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Abstract
Autonomous underwater vehicles (AUVs) have important applications in several areas such as data collection, geological survey
and exploration in underwater environment. The hydrodynamic forces acting on AUVs are highly nonlinear and the higher-order
hydrodynamic coefficients should be taken into account to represent these nonlinear behaviors. Therefore, developing a suitable
dynamic model of the AUVand also an accurate knowledge about the hydrodynamic parameters are important for proper design
of the navigation and control system. The main goal of the present paper is to investigate the role of proper dynamic model for an
AUVwhich includes different hydrodynamic stability derivatives coefficients. Design of proper actuator is also significant for the
global performance of the system and the expenses of the plan. It is tried in the present paper to investigate the effect of full
hydrodynamic coefficients on the design of actuators and control system performance analysis for an AUVwhich was ignored in
the previous works. For this purpose, the effect of these parameters on the open loop characteristics of the AUV, its role in the
control system design and the interaction of control system and actuator dynamics are considered in nonlinear time domain and
frequency domain. It is shown that in a full hydrodynamic consideration for design of the AUV, the effect of control gains, system
bandwidth and damping can be different in comparison with the cases which are not fully considered them. Finally, the design of
optimum actuator and the effect of actuator natural frequency on the flight performance in the presence of full hydrodynamic
coefficients are studied.
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1 Introduction

Autonomous underwater vehicles (AUVs) have been used for
a variety of tasks including data collection, geological survey
and exploration in underwater environment [1]. The hydrody-
namic forces acting on an underwater vehicle are highly non-
linear and the mathematical models should take into account
higher-order hydrodynamic coefficients to represent these
nonlinear behaviours [2, 3]. There is always a need for suitable
dynamic model of the vehicle and also an accurate knowledge
about the hydrodynamic parameters in order to successful
design of the navigation and control system for an AUV [4].
The main goal of this article is the investigation of the role of

proper dynamic model for an AUV which is of great impor-
tance in terms of designing the control and guidance system.
Some researchers argued that the greatest problem in design-
ing a suitable controller for AUVs is knowing the values of
hydrodynamic parameters with sufficient accuracy [5].
Different methods are used to determine the hydrodynamic
parameters, including experimental studies, computational
fluid dynamics (CFD), and the use of fast computational codes
such as Datcom. One of the commonly used experimental
methods for measuring hydrodynamic stability derivatives co-
efficients is the decay test, first proposed by Morrison [6], but
experimental methods for calculating hydrodynamic coeffi-
cients such as water tunnel or water channel usually require
considerable cost and time [7, 8]. Eng et al. [9] used an exper-
imental method to calculate hydrodynamic forces for a sub-
marine robot. The method used by them is based on the con-
ventional decay test, but with difference that the spring oscil-
lations are replaced by the movement of a pendulum.
Nowadays, computational fluid dynamic based methods have
been taken into consideration by many researchers in order to
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calculate the hydrodynamic forces on an AUV. Suzuki et al.
[10], for example, calculated the hydrodynamic and added
mass coefficients for an underwater vehicle and validated
the results of numerical calculations with experimental results.
The studies carried out by them indicate that the results of
CFD have an acceptable matching with experimental results.
Also, Praveen and Krishnankutty [11] used CFD method and
conducted water channel experiments to investigate the effect
of the length of an underwater vehicle on hydrodynamic
forces and showed that the linear coefficients changes linearly
with the length; however the changes of nonlinear coefficients
with the length showed to be nonlinear in the considered
range. In addition to the above researches, online identifica-
tion can be used to find the stability derivatives coefficients.
Hong et al. [12] developed a technique to enable rapid identi-
fication of autonomous underwater robot dynamics online.
They also showed that a gain-scheduled controller with better
performance than a constant gain controller can be designed
using online estimated parameters.

The hydrodynamic coefficients can be classified into static
and dynamic stability derivatives coefficients. From past to
the recent years, the interaction of control system and actuator
dynamics has been focused for flying of AUVs. Static stability
derivatives coefficients effects have been usually investigated
for this purpose. Nesline et al. [13] studied the robustness of a
tail controlled homing missile with constant gain autopilot
with respect to variation of the static aerodynamic stability
derivatives. The effect of the open loop crossover frequency
and the actuator bandwidth on the allowable region of some of
static stability derivatives coefficients for both a constant gain
and available gain flight control system was also discussed.
Chwa et al. [14] studied the effect of actuator dynamics on
nonlinear missile control system. They showed that the first-
order actuator dynamics has no influence on the reduction of
q-dynamics via singular perturbation, but the second-order
actuator may destabilize the q-dynamics. Also, they devel-
oped a compensator using the back-stepping technique in or-
der to reduce the effect of actuator dynamics.

Fang et al. [15] presented a design for a two-loop acceler-
ation autopilot of a tactical missile and introduced the equiv-
alent actuator dynamics to obtain the overall stability condi-
tion. They showed that the autopilot control capacity is dom-
inated by the actuator bandwidth. Li and Su [16] studied the
nonlinear control of an autonomous underwater vehicle with
internal actuators (internal moving mass) instead of control
surfaces. They showed that the displacement of the internal
mass in the sway direction can affect the flow of the dynamical
system in phase space. They also designed a LQR controller to
stabilize the heading angle of the vehicle.

Sun et al. [17] studied the PID pitch attitude control of an
unstable flight vehicle in the presence of actuator delay. The
effects of the integral action on the robustness and dynamic
performance were investigated and the results showed that the

moderate integral gain is appropriate to improve the dynamic
performance. Wu et al. [18] designed an adaptive control ar-
chitecture with anti-windup compensator for pitch channel
control of a REMUS autonomous underwater vehicle with
input saturation and coupling disturbances. They showed that
the designed controller can tackle input saturation and can
adapt to model uncertainties, coupling disturbances and noise.

Indiveri and Malerba [19] studied the complementary fil-
tering for underwater robots with actuator redundancy. The
proposed underwater vehicle had two actuation systems
namely a ballast tank (which can be filled or emptied changing
the restoring force acting on the vehicle) and a set of vertical
jet thrusters (generating a vertical force). They also designed a
PID controller implemented through an anti-windup architec-
ture for vertical force to be generated to follow a depth profile.

