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Abstract
This paper presents a new bi-objective safety-oriented path planning strategy for robotic manipulators. Integrated into a
sampling-based algorithm, our approach can successfully enhance the task safety by guiding the expansion of the path
towards the safest configurations. Our safety notion consists of avoiding dangerous situations, e.g. being very close to the
obstacles, human awareness, e.g. being as much as possible in the human vision field, as well as ensuring human safety
by being as far as possible from human with hierarchical priority between human body parts. Experimental validations are
conducted in simulation and on the real Baxter research robot. They revealed the efficiency of the proposed method, mainly
in the case of a collaborative robot sharing the workspace with humans.
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1 Introduction

In recent years, human-robot collaborative tasks has become
a very active research field. In manufacturing, it is
particularly interesting to carry out collaborative tasks that
involve humans and industrial robots. However, the latter
have been largely seen as dangerous machines that are kept
inside security fences.

Therefore, before sharing the work space and interacting
with a potentially harmful equipment, safety issue has
always to be guaranteed. In this regard, all phases of the
manipulator design have been considered. At the hardware
level, modifications of the intrinsic properties of the robot
can make it safer. For instance, by using light-weight
materials [1], compliant passive systems [2] or safe actuator
designs [3].
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Another strategy is aimed at reacting in a fast and
reliable way to an unexpected collision. To do this, collision
detection methods have been developed [4, 5]. In the
case of unforeseen contact, a process of collision reaction
[6] is started to escape from the hazardous situation. An
implementation of a realtime system that ensures human
safety while being at very low distances of separation with
a standard industrial robot is proposed in [7], the system
relies on accurate measurements of human positioning in
the workspace using a motion-capture system.

An optimization-based method that considers both the
design and the control of a safe human-care robot is pro-
posed in [8], that method has been only validated in simu-
lation scenarios.

Ensuring safety during a human-robot cooperative task
can also be done by avoiding any potential collision. The
main pre-collision strategy consists in developing a realtime
control system that senses the environment and adapts the
robot’s behavior according to an updated danger assessment
[9–11].

In unstructured environments involving humans, it is
clear that a realtime process is an indispensable tool to
preserve safety. However, the overall efficiency will rely
on the way the initial trajectory is defined, for instance, by
providing a path that guarantees the human’s safety using
a motion planning algorithm, and then modify that path in
realtime to deal with the dynamic environment.
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Most of the modern motion planning algorithms for
robotic systems with high degrees of freedom are, generally,
based on sampling methods since an exact consideration of
the obstacle space is practically impossible [12].

In [13], a safety criterion was included in several
motion planning algorithms. It is a simple version of the
Kinetostatic danger field [14] which takes into account
the overall position of the manipulator with respect to the
obstacles. The safety measure is then embedded into a
heuristic function that guides the exploration of the free
configuration space.

An interesting concept of “Legible motion”, which is a
motion that communicates its intent to a human observer,
has been proposed in [15]. However, as pointed out by the
authors, this concept is suffering from several limits, for
instance optimizing legibility leads to learning and opti-
mizing non-convex functions in high-dimensional spaces.

A manipulation planner especially designed for human-
robot interaction was presented in [16]. It generates safe
paths that also improve the feeling of comfort perceived
by humans during the interaction task. Human-based
indications, such as his visibility and posture, lead to the
development of specific cost functions that help the planner
to select an appropriate path.

2 Contribution

The aim of this paper is to introduce a new safety-oriented
motion planning approach for robotic manipulators opera-
ting in unstructured and human-populated environments
(Fig. 1).

Our contribution is proposing a bi-objective optimization
method combined with an exact collision checker algorithm
[17]. Our method aims to help any sampling-based motion
planning algorithm with asymptotic optimality feature to
find the safest path, we also introduce a new variant of

bi-directional RRT* that integrates our objective functions.
The objectives are mainly evaluated in the Configuration-
space (C-space) for reasons of speed and efficiency. Our
approach relies on reducing the probability of a hazardous
situation to occur by maximizing the clearance of the path.

In a manufacturing context, our algorithm will find a
compromise between safety and performance of the task.
However, it is obvious that our algorithm provides the safest
path for a static environment as it is the result of a motion
planning algorithm, therefore this path should be modified
online to deal with a dynamic environment in realtime. The
latter task will be the focus of our future work, however, it
is worth mentioning a related work in the literature [18].

3Motion Planning Algorithms

Despite their conceptual simplicity, sampling-based algo-
rithms have been proven as an effective way to solve com-
plex problems in high-dimensional configuration spaces,
where the use of deterministic methods is computationally
infeasible [19]. The key idea of such an approach is to avoid
the exact representation of the C-space by only consider-
ing the information provided by randomly sampled states.
Then, the problem resolution lies in finding a succession of
collision-free connections between the start configuration to
a state that respects the goal constraints.

Probably the most widespread sampling-based planners
that employ randomization are the rapidly-exploring ran-
dom tree (RRT) [20] and the probabilistic roadmap algo-
rithm (PRM) [21]. Their inherent simplicity and effective-
ness in finding a feasible path in complex spaces have made
them a reference in many applications, including diverse
robotic areas. These algorithms have the property of being
probabilistically complete [22][23], that means their prob-
ability to find a solution, if one exists, approaches one as
the number of samples tends toward infinity. However, the

Fig. 1 Interactive task detection
and safe execution
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quality of the provided solution is not taken into account
during the path elaboration.

Recent researches have led to the development of
numerous planners, most of them are extensions of RRT or
PRM. In particular, the notion of cost has been introduced
to assess the quality of a path. RRT* and PRM* [24] add
to their respective basic version the property of being asym-
ptotically optimal, that means that the cost of the returned
solution converges almost surely to the optimal one.

