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Abstract
This paper deals with the visual regulation problem of wheeled mobile robots (WMRs) in the presence of uncalibrated
camera-to-robot parameters and unknown image depth. A two-stage controller is designed by using a switching approach.
Specifically, in the first stage, an invariant-manifold-based adaptive controller is presented to bring the lateral error and
angular error within an arbitrarily small neighborhood of zero; in the second stage, the longitudinal error is regulated by
employing a proportional controller. Utilizing the Lyapunov stability analysis, the exponentially bounded stability of the
closed-loop system is proved. Both simulation and experimental results are presented to validate the effectiveness of the
proposed approach.

Keywords Visual regulation · Wheeled mobile robots · Adaptive control · Invariant manifold

1 Introduction

Visual cameras work as a vision generator and are allowed
to conduct non-contact measurements on environments [1].
Owing to the advantages of low cost, high efficiency in
information gathering and high reliability, visual cameras
have a very wide range of applications in robot systems
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[2–4], especially in visual servoing which is also called
vision-based robot control. Visual servoing uses feedback
by gathered information from visual cameras to control the
motion of robots [5]. As an important branch of robots, the
visual servoing of wheeled mobile robots (WMRs) has been
analyzed extensively over the last decades [6–8]. People
have studied WMRs with different types of cameras, such
as the monocular camera [9], the stereo camera [10] and the
omni-directional camera [11]. Meanwhile, different control
objectives have been pursued for the WMRs, including the
pose stabilization [12], trajectory tracking [13], and the
leader-follower formation [14]. From the control point of
view, researches have been conducted at the kinematic-
level [15] or at the dynamic-level [16]. Based on the
control objectives, different control strategies have also
been considered, such as the image-based feedback control
[17, 18], the position-based feedback control [19] and the 2-
1/2-Dimensional (2-1/2-D) hybrid method [20]. At present,
most of the the vision sensors used in the industrial field
are monocular cameras. Therefore, this paper focuses on the
visual servoing with monocular cameras.

The WMR with a monocular camera lacks the 3D model
of the scene and the depth information, which makes the
stable controller design challenging. Various strategies for
the stable control of the monocular-vision-based WMR
have been proposed [21–25]. However, it is generally
assumed that the camera frame is coincident with the
robot frame or the camera-to-robot matrix (extrinsic matrix)
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is well-calibrated, which is not always possible. With
the measurement apparatus, the orientation of the camera
frame can be adjusted to be the same as that of the robot
frame. Whereas, the offset parameters which are related
to the translation between the origin of the camera frame
and the origin of the robot frame, may not be easy to
be set to zero or be measured due to the mechanical
structure of the system and the invisible origin of the
camera frame. In order to avoid the cumbersome process
of extrinsic calibration and improve the flexibility of
the WMR systems, a visual servoing method that deals
with uncalibrated camera-to-robot parameters is worthy of
further investigation. Unfortunately, when considering these
unknown parameters, the system model does not satisfy the
structural triangularity condition [26, 27], which will bring
more challenges for designing the regulation controllers.
Thus, much attention has been recently drawn to solve this
problem [27–29]. It is noticed that these controllers may
not lead to exponential convergence rate [30]. Besides, their
control gains may be sensitive to the initial state of the
WMR system and the unknown image depth. As a result,
parameter tuning methods for these controllers need to be
further studied.

The invariant-manifold-based approach is a classical
design method for the regulation controllers of the WMRs,
which can achieve an exponential convergence rate. Its basic
idea is to construct an invariant manifold, on which all
the trajectories converge to the origin. Then the invariant
manifold is made attractive by employing discontinuous
state feedback [30–36]. The exponential convergence rate
gives us the motivation to utilize the invariant-manifold-
based approach to deal with the visual regulation problem of
the WMRs with both uncalibrated extrinsic parameters and
unknown image depth. However, the invariant-manifold-
based approach is often used in known nonholonomic
systems, which needs to be extended to the case with the
unknown extrinsic parameters and image depth.

In this paper, we study the visual regulation of a WMR
system equipped with a monocular camera and develop
an invariant-manifold-based two-stage switching controller.
In the first stage, an invariant-manifold-based adaptive
controller is designed to bring the lateral and angular errors
close to zero, and then the longitudinal error is regulated
by resorting to a proportional controller in the second stage.
The main contributions of this paper are listed as follows.

1) To solve the visual regulation problem of a WMR
in the presence of unknown extrinsic parameters and
image depth, we firstly use the feature-point-based
pose estimation technique to estimate the relative error
between the current and desired configurations of a
WMR. Then, we develop a novel adaptive two-stage
switching approach to stabilize the visual servoing

system in terms of the relative error. The result
also extends the application of the invariant manifold
approach.