Lea et al. [20] compared three control techniques namely
the classical control, the fuzzy logic control and the sliding
mode control for underwater robots. They showed that the
classical control was the most simple, but required a basic
system model for its design. The fuzzy logic controller was
generated without a model, but required extensive tuning and
the sliding mode controller was the most complex and re-
quired a complete system model. Hsu and Liu [21] studied
the modification of control loop in order to improve the depth
response of autonomous underwater robots. Two methods of
modification of control loop are used to eliminate the steady-
state depth errors. In the first method, the mean steady-state
depth error which is an offset from the depth command is
deducted. The second method which uses a switching integra-
tor acts only when the depth error is below a certain threshold.
Fossen [22] studied the guidance, navigation and control of
ships and underwater vehicles. The PID control and accelera-
tion feedback were considered and different case studies such
as the heading autopilot, heading autopilot with acceleration
feedback, linear cross-tracking system, LOS path-following
using Serret-Frenet coordinates and dynamic positioning con-
trol system were presented, but the effect of dynamic stability
derivatives coefficients is not considered for designing
actuators.

The main goal of the present study is to investigate the
effect of dynamic stability derivatives coefficients on the per-
formance of an AUV, which will be finally used in the actuator
design for different control channels and control system per-
formance analysis. These coefficients are often not modeled in
transformation functions and their effect is not investigated
completely. Therefore, the effect of dynamic stability deriva-
tives coefficients on natural frequency, damping coefficient
and bandwidth for an AUV is investigated in order to design
suitable actuators and control system in the present paper.

The rest of the paper is organized as follows: Section 2
studies the mathematical model for an AUV which represents
the equations of motion and the calculation of hydrodynamic
stability derivatives coefficients. The design of control system
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for the AUV is presented in Section 3 and finally the simula-
tion results are presented and discussed in Section 4.

2 Mathematical Modeling of the AUV

The equations of motion for an AUVare usually determined in
body coordinate system or relative to a fixed or inertial coor-
dinate system which are depicted in Fig. 1. As Fig. 1 shows,
the notations x, y and z are the translational positions of the
vehicle relative to the inertial coordinate system and φ, θ and
ψ are the rotational positions of the vehicle relative to the
inertial coordinate system. Also, u, v and w are the linear
surge, sway and heave components of velocity in the body
coordinate system respectively and p, q and r represent the
components of angular velocity. The resultant forces exerted
to the vehicle in the body coordinate system are represented
by X, Y and Z and the resultant moments are expressed as: K,
M and N in the body fixed coordinate system.

In the six-DOF model, the forces and moments that act on
the rigid body include the hydrostatic force FHS and moment
MHS, the lift Flift and drag Fdrag forces and their moments and
the control inputs Fcontrol realized through the fins commands
and their moments. The complete equations of motion for an
AUV in the body fixed coordinate system can be represented
as the following equations: [23, 24]:

m u˙ −vr þ wq−xg q2 þ r2
� �� þyg pq−r˙

� �þ zg pr þ q˙
� �i ¼ FX ð1Þ

m v˙ −wpþ ur−yg r2 þ p2
� �h

þzg qr−p˙
� �þ xg qpþ r˙

� �� ¼ FY ð2Þ

m w˙ −uqþ vp−zg p2 þ q2
� �þ xg rp−q˙

� �þ yg rqþ p˙
� � ¼ FZ

h

ð3Þ
I xxp˙ þ I zz−I yy

� �
qr þ m yg w˙ −uqþ vp

� �
−zg v˙ −wpþ ur

� �h i
¼ MX

ð4Þ

I yyq˙ þ I xx−I zzð Þrpþ m zg u˙ −vr þ wq
� �

−xg w˙ −uqþ vp
� �� � ¼ MY

ð5Þ
I zzr˙ þ I yy−I xx

� �
pqþ m xg v˙ −wpþ ur

� �
−yg u˙ −vr þ wq

� �h i
¼ MZ

ð6Þ

In the above equations, m is the mass of the vehicle and xg,
yg and zg are locations of the center of mass of the vehicle in
the body coordinate system. FX, FY and FZ are the external
forces and MX, MY and MZ are the external moments in X, Y
and Z directions respectively. The time derivatives of veloci-
ties in the surge, sway and heave directions are denoted by u̇, v̇
and ẇ and the time derivatives of angular velocities for these
directions are ṗ, q̇ and ṙ respectively. It should be noted that
above equations are written assuming that the products of
inertia are small, which means that the inertia matrix has only
the diagonal elements Ixx, Iyy and Izz.

The weight (W) and buoyancy (B) vectors in the inertial
coordinate system can be represented as:

F
!

W ¼
0
0
mg

2
4

3
5 ¼

0
0
W

2
4

3
5 ð7Þ

F
!

B ¼
0
0

−ρ∀g

2
4

3
5 ¼

0
0
−B

2
4

3
5 ð8Þ

where ρ is the density of water and ∀ is the total volume of the
vehicle. Therefore, the vectors of hydrostatic force ( F

!
HS ) and

hydrostatic moment (M
!

HS ) in the body fixed coordinate sys-
tem can be expressed as follows:

F
!

HS ¼ ĈB−I � F
!

W þ ĈB−I � F
!

B ð9Þ

M
!

HS ¼ r!g � ĈB−I � F
!

WÞ þ r!b � ĈB−I � F
!