Yet, these planners might lead to a solution that is far
from optimal in the case of applications that are subject
to time constraints, this is mainly because of the slow
convergence rate. In particular, this would be a major
drawback in our case because of the high dimension of
the C-space and the relatively important computational
complexity of the cost functions, those two elements may
strongly impact the convergence process.

The changing needs in many fields that implies motion
planning has resulted in the development of algorithms that
focus primarily on finding the best compromise between
the quality of the returned solution and the time needed to
obtain it, those algorithms are potentially the most suitable
for our application. The next paragraphs give an overview
of some of those motion planning algorithms.

PRM and its extensions belong to the family of multiple-
query algorithms. The main principle is to construct a
topological graph that connects sampled states of the C-
space; this defines a roadmap. This category of planners is
particularly suitable for solving problems where multiple
initial state and/or goal states are queried.

Even if PRM* guarantees asymptotic optimality, this
condition is fulfilled at the expense of an explosive growth
of the constructed graph. Dobson et al. [25] proposed the
SPArse Roadmap Spanner (SPARS) algorithm, where the
main idea is to relax the optimal property of PRM* to a
near-optimal one by using graph spanners [26]. By doing
so, a subgraph that contains only useful states and edges is
constructed alongside the densest optimal graph. This has
shown that better path quality solution can be provided for
queries that are time-constrained. In an advanced version,
SPARS2 [27], the near-optimally feature is preserved
without the need for the dense graph to be developed. This
allows for a considerable reduction in memory requirements
and a production of high-quality path faster than the original
version. In [28], a new stopping criterion for PRM-like
methods is proposed, it yields a near-optimal solution within
a finite time interval.

However, the above improvements in roadmap-based
algorithms only apply when the path length is the unique
criterion to optimize. In fact, some inherent features make
them inappropriate within the context of this study. The
main drawback comes from the graph representation that
uses non-oriented edges to define paths between states.

As a result of this drawback, these algorithms have to
proceed with a two-phase approach: the construction of the
graph in the first instance, and then the query phase that
seeks for the best solution. That means that the global cost
evolution cannot be extracted during the graph construction.
As shown in Section 6, this data can significantly improve
the performance of the optimization process if it is
integrated into heuristic techniques. Moreover, for the same
reason, those planners do not allow the specification of a
termination condition when a solution that satisfies some
criteria is found.

With the Fast Marching Trees algorithm (FMT*) [29],
the authors suggest an efficient method for solving
complex motion planning problems in high-dimensional
configuration spaces. For a given problem, a single batch
of samples is generated initially. Paths are then constructed
using a marching method and stored in a tree structure.
The sequential structure used here allow for a directly
ordered search because the knowledge of the C-space does
not evolve while the tree is being built. In addition, the
planner uses a “lazy” behavior in its dynamic programming
recursion. Thus, faster convergence rate to the optimal
solution, compared to RRT* and PRM*, has been put
forward by numerical experiments. Nevertheless, FMT*
does not have the anytime property and, hence, suffers from
two main inconveniences: (1) the whole solving process
has to be restarted if the current resolution (i.e the C-space
coverage) is too low, (2) no intermediate solution can be
reported and so no time constraint on the planning task can
be imposed.

An interesting quasi-anytime version of FMT* has been
proposed in [30]. The presented MPLB planner successively
restarts the search with a refined resolution and reuses
samples and connections that were previously found. It also
uses a heuristic that orders the promising nodes and rejects
the one that cannot improve the current best solution. Yet,
once again, the planner returns only one solution per batch
and the running time is almost twice as long as FMT* for
the same final resolution.

Similarly to [28], tree-based asymptotically near-optimal
algorithms have been developed. LBT-RTT [31] is able to
find solution paths with cost converges to an approximation
factor of 1 + ε of the optimal one. This algorithm offers a
compromise between the speed of RRT and the path quality
of RRT*. In this planner, many calls to the collision checker
can be avoided, on the other hand, a lot of cost estimations
on the edges have to be carried out. As, in our case, the
collision checking is included in the cost evaluation (via the
clearance objective), this approach is not suitable.

A widely used strategy in motion planning consists of
setting up a bi-directional search to solve single-query
problems. In this sense, a bi-directional variant of RRT ,
RRT-Connect [23], is able to find a solution much more
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quickly than its original version, particularly in complex
scenarios that involve high-dimensional space and cluttered
environment. Upgrading to asymptotically-optimal planner
has been proposed in [32] and [33]. Both papers present
adapted versions of bi-directional RRT* with different
heuristics to speed up the search.

The bi-directional RRT* seems to be the most suitable
approach in the context of this study, this is because it
meets the requirements in terms of computational time
and quality of the provided solution and can be easily
adapted to support our objective combination strategy.
However, heuristics presented in the two previous works are
primarily appropriate for the standard objective that aims at
minimizing the Euclidean distance and their impact on the
performances of the planner are not totally clear.

4 Bi-Objective Optimization Path Planning

In this section, we present two objective functions that will
be evaluated for each potential path segment connecting
two random states. Obviously, the computation time of the
algorithm depends on the complexity of the objective func-
tions, therefore we focused our efforts on the development
of both relevant and computationally efficient objective
functions. Both objective functions are positive functions.

4.1 Objectives Combination Strategy

The conventional way of solving a bi-objective optimization
problem is to perform a weighted aggregation of all the
objective functions in order to obtain a single-objective.
Thus, two positive objectives, f1 and f2, can be linearly
combined with the following function lc:

lc(f1, f2) = α1f1 + α2f2 (1)

where α1 and α2 are positive constants. This combination
represents the cost of a path. Subsequently, the optimization
process will select the path that minimizes or maximizes
the sum of objective functions depending on the desired
performance outcome.