2) The proposed controller can achieve exponentially
bounded stability for the closed-loop visual systems,
where the convergence of this approach is faster than
that of the most existing approaches as they are time-
varying.

3) Compared with the most existing approaches, the
control gains of the proposed controller are much easier
to be tuned.

The remainder of the paper is organized as follows. The
system model is firstly established, and then the control
objective is formulated in Section 2. In Section 3, the
control development with the stability analysis is presented.
The simulation and experimental results are respectively
provided in Sections 4 and 5. Some concluding remarks are
given in Section 6.

2 Problem Formulation

As a benchmark problem for nonholonomic systems, set-
point stabilization of a differential-drive WMR has been
widely investigated. The kinematic model of the WMR can
be described as

ẋrw = vr cos θrw, ẏrw = vr sin θrw, θ̇rw = ωr (1)

As shown in Fig. 1, (xrw(t), yrw(t)) is the Cartesian
coordinate of the midpoint Q between the two driving
wheels in the world frame Fw; θrw is the angle between
the heading direction and the xw-axis; vr(t) and ωr(t) are
the linear and angular velocities of the WMR, respectively.
The set-point stabilization problem is how to design
control laws for vr(t) and ωr(t) to make the WMR reach
a desired configuration (x∗

rw, y∗
rw, θ∗

rw) from the initial
configuration (x0

rw, y0
rw, θ0rw). To control the WMR, the

current configuration (xrw(t), yrw(t), θrw(t)) of the WMR
needs to be measured in real time via sensors [37–39],
such as the inertial measurement unit (IMU), the global
positioning system (GPS), etc. Due to the accumulated
errors of these sensors, vibration or wheel-slip of the WMR,
the measured values for the current configuration may be
quite different from their actual values.

In contrast, visual signals can be used to estimate
the relative posture between the current and desired
configurations of the WMR by using the image pixels of the
feature points in the current camera field of view (FOV) and
the corresponding image pixels in the desired camera FOV.
To achieve this goal, a monocular camera is installed in the
WMR, and the system configuration is depicted in Fig. 2.
The Fr and Fc represent the robot frame and camera frame,
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Fig. 1 Full state regulation
problem of a differential-drive
WMR

respectively. In Fr , the origin is located at the center of the
robot wheel axis, the x-axis xr is perpendicular to the wheel
axis, the y-axis yr is parallel to the wheel axis, and the z-
axis zr is determined according to the right-hand rule. The
orientation of Fc can be set to be the same as that of Fr . But
it may have a different origin as the camera can be installed
at any allowable place of the robot shell. The extrinsic
parameters which represent the translation between Fr and
Fc can be described by a vector [L,D,H ]T ∈ R

3, where
L, D and H are the coordinates of Fc’s origin along xr ,
yr and zr , respectively. As shown in Fig. 2, the orthogonal
coordinate systemsF∗

r andF∗
c are introduced to indicate the

desired configurations of the WMR and the camera.

Remark 1 The Eq. 1 is valid only if the mobile base
of the WMR satisfies the “pure rolling without slipping”
condition. However, infrequent mild slipping is allowed

in this paper, since the scaled relative errors can still be
estimated with the vision-based pose estimation techniques.
Frequent slipping will cause the feature points to escape
from the camera FOV, and if mild slipping happens
frequently, then Eq. 1 is invalid. Therefore, serious or
frequent mild slipping will not be considered in this paper.

Remark 2 Figure 3 depicts the WMR testbed where the
back plane and bottom plane of the camera can be adjust
to be parallel to the plane 1 and 2 of the WMR shell with
the measurement apparatus, such as the dial indicator and
level. In other words, considering the relationship between
the main part of theWMR and its shell, the orientation ofFc

can be adjusted to be coincident with that of Fr . However,
limited by the mechanical structure of the WMR itself, the
camera cannot be installed in the origin of Fr . Moreover,

Fig. 2 Vision-based regulation
problem of a differential-drive
WMR

J Intell Robot Syst (2020) 98:345–358 347



Fig. 3 Experimental setup

the extrinsic parameters are difficult to be measured as the
origin of the camera frame is invisible and the main part
of the WMR is encapsulated by the shell. Therefore, it is
reasonable to assume that L,D,H are unknown.

