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Abstract
This paper proposes a novel robust adaptive-backstepping-recurrent-fuzzy-wavelet-neural-networks controller (ABRFWNNs)
based on dead zone compensator for Industrial Robot Manipulators (IRMs) in order to improve high correctness of the position
tracking control with the presence of the unknown dynamics, and disturbances. To deal on the unknown dynamics of the robot
system problems, the proposed controller used recurrent-fuzzy-wavelet-neural-networks (RFWNNs) to approximate the un-
known dynamics. The online adaptive control training laws and estimation of the dead-zone are determined by Lyapunov
stability theory and the approximation theory. In this method, the robust sliding-mode-control (SMC) is constructed to optimize
parameter vectors, solve the approximation error and higher order terms. Therefore, the stability, robustness, and desired tracking
performance of ABRFWNNs for IRMs are guaranteed. The simulations and experiments performed on three-link IRMs are
provided in comparison with fuzzy-wavelet-neural-networks (FWNNs) and proportional-integral-derivative (PID) to demon-
strate the robustness and effectiveness of the ARBFWNNs.
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1 Introduction

In recent decades, Robotic manipulators have been widely
used in the variety of industries and much effort has been
contributed to the robot manipulators for improving their ef-
fectiveness and accuracy significantly too. In fact, robotics are
multi- input multi – output (MIMO) non-linear systems. In
addition, IRMs usually bear the nonlinear frictions, payload
variation, external disturbance and etc. in the working process.
Therefore, it is not easy to build a suitable controller without
the knowledge of the robotic system. To solve these problems,
intelligent controllers based on fuzzy/ neural networks control
for IRMs have been proposed. The Fuzzy logic technique is a
successful implementation for the approximation of non-

linear systems [1–3]. In [3], Shaocheng Tong and Han-xiong
Li proposed a sliding mode controller based on fuzzy tech-
nique for nonlinear system. Here, the proposed controller was
designed without the knowledge of MIMO system and the
rules of fuzzy system were created by using the knowledge
of human experts and experience to obtain good control per-
formance over uncertainties. However, this knowledge may
not be enough and difficult to build the suitable fuzzy control
rules, membership function. To overcome this difficult prob-
lem, the adaptive robust fuzzy control system based on neural
networks were proposed [4–7]. In [5], the authors propose an
adaptive robust control system based on fuzzy neural net-
works (FNNs) for robotic manipulator. The proposed control-
ler combines the advantage of fuzzy technique with fast learn-
ing ability of the neural networks. The updated law of the
proposed controller was determined by the Lyapunov stability
theorem. Therefore, the robustness and stability of FNNs were
improved. The FNNs architectures in [4–7] were not easy to
solve for the highly nonlinear system because they were built
based on the application of feed – forward neural network. To
deal with this problem, the recurrent-fuzzy-neural-networks
(RFNNs) was proposed [8–14] by inheriting the advance of
FNNs with the recurrent technique. In [9], an adaptive itera-
tive learning control for a nonlinear system is proposed by
using the recurrent fuzzy neural network. Here, the unknown
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certainty equivalent control system was compensated by the
recurrent fuzzy neural network. All parameters of the pro-
posed controller were adjusted based on a Lyapunov like anal-
ysis. Thus, the robustness and effectiveness of the RFNNswas
guaranteed. In [10], Faa – Jeng Lin, and Po- Huang Shieh
proposed a recurrent radian-basic-function (RBF) network
based on fuzzy neural network controller to control the posi-
tion of linear ultrasonic motors. By combining recurrent tech-
nique, RBF network, and fuzzy neural network, the learning
speed of the proposed control system was significantly im-
proved. In general, the control systems based on neural net-
work have the advantages to control the nonlinear system but
they still contain some problems as approximation errors, net-
works size, and poor convergence. There have been many
valued researches that proposed based on the wavelet-
neural-networks (WNNs) to deal with the problem of
FNNs/NNs. By combining the learning capability of neural
networks with the decomposition capability of the wavelet,
the WNNs can be converged faster, bigger network size, and
smaller approximation errors [13–16]. In [14], the authors
proposes a wavelet neural network (WNNs) for farm trans-
mission line deicing robot manipulators. In this controller, the
disturbances and unknown dynamic system were approximat-
ed by the WNNs and the lumped uncertainty was compensat-
ed by using the robust term. The proposed controller improved
the smaller tracking errors and guaranteed convergence faster
than NNs. Other researches proposed the FWNNs have
attracted a lot of attention of researchers. The FWNNs are
built based on the inheriting advantage of fuzzy technique
with WNNs architecture and some researchers by using
FWNNs are proposed [17–19]. In [18], an adaptive robust
SMC control system based on the inheriting advantage of
fuzzy wavelet neural networks (FWNNs) is proposed for a
class of condenser cleaning mobile manipulator to solve the
problems of external disturbances and parametric uncer-
tainties. In this proposed control system, the FWNNs is ap-
plied to approximate the unknown of robot dynamic and the
online learning laws are adjusted by the stability Lyapunov
theory. Thus, the proposed control system has successfully
improved the convergence speed and approximation errors
of robotics. Recently years, one of the important subjects for
robotic manipulator that has attracted many researchers is the
compensation of dead-zone. In fact, deal-zone is a natural and
nonlinear item. To deal with compensation of non-smooth
nonlinearities, many researches were proposed [20–22]. In
[20], an adaptive neural network is proposed to compensate
the dead-zone of the hydraulic system. In this proposed con-
troller, the RBF neural network is applied to identify the dead
–zone parameters and a cost function is proposed to provide
the best approximation of dead-zone. The parameters of the
control system and the dead-zone are easier to calculate.