BÞ
��

ð10Þ

In the above equations, r!g and r!b are the position vectors
of the center of gravity and the center of buoyancy in the body

coordinate system and ĈB−I is the transformation matrix from
the body coordinate system to the inertial coordinate system
which are represented as follows:

r!g ¼
xg
yg
zg

2
4

3
5 ð11Þ

r!b ¼
xb
yb
zb

2
4

3
5 ð12Þ

x, 

Sway (2): v, Y
Pitch (5): q, M

Heave (3): w, Z
Yaw (6): r, N

Surge (1): u, X
Roll (4): p, K

y, 

z, 

Inertial Coordinate system 

Body Fixed Coordinate system 

Fig. 1 Body and inertial coordinate systems for the AUV
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ĈB−I ¼
cosψ cosθ sinψ cosθ −sinθ

cosψ sinθ sinφ−sinψ cosφ sinψ sinθ sinφþ cosψ cosφ cosθ sinφ
cosψ sinθ cosφþ sinψ sinφ sinψ sinθ cosφ−cosψ sinφ cosθ cosφ

2
4

3
5

ð13Þ

The hydrodynamic forces and moments coefficients related
to the drag, lift and control surfaces forces and moments can
be represented as follows:

CFX ¼ FX

0:5ρV2A
¼ CX0 þ CXα2α2 þ CXβ2β2 þ CX δe δej j þ CX δe δrj j þ CX δa δaj j

ð14Þ

CFY ¼ FY

0:5ρV2A
¼ CYββ þ CYδrδr þ CYrr þ CY β̇β

˙ ð15Þ

CFZ ¼ FZ

0:5ρV2A
¼ CZααþ CZδeδe þ CZqqþ CZα̇α

˙ ð16Þ

CMX ¼ MX

0:5ρV2AD
¼ CKδaδa þ CKpp ð17Þ

CMY ¼ MY

0:5ρV2AD
¼ CMααþ CMδeδe þ CMqqþ CM α̇α

˙ ð18Þ

CMZ ¼ MZ

0:5ρV2AD
¼ CNββ þ CNδrδr þ CNrr þ CN β̇β

˙ ð19Þ

In the above equations, CFX , CFY and CFZ are the non-
dimensional force coefficients and CMX , CMY and CMZ are the
non-dimensional moment coefficients for X, Yand Z directions
respectively. The velocity magnitude of the vehicle is denoted
by Vand A is the reference area equal to πD2/4, where,D is the
diameter of the vehicle. Also, α and β indicate the angle of
attack and side slip angle respectively and α̇ and β̇ are time
derivatives of angle of attack and side slip angle respectively.
δa, δe and δr indicate the aileron, elevator and rudder control
surface angles respectively. The subscripts of presented coef-
ficients mean the differentiation about the parameter in the
subscript. For example,CX δe indicates the stability derivatives
coefficient of force in x direction relative to the elevator con-
trol surface angle δe. Also, the subscript 0 in Eq. (14) repre-
sents the zero angle of attack, side slip angle and fin deflection
angle. The force and moment coefficients used in the model-
ing are defined in Table 2.

The coefficients CZα̇, CM α̇, CZq, CMq, CY β̇, CN β̇, CYr, CNr

and CKp are dynamic stability derivatives coefficients and the
remaining coefficients are static stability derivatives coeffi-
cients. Dynamic stability derivatives coefficients are deter-
mined by differentiation of forces and moments relative to
the angular velocities (p, q and r) or time derivatives of angle
of attack and side angle (α̇ and β̇ ). However, the static stabil-
ity derivatives coefficients are determined by differentiation of
forces and moments relative to the control surfaces angles (δa,
δe and δr) or relative to the angle of attack and side angle (α
and β). The coefficients CZα̇, CM α̇, CZq,CMqare related to the
pitch and the coefficients CY β̇, CN β̇, CYr and CNr are related to

the yaw of the vehicle. It should be noted that, in the present
research, the dynamic stability derivatives coefficients in roll
direction are not considered and the focus is on the investiga-
tion of the dynamic stability effects on the yaw channel. In
addition, according to the fact that the mentioned AUV has no
considerable accelerating motion, the effect of added mass
coefficients are not significant in the control system perfor-
mance analysis which will be shown in the following section.
The main geometric and inertia parameters of the considered
AUVare presented in Table 1.

The considered AUV has four identical control fins which
have a NACA 0012 cross-section and mounted in a cross
pattern near the aft end of the hull.

As mentioned earlier, in order to investigate the effects of
dynamic stability derivatives coefficients on the performance
of the AUVand also on the design of proper actuators for the
vehicle, the dynamic coefficients are firstly neglected and then
they have been considered in simulations and the results of
these two cases are compared with each other in order to select
the proper actuator for the AUV. Datcom computational code
is used for determination of static and dynamic stability deriv-
atives coefficients which are presented in Table 2.Watson [25]
studied the usability of DATCOM for the prediction of hydro-
dynamic loads on finned sections of missiles in incompress-
ible flow and the results indicated that DATCOM may be
applicable to incompressible flow problems.

3 Control System Analysis

The dynamics of the system has been determined in the pre-
vious sections and now the dynamics, controller and actuators
can be combined in this section. Although there are various
types of control algorithm, as previously described in intro-
duction, such as fuzzy, nonlinear, adaptive and robust methods
to control the AUVs [26]; the emphases in this paper is on the
investigation of the effect of dynamic stability derivatives co-
efficients on the control system and actuator dynamic charac-
teristics. Therefore, a classic PID controller with experimental
considerations is implemented to achieve the aim of this

Table 1 Main geometric and inertia parameters of the AUV

Parameter Value Unit Description

L 1.15 m Vehicle total length

D 0.20 m Maximum hull diameter

m 35 kg Mass of vehicle

Ixx 0.17 Kgm2 Moment of inertia about the x axis

Iyy 3.84 Kgm2 Moment of inertia about the y axis

Izz 3.84 Kgm2 Moment of inertia about the z axis

bfin 0.036 m Span of control fins

Sfin 4.44 × 10−4 m2 Area of control fins
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research. The block diagram of the control system can be
depicted schematically as Fig. 2.