2.1 The Feature-Points-Based Pose Estimation

Suppose there are three static feature points Pi (i = 1, 2, 3)
in the scene, and their 3D coordinates Pi(t), P ∗

i ∈ R
3 in the

frames Fc and F∗
c are defined by

Pi = [Xi(t), Yi(t), Zi(t)]T, P ∗
i = [X∗

i , Y
∗
i , Z∗

i ]T (2)

Denote the corresponding image pixel coordinates by

pi = [1, ui(t), vi(t)]T, p∗
i = [1, u∗

i , v
∗
i ]T (3)

It is obvious that the image coordinates are associated with
the camera coordinates according to the pinhole camera
model in the following

pi = 1

Xi

KintPi, p∗
i = 1

X∗
i

KintP
∗
i (4)

where invertible matrix Kint ∈ R
3×3 indicates the intrinsic

camera matrix, and it can be determined by following the
procedures of the camera calibration techniques [40]. For
the sake of subsequent discussion, the normalized image
coordinates are introduced

mi = [1, yi(t), zi(t)]T= 1

Xi

Pi, m∗
i =[1, y∗

i , z∗
i ]T= 1

X∗
i

P ∗
i

(5)

On the basis of Eqs. 3–5, it is obvious that mi(t) and m∗
i can

be given as follows

mi = K−1
int pi, m∗

i = K−1
int p

∗
i (6)

As the camera is installed rigidly at the WMR and the
WMR’s motion stays in the xwyw plane, the relative posture

between the current and desired configurations of the WMR
can be described by (tx(t), ty(t), θ(t)), where tx(t), ty(t) ∈
R denote the translation along xc-axis and yc-axis between
Fc and F∗

c , respectively; θ(t) ∈ (−π, π ] represents the
rotational angle between Fr and F∗

r , which is also called
angular error. According to the definitions of tx(t), ty(t) and
θ(t), one has
⎧
⎨

⎩

θ = θrw − θ∗
rw[

tx
ty

]

=
[
cos θrw sin θrw

− sin θrw cos θrw

] [
xrw − x∗

rw

yrw − y∗
rw

]
(7)

From Eq. 7, we know that (θ, ty, tx) can be regarded as a
regulation error. However, tx and ty cannot be computed
through 2-D images with an unknown 3-D scene model.
Therefore, in the visual servoing process, we will use an
equivalent regulation error e = [e0, e1, e2]T, which are
defined as

e0(t) = θ, e1(t) = ty

Z∗
i

, e2(t) = tx

Z∗
i

(8)

Since Z∗
i will not be changed due to the WMR mov-

ing in the horizon plane xw-yw, (θ(t), ty(t), tx(t)) and
(e0(t), e1(t), e2(t)) are equivalent. Moreover, e1(t) and
e2(t) are also called the lateral error and longitudinal error,
respectively.

It is clear that θ(t) is equal to the angle between Fc and
F∗

c , and tx(t) and ty(t) are equal to the translation along xc-
axis and yc-axis between Fc and F∗

c . Define R(θ(t)) as the
rotation matrix specifying the orientation ofF∗

c with respect
to Fc, and then we can obtain

Pi = RP ∗
i + T (9)

where R =
⎡

⎣
cos θ − sin θ 0
sin θ cos θ 0
0 0 1

⎤

⎦, T =
⎡

⎣
tx
ty
0

⎤

⎦.

From Eqs. 2 and 9, the following results can be easily
found
⎧
⎨

⎩

Yi

Xi
= X∗

i sin θ+Y ∗
i cos θ+ty

X∗
i cos θ−Y ∗

i sin θ+tx
,

Zi

Xi
= Z∗

i

X∗
i cos θ−Y ∗

i sin θ+tx
.

(10)

Dividing top and bottom on the right side of Eq. 10 by
X∗

i and using Eq. 5, then Eq. 10 can be rewritten as

⎧
⎪⎪⎨

⎪⎪⎩

yi =
sin θ+y∗

i cos θ+ ty

X∗
i

cos θ−y∗
i sin θ+ tx

X∗
i

zi = z∗
i

cos θ−y∗
i sin θ+ tx

X∗
i

(11)

We can choose a set of arbitrary feature points such that
yi(t) �= yj (t) and zi(t) �= 0 (i, j = 1, 2, 3). Then based
on Eq. 11, we can get the estimation of θ by using the
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least-square method. Once θ(t) is obtained, e1(t) and e2(t)

can be computed directly from Eqs. 5 and that

[
e1
e2

]

=
[

yi

zi
1
zi

]

−
[
cos θ sin θ

− sin θ cos θ

]
⎡

⎣

y∗
i

z∗
i
1
z∗
i

⎤

⎦ (12)

Remark 3 As e1(t) and e2(t) depend on Z∗
i , different

feature points will generate different error signals. In
practice, only one feature point is selected for the controller
design and in this paper we suppose that we use the ith
feature point. Moreover, according to the feature-point-
based pose estimation technique, the number of the feature
pints in the camera FOV is at least 2, and for the specific
feature point, its e0(t), e1(t), e2(t) can be computed directly
or reconstructed from those of the other feature points.