In this paper, to deal with the problem of compensation
dead-zone with the unknown dynamic and external

disturbance, an adaptive robust recurrent fuzzy wavelet neural
network control based on backstepping technique has been
proposed. This proposal combines the advantage of
RFWNNs, sliding mode control and backstepping technique.
The unknown robot dynamics are approximated by the
RFWNNs and the tracking errors are compensated by using
the robust term. In addition, all the parameters of the proposed
controller are adjusted by the stability Lyapunov theory. Thus,
the robustness and effectiveness of ABRFWNNs control sys-
tem are guarantee.

The paper is organized as follows. The preliminaries are
described in Section 2. Section 3 presented control design and
Stability Analysis. The simulation and experimental results of
three-link industrial robot manipulators are provided in sec-
tion 4. Finally, section 5 gives concluding remarks.

For the convenience of the reader, the main symbols to be
used in this paper are summarized in Table 1.

2 Preliminaries

2.1 Model of robotic manipulators

In this paper, the dynamics of an n- link industrial robot ma-
nipulator with external disturbance can be described in the
Lagrange equation as following:

MR θð Þθ˙̇ þ CR θ; θ˙
� �

θ˙ þ GR θð Þ þ FR θ˙
� � ¼ τ−τ0 ð1Þ

with θ = [θ1 θ2…θn] ∈ Rn × 1 is the joint position vector, θ̇ ¼
θ̇1 θ̇2…θ̇n½ �∈Rn�1 is the velocity vector and θ̇ ˙¼ θ̇ ˙1 θ̇ ˙2…θ̇ ˙n½ �
∈Rn�1 is the acceleration vector. MR(θ)expresses the n × n
symmetric inertial matrix. CR θ; θ̇ð Þ denotes the n × n vector
of Coriolis and Centripetal forces. GR(θ) ∈ Rn × n denotes the
Gravity vector. FR θ̇ð Þ denotes the n × 1 vector of the frictions.

Table 1 Main symbols used in the paper

Variables Phyical meaning

θd ; θ̇d ; θ̇ ˙
d The joint position, velocity, acceleration

Zθ1, Zθ2 The tracking error vector and its derivative

Wlj The weight between output layer and rule
layer.

aji The dilation parameter

bji The translation parameter

ŷ The approximation of y function

τsmc Sliding control term

Ŵ; μ̂; υ̂; â; b̂ Approximate values

αw, αυ, αa, αb, αβ, α§,
αD

Positive adaptation rates

§ Positive scalar control gain
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τ0 expresses the n × 1 vector of the input unknown distur-
bances. And τ is the n × 1 control input vector of joints torque.
For designing controller, several properties of the robot dy-
namics (1) have been assumed as follows.

& Property 1: MR(θ) is the n × n symmetric inertial Matrix
and bounded:

m1 xk k2≤xTMR θð Þx≤m2 xk k2;∀x∈Rn ð2Þ

With m1and m2 are known positive constants.

& Property 2: ṀR θð Þ−2CR θ; θ̇ð Þ is skew symmetry matrix,
in which

xT M˙ R θð Þ–2CR

�
θ; θ˙

�h i
x ¼ 0 ð3Þ

& Property 3: CR θ; θ̇ð Þθ̇ , GR(θ) and FR θ̇ð Þ are satisfied:

CR θ; θ˙
� �

θ˙
�� ��≤Ck θ˙

�� ��2; GR θð Þk k
≤Gk ; FR θ˙

� ��� ��≤ Fk θ˙
�� ��þ F0

ð4Þ

With Ck, Gk, Fk, F0 are positive constants.

& Property 4: τ0 ∈ Rn is the unknown disturbance and τ0 is
bounded as follows:

τ0k k≤τ k ; τ k > 0 ð5Þ

As assumptions in [25], the dead zone function shows in
Fig. 1 that is expressed as follows:

τ ¼ D uð Þ

D uð Þ ¼
hr u−drð Þ for u > dr

0 for dl ≤u≤dr
hl uþ dlð Þ for u < dl

8<
: ð6Þ

Here,

dr > 0, dl <
0

are unknown constant parameters of dead
zone.

hl(u), hr(u) are the unknown smooth functions.

Where,

u is control input before entering the dead zone.
τ is control input after entering the dead zone.

