro, L.G.: Image segmentation techniches.
Computer vision, graphics and image processing (1985)

26. Huan-cheng, Z., Miao-liang, Z.: Self-organized architecture for
outdoor mobile robot navigation. Journal of Zhejiang University-
SCIENCE A 6(6), 583–590 (2005)

27. Hunt, R.W.G., Pointer, M.R.: Measuring Colour, fourth edn. John
Wiley & Sons, Ltd, The Atrium, Southern Gate, Chichester, West
Sussex PO19 8SQ England (2011)

28. Iagnemma, K., Buehler, M.: Editorial for journal of field
robotics—special issue on the DARPA grand challenge. J. Field
Robot. 23(9), 655–656 (2006)

29. Jwo, D.J., Weng, T.P.: An adaptive sensor fusion method with
applications in integrated navigation. J. Navig. 61(4), 705–721
(2008). https://doi.org/10.1017/S0373463308004827

30. Karaman, S., Frazzoli, E.: Sampling-based algorithms for
optimal motion planning. Int. J. Robot. Res. 30(7), 846–894
(2011)

31. Lavalle, S.M.: Rapidly-exploring random trees: A new tool for
path planning. Iowa State University, Tech. rep. (1998)

32. Leonard, J.J., Durrant-Whyte, H.F.: Mobile robot localization by
tracking geometric beacons. IEEE Trans. Robot. Autom. 7(3),
376–382 (1991)

33. Luo, R.: Multi sensor integration and fusion in intelligent
systems. IEEE Trans. Syst. Man Cybern. 19(5), 901–931 (1989).
https://doi.org/10.1109/21.44007

34. Menegaz, H.M.T., Ishihara, J.Y., Borges, G.A., Vargas, A.N.: A
systematization of the unscented Kalmansry. IEEE Trans. Autom.
Control 60(10), 2583–2598 (2015)

35. Meng, W., Liu, E., Han, S.: A novel collaborative navigation archi-
tecture based on decentralized and distributed ad-hoc networks.
In: 2012 IEEE international conference on communications (ICC),
pp. 606–610. IEEE (2012)

36. Mutambara, A.G.: Decentralized estimation and control for
multisensor systems. CRC Press, Boca Rato (1998)

37. de Oliveira, R.W.S.M.: Uma arquitetura de navegação para robôs
móveis. Undergraduate thesis. Universidade de Brası́lia, Brasilia
(2017). http://bdm.unb.br/handle/10483/19224

38. Porto, L.H.S.: Controle de movimento de um robô não-
holonômico com tração diferencial. Undergraduate thesis. Uni-
versidade de Brası́lia, Brasilia (2017). http://bdm.unb.br/handle/
10483/19239

39. Schiffer, S., Ferrein, A., Lakemeyer, G.: Caesar: an intelligent
domestic service robot. Intell. Serv. Robot. 5(4), 259–273 (2012)

40. Silva Porto, L.H., Werberich da Silva Moreira de Oliveira, R.,
Bauchspiess, R., Brito, C., da Cruz Figueredo, L.F., Araujo
Borges, G., Novaes Ramos, G.: An autonomous mobile robot
architecture for outdoor competitions. In: 2018 Latin American
Robotic Symposium, 2018 Brazilian Symposium on Robotics
(SBR) and 2018 Workshop on Robotics in Education (WRE),

pp. 141–146 (2018). https://doi.org/10.1109/LARS/SBR/WRE.
2018.00034

41. Stentz, A.: Optimal and efficient path planning for partially known
environments. In: Intelligent unmanned ground vehicles, pp. 203–
220. Springer (1997)

42. Thrun, S., Montemerlo, M., Dahlkamp, H., Stavens, D., Aron, A.,
Diebel, J., Fong, P., Gale, J., Halpenny, M., Hoffmann, G., et al.:
Stanley: The robot that won the DARPA Grand Challenge. J. Field
Robot. 23(9), 661–692 (2006)

43. Valls, M.d.l.I., Hendrikx, H.F.C., Reijgwart, V., Meier, F.V., Sa,
I., Dubé, R., Gawel, A.R., Bürki, M., Siegwart, R.: Design of
an autonomous racecar: Perception, state estimation and system
integration. arXiv:1804.03252 (2018)

