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Abstract
When mobile robot used in large-scale dynamic environments, it face more challenging problems in real-time path planning and
collision-free path tracking. This paper presents a new hybrid path planning method that combines A* algorithm with adaptive
window approach to conduct global path planning, real-time tracking and obstacles avoidance for mobile robot in large-scale
dynamic environments. Firstly, a safe A* algorithm is designed to simplify the calculation of risk cost function and distance cost.
Secondly, key path points are extracted from the planned path which generated by the safe A* to reduce the number of the grid
nodes for smooth path tracking. Finally, the real-time motion planning based on adaptive window approach is adopted to achieve
the simultaneous path tracking and obstacle avoidance (SPTaOA) together the switching of the key path points. The simulation
and practical experiments are conducted to verify the feasibility and performance of the proposed method. The results show that
the proposed hybrid path planning method, used for global path planning, tracking and obstacles avoidance, can meet the
application needs of mobile robots in complex dynamic environments.
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1 Introduction

Path planning is a key technique of autonomous mobile robot
and a hot issue in mobile robot navigation research [1–4].
Generally, the path planning can be classified into global path
planning and local path planning, depending on the nature of
the environments and goals [5].

The Global Path Planning (GPP) for known environment
has been extensively studied by scholars and researchers [6].
Thereinto, A* algorithm is a very effective method used to
search the shortest path in grid map, and it is also one of the
most widely used algorithms at present [7–10]. However, the
path planned by traditional A* algorithm is adjacent to obsta-
cles, which is not conducive to avoiding collision risk when
robot tracking this planned path. Bayili and Polat [11]

proposed a path search algorithm in computer games, namely
limited-damage A*, which considers damage as a feasibility
criterion and takes the collision risk into account to get a safer
path. Park et al. created a safe Global Path Planning (SGPP)
for mobile robots, which is called Modified A* Algorithm
[12]. The computing model of configuration space was used
to handle potential risk and the risk cost is introduced into the
heuristic function of A*. Aine et al. used the guidance ability
of different heuristic functions to develop the Multi-Heuristic
A* algorithm for multi-objective planning of mobile robots in
complex environments [13].

When the environments contain dynamic changes,
Likhachev et al. proposed a real-time A* search algorithm
(D* algorithm) [14, 15] to deal with the changes. Moreover,
Toll and Geraerts developed a Dynamically Pruned A* algo-
rithm for re-planning in navigation meshes [16]. Dakulovi,
et al. proposed a two-way D* algorithm for path planning
and re-planning based on weighted cost map [17]. However,
D* algorithm and re-planning approach are not suitable for
large dynamic environments, their path search time will mul-
tiply with the increase of map size [18]. In addition, the path
generated by A* algorithm is composed of adjacent grid
nodes, and the distance between each path node is very small.
In the process of path tracking, it is difficult for a robot to
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achieve smooth path tracking as there are many path nodes
and very short distance between the adjacent nodes.

When the environment is unknown, the robots need to
deploy sensors for real-time environmental detection and
adopt Local Path Planning (LPP) method to avoid obstacles,
such as artificial potential field, RRTalgorithm, dynamic win-
dow approach (DWA) [19–24]. In [25], the DWAmethod was
improved and applied to dynamic obstacles avoidance. This
method built the grid model of dynamic obstacles with their
velocity prediction, and then made collision avoidance plan-
ning for virtual obstacles. In [26], based on DWA, a Guided
Dynamic Window Approach (GDWA) was proposed, in
which the velocity commands could be chosen to satisfy all
the constraints and maximize an objective function to trade off
speed, clearance and weighted local orientation based on the
local navigable region. Based on the principle of rolling win-
dow, we proposed the real-time motion planning methods
based on environment modeling, analysis and adaptive win-
dow [27, 28] to satisfy the requirements of obstacles avoid-
ance in dynamic complex environments, which can be directly
applied in different mobile robots without the difficulty in
establishing velocity space needed in the DWA method.