2.2 Model Development

When theWMR is moving, the position ofPi inFr , denoted
as Pi,r = [Xi,r (t), Yi,r (t), Zi,r (t)]T, is also changing due to
the movement of Fr , and the dynamic equation of Pi,r (t)

can be described as [21]

Ẋi,r = ωYi,r − vr , Ẏi,r = −ωrXi,r (13)

As shown in Fig. 2, the relationship between Pi(t) and
Pi,r (t) is described as

Xi,r = Xi + L, Yi,r = Yi + D (14)

From Eq. 1 and the definition of e0(t), we can obtain

ė0 = ωr (15)

Due to the planar motion of the WMR, the equation
Zi = Z∗

i always holds. Taking the time derivatives of
Eqs. 12 and 14, and then inserting Eqs. 13–15 into the
resultant equations, we can get the dynamic equations of
e1(t) and e2(t)

ė1 = −e2ωr − ρωr (16)

ė2 = e1ωr + D

d∗ ωr − 1

d∗ vr (17)

where d∗ = Z∗
i , ρ = L

d∗ .
The control objective in this paper is to design a control

law (ωr, vr ) for system (15)–(17) such that

lim
t→∞ |e0(t)| ≤ τe0, lim

t→∞ |e1(t)| ≤ τe1, lim
t→∞ |e2(t)| ≤ τe2

(18)

where τe0, τe1, τe2 are arbitrary small positive thresholds.

3 Controller Design

The classical invariant-mainfold-based approach is often
used to stabilize the deterministic nonholonomic systems.

However, it cannot be directly utilized to stabilize the
unknown system (15)–(17). In [30], backstepping tech-
nique and invariant manifold were combined to stabilize
the WMRs with matched uncertainties, where the input dis-
turbances were estimated online. However, the subsystem
(16) involves the unknown parameters, which is different
from [30]. vr(t) and the unknown d∗ are coupled in the
subsystem (17), and when the method proposed in [36] is
applied to the system (15)–(17), the resulting system cannot
be written in the form of linear system. Hence, the stability
cannot be guaranteed by linear system theory. As a result,
the method proposed in [36] is not applicable to the system
(15)–(17). In this section, an adaptive two-stage controller
will be designed to achieve the control objective (18).

Before proceeding to the controller design, the following
assumption is presented as follows.

Assumption 1 The initial states of e0(t) and e1(t) need to
satisfy one of the two following conditions:

C1) |e0(0)| > τe0 (19)

C2) |e0(0)| ≤ τe0, |e1(0)| ≤ τe1 (20)

Remark 4 If the initial states do not meet Assumption 1,
then by applying some control laws, such as ωr = −ks(e0−
sgn(e0(0))cs), vr = 0 with ks , cs > τe0 are positive
constants, for a period of time, the system can be driven
away from |e0| ≤ τe0. Thus, condition C1 will become true
and Assumption 1 will be satisfied.

Under Assumption 1, a two-stage controller is proposed
for the system (15)–(17) as follows.

1) Stage I: Design ωr(t) and vr(t) to make the angular
error and the lateral error bounded by their thresholds
in a finite time, namely, ∃T1 > 0, ∀t ≥ T1, |e0(t)| ≤ τe0

and |e1(t)| ≤ τe1 are satisfied;
2) Stage II:Designωr(t) and vr(t) to make the longitudinal

error bounded by its threshold in a finite time, namely,
∃T2 > T1, ∀t ≥ T2, |e2(t)| ≤ τe2 is satisfied.

Remark 5 If the condition C1 in Assumption 1 is satisfied,
then the two-stage controller needs to be implemented
step by step. Else if the condition C2 in Assumption 1 is
satisfied, then the controller directly switches to Stage II.

3.1 Controller Design in Stage I

Inspired by the invariant-manifold-based approach for the
full state regulation problem of the WMRs [33], the
following auxiliary signal Ŝ(t) ∈ R is introduced:

Ŝ = e1 + k0

Kb

e0e2 + ρ̂e0 (21)
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Fig. 4 The flowchart of the visual regulation controller in Stage I

where ρ̂(t) ∈ R is the online estimation of the unknown
constant ρ, the constants k0 ∈ R

+, k1 ∈ R
+, Kb = k0 + k1

are control gains, and k0 �= k1.
For the sake of subsequent discussion, the parameter

estimation errors d̃∗(t) ∈ R , D̃(t) ∈ R and ρ̃(t) ∈ R are
defined as:

d̃∗ = d∗ − d̂∗, D̃ = D − D̂, ρ̃ = ρ − ρ̂ (22)

where d̂∗(t) ∈ R and D̂(t) ∈ R are estimates of d∗ and
D, respectively. If the condition C1 in Assumption 1 is
satisfied, then according to the subsequent stability analysis,
the parameter updating laws can be designed as follows:

˙̂ρ = Γ1k0Υ,
˙̂
ξ = Γ2Ψ (23)

where Υ = Ŝ
e0
; ξ̂ (t) ∈ R

2 is the online estimation of

ξ = [D, d∗]T; Γ1 ∈ R is a positive constant scalar;
and Γ2 ∈ R

2×2 is a positive constant diagonal matrix.
[Ψ1(t), Ψ2(t)]T ∈ R

2 are defined as

Ψ1 = sgn(d∗)
(

k0

Kb

Υ + K1e2

)