In the case of a mixed problem, maximizing f1 and
minimizing f2 for instance, a simple solution is to change
the sign of one of the objectives. For instance, in our case
f ∗

2 = −f2 becomes the new objective to maximize. A new
question, however, arises: is-it possible to unconditionally
control the influence of each objective on the final result?
In fact, it depends on several parameters: the value of
the weighting factor, obviously; the definition of the
cost function; and the conditions in which the task is
executed. The last point is mainly cumbersome, this is
because our objective is to develop a method that can be
applied regardless of the environment in which the robot

is operating. An example to illustrate the last point is for
the clearance objective function, assuming that it is simply
defined as the distance to the nearest obstacle, this objective
would have less impact in a cluttered space where the robot
has no choice but to pass close to obstacles than in a
free space. On the other hand, in a clear environment, the
clearance objective will tend to prevail over others aside
from the weighting factors.

To overcome the above limitations, we developed a
cost combination strategy that manages the effect of each
objective in an efficient way regardless the operating
environment.

An example to illustrate our cost combination strategy
is given in Fig. 2, which shows two path segments P ∗
and P̂ in a sampling-based tree planner. P ∗ and P̂ are the
unique paths from the root of the tree qstart to q∗ and q̂

respectively. Without loss of generality, let us suppose that
we are interested in maximizing f1 and minimizing f2,
our strategy to compare P ∗ and P̂ can be summarized as
follows:

– We choose a set of weighting factors α = {α1, α2},
where αi ≥ 0 and α1 + α2 = 1.

– Let us define Cost(q∗) = v∗ = [f ∗
1 f ∗

2 ]T is the cost
associated to P ∗, and Cost(q̂) = v̂ = [f̂1 f̂2]T is the
cost associated to P̂ .

– We define the following mapping function:

g : R2≥0 → R≥0

g(v1, v2) = α1
v1[1]
v2[1] + α2

v2[2]
v1[2]

(2)

Fig. 2 Cost function comparison between paths P1 and P2 to figure
out to which one the state qnew will be connected in a sampling-based
tree planner
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where v[i] denotes the ith element of vector v.
• If g(v∗, v̂) > g(v̂, v∗), the cost v∗ is considered better

than v̂ (noted v∗ �g v̂) and the path P ∗ is preferred
over P̂ , otherwise the contrary applies.

The proposed strategy can be seen as a dynamic scaling
strategy of the objective functions in such a way that the
optimization is correctly taking place in non-dimensional
and unit-less space.

4.2 Clearance Objective

To ensure safety of the robot as well as humans interacting
with it, the first objective function to consider is the distance
between the robot and the obstacles or humans. We can
estimate the clearance along a path segment joining two
configurations qa and qb as the distance provided by the
continuous collision checking method [17], please refer to
Appendix A for more details.

When the robot’s environment is shared with humans,
the clearance objective has to consider human safety at
the highest level. To this end, each obstacle evaluated in
Algorithm 4 (in Appendix A) is combined with a weighting
factor (wf ) that reflects the will to get away from it.
We classified obstacles in four categories and assigned
a specific value to each, by increasing order of safety
priority:

– For an object, wf = 1
– For a human arm or leg part, wf = 0.8
– For a human torso, wf = 0.6
– For a human head, wf = 0.5

Note that another set of weighting factors can be used as
long as it satisfies the above order of safety priority.

Figure 3 illustrates the purpose of the above weighting
factor choice. Recall that our objective is to maximize the
distance to obstacles, therefore an obstacle is perceived
closer than it actually is when its distance is multiplied by a
smaller weighting factor.

To take this parameter into account, the procedure
presented in Algorithm 4 remains exactly the same, but the
sorting rules of the priority queue that gathers the segments
have to be adapted. To know which of two segments s1 and
s2 needs to be evaluated first, we call Algorithm 1. In doing
so, weighting factors are considered only when the two
segments are ensured to be collision free. If this is not the
case, we keep evaluating the most likely colliding segment
first to avoid computational overhead.

The cost resulting from the combination of two path
segments, which have costs of c1 and c2, is computed by
considering the worst case : Note that, the cost returned by
Algorithm 4 is no longer necessarily the minimum obstacle
distance but it is the one evaluated as the most dangerous.

d= 0.799 md= 0.479 m

Fig. 3 Effect of the weighting factor: even if the balloon is closer to
the robot than the human head, the latter is considered more dangerous
when the distances are multiplied by the corresponding factors

It always has to be associated with its weighting factor,
particularly for the cost combination.

4.3 Human Awareness Objective

Another important issue regarding the human safety is the
human-robot awareness [34]. When one or many people
enter in the vicinity of the robot (inside or just outside
the reachable space), it is necessary to ensure that the
manipulator movements are seen by everyone, otherwise
that may increase the risk of creating a dangerous situation.
In order to achieve this, we developed an objective function
that focuses on keeping the robot arm in the humans’ field

Algorithm 1 Priority queue sorting rule.

procedure PRIORITY SEGMENT(s1, s2)
if s1.δ > 0 AND s2.δ > 0 then

if (s1.δ ∗ s1.wf ) < (s2.δ ∗ s2.wf ) then
return s1

else
return s2

end if
else

if s1.δ < s2.δ then
return s1

else
return s2

end if
end if

end procedure
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of view. The objective is to minimize the angular distance
between the human gaze direction and the axis defined by
the robot’s end-effector position and the human head, 3D
occupancy grid of the human awareness is given in Fig. 4.
For the cost of this objective between two configurations qa

and qb, we linearly interpolate along the path and return the
worst value among the tested states.

4.4 Cost function definition

Our cost function has two definitions depending on the root
of the segment:

– By default, the cost function for a state q∗ (Fig. 2), is
defined as follows:

Cost(q∗) =
[

P ∗.c × P ∗.wf

P ∗.c̄

]
∈ R

2≥0 (3)

Where P ∗ is the unique path from the root of the tree to
q∗. P ∗.c and P ∗.wf are respectively the clearance cost
and weighting factor defined in Section 4.2. P ∗.c̄ is the
human awareness cost defined in Section 4.3.