In general, GPP can obtain the optimal path in static
environments, but unable to deal with the dynamic chang-
es, and the re-planning approach is hard to get real-time
performance in large-scale environments. LPP can be ap-
plied to unknown dynamic environments with the real-
time obstacles avoidance ability, but is easy to fall into
local minimum and cannot guarantee the global optimiza-
tion. The Hybrid Path Planning (HPP) method aims to
combine these two methods to achieve the purpose of
global optimization and dynamic avoidance for the robot
navigation in large-scale dynamic environments. Lu et al.
used Global Voronoi diagram and Local search D* algo-
rithm to create a HPP algorithm for Mobile Robot navi-
gation [29]. In [30], the visual graph based global path
planning was combined with potential field method to
obtain the shortest path and improve the obstacle avoid-
ance safety for robots. In [31], a global dynamic path
planning method integrated with A* algorithm and DWA
was proposed for both the required global optimal path
and real-time obstacles avoidance, which however re-
quires the accurate dynamic characteristics of the robot
for the calculation of the velocity space. At present, to
the best of our knowledge, the research of HPP is inade-
quate to achieve global path planning and simultaneous
path tracking and obstacles avoidance (SPTaOA).

With the increasing application of mobile robots in
large-scale dynamic environments, such as workshop in
factory, airport, or shopping malls, they face with more
challenging problems in real-time path planning and
SPTaOA. This is the motivation of our work, and the
main contribution of this paper is that 1) a safe A*

algorithm is designed, and the method of finding &
extracting key path points is proposed for smooth path
tracking; 2) real-time motion planning for obstacle avoid-
ance based on adaptive window approach is proposed; 3)
the HPP based on the safe A* and real-time motion plan-
ning is formulated for global path planning and SPTaOA
through the switching of the key path points.

The rest of this paper is organized as follows. In
Section 2, the global path planning based on safe A*
and the method for key path points extraction are pre-
sented. In Sections 3, dynamic window approach is pro-
posed for the real-time motion planning, i.e. local path
planning or obstacle avoidance. In Sections 4, the meth-
od of key path points switching is proposed for simul-
taneous path tracking and obstacles avoidance. And
Sections 5 describes the integrated architecture of the
proposed hybrid path planning. Then in Section 6, sim-
ulation verification and practical application are con-
ducted to show the feasibility and the performance of
the proposed methods. Finally, a brief conclusion is
given in Section 7.

2 Global Path Planning and Key Path Points

Based on the conventional A* algorithm, a safe global path
planning method is designed by using configuration space
approach (C-space). Then, in order to solve the problem that
the planned path has too many grid nodes, key path points are
extracted to facilitate the smooth path tracking of the robot.

2.1 Safe Global Path Planning

The initial grid map of the environment is obtained by using
the SLAM method, then C-space is used to enlarge the obsta-
cles according to the radius of the robot to obtain a C-space
gridmap, shown in Fig. 1a. The following risk functionR(n) is
defined to convert the C-space map to the safe grid map.

R nð Þ� ¼ �α � = � r2 ð1Þ

(a) C-space grid map           (b) Safe grid map

Fig. 1 Diagram of the grid maps
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Where r represents the distance between the node n and the
nearest obstacle node, and α > 0 is the risk factor.

The risk cost of all nodes is evaluated by R(n) to obtain the
safe grid map with risk areas, as shown in Fig. 1b. It is clear
that a layer of risk nodes with decreasing gray values will be
generated near obstacle nodes.

Then, the cost function of the traditional A* algorithm is
modified as

F nð Þ� ¼ �G nð Þ � þ � H nð Þ � þ � R nð Þ ð2Þ
where G(n) is the actual cost from the starting point S to the
current node n, H(n) is the estimated cost from the current
node n to the goal pointG (calculated byManhattan distance),
R(n) is the risk value of the current node n.

On the safe grid map, the global path with high security can
be obtained using the safe A* algorithm with formula (2) for
path planning (by searching in the upper, right, lower and left
directions). The obtained global path is denoted as

Path� ¼ � S; �P1; �P2; �…�; �Pw; �Gf g ð3Þ
where (P1, P2, ..., Pw) are the all connected grid nodes of the
global path.