Therefore (6) can be rewritten as:

τ ¼ D uð Þ ¼ u−satD uð Þ ð7Þ
where the asymmetric saturation function is defined as:

satD uð Þ ¼
dr for u > dr
u for dl ≤u≤dr
dl for u < dl

8<
: ð8Þ

2.2 Backstepping controller

The proceeding design of the conventional Backstepping con-
troller is described step by step as follow:

Step 1: Define the tracking error vector Zθ1(t) and derivative
of Zθ1(t) as:

Zθ1 tð Þ ¼ θd−θ; Z˙ θ1 tð Þ ¼ θ˙ d−θ˙ ð9Þ

By using θ̇ as the first virtual control input. Define an in-
termediate function as:

φθ1 tð Þ ¼ θ˙ d þΩθ1Zθ1;

φ˙ θ1 tð Þ ¼ θd þΩθ1Z˙ θ1
ð10Þ

where Ωθ1 > 0.
Choose the first following Lyapunov function candidate

Lθ1 as:

Lθ1 Zθ1 tð Þð Þ ¼ 1

2
ZT
θ1Zθ1 ð11Þ

The tracking error vector Zθ2(t) is define as the follows:

Zθ2 tð Þ ¼ φθ1 tð Þ−θ˙ ¼ Z˙ θ1 tð Þ þΩθ1Zθ1 ð12Þ

The time derivative of the Lyapunov function Lθ1(Zθ1(t)) is:

L˙ θ1 Zθ1 tð Þð Þ ¼ ZT
θ1Z

˙
θ1 ¼ ZT

θ1 Zθ2 tð Þ−Ωθ1Zθ1ð Þ ð13Þ

Step 2: the derivative of tracking error vector Zθ2(t) along to
time, we haveFig. 1 Dead zone model
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Z˙ θ2 tð Þ ¼ φ˙ θ1 tð Þ−θ˙̇ ð14Þ

where θ used as the second virtual control input.
Substituting (9, 10, 12, 14) into (1), we have:

MRZ˙ θ2 ¼ MRφ
˙
θ1 þ CRφθ1−CRZθ2 þ GR þ FR þ τ0−τ ð15Þ

Consider the second following Lyapunov function candi-
date Lθ2 as:

Lθ2 Zθ1 tð Þ; Zθ2 tð Þð Þ ¼ Lθ1 Zθ1 tð Þð Þ þ 1

2
ZT
θ2MRZθ2 ð16Þ

The time derivative of the Lyapunov function Lθ2(Zθ1(t),
Zθ2(t)) is:

L˙ θ2 Zθ1 tð Þ; Zθ2 tð Þð Þ ¼ ZT
θ1 Zθ2 tð Þ−Ωθ1Zθ1ð Þ

þ 1

2
ZT
θ2M

˙
RZθ2 þ ZT

θ2MRZ˙ θ2 ð17Þ

Substituting (15) into (17) and use Property 2, we have:

L˙ θ2 ¼ ZT
θ1 Zθ2 tð Þ−Ωθ1Zθ1ð Þ þ 1

2
ZT
θ2M

˙
RZθ2

þZT
θ2 MRφ

˙
θ1 þ CRφθ1−CRZθ2 þ GR þ FR þ τ0−τ

� �
L˙ θ2 ¼ ZT

θ1Zθ2 tð Þ−ZT
θ1Ωθ1Zθ1

þ 1

2
ZT
θ2 M˙ R−2CR
� �

Zθ2 þ ZT
θ2 yþ τ0−τð Þ

L˙ θ2 ¼ ZT
θ1Zθ2 tð Þ−ZT

θ1Ωθ1Zθ1 þ ZT
θ2 yþ τ0−τð Þ ð18Þ

with

y ¼ MRφ
˙
θ1 þ CRφθ1 þ GR þ FR ð19Þ

To continue our design, the adaptive control law is pro-
posed as:

τ ¼ yþΩθ2Zθ2 þ Zθ1 þ τ0 ð20Þ
With Ωθ2 > 0

Substituting (20) into (18), we have:

L˙ θ2 ¼ −ZT
θ1Ωθ1Zθ1−ZT

θ2Ωθ2Zθ2≤0 ð21Þ

Since (21), L̇θ2 Zθ1 tð Þ; Zθ2 tð Þð Þ≤0, L̇θ2 Zθ1 tð Þ; Zθ2 tð Þð Þ is a
negative semidefinite function,
L̇θ2 Zθ1 tð Þ; Zθ2 tð Þð Þ≤ L̇θ2 Zθ1 0ð Þ; Zθ2 0ð Þð Þ. if Zθ1(t), Zθ2(t) are
bounded with t > 0. By defining € tð Þ ¼ ZT

θ1Ωθ1Zθ1 þ ZT
θ2Ωθ2

Zθ2 so € tð Þ≤ L̇θ2 Zθ1 tð Þ; Zθ2 tð Þð Þ and integrate the €(t) with
respect to time as follows:

∫t0€ ζð Þdζ≤Lθ2 Zθ1 tð Þ; Zθ2 tð Þð Þ−Lθ2 Zθ1 0ð Þ; Zθ2 0ð Þð Þ ð22Þ

Because Lθ2(Zθ1(0), Zθ2(0)) is a bounded function, and
Lθ2(Zθ1(t), Zθ2(t)) is nonincreasing and bounded, we have:

lim
t→∞

∫t0€ ζð Þdζ < ∞ ð23Þ

2.3 Structure of RFWNNs

The proposed RFWNNs are the integration of FWNNs with
the recurrent structure. The structure of the RFWNNs is
expressed in Fig. 2, which contains m input variables, n num-
ber of rule nodes, p output nodes and it includes four layers.