Based on Fig. 2, ψc, θc and φc indicate the input commands
of yaw, pitch and roll respectively. The error values of yaw,
pitch and roll which are shown respectively as e1, e2 and e3 are
inputs of proportional-integral-derivative (PID) controllers
and outputs of controllers are the rudder, elevator and aileron
commands which are represented as δrc, δec and δac respective-
ly. Commands of four actuators (δ1c, δ2c, δ3c and δ4c) are then
calculated in the compensator as follows:

δ1c ¼ δac þ δec þ δrc ð20Þ
δ2c ¼ δec−δrc ð21Þ
δ3c ¼ δac−δec−δrc ð22Þ
δ4c ¼ −δec þ δrc ð23Þ

As Fig. 1 shows, four control surfaces have a cross
orientation with an angle of 45° relative to the horizon.
The number of each control surface form 1 to 4 is added
in a clockwise manner (North-East (1), South-East (2),
South-West (3) and North-West (4)) for an observer from
the behind of the vehicle. Actuators transfer the input
commands to the deflection of four control surfaces (δ1,
δ2, δ3 and δ4) which are inputs of the system dynamics
and finally the yaw, pitch and roll angles of vehicle are
the output of system dynamics. A schematic diagram of
control system with PID controller for yaw channel of the
AUV is depicted in Fig. 3. Kp, Kd and Ki in Fig. 3 indicate
the proportional, derivative and integrator coefficients of

the controller and the control law for the output of the
controller of yaw channel, δrc is written as Eq. (24) [27].
It should be noted that e1(t) in Eq. (24) indicates the error
of yaw angle.

δrc ¼ sat Kp � e1 tð Þ� �

þ sat Kd � lowpassed
dψ tð Þ
dt

� �� �

þ sat ∫ Ki � e1 tð Þ½ �dt� � ð24Þ

where sat refer to the saturation function defined as:

sat xð Þ ¼ sgn xð Þxmax; if xj j≥xmax
x else

	

As mentioned earlier, the controller of two other channels
(pitch and roll) is also PID type and the control system of these
two channels is similar to the yaw channel. A low pass filter is
applied on the derivative part to decrease the negative effect of
noise in the measurement instrument.

An AUV with an appropriate autopilot is capable of
achieving a relatively high-performance. This performance
is also one of the reasons of using the proper actuator
which drives the control surface. Thus it may be necessary
to include the dynamics of the actuator in order to have an
acceptable system model. The second order linear model
for the actuator is used in the present study and is presented
by Eq. (25), where ζAct and ωAct are the damping

Table 2 Hydrodynamic coefficients calculated by Datcom

Coefficient Definition Calculated
value

CX0 x force coefficient at zero angle of attack, side slip angle and fin deflection angle −0.230
CXα2 x force coefficient due to square of angle of attack variation 0.00013

CXβ2 x force coefficient due to square of side slip angle variation 0.00013

CXδe x force coefficient due to elevator angle variation −0.00034
CXδa x force coefficient due to aileron angle variation −0.0007
CZα =CYβ z force coefficient due to angle of attack variation = y force coefficient due to side slip angle variation −0.0314
CZδe¼CYδr z force coefficient due to elevator angle variation = y force coefficient derivative with rudder angle variation −0.008
CZq = −CYr z force coefficient due to pitch rate variation = − y force coefficient derivative with yaw rate variation 0.316

CZα̇¼CY β̇ z force coefficient due to angle of attack rate variation = y force coefficient due to side slip angle rate variation −0.441
CKδa Rolling moment coefficient due to aileron angle variation −0.0004
CKp Rolling moment coefficient due to roll rate variation −0.013
CMα = −CNβ Pitching moment coefficient due to angle of attack variation = − Yawing moment coefficient due to side slip angle

variation
−0.0347

CMδe¼−CNδr Pitching moment coefficient due to elevator angle variation = −Yawing moment coefficient due to rudder angle
variation

−0.041

CMq = CNr Pitching moment coefficient due to pitch rate variation = Yawing moment coefficient due to yaw rate variation −0.9455
CMα̇¼−CNβ̇ Pitching moment coefficient due to angle of attack rate variation = −Yawing moment coefficient due to side slip angle

rate variation
−0.1895
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coefficient and natural frequency of the actuator respec-
tively [28].

Gactuator sð Þ ¼ δ
δc

¼ ω2
Act

s2 þ 2ζActωActsþ ω2
Act

: ð25Þ

In Eq. (25), δ is the output of the actuator and δc is the input
or command.

By linearization of relations and calculation of the transfer
function of the vehicle from the rudder angle to the yaw angle,
the transfer function can be represented as Eq. (26) which
considers four dynamic coefficients.

Gdynamics sð Þ ¼ ψ
δr

¼ Dsþ E
As3 þ Bs2 þ Cs

ð26Þ

where
A ¼ −Y β̇I zz þ muIzz

B ¼ −Y βI zz þ NrY β̇−N β̇Y r−mu Nr−N β̇

� 

C ¼ NrY β−NβY r þ muNβ

D ¼ −N β̇Y δr þ N δrY β̇þ muN δr
E ¼ −NβY δr−N δrY β

It should be noted that all of coefficients in Eq. (26) include
force and moments instead of force and moment coefficients.
Therefore, −Yβ, Y β̇, Yr and Y δr are the y force due to the side
slip angle, side slip angle rate, yaw rate and rudder angle
variations respectively and Nβ, N β̇, Nr and N δr are the yawing
moment due to the side slip angle, side slip angle rate, yaw rate
and rudder angle variations respectively. As mentioned earlier
the main purpose of this study is to investigate the effect of
stability derivative coefficients on the performance of the con-
trol system and actuator design and therefore, the nonlinear-
ities, cross couplings in the dynamic equations, possible de-
lays, noises and dynamics of sensors which may significantly
impact on the control system performance are not considered
in the present study. The mentioned transfer function can also
be presented in terms of the natural frequency and damping
coefficient of the airframe as follows:

Gdynamics sð Þ ¼ T1sþ T2

s s2 þ 2ζAFωAFsþ ω2
AF

� � ð27Þ

where T1 ¼ D
A , T2 ¼ E

A, ω
2
AF ¼ C

A and ζAF ¼ B
2AωAF

.

Fig. 3 Shematic of control system with PID controller for the yaw channel of the vehicle

Fig. 2 Shematic of control system for the AUV
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The open-loop transfer function of the AUV by neglecting
the actuator dynamics can be expressed as:

Gopen−loop sð Þ ¼ Gcontroller sð ÞGdynamics sð Þ
¼ K1s3 þ K2s2 þ K3sþ K4

s2 τsþ 1ð Þ s2 þ 2ζAFωAFsþ ω2
AF

� � ð28Þ

where K1 = KpT1τ, K2 = T1(−Kd + Kp + Kiτ) + KpT2τ, K3 =
T2(−Kd +Kp +Kiτ) +KiT1 and K4 =KiT2.