– When the root is different from the tree root, we define
the cost function as follows:

Costq∗(qnew) =
[
L(q∗, qnew).c × L(q∗, qnew).wf

L(q∗, qnew).c̄

]

(4)

where the function L(qa, qb) denotes the straight-line
path from qa to qb:

L(qa, qb) = (1 − λ)qa + λ qb : λ ∈ [0, 1] (5)

Note that the cost in Eq. 4 consists of the worst costs
of clearance and awareness objectives among the states
between q∗ and qnew, which are obtained by linear
interpolation.

We also define a new operator ⊕ to combine two cost
functions:

Cost(q∗) ⊕ Cost(q̂) = min
(
Cost(q∗), Cost(q̂)

)
(6)

where min(v1, v2) is the componentwise minimum of the
vectors v1 and v2.

Given a tree G = (V , E), where V and E are respectively
the vertices and edges, in the same way as in [24], we
introduce the function Parent : V → V as a function that
maps a vertex v ∈ V to the unique vertex u ∈ V such that
(u, v) ∈ E. By convention, if q0 ∈ V is the root vertex of
G, Parent(q0) = q0.

It can be easily verified that:

Cost(q) = Cost(Parent(q)) ⊕ CostParent(q)(q) (7)

5 Variant of Bi-directional RRT*

Now we introduce our proper variant of the bi-directional
RRT* algorithm, this algorithm uses effective methods
that limit as much as possible the inherent computational
burden of our cost estimation and provide a high-quality
solution in a reasonable time. Some of the implemented
heuristics are inspired by those presented in [32] and [33],
but adapted to our case of bi-objective and greatly improve
the performance in this context.

Our main contribution here lies in the development
of techniques that are particularly suitable for the use
of minimax objective functions (that aim at finding the
“best” worst case). Furthermore, we integrated the C-Forest
parallelization framework [35] to take full advantage of the
multi-core technology that almost every recent computer is
equipped with.

First, let us introduce the variant of RRT*, Algorithm 2,
that we developed for our framework. It is mainly based on
the conventional implementation of RRT* proposed in [24]
while the difference is highlighted for clarity purpose.

Algorithm 2 shows that, similarly to RRT*, the following
procedure is applied each time an attempt is made to add a

Fig. 4 3D occupancy grid of the
human awareness: colors vary
from green to red according to
the human gaze deviation from
the end-effector. If the distance
between the human and the
end-effector is greater than a
threshold, the criterion is then
considered fulfilled
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state in the tree: a connection is attempted between a random
state and its nearest state in the tree. If the resulting path
segment is allowed, that means that it satisfies all constraints
and remains in the free space, then the state is added to
the tree as a leaf. A second phase intends to ascertain
the best position of this state in the tree by testing the
rewire options with its nearest neighbors, and then keeping
the connections that maximize or minimize a given cost
function. The rewiring process is illustrated in Fig. 5.

Our bi-directional RRT* planner is based on the above-
mentioned variant of RRT*, and consists primarily of a

merger between RRT-Connect and RRT*. As in previous bi-
directional RRT algorithms, two complementary operations
are executed at each iteration. First, one of the trees is
extended toward a newly sampled state (Fig. 5a) and, if it
succeeded, it is attempted to connect the two trees through
this latest configuration (Fig. 5b). In prior works [32, 33],
two trees are grown from the start and goal nodes and
expanded in order to establish one or more connections
between them. We extended the scope of application to
consider the goal not only as a unique configuration but also
as a region in the C-space, depending on the task definition.

Fig. 5 Illustration of the
bi-directional RRT* functioning
when the traveled distance is
optimized
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In fact, this feature is particularly useful when planning for
redundant arm manipulators because it is often queried to
reach a specific pose for the end-effector, and, most of the
time, this could be accomplished by different joint states.
Thus, we are referring here to a set of goal trees that are
rooted in different states, all satisfying the goal constraints.
Their data about vertex and edges are stored in a shared
structure that let the algorithm behave in a similar way to
the case of a unique tree.

5.1 Heuristics

A description of each specific feature that we developed and
is part of the final implementation is given below:

5.1.1 Heuristic rejection

At each iteration, a newly sampled state qn is treated.
Before attempting to integrate it as a candidate waypoint,
it is relevant to assess its inherent potential to provide
an improvement to the research of a path. Therefore, we
use a set of admissible heuristics (one for each objective)
to ascertain that a best cost could be obtained if the
motion passes through this state. For our application, we
only need one heuristic function to cover the objective
functions.

A heuristic function for minimax objectives:

hminimax(qn) = Costqstart (qn) ⊕ Costqgoal
(qn) (8)

If many goal configurations exist, we consider the nearest
from qn.

The costs of Eq. 8 is combined according to our strategy,
and the resulting optimistic cost is then compared to the
current best solution. If it is worse, the sample is directly
rejected and a new iteration is started.