Input Layer (Layer 1): Within this layer, x = x1, x2, …, xm
are the input signals. The input values are moved directly to
the following layer.

Membership Layer (Layer 2): Every node which describes
the terms of corresponding linguistic variable, performs a
fuzzy membership function in this layer. The local feed-back
unit using the actual time part is added to this present layer.
The membership layer output would be represented as:

xji tð Þ ¼ xi tð Þ þ υjiΨ xi t−Tð Þð Þ ð24Þ

where the membership function Ψ(xi(t − T)) denotes the time
delay value of Ψ(xi(t)) via an interval T and υji is the recurrent
weight. Ψ(xi(t)) and Ψ(xi(t − T)) are computed as follows:

Ψ xið Þ ¼ e−a
2
ji xi−bjið Þ2 ð25Þ

Ψ xji
� � ¼ e−a

2
ji xji−bjið Þ2 ð26Þ

with aji is the dilation parameter and, bji is the translation
parameter.

Rule Layer (Layer 3): Each neuron through the rule layer is
characterized as a rule and it out prerequisite matching of a
rule. The AND operator is used to compute the outputs as
follows.

μ j xji
� � ¼ ∏m

i¼1ωjkΨ j xji
� � ð27Þ

where ωjk is assumed to be unity presents the weight between
both the membership layer and the rule layer. The fuzzy wave-
let basic function is constituted as follows:

ð28Þ

where is the wavelet basis function and could be determined
as follows:

ð29Þ

where is the Mexican hat wavelet function.
Output Layer (Layer 4): in this layer, every node describes

the output linguistic variable, and it will be calculated as fol-
lows:
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yl ¼ ∑
n

j
Wljξ j xji

� � ð30Þ

with Wlj is the weight between output layer and rule layer.
The RFWNNs outputs (30) could be expressed in the vec-

tor method as follows:

y x; υ; a; b;Wð Þ ¼ y1; y2;…; yp
h iT

¼ WTμ x; υ; a; bð Þ ð31Þ

with

x ¼ x1; x2;…; xm½ �T∈Rm�1;

y ¼ y1; y2;…; yp
h iT

∈Rp�1;

υ ¼ υ11; υ12;…; υ1m;…; υ; υn2;…; υnm½ �T∈Rmn�1;
a ¼ a11; a12;…; a1m;…; an1; an2;…; anm½ �T∈Rmn�1;
b ¼ b11; b12;…; b1m;…; bn1; bn2;…; bnm½ �T∈Rmn�1

μ x; υ; a; bð Þ ¼ μ1;μ2;…;μn½ �T∈Rn�1;

W ¼
W11 W12 … W1n

W21 W22 … W2n

⋮ ⋮ ⋱ ⋮
Wp1 Wp2 … Wpn

2
664

3
775
T

∈Rp�n

;

The RFWNNs have been shown as an approximation.
Therefore, through investigating the powerful approximation
error, there can exit an optimum RFWNNs to learn the non-
linear dynamic y(x) with its optimal parameters:

y xð Þ ¼ W*Tμ* x; υ*; a*; b*
� �þ y0 xð Þ ð32Þ

Here,W∗, υ∗, a∗, b∗are the optimal values ofW, υ, a, b one -
to - one, and y0(x) ∈ Rn is a vector of approximation error.

& Assumption 1: y0(x) will be bounded as:

y0 xð Þk k≤Δy ð33Þ
with Δy is the positive real value.

& Assumption 2: The norm of optimal RFWNNs parameters
are limited by positive real values as follows:

W*
�� ��≤Δw; υ*

�� ��≤Δυ; a*
�� ��≤Δa; b*

�� ��≤Δb ð34Þ

The approximate output value of the RFWNNs is deter-
mined as:

ŷ¼ Ŵ
T μ̂ x; υ̂; â; b̂Þ

�
ð35Þ

where ŷ; Ŵ
T
; μ̂; υ̂; â; b̂ are respectively the approximate

values of the optimal parameters y, W∗, μ∗, υ∗, a∗, b∗.
The RFWNNs are constructed on the basic fuzzy

rules, the theory of multi-resolution analysis and the
recurrent scheme that wavelet function is included in
the resulting parts of the rules. The RFWNNs models
have a smaller network scope and a faster training
speed in comparison to other structures. This structure
is created online by means of simultaneous structure
and parameter identification. In this RFWNNs structure,
the benefits of recurrent possessions can make
RFWNNs appropriate to deal with temporal problems.