Finally, the close-loop transfer function of the entire system
can be written as the following equation:

Gclose−loop sð Þ ¼ Gcontroller sð ÞGsystem sð Þ
1þ Gcontroller sð ÞGsystem sð Þ ð29Þ

where

Gcontroller sð Þ ¼ Kps τsþ 1ð Þ þ Ki τsþ 1ð Þ−Kds
s τsþ 1ð Þ ð30Þ

Gsystem sð Þ ¼ Gactuator sð ÞGdynamics sð Þ ð31Þ

where τ is time constant parameter of the low pass filter. The
bandwidth of the system is defined as the frequency at which
the amplitude of output oscillations (the yaw rate here) de-
creases 3 dBs or almost reaches 70% of initial values of the
amplitude of output oscillations. Therefore, the bandwidth of
the system is calculated using the following equation:

Gclose−loop jωsð Þ�� �� ¼ 0:70 ð32Þ

In the following section, results of the effect of dynamic
stability derivatives on the actuator dynamic characteristics,
airframe open loop bandwidth and airframe close loop prop-
erties in time domain and frequency domain are discussed.

4 Simulation Results and Discussion

Dynamics of the system which are represented using the hy-
drodynamic stability derivative coefficients are combined
with the controller and actuators in the previous sections.
For analysis of the control system performance, the simple
and conjugate dominant poles of the closed-loop transfer func-
tion are investigated at different control gains and full hydro-
dynamic consideration which results in the determination of
proper zones for control gains. It is tried in this section to
investigate these zones in nonlinear time domain and frequen-
cy domain. Finally, the dynamic stability derivative coeffi-
cients are considered for the proper and more accurate design
of the actuator.

4.1 Time Domain Analysis

In this section, at the first step, the behaviour of an AUV is
compared in two cases with similar actuators by considering
the dynamic stability derivatives coefficients in one case and
ignoring them in another case. For this purpose, a complete
six-degrees of freedom simulation in C software has been
used. Due to the interactions of different control channels, it
has tried to perform analyses in the nonlinear environment
and, if possible, the transfer functions in linear environment
for frequency domain analysis have been used. A 5 degree
yaw command is applied to the vehicle and the results of the
comparison in time domain are shown in Figs. 4, 5 and 6. As
can be seen in Fig. 4, in the case of ignoring the dynamic
stability derivatives coefficients, the yaw angle has a 13.9%
overshoot. However, by applying the dynamic stability deriv-
atives coefficients in the simulation, this overshoot is
completely eliminated and the yaw angle has been approached
to the applied command slowly. Indeed, the closed loop be-
haviour of the system in this case is approached to the behav-
iour of an under damping system.

Variation of yaw rate with time caused by the applied com-
mand is shown in Fig. 5 for two mentioned cases. As Fig. 5
shows, the maximum value of yaw rate in two cases of con-
sidering and neglecting dynamic stability derivatives coeffi-
cients are 19.0 and 24.9 deg/s respectively. Also, the results
indicate that the yaw rate includes the negative values in the
case of ignoring the dynamic coefficients while the yaw rate
includes only positive values by applying dynamic coeffi-
cients. Therefore, according to the results, it can be resulted
that the dynamic stability derivatives coefficients in the equa-
tions of motion avoid fast motions of the AUV.

In addition, Fig. 6 shows rudder control surface angle for
two mentioned cases. The change of rudder angle is similar to

Fig. 4 Yaw angle due to 5 deg command in two cases of considering
dynamic coefficients and ignoring them
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the yaw rate and by considering the dynamic coefficients, the
rudder angle includes the positive values only.

The bandwidth of the system will be studied in the follow-
ing for two cases of open-loop and close-loop systems. In
order to investigate the bandwidth of system dynamics (open
loop analysis) in time domain, four different cases are consid-
ered in simulations. In the first case, no dynamic coefficient
has been considered. In the second case, two dynamic coeffi-
cients CYr and CNr have been considered and the third case
considers CY β̇ and CN β̇ (added mass coefficients).In the final
case all of four dynamic stability derivatives coefficients have
been considered. In order to estimate the bandwidth of dynam-
ics of the system (open-loop) in time domain, the rudder con-
trol surface angle has been chosen as a sine input with ampli-
tude of 1 degree and variable frequency and the output of
system’s dynamic which is the yaw rate has been investigated.
The bandwidth is defined as the frequency at which the am-
plitude of output oscillations (the yaw rate here) decreases 3
dBs or almost reaches 70% of initial values of amplitude of

output oscillations. Results of the bandwidth for these four
cases are shown in the Table 3. The results of open-loop anal-
ysis show that the coefficients CYr and CNr increase the band-
width while the coefficients CY β̇ and CN β̇ (added mass coef-
ficients) decrease the bandwidth of the system. The effect of
considering all of dynamic coefficients is increasing the band-
width of the system by 120%.

For close-loop analysis in time domain, the yaw command
has been chosen as a sine input with amplitude of 1 degree and
variable frequency and the output of system which is the yaw
angle has been investigated. The bandwidth in this case is also
defined as the frequency at which the amplitude of output
oscillations (the yaw angle here) decreases 3 dBs or almost
reaches 70% of initial values of amplitude of output oscilla-
tions. The results of close-loop analysis of bandwidth are
shown in the Table 4. The results of close-loop analysis for
bandwidth show that the effects of dynamic coefficients be-
come less important for the close-loop system with controller
and that the dynamic coefficients have a decreasing effect on
the bandwidth. The results indicate that the effect of consid-
ering dynamic coefficients in the close-loop analysis is the
reduction of bandwidth by 57%. The most effects of these
coefficients in the close loop are in the damping of the system
which will be investigated in frequency domain analysis sec-
tion. Also, the results indicate that the effect of added mass
coefficients (CY β̇, CN β̇ ) is negligible relative to the other two
dynamic coefficients (CYr, CNr).