ωr (24)

Ψ2 = sgn(d∗)
(

K1e2 + k0

Kb

Υ

)

(ωre1 + k2e2)

−sgn(d∗)
(

k0k4

Kb

Υ 2 − K2
1K2e

2
2

)

(25)

where K1 ∈ R
+, k2 ∈ R

−, K2 = Kbk2
k0

∈ R, sgn(x) is
a sign function. The adaptive controllers are constructed as
follows:

ωr = −k0e0, vr = (d̂∗e1 + D̂)ωr − d̂∗ (k2Υ − k1e2) + χ

(26)

where the auxiliary signal χ(t) ∈ R is defined as

χ = d̂∗K1K2e2 (27)

The flow chart of Stage I is sketched in Fig. 4 and the
control gains satisfy the following conditions

K3 > 0, Kb + k2 < 0,
k2

Kb

+ Γ1 < −1 (28)

where K3 = k1 + K1K2 is a constant scalar. After
substituting Eqs. 26 and 27 into Eq. 15–17, we can get the
closed-loop system
⎧
⎪⎨

⎪⎩

ė0 = −k0e0
ė1 = (e2 + ρ) k0e0

ė2 = − k0e0

(
d̃∗e1+D̃

)

d∗ + d̂∗
d∗ (k2Υ − K3e2)

(29)

Theorem 1 Considering system (15)–(17), if conditions
(19) and (28) are satisfied, the control laws (26) and the
parameter updating laws (23) ensure that

1) the regulation error e(t) converges to zero and the
control input as well as the estimated parameters are
all bounded;

2) the angular error e0(t) and the lateral error e1(t) are
bounded by their thresholds in a finite time, i.e., for any
τe0 > 0 and τe1 > 0, there always existing T1 > 0,
such that ∀t ≥ T1, |e0(t)| ≤ τe0 and |e1(t)| ≤ τe1.

Proof 1) It can be inferred from Eq. 29 that e0(t) ∈ L∞
and e0 decays exponentially to zero, which implies that

lim
t→∞ e0(t) = 0 (30)

Moreover, as the condition (19) is satisfied, e0(t) will
converge to and never be zero. Define the following
candidate Lyapunov function as

V (t) = 1

2
|d∗|K1e

2
2+

1

2
|d∗|Υ 2+ 1

2
|d∗|Γ −1

1 ρ̃2+ 1

2
ξ̃TΓ −1

2 ξ̃

(31)

For convenience, denote

V1(t) = 1

2
|d∗|K1e

2
2 V2(t) = 1

2
|d∗|Υ 2

V3(t) = 1

2
|d∗|Γ −1

1 ρ̃2 V4(t) = 1

2
ξ̃TΓ −1

2 ξ̃ (32)

Fig. 5 Diagram of visual
servoing system
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Table 1 A new two-stage control scheme

Stage System model Goal Controller

Stage I System (15)–(17) |e0| ≤ τe0, |e1| ≤ τe1 ωr, vr : (26)

Stage II System (45) |e2| ≤ τe2 ωr = 0, vr : (46)

We rewrite the subsystem of Eq. 29 in the form of
parameter estimation errors

ė2 = k2Υ − K3e2 + D̃

d∗ ωr + d̃∗

d∗ (e1ωr − k2Υ + K3e2)

(33)

Taking the time derivative of Υ (t) and substituting
Eqs. 23, 29, and 33 into the resultant expression, we
obtain

Υ̇ = ė1e0 − e1ė0

e20

+ k0

Kb

ė2 + ˙̂ρ

= λ1Υ + k0ρ̃ + k0

Kb

(
d̃∗e1 + D̃

d∗ ωr − K1K2e2

)

− d̃∗

d∗ (k2Υ − K3e2) (34)

where λ1 = k0

(
k4
Kb

+ Γ1 + 1
)
is a constant scalar.

Taking the time derivative of each item in Eq. 32 and
substituting Eqs. 23, 33 and 34 into the corresponding
resultant expression, we obtain

V̇1 = |d∗|K1e2 (k2Υ − K3e2) + sgn(d∗)D̃K1e2ωr

+sgn(d∗)d̃∗K1e2 (e1ωr − k2Υ + K3e2) (35)

V̇2 = |d∗|λ1Υ 2 + |d∗|k0ρ̃Υ −|d∗| d̃
∗

d∗ (k2Y −K3e2) Υ

+|d∗| k0

Kb

(
d̃∗e1 + D̃

d∗ ωr − K1K2e2

)

Υ (36)

V̇3 = −|d∗|k0Υ ρ̃ (37)