Fig. 2 Structure of a four layer
RFWNNs
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3 Control design and shabbily analysis

3.1 Control design

We recommend the RFWNNs to find an adaptive law of the
suitable adaptive RFWNNs model that makes control system
able to achieve the required approximation errors accuracy.

Architecture of the dead zone compensator is shown in
Fig. 3.

To compensate the effects of dead zone. The control input
after passing the dead zone can be described in the following
form [23]:

u ¼ τd þ ηd̂r þ I−ηð Þd̂l ð36Þ
where η = I if τd ≥ 0, η = 0 if τd < 0. The direct control input for
robot manipulator can be expressed as follows:

τ ¼ τd þ ηd̂r þ I−ηð Þd̂l
−ED τd þ ηd̂r þ I−ηð Þd̂l

� �
¼ τd−eDT

Ξ þ eDT
δ

ð37Þ

where eD ¼ D−Db; eD ¼ diag ed1;ed2;…;ednn o
and Ξ = [η I

− η]T and the modelling mismatch δ satisfies the bound [25].

δk k≤ ffiffiffi
n

p ð38Þ

Architecture of the adaptive ABRFWNNs with the un-
known dead zone is shown in Fig. 4.

As shown in from Fig. 4, the adaptive control law is char-
acterized as presented below:

τ ¼ ŷ̂þΩθ2Zθ2 þ Zθ1 þ τ smc−eDT
Ξ þ eDT

δ ð39Þ
where ŷ is the approximation of y function, and τsmc is a
sliding control term.

By using the RFWNNs control law (39) into (15), we can
be rewritten as:

MRZ˙ θ2 ¼ ey− CR þΩθ2ð ÞZθ2−Zθ1−τ smc þ eDT
Ξ−eDT

δ ð40Þ
with

ey ¼ y−ŷ ¼ W*Tμ*−WbT
μ̂̂þ y0 ð41Þ

The parameter errors are defined as: eW ¼ W*−
Wb; eμ ¼ μ*−μ̂;eυ ¼ υ*−υ̂;ea ¼ a*−â and eb ¼ b*−b̂. Thus,
Eq. (41) is possible to be rephrased as:

ey ¼ W*Teμþ eWT
μ̂þ y0 ð42Þ

The function eμ can be expanded in a Taylor series as:

eμ ¼ ∂μ1

∂υ
;
∂μ2

∂υ
;…;

∂μn

∂υ

� 	
υ¼υ̂

eυ
þ ∂μ1

∂a
;
∂μ2

∂a
;…;

∂μn

∂a

� 	
a¼â

ea
þ ∂μ1

∂b
;
∂μ2

∂b
;…;

∂μn

∂b

� 	
b¼^b

ebþ H eυ;ea;eb� � ð43Þ

or

ð44Þ
where H eυ;ea;eb� �

∈Rn is the higher- order term vector:

Substitute (44) into (42), we have:

ð45Þ

Estimation of 

deadzone width

Dead zone

Robot 

manipulator

Fig. 3 Adaptive dead zone
compensation
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Where
ω = [ω1, ω2,…, ωn]

T ∈ Rn and using (44),
we obtain

The bound of ω is determined as:

Hence, we can infer:

ð46Þ

where

Follow above analysis, a sliding mode control term τs is
designed by:

Fig. 4 The block diagram of the
adaptive control system

J Intell Robot Syst (2020) 98:679–692 685



τ smc ¼
Zθ2 βT Ω0

� �2
Zθ2k kβT Ω0 þ `

ð47Þ

where § is a positive scalar control gain

`˙ ¼ −k``; ` 0ð Þ > 0 ð48Þ
with

β = [ β1, β2, β3, β4]
T is a bound of vector β∗.

To estimate the sliding control term τsmc we present adap-
tive term τ̂ s as:

τ̂̂smc ¼
Zθ2 β̂

T
Ω0


 �2

Zθ2k kβ̂
T
Ω0 þ `

ð49Þ

where β̂ is the estimate of β∗

Applying (45) to (40), yields:

ð50Þ

Based on dynamic model (1), the adaptive control law (39)
and the robust sliding compensator (49), the online adaptive
update laws of ABRFWNNs, sliding control term parameters
can be chosen as:

ð51Þ

here αw, αυ, αa, αb, αβ, α§, αD are positive adaptation rates.

3.2 Stability analysis

Theorem 1 Consider the ABRFWNNs adaptive control law of
an n-link robot manipulator represented by (1) is designed in
(39), and a sliding control term τsmc is given by (49), and the

parameters Wḃ; υ̇̂; ȧ̂; ḃ̂; β̂;˙ ` ̂˙ ; Ḋ̂, are adjusted by the adaptive al-
gorithm (51). Then the position tracking error and all the sys-
tem parameters converges to zero.