4.2 Frequency Domain Analysis

For analysis of the system in frequency domain, by consider-
ing the transfer function defined by Eq. (26) and introducing a
sine wave as input similar to the previous cases, the bandwidth

Fig. 5 Yaw rate due to 5 deg command in two cases of considering
dynamic coefficients and ignoring them

Fig 6 Rudder control surface angle due to 5 deg command in two cases of
considering dynamic coefficients and ignoring them

Table 3 Results of nonlinear analysis (time domain) for open-loop
system

Considered coefficients Open-loop Bandwidth (Hz)

No dynamic coefficient 1.52

CYr, CNr 3.60

CY β̇, CNβ̇ 1.35

CYr, CNr, CY β̇, CNβ̇ 3.35

Table 4 Results of nonlinear analysis (time domain) for close-loop
system

Considered coefficients Close-loop Bandwidth (Hz)

No dynamic coefficient 2.1

CYr, CNr 0.7

CY β̇, CNβ̇ 2.0

CYr, CNr, CY β̇, CNβ̇ 0.9
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of the system dynamics (open-loop) can be calculated. Table 5
presents the results of the calculation of bandwidth for differ-
ent cases of considering dynamic coefficients. Also the natural
frequency and damping coefficient of the system for different
cases are calculated and presented in Table 5.

The results of open-loop frequency domain analysis show
that CYr and CNr coefficients increase the bandwidth of the
system, while CY β̇ and CN β̇ coefficients decrease the band-
width of the system just like the time domain analysis (see
Table 3). In the frequency domain, the effect of considering all
of dynamic coefficients is increasing the bandwidth of the
system by 122%. As can be shown in Table 5, the damping
of the open loop system has been increased by 48% when the
dynamic stability derivatives coefficients have been
considered.

For close-loop analysis in frequency domain, the close-
loop linearized transfer function of the system (Eq. (29)) has
been considered and the bandwidth of the close-loop system
has been evaluated. The results of close-loop linear analysis
are presented in Table 6. Similar to the results of nonlinear
analysis of close-loop system (Table 4), the results of linear
analysis indicate that the effect of considering four dynamic
coefficients is the reduction of bandwidth by 53%.

As can be seen in Table 6, the close-loop transfer function
of the system is forth order and thus has four simple or com-
plex conjugate poles. The dominant pole approximation can
be applied to such high order systems in order to make them
easier to think about. This approximation assumes that the

slowest part of the system dominates the response and the
faster parts of the system can be ignored. For example, the
close-loop transfer function of the system with no dynamic
coefficients and considering four dynamic coefficients (the
first and the last rows of Table 6 respectively) have a pair of
complex conjugate roots and two simple poles as shown in
Table 7. It should be noted that real parts of poles determine
the response speed and imaginary parts of complex conjugate
roots determine the oscillatory behaviour of the system if they
are dominant pole. Therefore, the magnitude of closest simple
poles to the origin (a) against real parts of closest complex
conjugate roots to the origin (ζωn) has been compared for
dominant pole determination. The ratio of ζωn/a can deter-
mine the degree of the dependence of the response to the
complex conjugate pole which tends to add oscillations to
the response. The higher the value of ζωn/a the further the
complex conjugate pole from the origin and the closer the
simple pole to the origin, which means that the effects of
oscillations are less on the response of the system and the
simple pole dominates the response. As can be seen in
Table 7, the closest simple pole to the origin (a) is equal to
−2.68 in the case of ignoring dynamic coefficients and the real
part of the complex conjugate root (ζωn) is equal to −4.29 for
this case. Similarly, the values of a and ζωn for the case of
considering four dynamic coefficients are equal to −1.64 and
− 7.06 respectively. Also, the ratio of ζωn/a is equal to 1.6 and
4.3 for the cases of ignoring and considering dynamic coeffi-
cients respectively. Therefore, it can be concluded again that

Table 5 Results of open-loop linear analysis (frequency domain)

Considered coefficients Transfer function ( rδr ) Natural frequency (rad/s) Damping coefficient Bandwidth (Hz)

No dynamic coefficient 20:81sþ71:51
s2þ4:55sþ17:81 4.22 0.54 1.36

CYr
20:81sþ71:51

s2þ4:55sþ25:08 5.01 0.45 1.88

CNr
20:81sþ71:51

s2þ9:74sþ41:43 6.44 0.76 2.68

CYr, CNr
20:81sþ71:51
s2þ9:74sþ48:7 6.98 0.70 3.22

CY β̇
20:81sþ45:54
s2þ2:9sþ11:34 3.37 0.43 1.33

CNβ̇
19:68sþ71:51

s2þ5:42sþ17:81 4.22 0.64 1.23

CY β̇, CNβ̇
20:09sþ45:54

s2þ3:45sþ11:34 3.37 0.51 1.26

CYr, CNr, CY β̇, CNβ̇
20:09sþ45:54

s2þ8:87sþ31:02 5.57 0.80 3.02

Table 6 Results of close-loop linear analysis (frequency domain)

Considered
coefficients

Transfer function (ψψc
) Bandwidth

(Hz)

No dynamic
coefficient

62:43s2þ6458sþ21450
s4þ104:6s3þ1160s2þ10380sþ21450 1.70

CYr, CNr
62:43s2þ6458sþ21450

s4þ109:7s3þ1709s2þ13470sþ21450 0.60

CY β̇, CNβ̇
60:27s2þ6164sþ13660

s4þ103:5s3þ1019s2þ8664sþ13660 1.68

CYr, CNr, CY β̇, CNβ̇
60:27s2þ6164sþ13660

s4þ108:9s3þ1580s2þ10630sþ13660 0.79
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the dynamic coefficients have decreased the oscillations of the
response (see Figs. 4, 5 and 6). Furthermore, the magnitudes
of the damping coefficient related to complex conjugate poles
are presented in Table 7 and are equal to 0.46 and 0.75 for the

cases with and without considering dynamic coefficients
respectively.