As shown in Fig. 2a, the shortest path can be obtained
when R(n) is not taken into account; and a relatively safer path
can be obtained when risk assessment R(n) is taken into ac-
count, as shown in Fig. 2b.

2.2 Key Path Points of the Global Path

The key path points are represented as the subset of Path, i.e.

KPath� ¼ � S; �KP1; �KP2; �…�; �KPm; �Gf g ð4Þ

where (KP1, KP2, ..., KPm) ⊂ (P1, P2, ..., Pw).
The method and steps of finding & extracting key path

points KPath from Path are as follows.

Step 1: Store the starting point S in set KPath as the first
key path point and record it as O.
Step 2: Set the next path point (node) of O as M, then
judge whetherM is the goal point G, and jump to Step 5
if M is the goal point.
Step 3: Set the next path point (node) of M as N, then
judge whetherN is the goal pointG, and jump to Step 5 if
N is the goal point.
Step 4: Calculate the risk value R(i) of any node i on the
line segment from O to N. If R(i) ≥ ε, then set M as the
next key path point afterO, and add it to KPath, and then
set O =M, jump to Step 2; If R(i) < ε, then move M one
node backwards along Path, and then return to Step 3.
Step 5: When finding the goal point G, all key path
points are found, then add G to the set KPath as the last
key path point.

The above process of finding & extracting key path
points is shown in Fig. 3 as a example. When in the
process of path tracking of Path, the key path points in
KPath will be regarded as the real-time subgoal point Gt

of the robot.
As shown in Fig. 3b, when judging whether the line seg-

ment ON passes through an obstacle node (i.e. exist R(i) > ε of
any grid node i on the segment ON), the coordinates of node i
on the line segment ON need to be calculated first. The grid
coordinates of node O are denoted as (O.x, O.y), and the
coordinates of node N are (N.x, N.y). Then we can calculate
dx and dy using the following equations.

dx ¼ N:x−O:x
dy ¼ N:y−O:y ð5Þ

1) As shown in Fig. 4a, when |dx| ≥ |dy|, the number of nodes
on the line segment ON is s = |dx|-1, and set Δy = |dy/dx|.
Then the coordinates of the i-th node on the line segment
ON can be calculated as

S

G

The shortest path

S

G

The safe path

(a) (b)

Fig. 2 Diagram of the shortest
path and the safe path
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xi ¼ O:xþ sign dxð Þ � i
yi ¼ O:yþ sign dyð Þ � Δy⋅iþ 0:5b c ð6Þ

Where sign(·) is the sign function, ⌊·⌋ is the integral func-
tion, i = 1,2,...,s.

2) As shown in Fig. 4b, when |dx| < |dy|, the number of nodes
on the line segment ON is s = |dy|-1, and set Δx = |dx/ dy|.
Then the coordinates of the i-th node on the line segment
ON can be calculated as

xi ¼ O:xþ sign dxð Þ � Δx � iþ 0:5b c
yi ¼ O:yþ sign dyð Þ � i ð7Þ

where i = 1,2,...,s, (xi,yi) are the grid coordinates of the node i
on the line segment ON.

3 Motion Planning for Obstacle Avoidance

During the path tracking of mobile robot, it is necessary to
avoid new obstacles using Local Path Planning. In this paper,
a improved real-time motion planning based on adaptive win-
dow approach is used for obstacles avoidance. The planning-
control period of the robot is T.

3.1 Real-Time Detection of Local Environment

As shown in Fig. 5, the robot uses 2D LiDAR to detect the
current information of obstacles, assuming that the LiDAR
coordinate system coincides with the robot coordinate system.
The maximum range of measure is dmax, the field of view is
[Φmin, Φmax], the angular resolution is ΔΦ; the corresponding
scanning angle on the robot heading (θR) is recorded as Φrob.
After each scan, the range measurements obtained by the
LiDAR are {d1, d2, ..., dN}, the scanning angle of the distance
di (i = 1,2,...,N) is Φi =Φmin + (i-1) ΔΦ.