5.1.2 Fast Estimation of Motion Cost

When an attempt is made to insert a new sample,
the best position in a given tree is chosen by testing
the rewire options with its nearest neighbors, and then
keeping the connections that optimize a given cost
function. As shown by Karaman and Frazzoli [24], this
method guarantees asymptotic-optimality of RRT* and
this property is preserved for the bi-directional version
[33]. In this process, the number of selected neighbors
for evaluation increases with the number of states in
the tree. Because the computation of the exact motion
cost is relatively cumbersome in our case, the rewiring
operation can be separated into two phases. A fast
estimation of motion cost is computed for all potential

connections that could link the new state and its neighbors.
Similar to the previous feature, this evaluation uses an
admissible heuristic, which is based solely on the costs
of the states that delimit the motion. For our objectives,
however, determining the motion cost usually requires
interpolation, therefore the following formula is first applied
to give an upper bound estimation of the cost between
qa and qb:

Fast Path Cost(qa, qb) = Cost(qa) ⊕ Cost(qb) (9)

In the second phase, the most promising neighbor (the
one having the better estimated cost from the root of the
tree) is selected and the exact motion cost is computed. If
this neighbor remains the most promising (the real motion
cost is still higher than the upper bound estimation of
other neighbors), then the connection is established without
considering the other candidates. Otherwise, the operation
is reiterated while another rewiring option can possibly
be better. The neighbor selection process is detailed in
Algorithm 3. This procedure makes a call to the function
Sort(), which employs our combination strategy to reorder
the state vectors according to their associated costs in order
to get the most promising neighbor first. The function
WorstCost(), that is also called in this algorithm, returns the
set of all individual objective functions taken in the worst
case. If an objective is to be maximized then the worst
value is 0, otherwise an infinite value is returned when the
objective is to be minimized.

Algorithm 3 Neighbor selection using fast cost estimation.

procedure SELECT BEST NEIGHBOR(qnew, tree)
neighbors ← tree.K Nearest (qnew) 	 k nearest
for i ← 1 : k do

inc cost ← Fast Path Cost (neighbors[i], qnew)

costs[i] ← Combine(neighbors[i].cost, inc cost)

end for
Sort (neighbors, costs)

best cost ← Worst Cost ()

best nbh ← NULL

for i ← 1 : k do
inc cost ← Path Cost (neighbors[i], qnew)

costs[i] ← combine(neighbors[i].cost, inc cost)

if Collision Free Path(neighbors[i], qnew) then
if costs[i] �g best cost then

best cost ← costs[i]
best nbh ← neighbors[i]
if i 
= k AND costs[i] �g costs[i + 1] then

break
end if

end if
end if

end for
return best nbh

end procedure
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5.1.3 Local biasing

Biasing in sampling-based motion planning is a common
practice that aims at steering the samples towards the most
interesting regions of the C-space rather than leaving this
process totally random. In this regard, numerous techniques
have been proposed and their interests strongly depend on
the targeted application. As minimax objectives are used in
our framework, the development of a particularly adapted
local biasing strategy is necessary. Because the quality of
a solution can be highly degraded by a small part of the
path, it is opportune to guide the search towards the part
that affects the most the final cost, an example of the local
biasing strategy is given in Fig. 6.

Note that the local biasing is attempted once a feasible
collision-free path is found, hence the objective is to
enhance the path quality by locally improving the critical
path segments.

5.1.4 Anytime Behavior

The purpose of this functionality is to obtain a path as fast as
possible and using the remaining available time to improve
its quality. This is made possible by disabling the optimality
research until a first solution is found. Thus, up to that
moment, the algorithm behaves exactly like RRT-Connect.
Concretely, the planner considers a unique nearest neighbor
when trying to connect a new node. As the aforementioned

Fig. 6 Local biasing example when the optimization process aims
at maximizing the clearance. Considering the current best solution
(green), the sampled area (blue) is located in the vicinity of the segment
that has the worst clearance (as it is the only minimax objective here).
The selected region is defined by a ball that passes through the two
endpoints of the segment

heuristic rejection feature needs a solution to be found
before being activated, the anytime behavior is expected to
contribute to improving the convergence rate.

5.1.5 Avoid Minimax Objective Side Effects

As mentioned before, minimax objective are particularly
suitable for our application to avoid any vulnerable
situation. However, their efficiency is bounded by the costs
of imposed configurations (start or goal states). Thus, if one
of these states has a poor cost, the optimization process
will have no room to improve the quality of the path; this
is because our cost combination strategy only takes into
account the worst case.

To get around this problem, we implemented a double-
layer cost system which operates as follows: the first layer
(Layer 1) is the standard one that holds the information
about the worst value obtained from the root of the tree.
The second layer (Layer 2) considers if the robot is
escaping from an undesired posture; i.e. an objective keeps
improving, from the root of the tree, we store the best value
when combining two costs. From the moment at which
the objective function starts decreasing, the combination
considers the worst case again. An illustration of the
implementation of the two layers is given in Fig. 7.

When comparing a minimax objective for two path
segments, the following cases arise:

– The associated values in Layer 1 of the segments are
distinct: in this case only the values in Layer 1 are
considered as before.

– The associated values in Layer 1 are equal: Layer 2 is
called, in this case, to decide which path segment has to
be prioritized based on the criterion in question.

Fig. 7 Illustration of the implementation of Layer 2 to avoid minimax
objective side effects
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Fig. 8 Example: Trying to
connect the state qnew to the tree
through either path P ∗ or P̂

when the clearance is the only
objective to be optimized. c1i

and c2i are respectively the
clearance costs of the segment i

of paths P ∗ and P̂ . Considering
the worst case only, no choice
can be made because P ∗ or P̂

have the same cost c11 = c21.
However, with the second layer,
path P ∗ has cost c14 and P̂ has
cost c23, so P ∗ is chosen

Another illustration example of our two-layer strategy is
presented in Fig. 8.

5.1.6 C-Forest Framework

We adapted the C-Forest parallelization framework for
our bi-directional RRT* implementation. The C-Forest
framework consists of data exchange strategy between
multiple threads of the planner that are executed in parallel.
In particular, the states that constitute the current best
solution are shared with the other threads. For more
information about this framework, the reader is referred to
[35]. Implementation details are given in [36].

5.1.7 Pruning Process

This functionality is integrated in the C-Forest framework
but we present it separately because it can also be used
as an independent feature. Once a solution is found, there
may exist some states in the tree that become useless
because they cannot improve the solution. Thus, it would
be appropriate to remove them from their respective tree.