It should be noted that all of previous close-loop results are
based on using a fixed PID controller with Kp = 3, Kd = − 0.3

(a) (b)

(c) (d)
Fig. 7 Variations of a simple pole a, b real part of complex conjugate pole ζωn, c ratio of ζωn/a and d variation of damping ratio of complex conjugate
pole ζ with Kp

Table 7 Close-loop transfer function poles

Considered coefficients No dynamic coefficient CYr, CNr, CY β̇, CNβ̇

Transfer function (ψψc
) 62:43s2þ6458sþ21450

s4þ104:6s3þ1160s2þ10380sþ21450
60:27s2þ6164sþ13660

s4þ108:9s3þ1580s2þ10630sþ13660

Simple poles −2.68, −93.30 −1.64, −93.10
(a) −2.68 −1.64
Complex conjugate poles

(ζωn +ωdi)
−4.29 + 8.21i, −4.29 − 8.21i −7.06 + 6.29i, −7.06 − 6.29i

ζωn/a 1.6 4.3

ζ 0.46 0.75
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and Ki = 0 and ignoring the actuator dynamics. The actuator
dynamics will be considered in the following section for final
design of the actuators for the system. But, in order to inves-
tigate the effect of controller gains on the system performance,
four results which are the magnitudes of a, ζωn, ζωn/a and ζ
are determined for different values ofKp,Kd andKi and shown
in Figs. 7, 8 and 9.

As discussed earliear, the higher the value of ζωn/a the
further the complex conjugate pole from the origin and the
closer the simple pole to the origin, which means that the
effects of oscillations are less on the response of the system
and the simple pole dominates the response. In other words, in
order to have the best performance of the controller to de-
crease the oscillations of the response, the ratio of ζωn/a and
the value of the damping coefficient should be as high as

possible. The suggested value of the ratio is often ζωn/a > 5
to ignore the effects of oscillations of complex conjugate poles
based on the dominant pole approximation. As Figs. 7a and 8a
show, by changing the gains Kp and Kd the simple pole of the
system with dynamic stability derivatives coefficients is al-
ways closer to the origin than the simple pole of the system
without considering dynamic coefficients, which means the
faster response of the former system. Figure 7c shows that
the ratio of ζωn/a is greater for the system with dynamic coef-
ficients for all values of Kp, which means that the effects of
oscillations are less on the response of the system with dy-
namic coefficients and the simple pole dominates the re-
sponse. Also, the magnitudes of the damping coefficient re-
lated to the complex conjugate pole are shown in Fig. 7d and
the results show that the damping coefficient is always greater

(a) (b)

(c) (d)
Fig. 8 Variations of a simple pole a, b real part of complex conjugate pole ζωn, c ratio of ζωn/a and d variation of damping ratio of complex conjugate
pole ζ with Kd
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for the system with considering dynamic coefficients. Based
on Fig. 8c and d, the effect ofKd on two considered systems is
not significant for high magnitudes of this gain. However, the
effect of gain Kd becomes more significant in smaller magni-
tudes and again the ratio of ζωn/a and the magnitude of
damping coefficient ζ are greater for the system with consid-
ering dynamic coefficients. Figure 9 shows that the effect of
integrator gain Ki is not significant on the results. It should be
noted that the design of the controller is out of the scope of
present study and only the effects of different gains on the
system performance was investigated.

4.3 Actuator Design

The final step is to consider the dynamics of the actuator and
design of proper actuator for the system in time domain and

frequency domain. For this purpose, the effect of actuator natural
frequency in time domain analysis is shown in Fig. 10 when the
dynamic coefficients are ignored. It should be noted that the gains
of the PID controller are: Kp = 3, Kd = − 0.3 and Ki = 0.
Figure 10 shows the variations of yaw angle for different natural
frequencies of the actuator which are equal to 15, 20, 30 and
40 rad/s. As results show, the system is unstable at ωAct of
15 rad/s. At natural frequency of 20 rad/s the system becomes
stable but the maximum percentage of overshoot is equal to 61%
for this case and oscillations of yaw angle around the final value
is high. The maximum percentage of overshoot and oscillations
of yaw angle around the final value will decrease by increasing
the natural frequency of actuator. As can be seen in Fig. 10, the
oscillations will disappear completely for actuator natural fre-
quencies of 30 and 40 rad/s and the maximum percentage of
overshoot for natural frequencies of 30 and 40 rad/s decreases

(a) (b)

(c) (d)
Fig. 9 Variations of a simple pole a, b real part of complex conjugate pole ζωn, c ratio of ζωn/a and d variation of damping ratio of complex conjugate
pole ζ with Ki
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to 35% and 25% respectively. In addition, no significant changes
are seen in the yaw angle variations by increasing the natural
frequency of actuator from 30 to 40 rad/s. Therefore, it can be
suggested that a second order linear actuator with natural fre-
quency of 30 rad/s and damping coefficient of 0.7 is suitable
for the yaw channel of this AUVwithout considering the dynam-
ic coefficients. Of course, the dynamic coefficients will be con-
sidered in the following for the proper and more accurate design
of the actuator.

As mentioned, it is necessary to consider the dynamic sta-
bility derivatives coefficients in simulations in order to select
the proper actuator for the AUV. The comparison in this case
is done by applying dynamic coefficients and considering ac-
tuators with damping coefficient of 0.7 and natural frequen-
cies of 5, 10, 15 and 20 rad/s. The results of actuator natural
frequency effects by considering dynamic stability derivatives
coefficients are shown in Fig. 11. As Fig. 11 shows, the sys-
tem is unstable in natural frequency of 5 rad/s. As can be seen

Fig. 10 Yaw angle due to 5 deg
command by ignoring dynamic
coefficients and in different
natural frequencies of the actuator

Fig. 11 Yaw angle due to 5 deg
command by considering
dynamic coefficients and in
different natural frequencies of
the actuator

141J Intell Robot Syst (2020) 99:129–145



in Fig. 11, the system becomes stable at ωAct of 10 rad/s, but
with high percentage of overshoot equal to 42% and high
oscillations of yaw angle around the final value. On the other
hand, by increasing the natural frequency of actuator to 15 and
20 rad/s, the system has been stabilized with the reduced max-
imum percentage of overshoot equal to 21% and 8% respec-
tively. Also, the result shows that increasing the natural fre-
quency from 15 to 20 rad/s has no significant effect on the yaw
angle variations. Therefore, the comparison of results of two
considered cases (ignoring and considering dynamic

coefficients) indicate that by considering the dynamic stability
derivatives coefficients, an actuator with a lower natural fre-
quency (15 rad/s in comparison to 30 rad/s) can be selected for
the yaw channel of the AUV.