The Lyapunov function candidate is chosen as follows as:

L tð Þ ¼ 1

2
½Zθ1

TZθ1 þ Zθ2
TMRZθ2 þ 1

αw

eWT eW þ 1

αυ
eυTeυþ 1

αa
eaTea

þ 1

αb

ebTebþ 1

αβ

eβTeβ þ 2

α`
`þ 1

αD
tr eDT eD
 ��

ð52Þ

The derivative of V(t) along to time, we have:

L˙ tð Þ ¼ ZT
θ1 Zθ2 tð Þ−Ωθ1Zθ1ð Þ

þ 1

2
ZT
θ2M

˙
RZθ2 þ ZT

θ2MRZ˙ θ2

−
1

αw

eWT
Ŵ˙ −

1

αυ
eυT υ̂˙ − 1

αa
eaT â˙

−
1

αb

ebT b̂˙ − 1

αβ

eβT
β̂˙ þ 1

α`
`˙

−
1

αD
tr eDT

D̂˙

 �

ð53Þ

Substitute (50) into (53) and using property 2, we obtain

ð54Þ

Substituting the adaptive algorithm (51) to (54), we have:

L˙ tð Þ ¼ −ZT
θ1Ωθ1Zθ1−ZT

θ2Ωθ2Zθ2 þ ZT
θ2ω

−ZT
θ2τ smc þ ZT

θ2
eDT

Ξ−eDT
δ


 �
−eβT

Zθ2k kΩ0

−`−tr eDT
Ξ Zθ2

T−kDD̂ Zθ2k k
� �
 � ð55Þ

By using (46) and (49), it becomes

L˙ tð Þ≤−ZT
θ1Ωθ1Zθ1−ZT

θ2Ωθ2Zθ2

−ZT
θ2

Zθ2 β̂
T
Ω0


 �2

Zθ2k kβ̂
T
Ω0 þ `

þ ZT
θ2β

*TΩ0

−eβT
Zθ2k kΩ0−`þ tr eDT

ZT
θ2 Ξ−δð Þ


 �

−tr eDT
Ξ Zθ2

T−kDD̂ Zθ2k k
� �
 �
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L˙ tð Þ≤−ZT
θ1Ωθ1Zθ1−ZT

θ2Ωθ2Zθ2

−ZT
θ2

Zθ2 β̂
T
Ω0


 �2

Zθ2k kβ̂
T
Ω0 þ `

þ β̂
T

Zθ2k kΩ0−`

þtr eDT
ZT
θ2 kDD̂−δ
� �
 �

L˙ tð Þ≤−ZT
θ1Ωθ1Zθ1−ZT

θ2Ωθ2Zθ2

þ ` Zθ2k kβ̂
T
Ω0

` Zθ2k kβ̂
T
Ω0 þ `

−`

þtr eDT
ZT
θ2 kDD̂−δ
� �
 � ð56Þ

Since the sum of the last two terms in (56) is always less
than zero, we can place the new upper bound on L̇

L˙ ≤−ZT
θ1Ωθ1Zθ1−ZT

θ2Ωθ2Zθ2

þ tr eDT
ZT
θ2 kD D−eD� �

−δ
� �
 �

ð57Þ

By using

treDT
D−eD� �

¼ eD;D� �
− eD�� ��2≤ eD�� �� Dk k− eD�� ��2 a n d

using property 5 into the inequality (57) could be rewritten
as follows:

L˙ ≤−ZT
θ1Ωθ1Zθ1−ZT

θ2Ωθ2Zθ2 þ
ffiffiffi
n

p
Zθ2k k eD��� ���þ kDDM Zθ2k k eD��� ���−kD Zθ2k k eD��� ���2

L˙ ≤−ZT
θ1Ωθ1Zθ1−ZT

θ2Ωθ2Zθ2 þ c0 Zθ2 eD��� ���−kD Zθ2k k eD��� ���2����
����

ð58Þ

with c0 ¼
ffiffiffi
n

p þ kDDM we see that to make sure L̇≤0,

−c0 Zθ2k k eD��� ���þ kD Zθ2k k eD��� ���2 > 0 ð59Þ

So, if we choose suitable constant vectors kD, DM which

s a t i s f y ( 5 9 ) , L̇ s tð Þ; ` tð Þ; eW ;eυ;ea;eb; eβ� �
≤0, L

˙ s tð Þ; ` tð Þ; eW ;eυ;ea;eb; eβ� �
is a negative semidefinite function,

L̇ s tð Þ; ` tð Þ; eW ;eυ;ea;eb; eβ� �
≤ L̇ s 0ð Þ; ` 0ð Þ; eW ;eυ;ea;eb; eβ� �

, i f

all parameters such as s tð Þ; ` tð Þ; eW ;eυ;ea;eb; eβ are bounded
with t > 0. By defining ϵ(t) = sTKss so ϵ tð Þ≤−L̇ tð Þ and inte-
grate the ϵ(t) with respect to time as follows:

∫t0ϵ ξð Þdξ≤L s 0ð Þ; ` 0ð Þ; eW ;eυ;ea;eb; eβ� �
−L s tð Þ; ` tð Þ; eW ;eυ;ea;eb; eβ� � ð60Þ

Because L s 0ð Þ; eWD; eWV ; eWg; eWF
� �

is a bounded function,

and L s tð Þ; eWD; eWV ; eWg; eWF
� �

is nonincreasing and bounded,
we have

lim
t→∞

∫t0ϵ ξð Þdξ < ∞ ð61Þ

According to Barbalat’s Lemma [26], when ϵ̇ tð Þ is bound-
ed function. It can be shown thatlim

t→∞
∫t0ϵ tð Þdt ¼ 0. From this

outcome, we see that, s(t) will converge to zero when t→∞
and the global stability of the control system for IRMs is
assured by the updated law (39).

From the control design analysis, the design procedure of
the ABFWNNs control systems can be summarized as
follows:

set Ωθ1, Ωθ2, αw, αυ, αa, αb

Step 1: initial the parameters of the ABRFWNNs

Wb; υ̂; â; b̂, Ψ(xji) with random values.
S tep 2 : Upda t e t he ABRFWNNs inpu t s : x ¼

θT ; θ̇T ; θTd ; θ̇
T
d ; θ

T
d

h iT
and, Ŵ ; υ̂; â; b̂, Ψ(xji) from

memory. Calculate the error signal Zθ1.
Step 3: Calculate the virtual control input φθ1(t)
Step 4: Calculate the output of the fuzzy rule layer via (27).

Then calculate fuzzy wavelet basic function via (28)
and (29). Next, calculate the output of the
ABRFWNNs via (30).

Step 5: Calculate the output of the ABRFWNNs ŷ, and the
robust termτsmc. Where, the weight parameters are
updated as (51).

Step 6: Calculate the control input τ
Step 7: Return to step 3

Fig. 5 The model of three-joint IRMs
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4 Simulation and experimental results

4.1 Simulation results

Here, a three-link IRMs is applied to confirm the efficiency of
the suggested control method based on RFWNNs for illustra-
tive purposes. The detailed system parameters of three-link
IRMs model (Fig. 5) are given as follows:

M ¼
M 11 M 12 M 13

M 21 M 22 M 23

M 31 M 32 M 33

2
4

3
5 C ¼

C11 C12 C13

C21 C22 C23

C31 C32 C33

2
4

3
5;

G ¼
g1
g2
g3

2
4

3
5;

M 11 ¼ l21
p1
3
þ p2 þ p3

� �
þ l1l2 p2 þ 2p3ð Þcos θ2ð Þ

þ l22
p2
3
þ p3

� �
M 12 ¼ −l1l2 p2

3 þ p3
� �

cos θ2ð Þ−l22 p2
3 þ p3

� �
; M13 = M23 =

M31 =M32 = 0; M21 =M12

M 22 ¼ l22
p2
3 þ p3

� �
; M33 = p3

C11 ¼ −θ̇2 p2 þ 2p3ð Þ; C12 =C21; C13 =C22 =C23 =C31 =
C32 =C33 = 0

g1 ¼ g2 ¼ g3 ¼ −p3g

Where p1, p2, p3 are links masses; l1, l2, l3 are links lengths.
The parameters of three link IRMs are given as follows:

Fig. 6 Simulated results of
trajectory, tracking errors, control
efforts of FWNNs, PID and the
proposed controller
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p1 ¼ 4:2 kgð Þ; p2 ¼ 3 kgð Þ; p3 ¼ 1:52 kgð Þ;

l1 = 420 (mm), l2 = 380 (mm), l3 = 250 (mm); g = 10(m/s2)
The desired joint trajectories of the three link industrial

robo t man ipu la to r a r e chosen by : θd ¼ θd1 θd2½
θd3�T ¼ 0:5sin 2πtð Þ 0:5sin 2πtð Þ 0:5sin 2πtð Þ½ �T ;

In addition, external disturbances and friction force in this
simulation are selected as following:

τ0 ¼
2sin πtð Þ
2sin πtð Þ
2sin πtð Þ

2
4

3
5; F θ˙

� � ¼ 5θ˙ 1 þ 0:2sign θ˙ 1
� �

5θ˙ 2 þ 0:2sign θ˙ 2
� �

5θ˙ 3 þ 0:2sign θ˙ 3
� �

2
4

3
5

The proposed controller parameter values are given as
follows:

λ ¼ diag 6; 6; 6ð Þ;K ¼ diag 100; 110; 100ð Þ;
αw ¼ diag 50; 50; 50; 50; 50ð Þ;
αυ ¼ αa ¼ αb ¼ diag 40;…; 40;…; 40ð Þ∈Rmp�mp;
αβ ¼ diag 0:001; 0:001; 0:001; 0:001; 0:001ð Þ;
αε ¼ 0:1