3.2 The Travelable Direction in Planning Window

As shown in Fig. 6, a virtual planning window is designed
within the range of LiDAR, its size (i.e. radius) is rwin. In the
planning window, the distances {d1, d2, ..., dN} are represent-
ed as {l1, l2, ..., lN}, where li = {Φi, dwi} is denoted with the

dx

dy

O

N

(xi,yi)

dx

dy

O

N

(a) |dx|≥|dy|                (b) |dx|<|dy|

Fig. 4 Coordinates of the nodes on the line segment ON

Mobile
Robot

（Blind Area）

d1

d2

d3dmax

R

di

i
...

...

dN

Field of View

XR

rob

Fig. 5 Diagram of the distance measurement of LiDAR

S(O)

G

M
N

O

G

M(O)
N KP1 KP2

S

G

(a)Beginning              (b) Intermediate              (c) Result 

Fig. 3 Diagram of the process of finding & extracting key path point

68 J Intell Robot Syst (2020) 99:65–77



scanning angle Φi and the corresponding distance dwi (i =
1,2,...,N).

1) Firstly, di will be adjusted to obtain dwi according to the
comparison with rwin. The method is: if di ≥ rwin, then set
dwi = rwin; otherwise set dwi = di.

2) According to the radius of the robot (rrob), the edges of
obstacles need to be expanded, and consequently dwi will
be adjusted again. The method is: for any dwj < rwin (j =
1,2,...,N), if dwj + 1 = rwin, then we calculate θ1 = arctan(r-
rob/dwj), and let all the distances in the angle θ1 (i.e. [Φj,
Φj + θ1]) equal to dwj; if dwj-1 = rwin, then calculate θ2 =
arctan(rrob/dwj), and let all the distances in the angle θ2
(i.e. [Φj, Φj - θ2]) equal to dwj, too.

In the planning window, an example of adjusting the initial
range {d1, d2, ..., dN} is shown in Fig. 6. Therefore, in the
planning window, for any li = {Φi, ·dwi}, if dwi = · rwin, it

means that the robot is travelable in the directionΦi (i.e. with-
out obstacle).

3.3 The Moving Direction for the Next Moment

In the planning window, the set of all travelable directions is
called Travelable Angle Region of the robot at the current
moment, which denoted as

Ψpath ¼ Ψpath1 þ Ψpath2 þ…�
¼ � Φi; �dwið Þ Φmin≤Φi≤ � Φmax � and � dwi ¼ �rwin; �i ¼ 1; 2;…;Njf g

ð8Þ

As shown in Fig. 7, the current pose of the robot is (xR, yR,
θR), and its current subgoal is Gt(xGt, ⋅yGt). Then the angle
relative to the heading of the robot is θGR · = · θGt − θR, where
θGt ∈ [−π, ·π], calculated as follow:

& when xGt ≥ xR, the value is

θGt � ¼arctan yGt−yRð Þ= xGt−xRð Þð Þ ð9Þ

& when xGt < xR, yGt ≥ yR, the value is

θGt � ¼arctan yGt−yRð Þ= xGt−xRð Þð Þ þ π ð10Þ

& when xGt < xR, yGt < yR, the value is

θGt � ¼arctan yGt−yRð Þ= xGt−xRð Þð Þ−π ð11Þ

Mobile Robot
l1
l2
l3dmax

rwin

Gt

...

( *)

l*Gtl*saf

θR

l*smo
θGt

lt

Fig. 7 Selection of the moving direction for next moment

Mobile
Robot

Blind Area

d1

d2

d3dmax

R

di

i...
...

dN

Obstacle

Obstacle

dwi

dwj(dj)

rwin

rrob

rrob

1

2

XR

Fig. 6 Diagram of the planning window and the adjustment of the
measured distances

| |t

∆rwin

∆rmin

∆rmax

| |1

| |2

Fig. 8 Functional relation between Δrwin and |Ψ|t
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Given the nearest scanning measurement to θGt is lt = {Φt,
dwt} (where Φt ≈Φrob + θGR), then, in order to move to the
subgoal Gt, the optimal direction for moving at the next mo-
ment is