The investigation of the effect of the actuator natural fre-
quency can also be done in the frequency domain by consid-
ering the linearized dynamics and the close-loop transfer func-
tion of the system (see Eq. (29)). Similar to the time domain
analysis a PID controller with Kp = 3, Kd = − 0.3 and Ki = 0 is
considered and an actuator with fixed damping coefficient of

Fig. 12 Real part of the closer
pole to the origin versus different
natural frequencies of the actuator

Fig. 13 Real part of the closer
pole to the origin versus different
natural frequencies of the actuator
(PID controller with Kp = 1.5,
Kd = − 0.3 and Ki = 0)
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0.7 and different natural frequencies (from 1 to 60 rad/s) has
been studied. As mentioned earlier, the real part of poles de-
termine the response speed. The real part of the closer pole to
the origin (simple or complex conjugate pole) is considered in
order to investigate the effect of the natural frequency of the
actuator in the frequency domain. The variations of this real
partRealpoles are shown in Fig. 12 for two cases of considering
and neglecting dynamic coefficients. As can be seen in
Fig. 12, the graph of Realpoles versus ωAct have two different
parts. The first part is at lower natural frequencies of the actu-
ator with variations of Realpoles which indicates that the dom-
inant pole in this region is the complex conjugate pole and the
system behaviour is oscillatory. In the second part which is at
higher values of ωAct, the variation of Realpoles is almost neg-
ligible and Realpoles has a fixed value, which indicates that the
dominant pole in this region is the simple pole. In other words,
after reaching to the natural frequency of the boundary be-
tween these two parts, the simple pole becomes the dominant
pole of the system and the effects of oscillations of complex
conjugate poles become less. Also, it should be noted that the
positive values of the real part indicates the instability of the
system. As Fig. 12 shows, for the system without dynamic
coefficients, the magnitude of the real part of the closer pole
to the origin Realpoles is positive at ωAct less than 17 rad/s and
thus the system is unstable. This result is identical to the result
of time domain analysis which showed that the system is
unstable at ωAct of 15 rad/s. For the system with dynamic
coefficients, Realpoles is positive at ωAct less than 6 rad/s and
thus the system is unstable at actuator natural frequencies less
than 6 rad/s. This result is also identical to the result of time
domain analysis which showed that the system is unstable at
ωAct of 5 rad/s for the system with dynamic coefficients. As

mentioned, the fixed value of Realpoles at higher natural fre-
quencies of actuator indicates that the simple pole dominates
the response and the effect of oscillations becomes less after
reaching these values of ωAct. Therefore, the boundary be-
tween two aforementioned parts of the graph which are almost
equal to 30 and 15 rad/s for the systems without and with
dynamic coefficients, can be selected approximately as the
design natural frequency of the actuator (identical to the sug-
gested values in time domain analysis).

As mentioned earlier, the gains of the PID controller are:
Kp = 3, Kd = − 0.3 and Ki = 0. However, it should be noted
that the value of gains are effective on the design of the actu-
ator for the system. As mentioned in the previous section, the
design of controller is out of the scope of present study and
only the effect of controller gains on the design of the actuator
will be discussed. For example, the variations of Realpoles
versus ωAct are shown in Fig. 13 by halving Kp (from 3 to
1.5) while keeping Kd constant (equal to −0.3). As Fig. 13
shows, halving the proportional gain results in design of an
actuator with lower natural frequency than the previous case.
The design natural frequencies are approximately equal to 17
and 7 rad/s for the systems without considering and with con-
sidering dynamic coefficients respectively. The results are
again identical to the presented results of previous section
which showed that decreasing the proportional gain Kp in-
creases the ratio of ζωn/a and the magnitude of damping ratio
ζ (see Fig. 7). Also, the variation of Realpoles versus ωAct is
shown in Fig. 14 by doubling Kd (from −0.3 to −0.6) while
keeping Kp constant (equal to 3). Figure 14 shows that dou-
bling Kd has decreased the design natural frequency of the
actuator from 30 to 25 rad/s for the case of ignoring dynamic
coefficients and has no significant effect on the design natural

Fig. 14 Real part of the closer
pole to the origin versus different
natural frequencies of the actuator
(PID controller with Kp = 3, Kd =
− 0.6 and Ki = 0)
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frequency of actuator which is approximately equal to 15 rad/s
for the case of considering dynamic coefficients. This result
can also be justified using the results of previous section in
Fig. 8. As can be seen in Fig. 8c and d, for the system without
dynamic coefficients, doublingKd has increased both the ratio
of ζωn/a and the magnitude of damping ratio ζ which result in
lower design natural frequency of the actuator (25 rad/s in
comparison to 30 rad/s). On the other hand, for the system
with dynamic coefficients, as Fig. 8c shows, doubling Kd has
no significant effect on the ratio of ζωn/a and this ratio is equal
to 4.30 and 4.27 for the gain Kd equal to −0.3 and − 0.6 re-
spectively. Therefore, doubling Kd has no considerable effect
on design natural frequency of actuator for the system with
dynamic coefficients in this specific region.

5 Conclusion

In the present study, the static and dynamic stability de-
rivatives coefficients which are calculated using Datcom
computational code are modeled in the nonlinear time
domain and the frequency domain to investigate their ef-
fects on the performance of an AUV and the design of
proper actuators. The results show that the consideration
of dynamic stability derivatives coefficients prevents fast
movements of the vehicle and leads to 57% decrease in
the closed loop bandwidth of the vehicle. Also, it is
shown that by a full hydrodynamic consideration in
modeling of the AUV, the effect of control gains and
damping can be different in comparison with the cases
which are not considered them. For analysis of the control
system performance, the simple and conjugate dominant
poles of the closed-loop transfer function are investigated
at different control gains and full hydrodynamic consider-
ation which results in the determination of proper zones
for control gains. Furthermore, the effect of the natural
frequency of the actuator on the performance of the
AUV has been investigated and the results indicate that
a lower cost actuator with lower bandwidth can be select-
ed in the presence of dynamic stability derivatives
coefficients.
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