V̇4 = −sgn(d∗)d̃∗
(

K1e2 + k0

Kb

Υ

)

(ωre1 + k1e2)

+sgn(d∗)d̃∗
(

k0k2

Kb

Υ 2 − K2
1K2e

2
2

)

−sgn(d∗)D̃
(

k0

Kb

Υ + K1e2

)

ωr (38)

Fig. 6 Simulation results with
the proposed controller: a
System errors e; b Image
trajectories of Pi ; c Online
estimation of d∗, ρ, D; d
Control inputs
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Table 2 Comparative study
Cases System parameters

The original setting e(0) = [0.524, −0.866, 3.5]T, d∗ = 0.5 m, L = 0.2 m, D = 0.1 m;

Case 1: different e(0) e(0) = [0.449, −0.8, 3]T, d∗ = 0.5 m, L = 0.2 m, D = 0.1 m;

Case 2: different d∗ e(0) = [0.524, −0.866, 3.5]T, d∗ = 0.4 m, L = 0.2 m, D = 0.1 m;

Case 3: different L e(0) = [0.524, −0.866, 3.5]T, d∗ = 0.5 m, L = 0.3 m, D = 0.1 m;

Case 4: different D e(0) = [0.524, −0.866, 3.5]T, d∗ = 0.5 m, L = 0.2 m, D = 0.2 m.

According to Eqs. 35–38, we have

V̇ = |d∗|λ1Υ 2 + |d∗|λ2e22 (39)

where λ2 = −K1K3 is a constant scalar.
If K1 > 0, K3 > 0 and k2

Kb
+ Γ1 < −1, then

λ1, λ2 < 0, so V (t) ≥ 0, V̇ (t) ≤ 0. From the Lyapunov
stability theory, we have Υ (t), e2(t), ρ̃(t), ξ̃ (t) ∈ L∞.
Based on the facts of e0(t), e2(t), Υ (t) ∈ L∞, we
can infer that ρ̂(t) = ρ − ρ̃(t) ∈ L∞. From Eq. 21,
we know that e1(t)

e0(t)
∈ L∞, and then e1(t) ∈ L∞.

Then it can be obtained from Eqs. 22, 24, 25 and 27
that ξ̂ (t), Ψ (t), χ(t) ∈ L∞. Similarly, it follows from
Eq. 26 that ωr(t), vr (t) ∈ L∞.

To show that lim
t→∞ e1(t) = 0 and lim

t→∞ e2(t) = 0, a

scalar function ϑ(t) is defined as

ϑ = −|d∗|λ1Υ 2 − |d∗|λ2e22 ≥ 0 (40)

Taking the time derivative of ϑ(t), we get

ϑ̇ = −2|d∗|λ1Υ Υ̇ − 2|d∗|λ2e2ė2 (41)

From Eqs. 33 and 34, we can get ė2(t), Υ̇ (t) ∈ L∞.
Hence, ϑ(t), ϑ̇(t) ∈ L∞, which implies that ϑ is
uniformly continuous. Based on the facts of V (t) ≥
0, V̇ (t) ≤ 0, and ϑ(t) = −V̇ (t), we can conclude
that ϑ(t) ∈ L2. According to the extended Barbalat’s

Fig. 7 Simulation results with
the proposed controller: a
Different initial errors e(0); b
Different d∗; c Different L; d
Different D
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lemma [41], we have lim
t→∞ ϑ(t) = 0. Then, it follows

from Eq. 41 that

lim
t→∞ e2(t) = 0, lim

t→∞ Υ (t) = 0 (42)

From Eqs. 23 and 42, we know that ρ̂(t) will converge
to a constant C when t → ∞. Then, from Υ (t) =
e1
e0

+ k0e2
Kb

+ ρ̂, e2 → 0, and e0 → 0, we have

lim
t→∞

e1(t)

e0(t)
= − lim

t→∞ ρ̂(t) = −C, lim
t→∞ e1(t) = 0

(43)

By combining Eqs. 30, 42, and 43, we obtain

lim
t→∞ e0(t) = 0, lim

t→∞ e1(t) = 0, lim
t→∞ e2(t) = 0 (44)

and the control input vr(t), ωr(t) as well as all
estimated parameters ρ̂(t), D̂(t), d̂∗(t) are bounded.

2) As e0(t) decays exponentially to zero and e1(t)
e0(t)

converges to the constant −C, e1(t) also decays
exponentially to zero. From the (ε, δ)-definition of limit
we know that there always exists T1 > 0, ∀t ≥ T1, such
that |e0(t)| ≤ τe0 and |e1(t)| ≤ τe1. The proof is thus
completed.