Φ*
Gt� ¼ �arg min

ϕi∈ψpath
�Φi−Φt�j jð Þ ð12Þ

The corresponding distance on direction Φ*
Gt is dwGt, the

travelable angle region where dwGt locates is denoted as
Ψ(Φ*). If dwGt + 1 = rwin,..., dwGt +m = rwin, dwGt +m + 1 < rwin,
thenΦ*

lef =ΦGt +m is the left edge ofΨ(Φ*); If dwGt-1 = rwin,...,
dwGt-m = rwin, dwGt-m-1 < rwin, then Φ*

rig =ΦGt-m is the right
edge of Ψ(Φ*). For better safety, robot should be as far away
from obstacles as possible (especially the dynamic obstacles).
So, the safest direction in Ψ(Φ*) is

Φ*
saf � ¼ �arg max

ϕi∈Ψ ϕ*� � min �Φi−Φ*
lef

���
���; � �Φi−Φ*

rig
�� ��

� �� �

ð13Þ

Considering the smoothness of the robot’s movement, the
smoothest direction in Ψ(Φ*) is

Φ*
smo� ¼ �arg min

ϕi∈ψ ϕ*� � �Φi−Φrobj jð Þ ð14Þ

As shown in Fig. 7, in the travelable region Ψ(Φ*), consid-
ering both safety and smoothness, Φ*

Gt is adjusted as

Φ*� ¼ �kGtΦ*
Gt � þ � ksafΦ*

saf � þ � ksmoΦ*
smo ð15Þ

where kGt ≥ 0, ksaf ≥ 0, ksmo ≥ 0, and kGt + ksaf + ksmo = 1. Φ* is
the final moving direction for the next moment.

However, if the distance between the subgoal Gt and the
robot is less than rwin, i.e. |RGt| < rwin, and |RGt| < dwt, then
the direction of the point Gt is directly taken as the moving
direction of the robot for the next moment, i.e. let Φ* =Φt.

3.4 The Expected Velocity for the Next Moment

According to the moving direction Φ* and the distance dwrob

on the robot’s heading θR, the motion control of the robot is
designed as

v� ¼ �kv � dwrob � cos Φ*−Φrob
� � ð16Þ

ω� ¼ �kω � Φ*−Φrob
� � ð17Þ

where v is the expected linear velocity, ω is the expected an-
gular velocity, kv and kω are the positive parameters. And if
cos(Φ*-Φrob) < 0, then let cos(Φ*-Φrob) = 0. In order to prevent
overshoot, the linear velocity is restricted to v ≤ |RGt|/T (when
Gt is located in Ψ(Φ

*)), and the angular velocity is restricted to
ω ≤Φ*/T.

3.5 Adaptive Adjustment of the Planning Window

Let |Ψ|t as the value of the currentΨpath, which is proportional
to the total number of the element i whose distance dwi = rwin
in {l1, l2, ..., lN}, i = 1,2,...,N. Considering the weight of direc-
tion, the calculation is as follows

Ψj jt� ¼ ∑
N

i¼1
jli∈Ψpath

kΨcos Φi−Φrobj jð Þ ð18Þ

where kΨ > 0, and if |Φi-Φrob | > 90° then let | Φi-Φrob | =90°.
According to the value |Ψ|t, the rules for the adaptive ad-

justment of the planning window are as follow: 1)When |Ψ|t is
large, increase rwin, expand the planning window to find better
direction Φ*; 2) When |Ψ|t is small, reduce rwin, decrease the
planning window to find the travelable path in narrow space.
Let rwin(t) be the current value of rwin, then the value of the
next moment is

rwin t þ 1ð Þ� ¼ �rwin tð Þ � þ �Δrwin ð19Þ

Robot

KPi+1

KPi
Pj

|RGt|min

rwin

New
obstacle

(a) The subgoal Gt(=KPi) will be switched to KPi+1

Robot

KPi+2

KPi

New
Obstacle

Obstacle

KPi+1

New
Obstacle

New
Obstacle

(b) The subgoal Gt(=KPi) will be switched to KPi+2

Fig. 9 Diagram of the switching of the subgoal
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The upper and lower bounds are constrained by

rrob� < �rwin t þ 1ð Þ� < �dmax ð20Þ

And Δrwin will be adjusted adaptively according to |Ψ|t. The
calculation is as follows:

& when |Ψ|t < |Ψ|1,

Δrwin� ¼ �Δrmin ð21Þ

& when |Ψ|1 ≤ |Ψ|t ≤ |Ψ|2,

Δrwin� ¼ Δrmax−Δrminðð Þ= Ψj 2−j jΨ j1
�� �

Ψj jt− Ψj j2
� �

þΔrmax ð22Þ

& when |Ψ|t > |Ψ|2,

Δrwin� ¼ �Δrmax ð23Þ

where Δrmax > 0, Δrmin < 0, the parameters |Ψ|2 > |Ψ|1 > 0. The
relation between Δrwin and |Ψ|t is shown in Fig. 8.

4 Path Following Based on Key Path Points

In the navigation of mobile robot, the key path points in
KPath = {S, KP1, KP2, ..., KPm, G} are taken successively
as subgoal Gt for the real-time motion planning, which can
achieve smooth tracking of the global path and obstacles
avoidance simultaneously.

However, in order to achieve the coordinated integration of
the path tracking and the obstacles avoidance, what’s impor-
tant is that the robot needs to switch the key path points asGt

according to the current information of environment. The
method and steps are as follows.

Step 1:When the robot moving from the starting point S,
it takes KP1 as the subgoal, that is, set Gt =KP1.
Step 2: When the distance between the robot and the
subgoal Gt (=KPi) is less than the threshold |RGt|min,
the subgoal will be switched to the next key path point,
that is, set Gt =KPi + 1.
Step 3:WhenGt =KPi and a path node Pj on the section
(KPi,..., Pj,..., KPi + 1) of Path appears in Ψpath of the
planning window, the subgoal will be switched to the
next key path point, that is, set Gt =KPi + 1 (As shown
in Fig. 9a).

Safe A* algorithm Global path: Path = {S, P1, P2, ... , Pw, G}

Key path point: KPath = {S, KP1, KP2, ... , KPm, G}

LiDAR: {d1, d2, ..., dN} Adaptive window approach

Sub-goal: Gt (= KPi, i = 1, 2, , m)

Moving direction: Φ*Expected velocities: (v, )

GPP

LPP

Environment T

Robot: (xR, yR, R)

Key point finding

Key point switching

Goal: G
Fig. 10 Overall architecture of
the proposed hybrid path
planning

ObstacleRobot

G
S

Obstacle

Robot

GS

(a) The track when ksaf =0.1   (b)The track when ksaf =0.3     (c) The curves of (v, ) and rwin

Fig. 11 Results of motion
planning in static environment
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Step 4: When Gt =KPi and the key path point KPi + j

(j > 0) appears in Ψpath of the planning window, the sub-
goal will be switched to Gt =KPi + j. (As shown in Fig.
9b).

Using the above methods, the current subgoal is con-
tinuously switched to the following key path points un-
til Gt =G.

In the subgoal switching, the distance comparison is used
to determine whether the path node Pj (or the key pointKPj) is
located in Ψpath. For example, if the distance between the robot
R and the path node Pj is |RPj|, the angle between the line RPj
and the heading of the robot is ∠(RPj) (the corresponding
scanning angle is ΦRPj), the measured distance corresponding
to this direction is dwRPj, then the path node Pj is located in
Ψpath if | RPj | < dwRPj. Similarly, the key point KPj can be
judged using this distance comparison method.

5 The Process of Hybrid Path Planning

Combining the above elements, the process of hybrid path
planning is shown in Fig. 10. For the real-time navigation in
large-scale dynamic environments, the path planning and path

tracking are executed separately. That is, whenever a goal
point G is given, the global path is first planned by the safe
A* algorithm and its key points are extracted using key point
finding algorithm. Then, the robot uses adaptive window ap-
proach (motion planning) with key point switching to track
the global path and avoid obstacles.