This allows the algorithm to avoid unnecessary efforts that
only slow down the process. In practice, that means that the
heuristic rejection presented above is now applied to vertex
which are already in the data structure. Note that removing
a state also erases the branches that are attached to it. It is
therefore likely that a potentially interesting state in the tree
could be deleted due to a bad foregoing configuration. The
overall performance of the pruning process will be evaluated
in Section 6. An illustration of the pruning process is given
in Fig. 9.

5.2 Analysis

For any motion planning algorithm, two important proper-
ties, which are the probabilistic completeness and asymp-
totic optimality, need to be assessed.

Lemma 1 The RRT* variant in Algorithm 2 with the
proposed heuristics is probabilistically complete.

Proof Let us first recall the definition of probabilistic com-
pleteness. As stated in [24], Algorithm 2 is probabilistically

Fig. 9 Illustration of the pruning
process applied to both start and
goal trees when the clearance is
optimized. The cost of the
current best solution (green) is
used as a reference
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complete, if, for any robustly feasible path planning prob-
lem (Qf ree, qstart , Qgoal),

lim inf
n→∞ P

{∃qgoal ∈ Vn ∩ Qgoal : qstart is connected to qgoal in Gn

} = 1

where Gn = (Vn, En) is the graph at the iteration n.
The probabilistic completeness of Algorithm 2 is a direct

result from the probabilistic completeness of RRT* [24]
as long as the proposed heuristics preserve that feature.
Among the proposed heuristics, only the heuristic of fast
cost estimation in Section 5.1.2 (Algorithm 3) could impact
the probabilistic completeness. However, one can figure out
from Algorithm 3 that the graph connectivity is forced by an
incremental construction, hence preserving the probabilistic
completeness [20].

Lemma 2 The RRT* variant in Algorithm 2 is asymp-
totically optimal with respect to the mapping function g

Eq. 2.

Proof Algorithm 2 is asymptotically optimal with respect
to the mapping function g if, for any path planning problem
(Qf ree, qstart , Qgoal),

P

(
lim

n→∞

{
sup
g

Yn = v∗
})

= 1

where:

– for a sequence {Xn ∈ R
2≥0}n∈N of random vectors:

sup
g

Xn = X∗ such that g(X∗, Xn) ≥ g(Xn, X
∗) : ∀n

– v∗ ∈ R
2≥0 is the cost of the robustly optimal path, σ ∗ ∈

Qf ree, satisfies that for any sequence of collision-free
paths {σn}n∈N, such that:

lim
n→∞ σn = σ ∗

lim
n→∞ g(v∗, Cost(σn)) ≥ g(Cost(σn), v

∗)

– Yn ∈ R
2≥0 is the extended random vector corresponding

to the cost of best-cost solution, with respect to the
mapping function g, included in the graph returned by
the algorithm at the end of iteration n.

Using Theorem 38 (Asymptotic optimality of RRT*)
in [24], Algorithm 2 is Asymptotically optimal if the
following three conditions are satisfied:

1. Condition 1: Algorithm 2 is probabilistically complete.
2. Condition 2: The Cost() function is monotonic with

respect to g.

3. Condition 3: γRRT ∗ > (2 (1 + 1/d))1/d
(

μ(Qf ree)

ξd

)1/d

.

Where μ(Qf ree) and ξd design, respectively, the
Lebesgue measure of the obstacle-free space and the
volume of the unit ball in the d-dimensional Euclidean
space.

Condition 1 is the result of Lemma 1.
Condition 2 is satisfied, and it can be easily verified

using Eq. 7 in a recursive way.
Condition 3 is forced to be true in the same way as in the

standard implementation of RRT*. As a result, Algorithm 2
is Asymptotically optimal with respect to g.

6 Experimental Results

The efficiency and performance of the described method
have been tested in simulation and on the real robot Baxter
from Rethink Robotics Inc. Baxter is equipped with two 7-
DOF manipulator arms. In this study, we only focus on the
control of one arm but our method can be easily extended
to also consider both arms simultaneously. Our program
has been implemented using the platform MoveIt! [37]
that integrates the motion planning library OMPL [38] and
communicates via ROS (Robotic Operating System) API
interface [39].

6.1 Distance Approximation Function

Even though the dynamic collision checking method [17]
tends to limit the amount of distance computations, those
operations remain widely called during the planning pro-
cess. Moreover, computing the exact minimum distance
between two complex and concave objects is a compu-
tationally expensive operation. Moveit! uses the Flexible
Collision Library (FCL) [40] as its primary collision check-
ing library. Besides collisions check, FCL can also compute
the distance between two non-overlapping objects.

To accelerate the execution of our algorithm, we
developed a computationally efficient distance computation
function that gives a reasonable approximation of the
distance between a link of the robot and an obstacle.
This function is based on simplifying the environment
representation by transforming each obstacle into its
corresponding oriented bounding box (OBB). The Baxter
robot is also approximated by its collision geometry model
from the Unified Robot Description Format (URDF) file.
Thus, the arms are modeled as cylinders and boxes. Each
part of the arm is then subdivided into an optimal number
of spheres that encompass the initial volume. Finally, the
minimum distance between an obstacle and a link becomes
the minimum distance between the OBB and the spheres,
hence it can be easily computed.

55J Intell Robot Syst (2020) 99:45–63



6.2 Environment Representation

In order to create an autonomous system, a RGB-D sensor,
Asus Xtion PRO 3D, has been attached on top of the Baxter
robot’s head display. The movement of the Baxter’s head
pan joint offers the ability to visually scan a large part of
the environment. The OctoMap framework [41] integrated
into Moveit! is then used to generate a 3D occupancy grid
that gives a collision model of the space. The sonar sensors
positioned around the robot’s head are used to detect human
presence and orientate the camera accordingly. A specific
model is provided to represent humans in the environment.
In particular, it allows us to distinguish the different parts of
the body for the assessment of the hazard level.