From Theorem 1 we know that ∀t ≥ T1, |e0(t)| ≤ τe0 and
|e1(t)| ≤ τe1. Since τe0, τe1 are arbitrary small constants,
e0(t), e1(t) do not need to be regulated anymore when
t ≥ T1. Although lim

t→∞ e2(t) = 0, we cannot guarantee

|e2(t)| ≤ τe2 when t > T1. Thus, we turn to the regulation
of e2(t) in Stage II.

3.2 Controller Design in Stage II

Inspired by [27], when |e0(t)| ≤ τe0 and |e1(t)| ≤ τe1, we
do not want to change e0 and e1 anymore. To achieve this
goal, the angular velocity is designed as ωr(t) = 0 and by
substituting it into the system (15)–(17), we get

ė0 = 0, ė1 = 0, ė2 = − vr

d∗ (45)

From Eq. 45 we know that e0 and e1 will not be changed.
To regulate e2(t), a proportional controller is designed as
follows.

vr = k3e2 (46)

where k3 ∈ R represents a control gain, and it has the same
sign as d∗. By linear system theory, the longitudinal error
e2(t) will decay exponentially to zero. Similarly, from the
(ε, δ)-definition of limit we know that there always exists
T2 > T1, such that ∀t ≥ T2, we have |e2(t)| ≤ τe2.

The diagram of the visual servoing system is depicted
in Fig. 5 and the whole process of the proposed two-
stage controller is summarized at Table 1. As τe0, τe1, τe2

Fig. 8 Control structure

are arbitrary small constants and e0(t), e1(t), e2(t) will
be bounded by these thresholds in a finite time after
applying the two-stage controller, it is shown that the
visual regulation task can be completed. Moreover, since
e0(t), e1(t) and e2(t) are bounded by their thresholds
exponentially, the stability of the closed-loop system is
called exponentially bounded stability.

4 Simulations

In this section, simulation results are provided to validate the
proposed approach. We assume that the three feature points
are not on the same vertical plane, and their coordinates
in F∗

c are selected as P ∗
1 = (2.5, 0, 0.5)Tm, P ∗

2 =
(4, −0.2, −0.1)Tm, P ∗

3 = (4, 1, −0.2)Tm. The intrinsic
camera matrix is given by

Kint =
⎡

⎣
1 0 0

344.41 712 0
238.08 0 707

⎤

⎦ (47)

which is chosen from a real calibrated camera with a
resolution 640 × 480.

Table 3 Desired and initial image pixels of the feature points in the
experiments

Image pixels Expt. 1 Expt. 2 Expt. 3

(u∗
1, v

∗
1 ) (410,115) (433,114) (324,94)

(u∗
2, v

∗
2 ) (360,211) (382,211) (265,206)

(u∗
3, v

∗
3 ) (467,215) (491,213) (389,212)

(u1, v1) (274,153) (203,144) (437,154)

(u2, v2) (238,220) (162,217) (402,221)

(u3, v3) (313,223) (246,221) (477,224)
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In the simulation, the initial errors of Eqs. 15–17 are
chosen as e0(0) = 0.524, e1(0) = −0.866, e2(0) = 3.5, the
extrinsic parameters are set as L = 0.2m, D = 0.1m, and
the initial values of the estimation parameters d̂∗(0), ρ̂(0),
D̂(0) are all set to be zero. The control gains and the
update gains are selected as k0 = 0.5, k1 = 0.1, k2 =
−1, k3 = 0.45, Kb = 0.6, K1 = 0.008, K2 = −1.2, Γ1 =
0.5, Γ2 = diag{0.3, 0.1} and the thresholds are chosen as
τe0 = 0.02, τe1 = 0.02, τe2 = 0.001.

Figure 6a and b show the evolution of the system
errors and the image trajectories of the three feature points,
respectively, where the pentagram and star points denote the
initial and desired image of Pi . It is shown from the figure
that e0(t) and e1(t) decay quickly to a small neighborhood
of zero. And after a period of overshoot, e2(t) is bounded
by its threshold. The control inputs ωr(t) and vr(t) are
displayed in Fig. 6c and d, respectively, from which it can
be seen that they are both bounded.

To further test the performance of the controller,
different e(0), d∗, L, D are considered and the specific
setup details are given in Table 2. Moreover, we use the
same control gains, update gains and thresholds as those
of the original setting. Figure 7 displays the corresponding
system errors in these cases, from which we can find that

e(t) will be bounded by their thresholds in a finite time.
These simulation results demonstrate the robustness of the
proposed two-stage controller and the parameter tuning is
much simple since it only requires the control gains to
satisfy the condition (28).

5 Experiments

Experiments are conducted on a vision-based robot system
shown in Fig. 3. The system is composed of a WMR and a
HP HD 3310 camera with a resolution of 640 × 480 pixels.
The WMR is developed in the lab, having size of 150 cm ×
55 cm × 55 cm and it is equipped with two driving wheels
and two supporting wheels. The wheels of radius (r) of
6.4 cm are separately mounted on a chassis of length (2b)

45 cm. Each driving wheel is driven by the equipped DC
motor with rated torque 72.1 mNm/A at 5200 rpm. To get
the motion data and reduce the speeds to the desired ones, an
incremental encoder counting 2048 pulses/turn and a drive
gear with a reduction of 85.33 are equipped on each motor.