This is a new HPP formulated with safe A* algorithm and
adaptive window approach for global path planning and
SPTaOA, and the advantage is that it is a general method for
mobile robots i) without the modeling requirement for veloc-
ity space computing which needed in the DWA method [31],
ii) can be used in dynamic environments in all sizes, even in a
large-scale environment (i.e. will not affected by the size of
the environment).

6 Experiments and Results

6.1 Simulation and Verification

ROS (Robot operating system) is used for the simulation ex-
periments. The robot is simulated as a block with diameter of
0.5 m. The maximum linear velocity is set to 0.5 m/s and the
maximum angular velocity is set to 0.8 rad/s. The motion
planning period T = 50 ms. kv = kω = 1.0.

Dynamic obstacle
Robot

(a)Avoiding the First Dynamic Obstacle   (b) Avoiding the second Dynamic Obstacle

Fig. 12 Results of motion
planning in dynamic environment

S

G

Fig. 13 The result when rwin = 1.8 m and remain unchanged

S

G

Fig. 14 The result when rwin = 7 m and remain unchanged
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6.1.1 Verification of the Motion Planning

In order to verify the performance of the motion planning
based on adaptive window approach, the simulation results
of the robot in unknown static environment are given as
shown in Fig. 11. The red block represents the dynamic ob-
stacle, and the blue represents the track of the robot from the
point S to point G result from the real-time motion planning.
Where, Fig. 11a is the track when (kGt = 0.6, ksmo = 0.3, ksaf =
0.1), Fig. 11b is the track when (kGt = 0.5, ksmo = 0.2, ksaf =
0.3). It can be seen that the track (with bigger parameter ksaf)
has a certain distance from obstacles, which is of benefit to
safety. Figure 11c is the curves of the velocities (v, ω) of the
robot and the radius of the planning window.

As shown in Fig. 12, on the way to the goal, the robot
encounters two dynamic obstacles successively. The experi-
mental results show that when the obstacle suddenly appear in
front of the robot, the robot can change its heading quickly,
and safely avoid the moving obstacle. So the motion planning
method has good adaptability for dynamic environment.

Furthermore, using the motion planning, if the planning
window is too small, as shown in Fig. 13, the robot can not
avoid obstacles in time; if the planning window is too large, as
shown in Fig. 14, the robot may not find the optional moving
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G

Path
Track

Key path points

KP5

KP4

KP3

KP2

KP1

(a) The environment has not changed

Path
Track

New obstacle

KP5

KP4

KP3

KP2

KP1

(b) The environment has changed (has new obstacles)

Fig. 16 Global path planning and tracking

(a) AGV robot

Global path
Travelable area

S

G

Aisle

Workspace

(b) Grid map and global path

Fig. 17 AGV robot and planned global path

S

G

Fig. 15 The result when rwin is adjusted adaptively
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direction (only when walking along a wall). When using the
adaptive window approach, the robot can dynamically adjust
the size of the planning window according to the environmen-
tal information, the resulting track is shown in Fig. 15. As can
be seen, the track in Fig. 15 is significantly better than that in
Fig. 13 and Fig. 14.

6.1.2 Verification of Global Path Tracking and Obstacle
Avoidance

The result of global path planning in static environment is
shown in Fig. 16a. It can be seen that the path planned by
the safe A* is not the shortest one, but it keeps a certain safe

distance from the obstacles. Then, using the real-time motion
planning and the switching of the key path point for subgoal,
the robot tracks the global path smoothly and finally arrives at
the goal point G without collision. The results show that the
methods of motion planning and subgoal switching can effec-
tively achieve simultaneous path tracking and obstacles avoid-
ance (SPTaOA) in static environment.