In order to reduce the computation complexity, we
developed a simplified model for the obstacles to reduce
the amount of distance evaluations. To this end, two
operations are applied to refine the OctoMap, which is
an input for our method. First, all static objects that are
outside a certain distance from the limits of the robot’s
workspace are neglected. Then, we attempt to gather all
remaining occupied leaves of the octree nodes into larger
boxes. Our model is based on a compromise between a fair
representation of the environment and having a minimal
number of obstacles. An example of such representation is
given in Fig. 10. Note that this representation is only used
in the real experiments with the Baxter robot; on the other
hand, the simulation experiments, such as those in Fig. 11,
use the geometric models of the environment.

6.3 Validation in Simulation

The first validation phase of our approach was made through
a simulated scenario using the Gazebo simulator [42] as
an interface for the Baxter robot. All experiments are
performed on Intel(R) Core(TM) i5-3470 CPU @ 3.20 GHz
PC with 8 GB RAM. As a first step, we tested each unit
independently in order to figure out the influence of the
parameters on the overall performance of our algorithm.

Fig. 11 Validation scenario with human presence

The considered scenario is the following: the right arm’s
end-effector is queried to reach successively two particular
configurations for the joints. These states are located on the
sides of two balloons tethered to the ground by thin rods, the
robot working space is also populated by people as depicted
in Fig. 11.

6.3.1 Comparing with RRT*

We first compare the results of our bi-RRT* planner with
those of RRT*. However, note that the developed framework
does not allow a fair comparison with existing planners
because the implemented bi-objective strategy is part of
our contribution. However, it is worth investigating the
performance of our algorithm with respect to the algorithm
that is inherited from, i.e. RRT*. Recall that RRT*, by
default, minimizes the path length.

A cost combination is defined as the following set of
values: v = {Clearance; Awareness}. We have chosen two
sets of α, the first one prioritizes the human-safety α1={0.7;
0.3}, while the second prioritizes the human-awareness
α2={0.3; 0.7}.

200 motion planning tasks have been conducted and, if
no specification is provided, we always consider the mean
value of the collected data to get an idea of the algorithm
overall performance. The comparison is given in Fig. 12, it

Fig. 10 Representation of the
scene: the chair and the ground
are modeled with occupancy
boxes using OctoMap. Only
transparent red boxes are
considered in the motion
planning process

56 J Intell Robot Syst (2020) 99:45–63



Fig. 12 Cost results in
simulation

shows that, as expected, the returned values of the clearance
and human awareness are correlated with α. Moreover,
as RRT* minimizes the path length, the obtained path is
generally close to obstacles as shown in Fig. 12.

6.3.2 Analyzing the performance of our algorithm

In this section, we analyze in depth the performance of our
planner with α1={0.7; 0.3}, which prioritizes the human-
safety. In this case, 200 motion planning tasks have been
also conducted, and four threads of the planner are always
launched in parallel and they exchange information only if
the C-Forest framework is enabled. At a given time, only the
best solution among all threads is considered.

Instead of testing the effect of activating only one feature
at a time on our bi-RRT* planner, we have found that

Fig. 13 Evolution of the improvement rate over time
Fig. 14 Evolution of the number of states generated and rewire options
tested over time
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Fig. 15 Comparative evolution of costs

it is more significant to study the effect of deactivating
one feature at a time. Indeed, the numerical experiments
show that there is a considerable dependency between the
features. Moreover, a relevant benchmarking cannot be
made for each objective independently because they are
optimized as a set and strongly depend on the value of
their associated factor. The comparison is therefore made
following the rules of the method presented in Section 4.1.
First, a function F1 is computed when all features are
deactivated and serve as a reference. Then, a new function
F2 that results from a path cost that integrates some of
the features is computed. We evaluate the improvement
produced by the later configuration by generating the rate
F2
F1

, results are reported in Fig. 13.
The first important observation is that the developed bi-

RRT* with all features activated leads to a non-negligible

improvement over the basic version. The global quality
of the obtained costs is about 20% better. These values
does not change a lot over time. It is worth noting that
the manner in which we defined our objectives (with a
minimax optimization) and the compromise imposed by the
numerous constraints to be satisfied do not allow to obtain
a huge improvement.

From Fig. 13, it can be noticed that when all features are
activated, we generally get the best paths. That means that
all features make a contribution of varying degrees to the
quality of obtained solutions. The one that has the greatest
impact is the C-Forest framework, as its deactivation is the
most meaningful.

Moreover, the heuristic rejection feature is clearly less
efficient than the fast estimation of path cost feature.
This makes sense since the first strategy only considers

Fig. 16 Profile of typical cost evolutions along the planned path
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Fig. 17 Rate of valid solution (number of motion planning tasks for
which at least one collision-free path has been found) over time for a
single thread

the cost of a unique state to predict the best path that
could be generated by including it, this results in an
overestimation that generally does not allow the algorithm
to reject the state because it has the inherent potential
to be part of a better solution, Fig. 14 confirms this
observation. It gives the corresponding number of states
and rewire options inside the trees that have been carried
out during the path planning. This shows that the fast cost
estimation has a strong influence on those two parameters
and allows the planner to have a better knowledge of
the space more quickly. Other features are more or less
useful depending on context, however, the combination of
all features provides an interesting tool for applications in
unconstrained environments.

The comparisons of the cost evolution when turning all
the features ON/OFF, for each objective, are presented in
Fig. 15. They effectively reveal the significant advantage of
the complete framework regarding constraint satisfaction.
Note that all the criteria are improved simultaneously and
significantly.