The initial conditions of §and, Ω are selected as fol-
lows:§(0) = 1, Ω(0) = [1 1 1 1]

In order to exhibit the superior control performance and
effectiveness of the proposed controller, the PID control and
FWNNs [24] were examined in the meanwhile. The PID law
can be defined as:

τ ¼ KPe tð Þ þ KI ∫
t
0e tð Þdt þ KDe˙ tð Þ

WhereKP,KI,KD denote proportional, integral and differential
gain matrices, respectively, and they are designed by a com-
promise between the superiority of control performance and

the magnitude of the control effort. KP, KI, KD are given as
KP = diag (70,50,60), KI = diag (0.5,0.2,0.5), KD =
diag (900, 800,800),

In here, the proposed ABRFWNNs is applied to control the
IRMs in comparison with the FWNNs [24] and PID. The
simulation results of the FWNNs, PID and the proposed
ABRFWNNs are shown in Fig. 6. Since the simulated results,
we see that, the position tracking of three links with the
ABRFWNNs, FWNNs, and PID can be guaranteed, and the
tracking errors of the FWNNs, PID and the proposed intelli-
gent controller are converged. However, the proposed intelli-
gent control system converges faster than the FWNNs and
PID systems. It means that all updated parameters in the dy-
namic structure ABRFWNNs and the amount of the rule
nodes are adjusted, the approximation capability of the dy-
namics structure ABRFWNNs is also superior to the
FWNNs and PID systems. Moreover, from Fig. 6 it can be
observe that, the control force of the suggested RFWNNs is
smoother and has smaller oscillation than the FWNNs and
PID to attain the requested level of performance when the
tracking errors reach the high value.

4.2 Experimental results

Here, we implemented two experimental outcomes to prove
the efficiency of the ABRFWNNs controller on a three link
robot manipulators. The experimental control systemmodel is
presented in Fig. 7.

The first experimental example assumes that 0.5-kg pay-
load is added in the masses of three links IRMs, and all pa-
rameters are the same as in the simulation model. The exper-
imental results of joint trajectory, control torques and tracking
errors are exposed in Fig. 8. It is noticed that the position
tracking of IRMs are still obtained with PID, FWNNs,

Fig. 7 Experimental control system
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and ABRFWNNs, however the responses and the tracking
error norm of the ABRFWNNs are quite better than the
FWNNs and PID methods. Furthermore, these results shows
that the proposed intelligent controller torques are less and
smooth than FWNNs in [24], and PID which still exist the
chattering phenomena when a load of manipulators changed.
Therefore, the position tracking performance of the recom-
mended ABRFWNNs is better than the FWNNs and PID
under parameters variation. It means that due to the dynamic
structure, the proposed ABRFWNNs is less sensitive to the
parameter variation than the FWNNs and PID.

The second experimental case, the external distur-
bance de(t) is suddenly injected more into control system

when the robot is tracking a trajectory. This occurred
after the first 0.4 s of the experimental period, and all
other parameters are the same as in the simulation mod-
el. The external disturbance shapes are expressed as fol-
lows:

de tð Þ ¼ 30sin 20tð Þ 30sin 20tð Þ 30sin 20tð Þ½ �T

The experimental outcomes of the second case are shown
in Fig. 9. According to these results, it is easy to see that, the
performance of the proposed ABRFWNNs is just slightly af-
fected, while the performance of PID approach is seriously
affected. Therefore, the control performance and robustness

Fig. 8 Trajectory, control efforts
and tracking errors of the
FWNNs, PID and the proposed
control system in the first
experimental case
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of the proposed ABRFWNNs under external disturbance are
better than the FWNNs [24] and PID. It is obvious that the
performance of the proposed ABRFWNNs is better than the
FWNN and PID system after a period of learning.

5 Conclusions

In the present paper, a robust adaptive controller based on
the RFWNNs and backstepping technique has been pro-
posed, and the stability analysis of controller has been
proofed. It has been also successfully implemented to con-
trol the joints of three-link IRMs for achieving high preci-
sion position tracking and compensation dead-zone. By
combining the RFWNNs, backstepping technique, and
Lyapunov stability theorem, the adaptive control laws are

developed to tune all parameters of the network in order to
reduce approximation error and improved control perfor-
mance. In addition, the robust controller is designed to deal
with the approximation error, prime parameter vectors and
higher order terms in Taylor series. Therefore, the pro-
posed controller proved that this control system could
achieve desired tracking performance, the stability and ro-
bustness of the closed-loop manipulators system are guar-
anteed. Simulation and experimental results of a three-
links IRMs via the proposed RFWNNs and FWNN,
RNFN also have provided in this study to compare and
display. The proposed ABRFWNNs control systems can
be applied to other systems, such as MMR, AC servo sys-
tems, and they can also be applied as a good alternative in
the existing industrial robot manipulator control system.
This application could require further investigations.

Fig. 9 Trajectory, control efforts
and tracking errors of the
FWNNs, PID and the proposed
control system in the second
experimental case
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