44. Valls, M.I., Hendrikx, H.F.C., Reijgwart, V.J.F., Meier, F.V., Sa,
I., Dubé, R., Gawel, A., Bürki, M., Siegwart, R.: Design of
an autonomous racecar: Perception, state estimation and system
integration. In: 2018 IEEE international conference on robotics
and automation (ICRA), pp. 2048–2055 (2018). https://doi.org/10.
1109/ICRA.2018.8462829

45. Ziegler, J., Werling, M., Schroder, J.: Navigating car-like robots
in unstructured environments using an obstacle sensitive cost
function. In: 2008 IEEE intelligent vehicles symposium, pp. 787–
791 (2008). https://doi.org/10.1109/IVS.2008.4621302

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Rodrigo W. S. M. de Oliveira is a M. Eng. candidate at the University
of Brası́lia (UnB) in the field of Automation and Eletronic Systems.
He gradued as a Mechatronics Eng. at the same university in
2017. His main research interests includes robotics, motion planning,
communication, software engineering, etc. Currently working with
Communication-Aware motion planning.

Ricardo Bauchspiess graduated in Mechatronics Engineeringin 2018
from University of Brası́lia, Brazil. During his graduation he was part
of the universitys robotics team DROID, which won several robotics
challenges such as the 2016 Latin America Robotics Competition.
His research interests include robotics, computer vision and machine
learning.

Letı́cia H. S. Porto is a Master Eng. Candidate at University of
Brasilia and she graduated in Mechatronics Engineering in 2017 at the
same university. She was part of DROID, a robotic team, during her
graduation. Her main research interests includes robotics, control and
software engineering. She is currently working with visual SLAM.

Camila G. de Brito has a Mechatronics Engineering undergraduate
degree at University of Brası́lia and a postgraduate degree in Artificial
Inteligence at IESB - Brası́lia. During her graduation she was a
member and captain of the university’s robotic team DROID, having
won several Brazilian and lantin American championships. She is
currently working with legal data analytics and AI.

Luis F. C. Figueredo is an awarded Marie-Skłodowska-Curie-Action
Fellow at the University of Leeds. Previously, Dr. Figueredo was
a postdoc-fellow at the Federal University of Minas-Gerais and a
fixed-term lecturer at University of Brasilia(UnB). He completed his
PhD at UnB, 2016, being awarded Best-Thesis in Engineering. He
also worked at MIT (MERS-CSAIL) where he received awards for
roboticdemonstrations at ICAPS-14 and IROS-14.

J Intell Robot Syst (2020) 99:629–646 645

https://doi.org/10.5772/54427
https://doi.org/10.1109/TSP.2011.2172431
https://doi.org/10.1017/S0373463308004827
https://doi.org/10.1109/21.44007
http://bdm.unb.br/handle/10483/19224
http://bdm.unb.br/handle/10483/19239
http://bdm.unb.br/handle/10483/19239
https://doi.org/10.1109/LARS/SBR/WRE.2018.00034
https://doi.org/10.1109/LARS/SBR/WRE.2018.00034
http://arxiv.org/abs/1804.03252
https://doi.org/10.1109/ICRA.2018.8462829
https://doi.org/10.1109/ICRA.2018.8462829
https://doi.org/10.1109/IVS.2008.4621302


Geovany A. Borges received a PhD on robotics at Université
Montpellier II, France, in 2002. Since 2003 is associate professor
at Electrical Eng. Dep. Of University of Brasilia, Brazil. In 2012,
he spent a one semester sabatical with MERS-CSAIL research team
at Massachussetts Instittue of Technology. He is coordinator of Lab.
of Automation and Robotics at University of Brasilia. Since 2003,
he has conducted dozens of private and public funded research and
development projects, most of them in robotics, stochastic filtering,
aerospacial systems and biomedical engineering.

Guilherme N. Ramos received the B.Sc. degree in Mechatronics
Engineering from the University of Brası́lia, and the M.Sc. and Ph.
D degrees in Computational Intelligence and Systems Science from
the Tokyo Institute of Technology. He is currently a professor at the
the Computer Science Department of the University of Brası́lia, and
his research interests are robotics, artificial intelligence, data mining,
machine learning, and meta learning.

J Intell Robot Syst (2020) 99:629–646646


	A Robot Architecture for Outdoor Competitions
	Abstract
	Introduction
	Related Works
	System Modeling
	System Architecture
	System Modules
	Navigation Control Module
	Localization Module
	Motion and Trajectory Control Module
	Vision Module
	Route Planner Module

	Experimental Results
	Localization module
	Vision Module
	Motion and Trajectory Control Module
	Route Following
	Simulation Test Results

	Conclusions
	References