The feature that aims at avoiding minimax objective side
effects has also been evaluated. Figure 16 illustrate the
evolution of each minimax objective along the motion when
this feature is activated/deactivated. Since the planner is bi-
directional, the process of escaping from a bad initial state
is applied for both of the start and goal trees. That lets the
planner produce really safer path when looking at the overall
displacement, and avoid the problem of getting stuck in an
imposed local minimum.

Even when a complex task is being carried out, e.g. the
initial or goal pose is close to obstacles, the planner is able
to find a solution quickly. The bi-directional implementation
doubtless plays a major role to this end. The anytime
behavior also contributes to reducing the time needed to find
a first solution. Figure 17 indicates that the usefulness of
this feature is more significant when a trivial solution does
not exist.

6.4 Validation on the Real Baxter Research Robot

To validate our planner in the presence of humans, we
have carried out an experiment where the Baxter robot is
executing a motion planning task while considering human
avoidance and awareness, a snapshot of this experiment is
given in Fig. 18. In this experiment, the human presence
and direction is first detected by the robot sonar sensor, the
robot’s head pan joint then points the RGB-D sensor in that

Fig. 18 Snapshots of the Baxter robot executing a motion planning while considering human avoidance and awareness
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Fig. 19 Snapshots of the Baxter robot detecting an interactive task intention from a human and executing the corresponding motion planning

direction. After that a skeleton is extracted from the point
clouds, and our implementation is called to plan a motion
between pre-defined initial and goal poses for the robot’s
end-effector.

A process that detects an interactive task intention from
a human and figures out the corresponding goal to reach
for the end-effector has been also developed as shown in
Fig. 19. This process mainly observes the human gaze
direction and the arm posture, when an interactive task is
detected, as shown in Fig. 1, the robot end-effector goal pose
is then defined near the human hand and our implementation
is called to reach that goal pose from the robot current pose.

7 Conclusion

A path planning framework for robotic manipulators that
operate in unconstrained environment has been presented.
A particular focus is given to ensure the safety of humans
that may enter the robot workspace. This is accomplished
through the combination of an exact collision checker and
two relevant and computationally efficient objectives that
guide the planner’s exploration.

An adaptation of the bi-directional RRT* planner
constitutes the core of our algorithm. It integrates all the
safety modules and several features that aim at accelerating
the optimization process. However, our approach can be
implemented into any sampling-based motion planning
algorithm with asymptotic optimality feature.

Future work will focus on reducing the computa-
tional time to make the planner even more suitable for
time-constrained applications, like human-robot interac-
tions. To this end, we will investigate a more appropriate
way to generate the self-collision checking. This process is

for now the most time-consuming and an efficient approx-
imation method, like the one developed for the collision
with obstacles, could be a good alternative to obtain better
performances.

Besides, a more general distance evaluation function
will be developed to reduce the approximation error due
to bounding boxes. The integration of the second arm
of the robot will be investigated in order to consider
bi-manipulation tasks. Considering kinodynamic motion
planning algorithms [20, 43] to deal with moving objects
will also be investigated.

Moreover, it would be interesting to compare our
combination strategy for the bi-objective optimization with
Pareto-optimal methods.

Realtime aspects will be a major issue in forthcoming
work. The initially optimal path should be deformed, due
to changes in the environment, to respect the human safety
throughout the whole task execution, physical aspects of the
interaction will be therefore examined in depth to allow a
complete and fully safe human-robot cooperation.
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Natural Sciences and Engineering Research Council of Canada
(NSERC).

Appendix A: Bisection Continuous Collision
CheckingMethod

In this section, we give an overview of the modified
bisection continuous collision checking method [17], which
can efficiently handle the case of spherical and two revolute
joints by providing tight motion bounds, thus increasing
the success rate of checking collision-free paths. Collision
checking is an essential step in motion planning as it
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ensures the path to be collision-free. The main challenge
relies on determining whether the continuous path between
two states in C-space is in collision or not. Bisection
collision checking method [44] is one of the Continuous
Collision Detection (CCD) methods, the main idea behind
this method is to establish a sufficient condition of collision-
free by computing the geometric path of rigid bodies in
the workspace (Fig. 20). A sufficient condition to guarantee
that two rigid objects, A1 and A2, do not collide at any
configuration q located on the path segment π , which
is joining two configurations qa and qb, is to verify the
following inequality:

λ1(qa, qb) + λ2(qa, qb) < η12(qa) + η12(qb) (10)

where η12(qi) is the minimum distance between objects A1

and A2 for a given configuration qi , and λi(qa, qb) refers
to the maximum Euclidean displacement of all the points in
object i along the path segment π .

If A1 is a link of the robot and A2 is a fixed obstacle,
we define the estimated clearance for a path between two
configurations qa and qb as follows:

δ = η12(qa) + η12(qb) − λ1(qa, qb)

2
= dist (qa, qb, A1, A2)

(11)

The procedure to compute the minimum clearance along
a path segment and sorting collision-free segment paths
according to their clearance is given in Algorithm 4.
Note that each element of the structure segment refers
to a specific pair of link/obstacle evaluated between two
states and is used to store the corresponding distance
information. Parameter ε can be defined as the maximum
admissible error in the distance estimation. It is a positive

user-defined constant that affects the performances of the
algorithm: decreasing it improves the returned distance
estimation accuracy whereas increasing it reduces the
required computational burden to generate the estimation.

Fig. 20 Example: Two types of
collision analysis for a 3-DOF
robotic arm
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The estimated and exact distances to obstacles satisfy the
following inequality:

δexa − ε

2
≤ δ ≤ δexa (12)

where δexa and δ are, respectively, the exact and estimated
minimum distances between two objects A1 and A2, where
A1 moves from configuration qa to qb and A2 is a fixed
obstacle.
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