To further verify the impact of new obstacles on path track-
ing, different obstacles are added around the key points in the
scenario of Fig. 16b (map and global path are the same as
Fig. 16a. The final result of path tracking is shown in
Fig. 16b. It can be seen that no matter the new obstacle is in
front, behind or even completely covering the key point, the

New
obstacle
#1

(a)Starts from the starting point      (b) Encountering a new obstacle in path tracking

New
obstacle
#1

New
obstacle
#1

(c) Avoiding the obstacle            (d) Returns to the path after bypassing the obstacle

New
obstacle

#2

New
obstacle

#2

e) Encountering another new obstacle at the door        (f)Avoiding the obstacle

(g) Moving along the path after bypassing the obstacle  (h)Arrived at the goal point smoothly

Fig. 18 The snapshots of the
AGV robot video of path tracking
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robot can always avoid the obstacles in time and switch to the
next key point as subgoal, and finally returns to the global path
for the goal G. Therefore, the results show that the adaptive
window approach and the key point switching can effectively
achieve simultaneous path tracking and obstacles avoidance
(SPTaOA) in dynamic environment.

6.2 The Tests of Practical Application

As shown in Fig. 17, the application tests were carried out on a
autonomous AGV robot (mobile industrial robot) using
LiDAR-based SLAM. Figure 17a is a picture of the AGV
robot (drived by brushless DC motors, MAX 3000RPM)
using LMS111 LiDAR and on-board Industrial Computer
with i7–4500 CPU and 4GB RAM; The software is desiged
based on ROS. Figure 17b is the grid map of the working
environment and the global path obtained by using the safe
A* algorithm. The maximum velocity of the AGV’s driving
wheel is able to reach 1.0 m/s. And in the tests, we set the
motion planning period as T = 80 ms, and kv = kω = 1.0.

With regard to the planned global path of Fig. 17b, the
process of real-time path tracking and obstacle avoidance are
shown in Fig. 18 (snapshots (a)-(h)). It can be seen that the
AGVrobot, using the motion planning, starts from the starting
point S, guided by the key path points, can immediately avoid
the emerging obstacles, and then return to the planned path to
reach the goal point G smoothly.

When AGVarrived at the goal point G, we set the starting
point S as new goal point. The process of path tracking
starting from the avoidance of obstacle #2 are shown in

Fig. 19. Where Fig. 19d is the track of AGV robot to show
the path transverse by the robot to reach the goal successfully.
It can be seen that the AGV robot guided by the key path
points of global path, can avoid the new obstacles #2 and #1
again, then reach the goal point (the original S) smoothly.

Statistical analyses of the tests reveal that the motion plan-
ning algorithms (i.e. LPP) is executed in less than 12ms on the
on-board Industrial Computer (i7–4500 CPU, 4GB RAM),
and the LPP algorithms with key point switching is executed
in less than 17 ms. However, if the robot rurnning A* algo-
rithm in every motion planning period for GPP, the time con-
sume is more than 20-50 ms, and it will exceeds the preset
period Twith the size increase of environment.

7 Conclusion

In this paper, the global path planning, tracking and obstacle
avoidance for mobile robot in large-scale dynamic environ-
ments are studied. In order to meet the requirement of real-
time navigation, a hybrid planning method is proposed, which
uses the safe A* algorithm for global path planning and mo-
tion planning for path tracking and obstacle avoidance. More
specifically, the designed safe A* algorithm simplifies the cost
functionwhich has risk evaluation. The real-time motion plan-
ning method based on adaptive window is able to achieve
smooth and collision-free global path tracking through the
proposed strategy of the extraction and switching of key path
points as the subgoal. Experimental results show that this hy-
brid path planning method combines effective A* and real-

New
obstacle
#2

(a)Avoiding the obstacle #2 (b)Moving into (through door) the workspace

New
obstacle
#1

(S)
Global path
AGV Robot

#2

#1

(c)Avoiding the obstacle #1 (d)The track of AGV robot 

Fig. 19 The snapshots of the
video of path tracking and track of
the AGV robot
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time motion planning, which can meet the practical applica-
tion requirement of mobile robots in large-scale dynamic
environments.

Although GPP and LPP has been well studied separately,
this is the first HPP formulated with safe A* algorithm and
adaptive window approach for global path planning and
SPTaOA, which without the modeling requirement for veloc-
ity space computing and can be used in dynamic environ-
ments free to the size of the scenes. However, as many param-
eters are determined by experiences and simulation experi-
ments, our future work will be focused on how to optimize
them effectively.
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