To facilitate the image processing, three artificial circle
blue features are printed and attached on a plane surface.
The functions of the OpenCV library including image

Fig. 9 Experiment 1: a System
errors e; b Robot position
(xrw, yrw); c Pixels of Pi ; d
Control input (vr , ωr )
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reading, denoising, binarization, and the contour finding,
are utilized to extract the features. In this way, their centers
(feature points) can be calculated. With the pose estimation
technique based on the feature points, the regulation errors
e0, e1, e2 are estimated in real time. After obtaining these
values, the linear and angular velocities of the WMR are
computed first by the proposed two-stage controller, and
then they are converted into the angular velocity commands
of the left and right wheels by ωL = vr−ωrb

r
, ωR = vr+ωrb

r
.

The control scheme is written in C++ language under Visual
Studio 2005 environment on the host computer.

The two-layer control structure of the WMR is shown in
Fig. 8. The proposed two-stage controller serves as the high
level control layer, which is used to generate the velocity
commands. The built-in Elmo driver controller constitutes
the low level controller, which firstly gets the velocity
commands from the high level control layer through CAN
bus and obtains the counts data from the encoders, then
generate the computed input torques to drive the motors.

Before applying the proposed two-stage controller to
the WMRs, the orientation of camera is adjusted to be
coincident with F∗

r . Then three experiments are conducted
with the same control parameters: k0 = 0.5, k1 = 1.5, k2 =

−2.6, k3 = 0.25, Kb = 2, K1 = 0.06, K2 = −10.4, Γ1 =
0.249, Γ2 = diag{0.2, 0.25}, τe0 = 0.053, τe1 = 0.08. The
initial values of the estimated parameters d̂∗(0), ρ̂(0), D̂(0)
are also set as zero, and the sampling time of the system
is T = 200 ms. With the purpose to limit the frequency
of the wheel-slip during the visual servoing process,
saturation constraints are imposed on the velocities of the
WMR, and the maximum velocities are set as: vr,max =
0.4 m/s, ωr,max = 1 rad/s. The initial and desired image
pixels of P1,P2,P3 are listed in Table 3.

The experimental outcomes can be seen from Figs. 9, 10
and 11. In the first and second experiments, the initial
and desired postures of the WMRs are different, and the
initial angular errors e0(0) are both negative. Figures 9a
and 10a show the evolvements of the system errors during
the visual servoing process: at the end of Stage I, e0(t) and
e1(t) are reaching to their thresholds, and then e2(t) decays
exponentially to a small neighborhood of zero in Stage II.
Figures 9b and 10b depict the motion path of the robot. The
corresponding image pixels of the three feature points are
shown in Figs. 9c and 10c, respectively. It is obvious that
the current pixels almost converge to their ideal ones. The
control signals vr(t) and ωr(t) are presented in Figs. 9d

Fig. 10 Experiment 2: a System
errors e; b Robot position
(xrw, yrw); c Pixels of Pi ; d
Control input (vr , ωr )
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Fig. 11 Experiment 3: a System
errors e; b Robot position
(xrw, yrw); c Pixels of Pi ; d
Control input (vr , ωr )

and 10d, from which we can find that ωr(t) and vr(t) are
both bounded.

In the third experiment, the initial angular error is
positive. It can be seen from Fig. 11c that the feature point
P1 has escaped from the camera FOV during the visual
servoing process. However, the error signals can still be
reconstructed by using the feature-point-based estimation
technique [12]. Figure 11a and c show that e(t) are bounded
by their thresholds in a finite time and the current image
pixels almost converge to the desired ones. Figure 11b
and d show the motion path and the control inputs of the
WMR in the third experiment, respectively. Different from
the simulations, the chatter phenomenon observed in the
experiments is shown in Figs. 9–11. The main reason is
because of the image noises as well as the vibration images
caused by camera shake.

6 Conclusion

This paper has investigated the problem of realizing visual
servoing for a class of nonholonomic wheeled mobile
robots in the presence of both uncalibrated camera-to-robot
parameters and unknown image depth. By utilizing the

feature-point-based pose estimation technique, the relative
error between the current and desired configurations of
a WMR was firstly estimated. Then, a novel adaptive
two-stage switching approach was proposed to stabilize
the visual servoing system in terms of the relative error.
Finally, both simulations and experiments were performed
to substantiate the effectiveness of the proposed control
scheme. In the future, new solutions will be explored for the
uncalibrated camera-to-robot rotation angles.
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